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Motivation and Background

Over the last few years we have been experimenting with the use
of the stochastic process algebra PEPA to model and analysis
biochemical signalling pathways.

In order to test the expressiveness of PEPA and our reagent-centric
style of modelling we wanted to undertake a large case study.

Choosing an example from the literature meant that we could also
validate our analysis techniques against published results.

The aim was not to make grand discoveries about this particular
signalling pathway — more to explore the boundaries of modelling
biological systems with PEPA.
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Performance Evaluation Process Algebra (PEPA)

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components
(determined by race policy)

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L concurrent activity

(individual actions)
α ∈ L cooperative activity
(shared actions)

HIDING: P/L abstraction α ∈ L⇒ α→ τ
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Mapping biological systems to process algebra

There has been much work on the use of the stochastic π-calculus
and related calculi, for modelling biochemical signalling within cells.

This work treats a molecule in a pathway as corresponding to the
component in the process algebra description.

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signalling pathways.

For example, we focus on species (c.f. a type rather than an
instance, or a class rather than an object) and use local states to
capture discretized levels of concentration.
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Reagent-centric modelling

Role Impact on reagent Impact on reaction rate

Producer decreases concentration has a positive impact, i.e. pro-
portional to current concentra-
tion

Product increases concentration has no impact on the rate, ex-
cept at saturation

Enzyme concentration unchanged has a positive impact, i.e. pro-
portional to current concentra-
tion

Inhibitor concentration unchanged has a negative impact, i.e. in-
versely proportional to current
concentration
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Deriving quantitative data

PEPA models can be analysed for quantified dynamic behaviour in
a number of different ways.

Each of these has tool support so that the underlying model is
derived automatically according to the predefined rules.
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Schoeberl et al.’s model of the MAP Kinase Cascade

Published in Nature Biotechnology 20:370-375 in 2002.

Influential, cited by more than 150 subsequent published
papers.

Consists of 94 reagent species involved in 125 reactions.

Substantial ODE model consisting of 94 state variables and 95
parameters.

PEPA model constructed “by hand”, with help of a graphical
representation.

Analysis performed by numerical ODE integrators of the
Matlab numerical computing platform.
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The MAP Kinase Cascade

There are many ambiguities in the graphical representation, e.g.

An infinite supply of EGF is assumed;

Reaction v7 is uni-directional whereas all others are reversible.
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Extracts from the MAP Kinase PEPA model

EGFH
def
= (v1, k1).EGFH

EGFRH
def
= (v1, k1).EGFRL + (v6, k6).EGFRL

EGFRL
def
= (v -1, k-1).EGFRH + (v -6, k-6).EGFRH + (v13, k13).EGFRH

EGF-EGFRH
def
= (v2, k2).EGF-EGFRL + (v -1,k-1).EGF-EGFRL

EGF-EGFRL
def
= (v1, k1).EGF-EGFRH + (v -2,k-2).EGF-EGFRH

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras
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The PEPA model

Similar PEPA definitions were constructed for each of the 94
species in the pathway.

This was tedious, but not difficult, although care was needed to
handle the points of ambiguity in the graphical representation.

In order to complete the model we also needed to capture the
interactions (i.e. cooperations) between the reagents. In this case
we assumed that whenever reagents participated in reactions with
the same name they did so in cooperation. The system equation
was then automatically generated.
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Validation of the PEPA model

Once the PEPA model was constructed, we wanted to ensure
that it was generating the same mathematical representation
of the system.

In the first instance we derived a set of ODEs in a format
suitable for Matlab.

These could not be compared directly with Schoeberl et al’s
ODEs due to different representations being used, but we
compared them empirically in terms of the results.
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Comparing Original Results and PEPA Derived ODEs
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The PEPA derived ODEs return the same results as the Schoeberl
et al. Matlab model.
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Validation of the PEPA model

We used an alternative mapping from the PEPA to generate a
stochastic simulation of the system, and compared our
stochastic simulation with the published ODE results.

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Original Results and PEPA Derived Tau-leap Simulation
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So why the difference between τ leap and the ODEs?

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Original Results and PEPA Derived Tau-leap Simulation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  10  20  30  40  50  60

M
ol

ec
ul

es
 p

er
 C

el
l

Time (min)

Ras-GTP

Original Schoeberl et al. Matlab Model
PEPA derived Tau-leap Simulation

So why the difference between τ leap and the ODEs?

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Original Results and PEPA Derived Tau-leap Simulation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  2  4  6  8  10

M
ol

ec
ul

es
 p

er
 C

el
l

Time (min)

Ras-GTP

Original Schoeberl et al. Matlab Model
PEPA derived Tau-leap Simulation

So why the difference between τ leap and the ODEs?

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Original Results and PEPA Derived Tau-leap Simulation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  2  4  6  8  10

M
ol

ec
ul

es
 p

er
 C

el
l

Time (min)

Raf*

Original Schoeberl et al. Matlab Model
PEPA derived Tau-leap Simulation

So why the difference between τ leap and the ODEs?

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Corrected Time Step in Matlab Model
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Schoeberl et al. model - smaller steps

The original parameters for the Matlab model stepped over the
true peak. The Tau-leap simulation was in fact returning the

correct results.
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Conclusion

The MAP Kinase cascade is one of the larger biological
models in recent literature

It has been shown that PEPA can cope with models of this
size.

PEPA offers a cleaner, more precise view of the system.

Moreover, PEPA allows multiple forms of analysis.

This ability led to the discovery that the true peaks of Raf∗

and Ras-GTP concentrations were incorrectly calculated in the
original analysis.

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Conclusion

The MAP Kinase cascade is one of the larger biological
models in recent literature

It has been shown that PEPA can cope with models of this
size.

PEPA offers a cleaner, more precise view of the system.

Moreover, PEPA allows multiple forms of analysis.

This ability led to the discovery that the true peaks of Raf∗

and Ras-GTP concentrations were incorrectly calculated in the
original analysis.

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Conclusion

The MAP Kinase cascade is one of the larger biological
models in recent literature

It has been shown that PEPA can cope with models of this
size.

PEPA offers a cleaner, more precise view of the system.

Moreover, PEPA allows multiple forms of analysis.

This ability led to the discovery that the true peaks of Raf∗

and Ras-GTP concentrations were incorrectly calculated in the
original analysis.

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Conclusion

The MAP Kinase cascade is one of the larger biological
models in recent literature

It has been shown that PEPA can cope with models of this
size.

PEPA offers a cleaner, more precise view of the system.

Moreover, PEPA allows multiple forms of analysis.

This ability led to the discovery that the true peaks of Raf∗

and Ras-GTP concentrations were incorrectly calculated in the
original analysis.

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras



Background
Stochastic Process Algebra

Schoeberl model of the MAP Kinase Cascade

Validation of the model
Comparing the results
The differences in the results

Conclusion

The MAP Kinase cascade is one of the larger biological
models in recent literature

It has been shown that PEPA can cope with models of this
size.

PEPA offers a cleaner, more precise view of the system.

Moreover, PEPA allows multiple forms of analysis.

This ability led to the discovery that the true peaks of Raf∗

and Ras-GTP concentrations were incorrectly calculated in the
original analysis.

Stephen Gilmore. LFCS, University of Edinburgh. Quantitative Methods: Modelling with Process Algebras


	Background
	Stochastic Process Algebra
	PEPA
	Reagent-centric modelling

	Schoeberl model of the MAP Kinase Cascade
	Validation of the model
	Comparing the results
	The differences in the results


