STOCHASTIC CHEMICAL KINETICS

Dan Gillespie

GillespieDT@mailaps.org

Current Support: Caltech (NIGMS)

Caltech (NIH)

University of California at Santa Barbara (NIH)

Past Support: Caltech (DARPA/AFOSR, Beckman/BNCM))

University of California at Santa Barbara (DOE)

Molecular Sciences Institute (Sandia/DOE)

Office of Naval Research

Main Collaborators:

Linda Petzold (UCSB) John Doyle (Caltech)

A Chemically Reacting System consists of ...

- Molecules of N chemical species $S_1, ..., S_N$.
 - Inside a volume Ω , at some temperature T.
- *M* "elemental" reaction channels $R_1,...,R_M$.
 - We assume R_j to be a *single instantaneous physical event* that changes the population of at least one species.
 - In practice, "elemental" means that R_i must be one of two types:

Unimolecular: $S_i \rightarrow \text{something else}$,

or

Bimolecular: $S_i + S_{i'} \rightarrow$ something else.

- All other types of reaction (trimolecular, reversible, etc.) are made up of a series of two or more elemental reactions. E.g.:

$$S_1 + S_2 + S_3 \rightarrow S_4 + S_5$$
 is typically
$$\begin{cases} S_1 + S_2 \rightleftharpoons S_{12} \\ S_{12} + S_3 \rightarrow S_4 + S_5 \end{cases}$$

<u>Question</u>: How does a spatially homogeneous (or well-stirred) chemically reacting system evolve in time?

The Trad Answer:

According to the reaction rate equation (RRE).

- A set of coupled, first-order ODEs.
- Derived using ad hoc, phenomenological reasoning.
 - Is *more* than the "mass action equations" of thermodynamics, which apply only to systems in complete equilibrium.
- Implies the system evolves *continuously* and *deterministically*.
 - Yet molecules come in integer numbers and react stochastically.
- Is empirically accurate for large (test tube size) systems
- But is sometimes not adequate for very small (cell-size) systems.

* * *

Doing it "right": Molecular Dynamics

- The most exact way of describing the system's evolution.
- The "motion picture" approach: Tracks the position and velocity of every molecule in the system.
- Simulates *every* collision, *non-reactive* as well as *reactive*.
- Shows changes in species populations and their spatial distributions.
- **But** . . . it's *unfeasibly slow* for nearly all realistic systems.

A great simplification occurs if successive reactive collisions tend to be separated in time by very many non-reactive collisions.

- The overall effect of the non-reactive collisions is to *randomize*
 - the *velocities* of the molecules (Maxwell-Boltzmann distribution).
 - the *positions* of the molecules (spatially uniform or **well-stirred**),
- Then, instead of having to describe the system's state as the *position, velocity and species of each molecule*, we need only give

$$\mathbf{X}(t) \triangleq (X_1(t), \dots, X_N(t)),$$

 $X_i(t) \triangleq \text{ the } number \text{ of } S_i \text{ molecules at time } t.$

But this well-stirred simplification, which . . .

- *ignores* the non-reactive collisions,
- drastically truncates the definition of the system's state,

... comes at a price:

X(t) must now be viewed as a stochastic process.

- ➤ But in fact, *the system was never deterministic to begin with*. Even if molecules moved according to classical mechanics . . .
 - Unimolecular reactions always involve randomness (QM).
 - Bimolecular reactions usually do too.
 - A system of many colliding molecules is so *sensitive to initial conditions* that, for all practical purposes, it evolves "randomly".
 - The system is not isolated. It's in a *heat bath*, which keeps it "at temperature T" via essentially random interactions.

For well-stirred systems, each R_i is completely characterized by ...

- a propensity function a_j(x): Given the system is in state x,
 a_j(x) dt ≜ probability that one R_j event will occur in the next dt.
 The existence and form of a_j(x) follow from molecular physics.
- a state change vector v_j ≡ (v_{1j},...,v_{Nj}):
 v_{ij} ≜ the change in X_i caused by one R_j event.
 R_j induces x → x + v_j. {v_{ij}} ≡ the "stoichiometric matrix."

Examples:

$$S_1 \xrightarrow{c_j} S_2 : \mathbf{v}_j = (-1, 1, 0, \dots, 0); \ a_j(\mathbf{x})dt = (c_j dt) \times x_1 \Rightarrow a_j(\mathbf{x}) = c_j x_1$$

 $S_1 + S_2 \xrightarrow{c_j} 2S_2 : \text{same } \mathbf{v}_j; \ a_j(\mathbf{x})dt = (c_j dt) \times x_1 x_2 \Rightarrow a_j(\mathbf{x}) = c_j x_1 x_2$

 R_j iff "collisional K.E." $> E_j \implies p_j = \exp\left(-\frac{E_j}{k_B T}\right)$... Arrhenius!

Diffusional motion (well-stirred): $\pi r_{12}^2 \overline{v}_{12}$ is replaced by $4\pi r_{12} (D_1 + D_2)$

Two exact, rigorously derivable consequences . . .

➤ 1. The *chemical master equation* (CME):

$$\frac{\partial P(\mathbf{x}, t | \mathbf{x}_0, t_0)}{\partial t} = \sum_{j=1}^{M} \left[a_j(\mathbf{x} - \boldsymbol{\nu}_j) P(\mathbf{x} - \boldsymbol{\nu}_j, t | \mathbf{x}_0, t_0) - a_j(\mathbf{x}) P(\mathbf{x}, t | \mathbf{x}_0, t_0) \right].$$

- $P(\mathbf{x}, t | \mathbf{x}_0, t_0) \triangleq \text{Prob}\{\mathbf{X}(t) = \mathbf{x}, \text{ given } \mathbf{X}(t_0) = \mathbf{x}_0\} \text{ for } t \ge t_0.$
- Follows from the *probability* statement

$$P(\mathbf{x}, t + dt | \mathbf{x}_0, t_0) = P(\mathbf{x}, t | \mathbf{x}_0, t_0) \times \left[1 - \sum_{j=1}^{M} \left(a_j(\mathbf{x}) dt \right) \right]$$
$$+ \sum_{j=1}^{M} P(\mathbf{x} - \mathbf{v}_j, t | \mathbf{x}_0, t_0) \times \left(a_j(\mathbf{x} - \mathbf{v}_j) dt \right).$$

• But the CME is usually too hard to solve.

• Averages: $\langle f(\mathbf{X}(t)) \rangle \triangleq \sum_{\mathbf{x}} f(\mathbf{x}) P(\mathbf{x}, t | \mathbf{x}_0, t_0)$.

If we multiply the CME through by \mathbf{x} and then sum over \mathbf{x} , we find

$$\frac{d\langle \mathbf{X}(t)\rangle}{dt} = \sum_{j=1}^{M} \mathbf{v}_{j} \langle a_{j} (\mathbf{X}(t)) \rangle.$$

• If there were no fluctuations,

$$\langle a_{j}(\mathbf{X}(t))\rangle = a_{j}(\langle \mathbf{X}(t)\rangle) = a_{j}(\mathbf{X}(t))$$

and the above would reduce to:

$$\frac{d\mathbf{X}(t)}{dt} = \sum_{j=1}^{M} \mathbf{v}_{j} a_{j} (\mathbf{X}(t)).$$

- This is the reaction-rate equation (RRE).
- It's usually written in terms of the *concentration* $\mathbf{Z}(t) \triangleq \mathbf{X}(t)/\Omega$.
- But as yet, we have no justification for ignoring fluctuations.

2. The *stochastic simulation algorithm* (SSA):

A procedure for constructing *sample paths* or *realizations* of X(t).

Idea: Generate properly distributed random numbers for

- the time τ to the *next* reaction,
- the index *j* of that reaction.
- $p(\tau, j | \mathbf{x}, t) d\tau \triangleq \text{probability, given } \mathbf{X}(t) = \mathbf{x}$, that the *next* reaction will occur in $[t+\tau, t+\tau+d\tau)$, and will be R_j .

$$= P_0(\tau) \times a_i(\mathbf{x}) d\tau$$
, $P_0(\tau) \triangleq \Pr(no \text{ reactions in time } \tau)$.

$$P_0(\tau + d\tau) = P_0(\tau) \times (1 - a_0(\mathbf{x})d\tau)$$
, where $a_0(\mathbf{x}) \triangleq \sum_{1}^{M} a_{j'}(\mathbf{x})$.

Implies
$$\frac{dP_0(\tau)}{d\tau} = -a_0(\mathbf{x})P_0(\tau)$$
. Solution: $P_0(\tau) = e^{-a_0(\mathbf{x})\tau}$.

$$\therefore p(\tau, j | \mathbf{x}, t) = e^{-a_0(\mathbf{x})\tau} a_j(\mathbf{x}) = a_0(\mathbf{x}) e^{-a_0(\mathbf{x})\tau} \times \frac{a_j(\mathbf{x})}{a_0(\mathbf{x})}.$$

Thus,

- τ is an exponential random variable with mean $1/a_0(\mathbf{x})$,
- j is an integer random variable with probabilities $a_i(\mathbf{x})/a_0(\mathbf{x})$.

The "Direct" Version of the SSA

- **1.** In state **x** at time *t*, evaluate $a_1(\mathbf{x}), \dots, a_M(\mathbf{x})$, and $a_0(\mathbf{x}) \equiv \sum_{j'=1}^M a_{j'}(\mathbf{x})$.
- **2.** Draw two unit-interval uniform random numbers r_1 and r_2 , and compute τ and j according to
 - $\tau = \frac{1}{a_0(\mathbf{x})} \ln \left(\frac{1}{r_1} \right)$,
 - $j = \text{the } smallest integer satisfying } \sum_{k=1}^{j} a_k(\mathbf{x}) > r_2 a_0(\mathbf{x}).$
- 3. Replace $t \leftarrow t + \tau$ and $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{v}_i$.
- **4.** Record (\mathbf{x},t) . Return to Step 1, or else end the simulation.

A Simple Example: $S_1 \xrightarrow{c_1} 0$.

$$a_1(x_1) = c_1 x_1$$
, $v_1 = -1$. Take $X_1(0) = x_1^0$.

RRE:
$$\frac{dX_1(t)}{dt} = -c_1X_1(t)$$
. Solution is $X_1(t) = x_1^0 e^{-c_1t}$.

$$\underline{\mathbf{CME}}: \ \frac{\partial P(x_1, t | x_1^0, 0)}{\partial t} = c_1 \Big[(x_1 + 1) P(x_1 + 1, t | x_1^0, 0) - x_1 P(x_1, t | x_1^0, 0) \Big].$$

Solution:
$$P(x_1, t | x_1^0, 0) = \frac{x_1^0!}{x_1!(x_1^0 - x_1)!} e^{-c_1 x_1 t} \left(1 - e^{-c_1 t}\right)^{x_1^0 - x_1} (x_1 = 0, 1, \dots, x_1^0)$$

which implies
$$\langle X_1(t) \rangle = x_1^0 e^{-c_1 t}$$
, $sdev\{X_1(t)\} = \sqrt{x_1^0 e^{-c_1 t} (1 - e^{-c_1 t})}$.

SSA: Given
$$X_1(t) = x_1$$
, generate $\tau = \frac{1}{c_1 x_1} \ln\left(\frac{1}{r}\right)$, then update:

$$t \leftarrow t + \tau$$
, $x_1 \leftarrow x_1 - 1$.

The SSA ...

- Is exact. It does *not* entail approximating "dt" by " Δt ".
- Is *procedurally simple*, even when the CME is intractable.
- Comes in a variety of implementations ...
 - Direct Method (Gillespie, 1976)
 - First Reaction Method (Gillespie, 1976)
 - Next Reaction Method (Gibson & Bruck, 2000)
 - First Family Method (Lok, 2003)
 - Modified Direct Method (Cao, Li & Petzold, 2004)
 - Sorting Direct Method (McCollum, et al. 2006)
- *Remains too slow for most practical problems*: Simulating *every* reaction event *one* at a time just takes too much time if any reactants are present in very large numbers.

We would be willing to sacrifice a little exactness if that would buy us a faster simulation.

Tau-Leaping

- Approximately advances the process by a pre-selected time τ , which may encompass more than one reaction event.
- *Key*: The "Poisson random variable with mean $a\tau$ " can be defined:
 - $\mathcal{P}(a\tau) \equiv \text{ the } \textit{number of events} \text{ that will occur in a time } \tau$, when the probability of an event in any dt is adt, provided a is a positive constant.
- With $\mathbf{X}(t) = \mathbf{x}$, let us choose τ small enough to satisfy the **Leap Condition**: Each $a_i(\mathbf{x}) \approx constant$ in $[t, t+\tau]$.
- Then the number of R_i firings in $[t,t+\tau]$ will be $\approx \mathcal{P}(a_i(\mathbf{x})\tau)$. So ...

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j=1}^{M} \mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \mathbf{v}_{j}$$

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{i=1}^{M} \mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \mathbf{v}_{j}$$

- Practical Considerations for Implementing Tau-Leaping -
- Finding the largest τ that satisfies the Leap Condition.
 - Accomplished via an accuracy control parameter ε .
 - We estimate the largest τ for which $\left| \Delta_{\tau} a_j / a_j \right| \le \varepsilon$, $\forall j$.
- Avoiding negative populations, and segueing to the SSA.
 - Accomplished via a second control parameter n_c .
 - We call any reaction that is within n_c firings of exhausting any reactant a *critical* reaction. Then we tau-leap *no farther* than the *next* firing of a critical reaction.
 - Becomes the SSA when *all* reactions are classified critical.

Speeding up Tau-Leaping: The Langevin Equation

- Two math facts:
 - If $m \gg 1$, then $\mathcal{P}(m) \approx \mathcal{N}(m, m)$.
 - $\mathcal{N}(m, \sigma^2) = m + \sigma \mathcal{N}(0, 1)$.
- So, with $\mathbf{X}(t) = \mathbf{x}$, suppose we can choose τ *small enough* to satisfy the Leap Condition, *yet also large enough that* $a_j(\mathbf{x})\tau \gg 1$, $\forall j$.

Then . . .
$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j=1}^{M} \mathcal{P}_{j} \left(a_{j}(\mathbf{x}) \tau \right) \boldsymbol{\nu}_{j}$$

$$\doteq \mathbf{x} + \sum_{j=1}^{M} \mathcal{N}_{j} \left(a_{j}(\mathbf{x}) \tau, a_{j}(\mathbf{x}) \tau \right) \boldsymbol{\nu}_{j}$$

$$\doteq \mathbf{x} + \sum_{j=1}^{M} \left[a_{j}(\mathbf{x}) \tau + \sqrt{a_{j}(\mathbf{x}) \tau} \mathcal{N}_{j}(0, 1) \right] \boldsymbol{\nu}_{j}$$

$$\stackrel{*}{\bullet} \mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j} \left(\mathbf{x} \right) \tau + \sum_{j=1}^{M} \boldsymbol{\nu}_{j} \sqrt{a_{j}(\mathbf{x})} \, \mathcal{N}_{j}(0, 1) \, \sqrt{\tau} .$$

$$\mathbf{X}(t+\tau) \doteq \mathbf{x} + \sum_{j=1}^{M} \mathbf{v}_{j} a_{j} \left(\mathbf{x} \right) \tau + \sum_{j=1}^{M} \mathbf{v}_{j} \sqrt{a_{j} \left(\mathbf{x} \right)} \, \mathcal{N}_{j} \left(0, 1 \right) \sqrt{\tau}$$

- This is the Langevin leaping formula.
- It's faster than the ordinary tau-leaping formula, because
 - $a_i(\mathbf{x})\tau \gg 1$ means *lots* of reaction events get leapt over in τ ;
 - normal random numbers can be generated faster than Poissons.
- It directly implies, and is entirely equivalent to, a SDE called the *chemical Langevin equation* (CLE):

$$\frac{d\mathbf{X}(t)}{dt} \doteq \sum_{j=1}^{M} \mathbf{v}_{j} \, a_{j} \left(\mathbf{X}(t) \right) + \sum_{j=1}^{M} \mathbf{v}_{j} \sqrt{a_{j} \left(\mathbf{X}(t) \right)} \, \boldsymbol{\Gamma}_{j}(t) \ .$$

- Gaussian white noise: $\Gamma(t) \triangleq \lim_{dt \to 0^+} \frac{\mathcal{N}(0,1)}{\sqrt{dt}} \equiv \lim_{dt \to 0^+} \mathcal{N}\left(0, \frac{1}{dt}\right)$.
- Satisfies $\left\langle \Gamma_{j}(t) \Gamma_{j'}(t') \right\rangle = \delta_{jj'} \delta(t t')$.
- Our *discrete stochastic* process **X**(*t*) has now been *approximated* as a *continuous stochastic* process.

The Thermodynamic Limit

Def: All $X_i \to \infty$, and $\Omega \to \infty$, with X_i/Ω constants.

- $a_j = c_j x_1 \sim x_1$ In the thermodynamic limit, $a_j = c_j x_1 x_2 \sim \Omega^{-1} x_1 x_2 \sim x_2$ \Rightarrow all a_j 's grow like (system size).
- So in the thermodynamic limit, we see that in the CLE

$$\frac{d\mathbf{X}(t)}{dt} \doteq \sum_{i=1}^{M} \mathbf{v}_{i} a_{j} \left(\mathbf{X}(t) \right) + \sum_{i=1}^{M} \mathbf{v}_{j} \sqrt{a_{j} \left(\mathbf{X}(t) \right)} \Gamma_{j}(t) ,$$

- the *deterministic* term grows like (system size),
- the *stochastic* term grows like (system size)^{1/2}.
- \Rightarrow Rule of Thumb: *Relative fluctuations die off as (system size)*^{-1/2}.
- At the thermodynamic limit the stochastic term disappears, leaving

$$\frac{d\mathbf{X}(t)}{dt} \doteq \sum_{i=1}^{M} \mathbf{v}_{i} \, a_{j} \left(\mathbf{X}(t) \right) \dots \text{ the } \mathbf{RRE} \dots \mathbf{derived!}$$

 $\mathbf{X}(t)$ has now become a *continuous deterministic* process.

Another Multi-Scale Problem

- Some reactions/species may be *very fast*, others *very slow*.
- "Fast" and "slow" are **interconnected** not easy to separate.
- Often manifests as *dynamical stiffness*, a known ODE problem.
- SSA still works, and is exact. But it's agonizingly slow.
- Tau-leaping remains accurate, but the Leap Condition restricts τ to the shortest (fastest) time scale of the system. So even it's too slow.
- One approach: Implicit Tau-Leaping
 - A stochastic adaptation of the *implicit Euler method* for ODEs.
- Another approach: The Slow-Scale Stochastic Simulation Algorithm
 Skips over the fast reactions and simulates only the slow reactions, using specially modified propensity functions. An adaptation of the "rapid equilibrium" / "quasi steady-state" methods for RREs.