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ASSUMPTIONS & DEFINITIONS
o A well-stirred chemical system at constant volume and temperature.

e N species {Sl,...,SN}. System state is X(t):(Xl(t),...,XN(t)),

X;(¢) = number of S; molecules at time ¢.

® M reactions {R,,...,R, }. Each R, is described by two quantities:

A
o State change vector: v, = (vlj,...,ij), where

v;; = change induced in X; by one R; event.

So R g induces the transition X = X+ v Iz

o Propensity function: a;, where

a;(x)dt 2 probability, given X(¢)=x, that R ; will fire in [z,¢+dt).




TWO EXACT CONSEQUENCES

e The function P(x,f|x,,?,)= Prob{X(¢) = x, given X(f)) = x,} satisfies
the chemical master equation (CME):
OP(x,t]x,,t,) &
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» But it’s nearly always impossible to solve.
o The stochastic simulation algorithm (SSA): If the system is in state
. . M
X at time 7, then with a,(x) = Z/_,:] ay(x),
- the time 7 to the next reaction is an exponential random variable
with mean 1/a,(x) ;

- the index j of the next reaction is an integer random variable with
probability a;(x)/a,(x) .

.. By generating such samples for 7 and j, we can advance the

system to the next reaction by replacing 7 «<—7+7 and X <~ xX+v .

» But simulating every reaction usually takes too much time.

An Approximate Acceleration Strategy: Explicit Tau-leaping

e MathFact: If some “event” occurs in each next dt with probability
adt (a canbe any positive constant), then the number of times the

event will occur in any specified time 7 >0 is P(ar), the Poisson
random variable with mean arz :

e—af (aT)n

Prob{P(ar) = n} = (n=0,1,...)

<77(ar)> =ar, var{P(ar)}=ar.
e Instate x at time ¢, suppose we can find a 7 > 0 that satisfies the ...
Leap Condition: During [#,/+7) every a; stays ~ constant.

Thenin [¢,t+7), R; will occur = P(a,(x)7) times, so

X(t+r)zx+§:73j(aj(x)r)vj .

=




The Explicit Tau-leaping Formula
M
X(t+71)= x+z73j (aj(x)r) v,
j=1

e In principle feasible to implement because codes exist for generating
random samples of P(«) for any given o > 0.

e Must take ¢ small enough that the Leap Condition is satisfied.

e Butif 7 is also large enough that at least some a;(x)z > 1, then many
firings of those R, will occur in the leap, and the result may be faster
than the single-reaction stepping procedure of the SSA.

e Practical considerations for a viable simulation algorithm:
= How can we find the largest 7 that satisfies the Leap Condition?
= How can we avoid generating negative reactant populations?

= How can we connect smoothly to the exact SSA for small 7 ?

- Finding the largest 7 that satisfies the Leap Condition -

With X(#)=x, let 4.a,(x)=a; (X(t + r)) —a,;(x), arandom variable.
A little history ...

e Version 1 of the Leap Condition required

Aa, (x)| < £ay(X),V) .
- We shall take “|Y| < B” to mean: |<Y>| <B and sdev{Y}<B.
- Method needed O(M?*) computations to find 7 = 7(&,x).
e Version 2: Required ‘Araj (x)‘ < max(gaj (x),cj),‘v’j.
- Fulfills the Leap Condition better = a more accurate simulation.
- But still needed O(M?*) computations to find 7 = 7(¢,X).

% Version 3: Requires |A,x,.| < max (&x; 1), iel

i s > with giEgi(gaxi)
chosen so that Version 2 of the Leap Condition is satisfied.
- Gives the same (improved) simulation accuracy as Version 2,

- But needs only O(M) computations to find 7 = 7(¢,Xx).




Defining the functions &;(&,x;) so that ‘Ara (%) / aj(x)‘ <&, Vj.
- Done before the simulation begins: For each reactant species S, ,
determine HOR(i) = highest order of reaction in which §; is a reactant.
o If HOR(i)=1,take ¢, =¢.
o If HOR(i) =2, take &, = &/2, except if any reaction requires two S,
molecules take ¢; = g/(2 +(x; - 1)’1) .

Why? We want |4.x,/x|<&,Vi to = |4a/a|<e¥;. So...

“If a; =c;x;, then Aa;=c,Ax;s0 Aa;[a;=Ax]x, .
*If a;, =c;xx,, then Aa; =cx,Ax +c;x;4.x,; 50
Aa;fa; = Ax [x+Ax,[x, .
=If a;, =c,;5x(x;—1), then Aa; =5c;(x, =D)Ax, +%c;x,4,%; 50

Aa;fa; =(Ax]x )(2 +(x, 1) ) .

Ensuring that |4 x,|<max{¢x,1},Viel:

[

The basic tau-leaping formula = A4 .x, = Z v, P, (ajr).

A

Since P;’s are statistically independent with means and variances a;7,

<Arxl.> = Zjvij (a;7), Var{A,xl-} = Zjvfj (a;7).

A.x;| < max {1} will be considered satisfied iff

177
‘Zjvijajr Smax{eixi,l} & .| jvf/ajrﬁmax{gixi,l}.

Solving these two equations for 7, we get the tau-selection formula:

The condition “
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- Avoiding negative populations & Segueing to the SSA -

If the population of a consumed reactant species is small, it might get
“overdrawn” during a tau-leap by too many reaction firings.

e Originally this was thought to be caused by P(m) being unbounded.

But the more common cause was bounding

Aa,(x)| by “a,(x)”.

e With the bound “max (g a;(x),c; ) ”, negatives are rare. When they do

occur, it’s usually because two or more reaction channels (which in
tau-leaping fire independently) deplete a common reactant.

The New Tau-Leaping Strategy ...

Uses a second control parameter, n_; typically 5<n,  <30.

Classifies any R; with a;(x) >0 that is within n_ firings of using up
any reactant as critical. All other reactions are called non-critical.

Is designed so that there will be no more than one firing of a critical
reaction in any leap. This means that no crifical reaction will ever
cause any population to go negative.

Reduces to the exact SSA when all R_ ; are critical.

THE EXPLICIT TAU-LEAPING PROCEDURE

. Choose values for ¢ and n,. For each reactant species S;, set the

appropriate function &;(¢g,x;). Initialize # <~ 0 and x < x,.

. Instate x at time 7, evaluate all the a;(x). Then determine which

reactions are critical and non-critical (per n,).

. If there are no non-critical reactions take 7' = oo ; otherwise, compute

the putative leap time ¢’ for the non-critical reactions as

max {&;x;,1} max {£,x; 1}2

177 1770

’ 2
> jean, Vi 9 (%)
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iel
s ‘Zjéjm v;a,(x)

. If there are no critical reactions take 7" = oo ; otherwise use the SSA to

compute the time 7" to, and the index j, of, the next critical
reaction.

. Take 7 =min(z',z"). Thenset X(t+7)=x+ Z P (a_/(x)r) v;.

J€ner

. Af 2" <7, replace X(1+7) < X(t+7)+v, .

. Update x < X(¢+7) and t < ¢+ 7. Go to 1, or else stop.




monomer X1, unstable dimer X2, stable dimer X3
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Going from tau-leaping to Langevin-leaping ...
oIn X(r+7)=x+ Z/Pj (aj(x)r) v, : Iffor some j, a;(x)z>1, then

P, (aj(x)r) =N, (aj(x)r,aj (x)r) =a,(X)7 +,/a,(x)N(0, Dz .
e A trick: Write the Poisson random number generator so that it returns
N(a,a) for P(a) when a >1. This is usually faster.

e Then if it happens that a;(x)z>1 for all j, tau-leaping will
automatically become Langevin leaping:

X(t+z-)ix+zj_vjaj(x)r+zjvj,/aj (X) Nj(oﬁl)\/;

... and then going on to the Reaction Rate Equation

e Finally, if a;(x)7 forall j is so much >1 that ,/a;(X)7 < a;(x)7,

then the noise terms in the Langevin leaping formula can be dropped,
and we get the Euler formula for the reaction rate equation:

X(t+z-)ix+zjvjaj(x)r.

LIMITATIONS

e In explicit tau-leaping, the Leap Condition will always restrict 7 to
the time-scale of the fastest reactions.

e So for a system with a large range of time scales (e.g., stiff systems),
explicit tau-leaping will seem slow.

e Alternatives

= Implicit Poisson tau-leaping: A stochastic adaptation of the
implicit Euler method for ODEs.

» The slow-scale SSA: Skips over the fast reactions and simulates
only the slow ones, but using specially modified propensity
functions. An adaptation of the partial/rapid equilibrium
method and the quasi steady-state method for ODEs.




