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  ASSUMPTIONS & DEFINITIONS 

• A well-stirred chemical system at constant volume and temperature. 

• N  species { }1, , NS S… .  System state is ( )1( ) ( ), , ( )Nt X t X t=X … , 

  ( )iX t ≡  number of iS  molecules at time t . 

• M  reactions { }1, , MR R… .  Each jR  is described by two quantities: 

o State change vector:  ( )1 , ,j j N jν νν ≜ … , where 

           i jν ≡  change induced in iX  by one jR  event. 

So jR  induces the transition j→ +x x ν . 

o Propensity function:  ja , where 

 ( )ja dtx ≜  probability, given ( )t =X x , that jR  will fire in [ , )t t dt+ . 
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  TWO EXACT CONSEQUENCES 

• The function { }0 0 0 0( , | , ) Prob ( ) , given ( )P t t t t= =x x X x X x≜  satisfies 

the chemical master equation (CME): 
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� But it’s nearly always impossible to solve. 

• The stochastic simulation algorithm (SSA):  If the system is in state 

x  at time t , then with 0 1
( ) ( )

M

jj
a a ′′=∑x x≜ , 

- the time τ  to the next reaction is an exponential random variable 

with mean 01 ( )a x ; 

- the index j  of the next reaction is an integer random variable with 

probability 0( ) ( )ja ax x . 

∴  By generating such samples for τ  and j , we can advance the 

system to the next reaction by replacing t t τ← +  and j← +x x ν . 

� But simulating every reaction usually takes too much time. 

  An Approximate Acceleration Strategy:  Explicit Tau-leaping 

• MathFact:  If some “event” occurs in each next dt  with probability 

adt  (a  can be any positive constant), then the number of times the 

event will occur in any specified time 0τ >  is ( )aτP , the Poisson 

random variable with mean aτ : 
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  { }( ) , var ( )a a a aτ τ τ τ= =P P . 

• In state x  at time t , suppose we can find a 0τ >  that satisfies the … 

Leap Condition:  During [ , )t t τ+  every ja  stays ≈  constant. 

 Then in [ , )t t τ+ , jR  will occur ≈ ( ( ) )ja τxP  times, so 
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  The Explicit Tau-leaping Formula 

  ( )
1

( ) ( )
M

j j j

j

t aτ τ
=

+ ≈ +∑X x xP ν  

• In principle feasible to implement because codes exist for generating 

random samples of ( )αP  for any given 0α ≥ . 

• Must take τ  small enough that the Leap Condition is satisfied. 

• But if τ  is also large enough that at least some ( ) 1ja τx ≫ , then many 

firings of those jR  will occur in the leap, and the result may be faster 

than the single-reaction stepping procedure of the SSA. 

• Practical considerations for a viable simulation algorithm: 

� How can we find the largest τ  that satisfies the Leap Condition? 

� How can we avoid generating negative reactant populations? 

� How can we connect smoothly to the exact SSA for small τ ? 

  - Finding the largest τ  that satisfies the Leap Condition - 

With ( )t =X x , let ( )( ) ( ) ( )j j ja a t aτ∆ τ≡ + −x X x , a random variable. 

A little history … 

• Version 1 of the Leap Condition required 0( ) ( ),ja a jτ∆ ε≤ ∀x x . 

-   We shall take “ Y B≤ ” to mean:  Y B≤  and { }sdev Y B≤ . 

-   Method needed 2( )O M  computations to find ( , )τ τ ε= x . 

• Version 2:  Required ( )( ) max ( ), ,j j ja a c jτ∆ ε≤ ∀x x . 

-  Fulfills the Leap Condition better ⇒  a more accurate simulation. 

-  But still needed 2( )O M  computations to find ( , )τ τ ε= x . 

� Version 3:  Requires ( ) rsmax ,1 ,i i ix x i Iτ∆ ε≤ ∈ ,  with ( , )i i ixε ε ε≡  

chosen so that Version 2 of the Leap Condition is satisfied. 

-  Gives the same (improved) simulation accuracy as Version 2, 

-  But needs only ( )O M  computations to find ( , )τ τ ε= x . 
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Defining the functions ( , )i ixε ε  so that  ( ) ( ) ,j ja a jτ∆ ε≤ ∀x x . 

-  Done before the simulation begins:  For each reactant species iS , 

determine ( )HOR i ≡  highest order of reaction in which iS  is a reactant. 

• If ( ) 1HOR i = , take iε ε= . 

• If ( ) 2HOR i = , take 2iε ε= , except if any reaction requires two iS  

molecules take ( )1
2 ( 1)i ixε ε −= + − . 

Why?  We want   ,i i ix x iτ∆ ε≤ ∀   to ⇒  ,j j ja aτ∆ ε≤ ∀ .  So … 

� If j j ia c x= , then j j ia c xτ τ∆ ∆= ; so j j i ia a x xτ τ∆ ∆= . 

� If 1 2j ja c x x= , then 2 1 1 2j j ja c x x c x xτ τ τ∆ ∆ ∆+≐ ; so 

1 1 2 2j ja a x x x xτ τ τ∆ ∆ ∆+≐ . 

� If 1
2

( 1)j j i ia c x x= − , then 1 1
2 2

( 1)j j i i j i ia c x x c x xτ τ τ∆ ∆ ∆− +≐ ; so 

( )( )12 ( 1)j j i i ia a x x xτ τ∆ ∆ −+ −≐ . 

Ensuring that  { } rsmax ,1 ,i i ix x i Iτ∆ ε≤ ∀ ∈ : 

The basic tau-leaping formula ⇒  ( )i i j j jj
x aτ∆ ν τ=∑ P . 

Since jP ’s are statistically independent with means and variances ja τ , 

  { } 2
( ),   var ( )i i j j i i j jj j

x a x aτ τ∆ ν τ ∆ ν τ= =∑ ∑ . 

The condition “ { }max ,1i i ix xτ∆ ε≤ ” will be considered satisfied iff 

{ } { }2
max ,1   &  max ,1i j j i i i j j i ij j

a x a xν τ ε ν τ ε≤ ≤∑ ∑ . 

Solving these two equations for τ , we get the tau-selection formula: 
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- Avoiding negative populations & Segueing to the SSA - 

    If the population of a consumed reactant species is small, it might get 

“overdrawn” during a tau-leap by too many reaction firings. 

• Originally this was thought to be caused by ( )mP  being unbounded.  

But the more common cause was bounding ( )jaτ∆ x  by “ 0 ( )aε x ”. 

• With the bound “ ( )max ( ),j ja cε x ”, negatives are rare.  When they do 

occur, it’s usually because two or more reaction channels (which in 

tau-leaping fire independently) deplete a common reactant. 

The New Tau-Leaping Strategy …  

•  Uses a second control parameter, cn ; typically c5 30n≤ ≤ . 

•  Classifies any jR  with ( ) 0ja >x  that is within cn  firings of using up 

any reactant as critical.  All other reactions are called non-critical. 

•  Is designed so that there will be no more than one firing of a critical 

reaction in any leap.  This means that no critical reaction will ever 

cause any population to go negative. 

•  Reduces to the exact SSA  when all jR  are critical. 

 THE EXPLICIT TAU-LEAPING PROCEDURE 

0.  Choose values for ε  and cn .  For each reactant species iS , set the 

appropriate function ( , )i ixε ε .  Initialize 0t←  and 0←x x . 

1.  In state x  at time t , evaluate all the ( )ja x .  Then determine which 

reactions are critical and non-critical (per cn ). 

2.  If there are no non-critical reactions take τ ′ = ∞ ; otherwise, compute 

the putative leap time τ ′  for the non-critical reactions as 

   
{ } { }

rs
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3.  If there are no critical reactions take τ ′′ = ∞ ; otherwise use the SSA to 

compute the time τ ′′  to, and the index cj  of, the next critical 

reaction. 

4.  Take min( , )τ τ τ′ ′′= .  Then set   ( )
ncr

( ) ( )j j j

j J

t aτ τ
∈

+ + ∑X x xP ν≐ . 

5.  If τ τ′′ ′≤ ,  replace 
c

( ) ( ) jt tτ τ+ ← + +X X ν . 

6.  Update ( )t τ← +x X  and t t τ← + .  Go to 1, or else stop. 
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              S1--> 0               c1 = 1

     S1 + S1 --> S2            c2 = 0.002

             S2 --> S1 + S1    c3 = 0.5

             S2 --> S3            c4 = 0.04

     - Exact SSA Run.

     - Intially:  X1=100,000; X2=X3=0.

     - 500 reactions per plotted dot

     - 517,067 reactions total.
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     - Explicit Tau Leaping Run

     - εεεε  = 0.04;  n c  = 10.
     - 1 leap per plotted dot.

     - 905 leaps total.

     - Run time speedup over SSA  > 10X.
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Going from tau-leaping to Langevin-leaping … 

• In ( )( ) ( )j j jj
t aτ τ+ +∑X x xP ν≐ :  If for some j , ( ) 1ja τx ≫ , then 

 ( ) ( )( ) ( ) , ( ) ( ) ( ) (0,1)j j j j j j j ja a a a aτ τ τ τ τ≈ = +x x x x xP N N . 

• A trick:  Write the Poisson random number generator so that it returns 

( , )α αN  for ( )αP  when 1α ≫ .  This is usually faster. 

• Then if it happens that ( ) 1ja τx ≫  for all j , tau-leaping will 

automatically become Langevin leaping: 

 ( ) ( )( ) (0,1)j j j j jj j
t a aτ τ τ+ + +∑ ∑X x x x Nν ν≐  

 … and then going on to the Reaction Rate Equation 

• Finally, if ( )ja τx  for all j  is so much 1≫  that ( ) ( )j ja aτ τx x≪ , 

then the noise terms in the Langevin leaping formula can be dropped,   

and we get the Euler formula for the reaction rate equation: 

 ( )( ) j jj
t aτ τ+ +∑X x xν≐ . 

LIMITATIONS 

• In explicit tau-leaping, the Leap Condition will always restrict τ  to 

the time-scale of the fastest reactions. 

• So for a system with a large range of time scales (e.g., stiff systems), 

explicit tau-leaping will seem slow. 

• Alternatives 

� Implicit Poisson tau-leaping:  A stochastic adaptation of the 

implicit Euler method for ODEs. 

� The slow-scale SSA:  Skips over the fast reactions and simulates 

only the slow ones, but using specially modified propensity 

functions.  An adaptation of the partial/rapid equilibrium 

method and the quasi steady-state method for ODEs.  

 


