EXPLICIT POISSON TAU-LEAPING

Yang Cao (VT), Dan Gillespie, Linda Petzold (UCSB)

DG Current Support: U.C. Santa Barbara

Caltech (NIGMS, NIH)

DG Past Support: Caltech (DARPA/AFOSR, Beckman)

Molecular Sciences Institute (Sandia / DOE)

ONR

ASSUMPTIONS & DEFINITIONS

- A well-stirred chemical system at constant volume and temperature.
- N species $\{S_1, ..., S_N\}$. System state is $\mathbf{X}(t) = (X_1(t), ..., X_N(t))$, $X_i(t) \equiv$ number of S_i molecules at time t.
- M reactions $\{R_1, ..., R_M\}$. Each R_j is described by two quantities:
 - State change vector: $\mathbf{v}_j \triangleq (v_{1j}, ..., v_{Nj})$, where $v_{ij} \equiv$ change induced in X_i by one R_j event.

So R_i induces the transition $\mathbf{x} \to \mathbf{x} + \mathbf{v}_i$.

 \circ Propensity function: a_i , where

 $a_i(\mathbf{x})dt \triangleq \text{probability, given } \mathbf{X}(t) = \mathbf{x} \text{, that } R_i \text{ will fire in } [t, t + dt).$

TWO EXACT CONSEQUENCES

• The function $P(\mathbf{x}, t | \mathbf{x}_0, t_0) \triangleq \text{Prob} \{ \mathbf{X}(t) = \mathbf{x}, \text{ given } \mathbf{X}(t_0) = \mathbf{x}_0 \}$ satisfies the **chemical master equation** (CME):

$$\frac{\partial P(\mathbf{x}, t | \mathbf{x}_0, t_0)}{\partial t} = \sum_{j=1}^{M} \left[a_j(\mathbf{x} - \boldsymbol{\nu}_j) P(\mathbf{x} - \boldsymbol{\nu}_j, t | \mathbf{x}_0, t_0) - a_j(\mathbf{x}) P(\mathbf{x}, t | \mathbf{x}_0, t_0) \right]$$

- > But it's nearly always impossible to solve.
- The stochastic simulation algorithm (SSA): If the system is in state \mathbf{x} at time t, then with $a_0(\mathbf{x}) \triangleq \sum_{i'=1}^{M} a_{i'}(\mathbf{x})$,
 - the time τ to the next reaction is an exponential random variable with mean $1/a_0(\mathbf{x})$;
 - the index j of the next reaction is an integer random variable with probability $a_j(\mathbf{x})/a_0(\mathbf{x})$.
 - .. By generating such samples for τ and j, we can advance the system to the next reaction by replacing $t \leftarrow t + \tau$ and $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{v}_j$.
 - > But simulating *every* reaction usually takes too much time.

An Approximate Acceleration Strategy: Explicit Tau-leaping

• **MathFact**: If some "event" occurs in each next dt with probability adt (a can be any positive constant), then the number of times the event will occur in any specified time $\tau > 0$ is $\mathcal{P}(a\tau)$, the Poisson random variable with mean $a\tau$:

$$\operatorname{Prob}\left\{\mathcal{P}(a\tau) = n\right\} = \frac{e^{-a\tau}(a\tau)^n}{n!} \quad (n = 0, 1, ...)$$

$$\langle \mathcal{P}(a\tau) \rangle = a\tau, \quad \text{var} \{ \mathcal{P}(a\tau) \} = a\tau.$$

• In state x at time t, suppose we can find a $\tau > 0$ that satisfies the ...

Leap Condition: During $[t, t+\tau)$ every a_i stays \approx constant.

Then in $[t, t + \tau)$, R_i will occur $\approx \mathcal{P}(a_i(\mathbf{x})\tau)$ times, so

$$\mathbf{X}(t+\tau) \approx \mathbf{x} + \sum_{j=1}^{M} \mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \mathbf{v}_{j}$$
.

The Explicit Tau-leaping Formula

$$\mathbf{X}(t+\tau) \approx \mathbf{x} + \sum_{j=1}^{M} \mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \mathbf{v}_{j}$$

- In principle feasible to implement because codes exist for generating random samples of $\mathcal{P}(\alpha)$ for any given $\alpha \ge 0$.
- Must take τ *small enough* that the Leap Condition is satisfied.
- But if τ is also *large enough* that at least some $a_j(\mathbf{x})\tau \gg 1$, then many firings of those R_j will occur in the leap, and the result may be faster than the single-reaction stepping procedure of the SSA.
- Practical considerations for a viable simulation algorithm:
 - How can we find the largest τ that satisfies the Leap Condition?
 - How can we avoid generating negative reactant populations?
 - How can we connect smoothly to the exact SSA for small τ ?

- Finding the largest τ that satisfies the Leap Condition -

With $\mathbf{X}(t) = \mathbf{x}$, let $\Delta_{\tau} a_j(\mathbf{x}) \equiv a_j(\mathbf{X}(t+\tau)) - a_j(\mathbf{x})$, a random variable. A little history ...

- **Version 1** of the Leap Condition required $|\Delta_t a_j(\mathbf{x})| \le \varepsilon a_0(\mathbf{x}), \forall j$.
 - We shall take " $|Y| \le B$ " to mean: $|\langle Y \rangle| \le B$ and sdev $\{Y\} \le B$.
 - Method needed $O(M^2)$ computations to find $\tau = \tau(\varepsilon, \mathbf{x})$.
- Version 2: Required $|\Delta_{r}a_{j}(\mathbf{x})| \leq \max(\varepsilon a_{j}(\mathbf{x}), c_{j}), \forall j$.
 - Fulfills the Leap Condition better ⇒ a more accurate simulation.
 - But still needed $O(M^2)$ computations to find $\tau = \tau(\varepsilon, \mathbf{x})$.
- ❖ Version 3: Requires $|\Delta_i x_i| \le \max(\varepsilon_i x_i, 1)$, $i \in I_{rs}$, with $\varepsilon_i \equiv \varepsilon_i(\varepsilon, x_i)$ chosen so that *Version 2* of the Leap Condition is satisfied.
 - Gives the same (improved) simulation accuracy as Version 2,
 - But needs only O(M) computations to find $\tau = \tau(\varepsilon, \mathbf{x})$.

Defining the functions $\varepsilon_i(\varepsilon, x_i)$ so that $\left| \Delta_i a_j(\mathbf{x}) \middle/ a_j(\mathbf{x}) \right| \le \varepsilon, \forall j$.

- Done *before* the simulation begins: For each *reactant* species S_i , determine $HOR(i) \equiv \underline{\text{highest order of reaction in which }}S_i$ is a reactant.
 - If HOR(i) = 1, take $\varepsilon_i = \varepsilon$.
 - If HOR(i) = 2, take $\varepsilon_i = \varepsilon/2$, except if any reaction requires two S_i molecules take $\varepsilon_i = \varepsilon/(2 + (x_i 1)^{-1})$.

Why? We want $|\Delta_i x_i/x_i| \le \varepsilon_i, \forall i$ to $\Rightarrow |\Delta_i a_i/a_i| \le \varepsilon, \forall_i$. So ...

- If $a_i = c_i x_i$, then $\Delta_r a_j = c_j \Delta_r x_i$; so $\Delta_r a_j / a_j = \Delta_r x_i / x_i$.
- If $a_j = c_j x_1 x_2$, then $\Delta_r a_j \doteq c_j x_2 \Delta_r x_1 + c_j x_1 \Delta_r x_2$; so $\Delta_r a_j / a_j \doteq \Delta_r x_1 / x_1 + \Delta_r x_2 / x_2$.
- If $a_j = c_j \frac{1}{2} x_i (x_i 1)$, then $\Delta_r a_j \doteq \frac{1}{2} c_j (x_i 1) \Delta_r x_i + \frac{1}{2} c_j x_i \Delta_r x_i$; so $\Delta_r a_j / a_j \doteq (\Delta_r x_i / x_i) (2 + (x_i 1)^{-1})$.

Ensuring that $|\Delta_i x_i| \le \max \{\varepsilon_i x_i, 1\}, \forall i \in I_{rs}$:

The basic tau-leaping formula $\Rightarrow \Delta_{\tau} x_i = \sum_{j} v_{ij} \mathcal{P}_j (a_j \tau)$.

Since \mathcal{P}_i 's are statistically independent with means and variances $a_i \tau$,

$$\langle \Delta_t x_i \rangle = \sum_i v_{ij} (a_j \tau), \quad \text{var} \{ \Delta_t x_i \} = \sum_i v_{ij}^2 (a_j \tau).$$

The condition " $|\Delta_r x_i| \le \max \{\varepsilon_i x_i, 1\}$ " will be considered satisfied iff

$$\left| \sum\nolimits_{j} v_{ij} a_{j} \tau \right| \leq \max \left\{ \varepsilon_{i} x_{i}, 1 \right\} \ \& \ \sqrt{\sum\nolimits_{j} v_{ij}^{2} a_{j} \tau} \leq \max \left\{ \varepsilon_{i} x_{i}, 1 \right\}.$$

Solving these two equations for τ , we get the **tau-selection formula**:

$$\tau = \min_{i \in I_{rs}} \left\{ \frac{\max \left\{ \varepsilon_{i} x_{i}, 1 \right\}}{\left| \sum_{j} v_{ij} a_{j}(\mathbf{x}) \right|}, \frac{\max \left\{ \varepsilon_{i} x_{i}, 1 \right\}^{2}}{\sum_{j} v_{ij}^{2} a_{j}(\mathbf{x})} \right\}.$$

- Avoiding negative populations & Segueing to the SSA -

If the population of a *consumed* reactant species is small, it might get "overdrawn" during a tau-leap by too many reaction firings.

- Originally this was thought to be caused by $\mathcal{P}(m)$ being unbounded. But the more common cause was bounding $|\Delta_t a_j(\mathbf{x})|$ by " $\varepsilon a_0(\mathbf{x})$ ".
- With the bound " $\max(\varepsilon a_j(\mathbf{x}), c_j)$ ", negatives are rare. When they do occur, it's usually because two or more reaction channels (which in tau-leaping fire *independently*) deplete a *common reactant*.

The New Tau-Leaping Strategy ...

- Uses a second control parameter, n_c ; typically $5 \le n_c \le 30$.
- Classifies any R_j with $a_j(\mathbf{x}) > 0$ that is within n_c firings of using up any reactant as *critical*. All other reactions are called *non-critical*.
- Is designed so that there will be no more than one firing of a critical reaction in any leap. This means that no critical reaction will ever cause any population to go negative.
- Reduces to the exact SSA when all R_i are critical.

THE EXPLICIT TAU-LEAPING PROCEDURE

- **0.** Choose values for ε and $n_{\rm c}$. For each reactant species S_i , set the appropriate function $\varepsilon_i(\varepsilon,x_i)$. Initialize $t\leftarrow 0$ and $\mathbf{x}\leftarrow \mathbf{x}_0$.
- **1.** In state \mathbf{x} at time t, evaluate all the $a_j(\mathbf{x})$. Then determine which reactions are *critical* and *non-critical* (per n_c).
- **2.** If there are *no non-critical* reactions take $\tau' = \infty$; otherwise, compute the putative leap time τ' for the *non-critical* reactions as

$$\tau' = \min_{i \in I_{rs}} \left\{ \frac{\max\left\{\varepsilon_{i} x_{i}, 1\right\}}{\left|\sum_{j \in J_{ncr}} v_{ij} a_{j}(\mathbf{x})\right|}, \frac{\max\left\{\varepsilon_{i} x_{i}, 1\right\}^{2}}{\sum_{j \in J_{ncr}} v_{ij}^{2} a_{j}(\mathbf{x})} \right\}.$$

- 3. If there are *no critical* reactions take $\tau'' = \infty$; otherwise use the SSA to compute the time τ'' to, and the index j_c of, the *next critical* reaction.
- **4.** Take $\tau = \min(\tau', \tau'')$. Then set $\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j \in J_{\text{ncr}}} \mathcal{P}_j \left(a_j(\mathbf{x}) \tau \right) \mathbf{v}_j$.
- **5.** If $\tau'' \le \tau'$, replace $\mathbf{X}(t+\tau) \leftarrow \mathbf{X}(t+\tau) + \mathbf{\nu}_i$.
- **6.** Update $\mathbf{x} \leftarrow \mathbf{X}(t+\tau)$ and $t \leftarrow t+\tau$. Go to 1, or else stop.

Going from tau-leaping to Langevin-leaping ...

- In $\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j} \mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \mathbf{v}_{j}$: If for some j, $a_{j}(\mathbf{x}) \tau \gg 1$, then $\mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \approx \mathcal{N}_{j} \left(a_{j}(\mathbf{x}) \tau, a_{j}(\mathbf{x}) \tau \right) = a_{j}(\mathbf{x}) \tau + \sqrt{a_{j}(\mathbf{x})} \mathcal{N}_{j}(0, 1) \sqrt{\tau}$.
- *A trick:* Write the Poisson random number generator so that it returns $\mathcal{N}(\alpha, \alpha)$ for $\mathcal{P}(\alpha)$ when $\alpha \gg 1$. This is usually faster.
- Then if it happens that $a_j(\mathbf{x})\tau \gg 1$ for all j, tau-leaping will automatically become **Langevin leaping**:

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j} \mathbf{v}_{j} a_{j}(\mathbf{x}) \tau + \sum_{j} \mathbf{v}_{j} \sqrt{a_{j}(\mathbf{x})} \,\mathcal{N}_{j}(0,1) \,\sqrt{\tau}$$

... and then going on to the Reaction Rate Equation

• Finally, if $a_j(\mathbf{x})\tau$ for all j is so much $\gg 1$ that $\sqrt{a_j(\mathbf{x})\tau} \ll a_j(\mathbf{x})\tau$, then the noise terms in the Langevin leaping formula can be dropped, and we get the Euler formula for the **reaction rate equation**:

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j} \mathbf{v}_{j} a_{j} (\mathbf{x}) \tau.$$

LIMITATIONS

- In explicit tau-leaping, the Leap Condition will always restrict τ to the time-scale of the *fastest* reactions.
- So for a system with a *large range of time scales* (e.g., *stiff* systems), explicit tau-leaping will seem slow.
- Alternatives
 - Implicit Poisson tau-leaping: A stochastic adaptation of the implicit Euler method for ODEs.
 - The slow-scale SSA: Skips over the fast reactions and simulates only the slow ones, but using specially modified propensity functions. An adaptation of the partial/rapid equilibrium method and the quasi steady-state method for ODEs.