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Biochemical modelling with the 7-Calculus

Main ideas

o free floating biochemical elements (e.g. molecules) my, my, ...
= parallel processes My, My, .. .;

@ /O channel = reaction capability;

@ reaction == synchronisation/communication;

Example

® _©o
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Biochemical modelling with the 7-Calculus

Binary reactions

Chemical reaction

R: mi+my— m3+my

m-Calculus system
My £ r.Ms My £ F. M,

Mi|My — Ms|M,

Example
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Biochemical modelling with the 7-Calculus

Mutually exclusive reactions
Chemical reaction m-Calculus system
/\/’1é n.My + rn.Ms
Ri: mi+my— my A —
R, - M+ ms — m — M2 = r1.0
2! 1 3 5 M2 5.0
Example Example
(L . (© @ _ o
My |Ma|Ms — My | Ms My |Ma|Ms — Ms | M,
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Introduction The 7-Calculus

Biochemical modelling with the 7-Calculus

Molecular binding

Chemical reaction m-Calculus system
Ri: mp+my— mp M(by) £ 7(br).Mi(by) + r(b,).M,(by, b;)
Rf ompp — mp+m M/(b/) = I’(b,—) M/r(b/, b )+ b/M
Rii: mui+my — mun = M,(by, by) £ 77<b ).M.(by, b,) + by.M
Rip: mun — mu+m My (by, by) = by.M,(b,)
Example
va M(a) | vb M(b) | vc M(c) — --- — wabc (M,|M,|M;)
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Introduction Limits

Compartments

ribosomg er;;mls\l‘f’ii:m . .
o Biological compartments

membrane

mitochandrion

@ systems organised into complex
spatial and functional
configurations (organelles, cells,
tissues, organs, ...)

cytuplasm
microtubul
{part of cy‘mske\ etor)

lysosome

@ partial mobility of simple
rusius elements but also of whole

Moo nucleclus
e SEh structures (membrane channels,
_ nuclear envelope .
{tBetaans Golgi complex vesicular transport, ... )
centricle y
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Static Compartment Modelling

Main ideas
@ distinct names for same chemical species in different compartments

@ transport as “renaming” reaction

Example
Compartments A, B Ra: mi+m3— mi+mi
R: mi+m — m3+my Rg : mll:’ergngijé’
Inter-compartment transport: Tag: mi—mb
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Introduction Limits

Dynamic Compartment Modelling

Example

Exocytosis:

Problems

@ how to grant that all processes are properly renamed?

@ how to avoid overlapping of compartment operations?
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Introduction Bio-calculi

Bio-inspired Process Calculi with Compartments

Q a.P|Q

P mate;n.0
n l ﬁXII
X
enter c.R
R|b.S
m
BioAmbients Brane Calculi Beta-binders
Compartments

explicitly formalised

used at different levels of abstraction

°
°
@ represented by ambients/membranes/boxes
@ may be nested

°

dynamical (created, merged/split, ...)

v
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Overview of BioAmbients

BioAmbients: Mobile Ambients added with communication
primitives
@ compartments are represented by ambients
@ ambients contain processes or nested ambients = tree structure
@ special primitives allow 7-Calculus-like name communication

@ ambients may exit from, move inside, or merge with other ambients

v

Example

n[P| Q]| mRI]

(eJ°o)
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Ambient capabilities

Example
Merge:

m[merge+ c.P|Q)] ‘ n[merge— c.R|S] — m[P|Q|R|S]

== O0x

(OO
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Ambient capabilities

Example
Enter/accept:

mlenter ¢.P|Q] | n[accept c.R|S] — n[R|S | m[P|Q]]

FE=== ([°9)°o]

Exit/expel:

n[mlexit c.P|Q] | expel c.R|S] — m[P|Q] | n[R|S]

| © 1o
o) e Ol ©

v
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Ambient communications

Example
Local (intra-ambient):
m[local c'{a}.P|local c?{x}.Q] — m[P|Q{a/x}]

: Q)

=

Sibling-to-sibling (inter-ambient):
m[s2s c!{a}.P] | n[s2s c?{x}.Q] — m[P] | n[Q{a/x}]

== )
=== ) j

v
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Introduction Bio-calculi

Ambient communications

Example

Parent-to-child/child-to-parent (inter-ambient, between nested ambients):

m[p2c c!{a}.P | n[c2p c?{x}.Q]] — m[P | n[Q{a/x}]]

" ® "
o0 - Q="

Child-to-parent/parent-to-child (inter-ambient, between nested ambients):
m[p2c c?{x}.P | n[c2p c!{a}.Q]] — m[P{a/x} | n[Q] ]

" >
o>

v
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Overview of Brane Calculi

Brane Calculi: membranes as active sites of computation
@ compartments are represented by membranes
@ membranes may contain other membranes in a tree structure
@ processes are located on membranes

@ membranes transformations preserve bitonality

Example

(P o s(Q)) o tlt'(R)
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Bitonal operations

Example
Exocytosis:

( exor.t | t'lexos | S'(P)oQ) ) — (Pos|s|t]|t(Q))

Versari (UniBO) 7@ calculus SFMO08-Bio 17 / 42



Bitonal operations

Example
Phagocytosis:

phago.s|s'(P) o phago™(r).t|t'(Q) — tlto(r(s|s'(P)) Q)

phago.s
phago(r)-t
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Motivation

Bio-inspired process calculi:

Pros Cons
o faithful modelling @ specialised
@ easy to use (hopefully...) @ no easy cross coding

@ need to develop new

@ theoretical analyses
o software tools

Motivation
@ what common compartment-related features?

@ what the simplest/minimal language primitives to express all of (most
of) them?
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7@ (paillette): a Conservative Core Calculus

Aim
To provide a core calculus
@ simple, general purpose

@ embedding the key features of bio-inspired calculi

The 7@ Calculus [Versari, ESOP’07]

7@ = m-Calculus 4 polyadic synchronisation -+ priority

7@ features
@ conservative m-Calculus extension

@ polyadic synchronisation for modeling compartment scoping

@ priority for gaining atomicity of sequences of operations
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Localisation by means of Polyadic Synchronisation

Polyadic synchronisation: channels are identified by one or more names
m-Calculus m@
P=¢c.P J

P= Cl@Cg.P/ J

Compartments may be represented by one of the names of each channel:

P = c@compartmentp.P’ Q = c@compartmentq.Q’

@ P and Q may share free names

@ P and Q may interact iff compartmentp = compartmentg
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Atomicity by means of Priority

Priority: high-priority reactions happen before lower-priority ones

Example

S

LPL| 1P| hQ | 0@ + T= Pi| P|hQ|hQ

S

LPL| 1P| hQi | hQ — S=I1P|I1P| Q| @
- S= P| P Q| @

Each atomic sequence of operations may be encoded as a low priority
reaction followed by an unlimited number of high priority reactions:

P1 = Seqi.op11-0p12-0p13 P> = Séq2.0p21.0p22.0p23
The executions of P; and P, never overlap
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7@ Syntax
7@ syntax
P o= S miP . PlQ ’ \P ‘ (v x)P
T ou= T ‘ 1@ - Qpuyp i k(x) ’ 1@ -+ Oup : k(x)
@ each channel is represented by a vector of one or more names

M1, .- Un

each input or output action has a priority k

©

©

higher priority actions are executed first

(]

priority is static
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7@ Semantics

7@ reduction semantics

7@ semantics

r¢ U, 1) Py P
Tk P+ M —, P (v x)P — (v x)P'
T ¢ Ui, '(M | N)
(n:k(y)-P+ M) | (7: k< ).Q+N) —, P{z/y} | @
PP 1¢U_J(P|Q P=Q P — P P =@
Pl|Q —« P|Q Q —k @

@ the only difference from 7-Calculus semantics is the side condition in
red: no additional rules required,;

@ the /%(P) function represents the set of actions of priority k ready to
be executed by the process P.
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Encodings into 7@

Encodings

c
2 g

ac—(b, out)

b—s(d, out) | @ a

Parallel-preserving encodings of
@ BioAmbients, Brane Calculi [Versari, ESOP'07]
@ some P systems (with maximal parallelism!) [Versari, MECBIC'07]

@ Beta-binders [Cappello, Quaglia, to appear]

into 7@ have been provided.

v
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Encoding requirements

Definition
Reasonable encoding:
@ parallel-preserving [[Pl ‘ Pz]] = [[Plﬂ ‘ [[Pgﬂ
@ renaming preserving: o permutation of names, [ o(P) ] = 6([ P ]);
o termination invariance: P Liff [P {, P iff [ P ] i
@ operational correspondence:
o if P— P then [P] =" [P'],
o if [P] —*Qthen3P' : P =" P AQ—*[P].

Versari (UniBO) 7@ calculus SFMO08-Bio 26 / 42



@ Encodings

Encoding Bioambients

Example

n m m® '
ot ([BF0g)

Encoding specifies compartment and parent compartment names:
[P] = [Plis

Basic operators are homomorphically coded

[P Q] = [Pl | [Q]c,

[[ (new x)P ]]qpc = (vx) [[ P ]]C’pc
Nested compartments are represented by private names

[[ [P] ]]c,pc = (V Cmp)[[P:Hcmp,c
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@ Encodings

Encoding Bioambients Communications

Local communication:

[ local c!{a}.P ]]m’pm local@c@m(a).[ P |
[ local c?{x}.Q | £ Jocal@c@m(x).[ Q ﬂmpm

m,pm

m,pm

Example

mllocal c!{a}.Pllocal c?{x}.Q] — m[P|Q{a/x}]

m m
local c!{a}.P @
(IR
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@ Encodings

Encoding Bioambients Communications

Sibling-to-sibling communication:

[ s2s c!{a}.P }]m’pm s250c@pm(a).[ P ], ...
[ s2s c?{x}.Q ] £ $250@c@pn(x).[ Q ﬂn on

n,pn

Example
m[s2s c!{a}.P] | n[s2s c?{x}.Q] — m[P] | n[Q{a/x}]
== 1)
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@ Encodings

Encoding Bioambients Communications

Parent-to-child communication:

[I>

p2c cl{a}.P p2c@c@m(a).| P
m,pm m,pm
[[ c2p c?{x}.P ]]n on £ p2c@cO@pn(x [[ P ﬂn on

Example
m[p2c c!{a}.P | n[c2p c?{x}.Q]] — m[P | n[Q{a/x}]]

" ® "
TS - o=
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@ Encodings

Encoding Bioambients Capabilities
Merge:

[[merge—i— C.Pﬂ = m@ﬁﬂ P ﬂm,pm

m,pm

[[ merge— c.P ]] £ merge@c@pn(x).bcast(merge, n, x>[[ P ﬂ

n,pn xX,pn

Example
m[merge+ c.P|Q] | n[merge— c.R|S] — m[P|Q|R|S]

== 005
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@ Encodings

Encoding Bioambients Capabilities
Enter/accept:

[ accept c.R]_ _ = enter@c@pn(n).[ R ﬂn,pn

n,pn
[[ enter c.P ]]

(1>

m,pm

Example
mlenter ¢.P|Q] | n[accept c.R|S] — n[R|S | m[P|Q]]

E==E= ([°9)°o]

enter@c@pm(x).bcast(enter, m, x).[ P ]m
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@ Encodings

Encoding Bioambients Capabilities

Exit/expel:

[[ expel c.R]] £ expel@c@n{pn). [[ R]

n,pn n,pn

[ exit c.P ] £ expel@c@pm(x).bcast(exit, m, x).| Pﬂ

m,pm

Example

n[m[exit c.P|Q] | expel c.R|S] — m[P|Q] | n[R|S]

[]] o 3@
© 06 ©)
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@ Encodings

Encoding Brane

Basic Encodings

Example

r

17 ol 408 D

(1>

[P] [P
[Pe@],. = [P
[stPV],. = (
[s]rlepe = [slcp

pc

I

Joe | TQT,
WsTepe | [P]D)
| Trlep

vc
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@ Encodings

Encoding Brane Actions

Exocytosis
n S
[ exon .t ]]C,pc £ exo@n@c(pc).| t ]]C,pc
[ exon.s ]]C,’pc, £ exo@n@pc’(x).beast(exo, c’, x).[ s ]]pc’,x
Example

( exor.t | t'lexos | S'(P)oQ) ) — (Pos|s|t]|t(Q))

v
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@ Encodings

Encoding Brane Actions

Phagocytosis

[[ phagonL(r).t :Hc,pc = (V X) (phago@n@pc<x>.([ t ﬂc,pc ‘ [ r ]]X,c))
[ phagon.s | _,

phago@n@pc’(x).bcast(phago, c’,x).[ s ]c’,x

pc’

Example

phago.s|s'(P) o phago™(r).t|t'(Q) — tlto(r(s[s'(P))o Q)

phago.s
phago(r)-.t
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@ Encodings

Encoding Comparison

Example

m,pm

[[ exit c.P ]] L expel@c@pm(x).bcast (exit, m, x)[ P ﬂ mox

[ €xop.s ]] exo@n@pc’(x).bcast(exo, ¢, x). [[ s ﬂ

c,pc’

pc’ x

The

encodings of BioAmbients and Brane Calculi

reflect the similar tree structure of compartments:
the difference is the scope of the name of compartments

reflect the atonality/bitonality of operations:

the difference is the name broadcasted to the involved processes
show that the key mechanisms for handling the compartment
structure are the same (scoping of communication, broadcast-like
messages to notify changes in the structure)
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Conclusion

7@ Features

©

simple (very close to m-Calculus syntax)
@ conservative (almost same 7-Calculus semantics)

@ concise (reactions are specified once, additional information on
compartments and volumes are specified only if required)

@ little implementation effort as extension of current implementations of
the m-Calculus

@ compartments with dynamical structure

@ cross-compartment elements are straightforwardly and consistently
specified

@ almost unlimited compartment semantics (able to encode
BioAmbients, Brane Calculi, Projective Brane, )
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Future Work

Future work

@ further encodings of bio-inspired calculi into 7@
@ or in stochastic 7@ by preserving stochastic semantics

@ further investigation on the expressiveness of priority

@ non-interleaving semantics for 7@
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