π 0: a π -based Process Calculus for the Implementation of Compartmentalised Bio-inspired Calculi

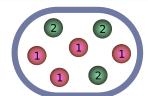
Cristian Versari versari(at)cs.unibo.it

joint work with Roberto Gorrieri

Department of Computer Science University of Bologna

International School on Formal Methods for the Design of Computer, Communication and Software Systems:

Computational Systems Biology


Outline

- Introduction
 - ullet Biochemical modelling with the π -Calculus
 - Modelling compartments in π -Calculus
 - Two biologically inspired calculi: Bioambients, Brane
- π 0: a core calculus
 - Encodings of bio-calculi into π 0
- Conclusion

Main ideas

- free floating biochemical elements (e.g. molecules) $m_1, m_2, ...$ \implies parallel processes $M_1, M_2, ...$
- I/O channel ⇒ reaction capability;
- reaction ⇒ synchronisation/communication;

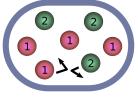
Example

$$S \triangleq M_1 \mid M_1 \mid \cdots \mid M_2 \mid M_2 \mid \cdots$$

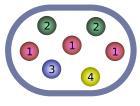
4 D > 4 D > 4 E > 4 E > E 904 P

Binary reactions

Chemical reaction


$$R: \quad m_1+m_2\to m_3+m_4$$

 π -Calculus system


$$M_1 \triangleq r.M_3$$
 $M_2 \triangleq \overline{r}.M_4$

$$M_1|M_2 \rightarrow M_3|M_4$$

Example

$$M_1|M_1|\cdots|M_2|M_2|\cdots$$

$$M_3|M_1|\cdots|M_4|M_2|\cdots$$

Mutually exclusive reactions

Chemical reaction

$$R_1: m_1 + m_2 \to m_4$$

 $R_2: m_1 + m_3 \to m_5$

 π -Calculus system

$$M_1 \triangleq r_1.M_4 + r_2.M_5$$

 $M_2 \triangleq \overline{r_1}.\mathbf{0}$
 $M_3 \triangleq \overline{r_2}.\mathbf{0}$

Example

$$M_1|M_2|M_3 \rightarrow M_4 \mid M_3$$

Example

$$M_1|M_2|M_3 \rightarrow M_5 \mid M_2$$

4□ > 4♠ > 4 = > 4 = > 9

5 / 42

Molecular binding

Chemical reaction

$$\pi$$
-Calculus system

$$R_1: m_1+m_1 \rightarrow m_{11}$$
 M

$$M(b_l) \triangleq \overline{r}\langle b_l \rangle . M_l(b_l) + r(b_r) . M_r(b_l, b_r)$$

$$R_1^-: m_{11} \to m_1 + m_1$$

$$R_1^-: m_{11} \to m_1 + m_1 \qquad M_I(b_I) \triangleq r(b_r).M_{Ir}(b_I,b_r) + \overline{b}_I.M$$

 $R_{11}: m_{11} + m_1 \to m_{111} \implies M_r(b_I,b_r) \triangleq \overline{r}\langle b_I \rangle.M_{Ir}(b_I,b_r) + b_I.M$

$$R_{11}: m_{11} + m_1 \rightarrow m_{111} \Longrightarrow R_{-}: m_{11} \rightarrow m_{11} \downarrow m_1$$

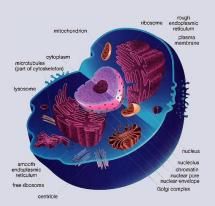
$$M_{lr}(b_l, b_r) \triangleq \overline{b}_l.M_r(b_r)$$

 $R_{11}^-: m_{111} \to m_{11} + m_1$

$$M_{lr}(b_l,b_r) \triangleq b_l.M_r(b_r)$$

. . .

Example



←□→ ←□→ ←□→ ←□→

$$u a M(a) \mid \nu b M(b) \mid \nu c M(c) \rightarrow \cdots \rightarrow \nu abc (M_r \mid M_{lr} \mid M_l)$$

Versari (UniBO) π @ calculus SFM08-Bio 6 / 42

Compartments

Biological compartments

- systems organised into complex spatial and functional configurations (organelles, cells, tissues, organs, ...)
- partial mobility of simple elements but also of whole structures (membrane channels, vesicular transport, ...)

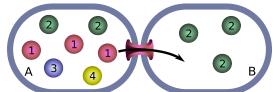
Versari (UniBO)

Static Compartment Modelling

Main ideas

- distinct names for same chemical species in different compartments
- transport as "renaming" reaction

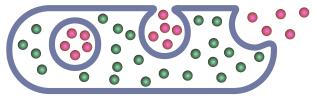
Example


Compartments A, B

 $m_1 + m_2 \rightarrow m_3 + m_4$

 $R_A: m_1^a + m_2^a \to m_3^a + m_4^a$ $R_B: m_1^b + m_2^b \to m_3^b + m_4^b$

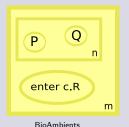
Inter-compartment transport:

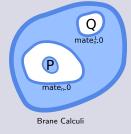

 $T_{AB}: m_1^a \rightarrow m_1^b$

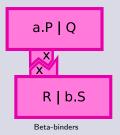
Dynamic Compartment Modelling

Example

Exocytosis:


Problems


- how to grant that all processes are properly renamed?
- how to avoid overlapping of compartment operations?



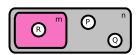
Versari (UniBO)

Bio-inspired Process Calculi with Compartments

Compartments

- explicitly formalised
- used at different levels of abstraction
- represented by ambients/membranes/boxes
- may be nested
- dynamical (created, merged/split, ...)

Versari (UniBO) π @ calculus SFM08-Bio 10 / 42


Overview of BioAmbients


BioAmbients: Mobile Ambients added with communication primitives

- compartments are represented by ambients
- ambients contain processes or nested ambients \implies tree structure
- special primitives allow π -Calculus-like name communication
- ambients may exit from, move inside, or merge with other ambients

Example

$$n[P \mid Q \mid m[R]]$$

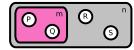
Ambient capabilities

Example

Merge:

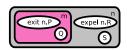
$$m[merge + c.P|Q] \mid n[merge - c.R|S] \rightarrow m[P|Q|R|S]$$

Ambient capabilities


Example

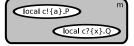
Enter/accept:

$$m[enter\ c.P|Q]\ |\ n[accept\ c.R|S]\ o\ n[\ R\ |\ S\ |\ m[P|Q]\]$$



Exit/expel:

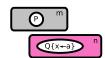
$$n[m[exit \ c.P|Q] \mid expel \ c.R|S] \rightarrow m[P|Q] \mid n[R|S]$$


13 / 42

Ambient communications

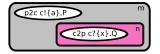
Example

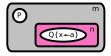
Local (intra-ambient):


$$m[local\ c!\{a\}.P|local\ c?\{x\}.Q] \rightarrow m[P|Q\{a/x\}]$$

Sibling-to-sibling (inter-ambient):

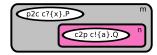
$$m[s2s \ c!\{a\}.P] \mid n[s2s \ c?\{x\}.Q] \rightarrow m[P] \mid n[Q\{a/x\}]$$

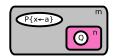

Versari (UniBO) π @ calculus SFM08-Bio 14 / 42


Ambient communications

Example

Parent-to-child/child-to-parent (inter-ambient, between nested ambients):

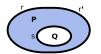

$$m[p2c \ c!\{a\}.P \mid n[c2p \ c?\{x\}.Q]] \rightarrow m[P \mid n[Q\{a/x\}]]$$



Child-to-parent/parent-to-child (inter-ambient, between nested ambients):

$$m[p2c \ c?\{x\}.P \mid n[c2p \ c!\{a\}.Q]] \rightarrow m[P\{a/x\} \mid n[Q]]$$

Versari (UniBO) π @ calculus SFM08-Bio 15 / 42


Overview of Brane Calculi

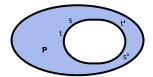
Brane Calculi: membranes as active sites of computation

- compartments are represented by membranes
- membranes may contain other membranes in a tree structure
- processes are located on membranes
- membranes transformations preserve bitonality

Example

$$r|r'(P \circ s(Q)) \circ t|t'(R)$$

Versari (UniBO)


Bitonal operations

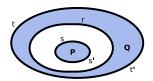
Example

Exocytosis:

$$(\hspace{-0.5cm} \mid exo^{\perp}.t \mid t'(\hspace{-0.5cm}\mid\hspace{-0.5cm} s'(\hspace{-0.5cm}\mid\hspace{-0.5cm} P)\hspace{-0.5cm}\mid\hspace{-0.5cm} Q)\hspace{-0.5cm}) \hspace{-0.5cm} \rightarrow \hspace{-0.5cm} (\hspace{-0.5cm}\mid\hspace{-0.5cm} P\hspace{-0.5cm}\circ\hspace{-0.5cm}s \mid\hspace{-0.5cm} s' \mid t \mid t'(\hspace{-0.5cm}\mid\hspace{-0.5cm} Q)\hspace{-0.5cm}))$$

Versari (UniBO)

Bitonal operations


Example

Phagocytosis:

$$phago.s|s'(P) \circ phago^{\perp}(r).t|t'(Q) \rightarrow t|t_0(r(s|s'(P)) \circ Q)$$

phago.s

Versari (UniBO) π @ calculus SFM08-Bio 18 / 42

Motivation

Bio-inspired process calculi:

Pros

- faithful modelling
- easy to use (hopefully...)

Cons

- specialised
- no easy cross coding
- need to develop new
 - theoretical analyses
 - software tools

Motivation

- what common compartment-related features?
- what the simplest/minimal language primitives to express all of (most of) them?

π **0** (paillette): a Conservative Core Calculus

Aim

To provide a *core* calculus

- simple, general purpose
- embedding the key features of bio-inspired calculi

The π **0** Calculus [Versari, ESOP'07]

```
\pi0 ::= \pi-Calculus + polyadic synchronisation + priority
```

π **0** features

- conservative π -Calculus extension
- polyadic synchronisation for modeling compartment scoping
- priority for gaining atomicity of sequences of operations

《□▶《□▶ 《□▶ 《□▶ 《□▶ 《□▶

Localisation by means of Polyadic Synchronisation

Polyadic synchronisation: channels are identified by one *or more* names

$$\pi$$
-Calculus $P \equiv \overline{c}.P'$ $P \equiv \overline{c_1@c_2}.P'$

Compartments may be represented by one of the names of each channel:

$$P \equiv \overline{c@compartment_P}.P'$$
 $Q \equiv c@compartment_Q.Q'$

- P and Q may share free names
- P and Q may interact iff compartment_P = compartment_Q

21 / 42

Atomicity by means of Priority

Priority: high-priority reactions happen before lower-priority ones

Example

$$S \equiv \overline{I}.P_1 \mid I.P_2 \mid \underline{\overline{h}}.Q_1 \mid \underline{h}.Q_2 \quad \rightarrow \quad T \equiv P_1 \mid P_2 \mid \underline{\overline{h}}.Q_1 \mid \underline{h}.Q_2$$

$$S \equiv \overline{I}.P_1 \mid I.P_2 \mid \underline{\overline{h}}.Q_1 \mid \underline{h}.Q_2 \quad \rightarrow \quad S_2 \equiv \overline{I}.P_1 \mid I.P_2 \mid Q_1 \mid Q_2$$

$$\rightarrow \quad S_3 \equiv P_1 \mid P_2 \mid Q_1 \mid Q_2$$

Each atomic sequence of operations may be encoded as a low priority reaction followed by an unlimited number of high priority reactions:

$$P_1 \equiv \overline{seq_1}.\overline{op_{11}}.\overline{op_{12}}.\overline{op_{13}}$$
 $P_2 \equiv \overline{seq_2}.\overline{op_{21}}.\overline{op_{22}}.\overline{op_{23}}$

The executions of P_1 and P_2 never overlap

(ロ) (個) (量) (量) (量) (900

π **@** Syntax

π **@** syntax

$$P ::= \sum_{i \in I} \pi_i . P_i \quad | \quad P \mid Q \quad | \quad !P \quad | \quad (\nu x)P$$

$$\pi ::= \tau \quad | \quad \mu_1 @ \cdots @ \mu_n : \mathbf{k}(x) \quad | \quad \overline{\mu_1} @ \cdots @ \mu_n : \mathbf{k}(x)$$

- each channel is represented by a vector of one or more names μ_1, \ldots, μ_n
- each input or output action has a priority k
- higher priority actions are executed first
- priority is static

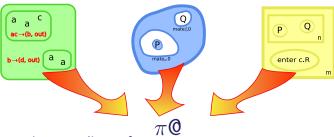
π **0** Semantics

π **0** reduction semantics

π **0** semantics

$$\frac{\tau \notin \bigcup_{i < k} I^{i}(M)}{\tau : k.P + M \to_{k} P} \qquad \frac{P \to_{k} P'}{(\nu x)P \to_{k} (\nu x)P'}$$

$$\frac{\tau \notin \bigcup_{i < k} I^{i}(M \mid N)}{(\mu : k(y).P + M) \mid (\overline{\mu} : k\langle z \rangle.Q + N) \to_{k} P\{z/y\} \mid Q}$$


$$\frac{P \to_{k} P' \qquad \tau \notin \bigcup_{i < k} I^{i}(P \mid Q)}{P \mid Q \to_{k} P' \mid Q} \qquad P \equiv Q \qquad P \to_{k} P' \qquad P' \equiv Q'$$

$$\frac{P \to_{k} P' \qquad \tau \notin \bigcup_{i < k} I^{i}(P \mid Q)}{P \mid Q \to_{k} P' \mid Q} \qquad P = Q \rightarrow_{k} Q'$$

- the only difference from π -Calculus semantics is the side condition in red: no additional rules required;
- the $I^k(P)$ function represents the set of actions of priority k ready to be executed by the process P.

Encodings into π **0**

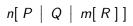
Encodings

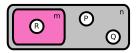
Parallel-preserving encodings of

- BioAmbients, Brane Calculi [Versari, ESOP'07]
- some P systems (with maximal parallelism!) [Versari, MECBIC'07]
- Beta-binders [Cappello, Quaglia, to appear]

into π 0 have been provided.

Encoding requirements


Definition


Reasonable encoding:

- renaming preserving: σ permutation of names, $\llbracket \sigma(P) \rrbracket = \theta(\llbracket P \rrbracket)$;
- termination invariance: $P \Downarrow \text{iff } \llbracket P \rrbracket \Downarrow$, $P \Uparrow \text{iff } \llbracket P \rrbracket \Uparrow$;
- operational correspondence:
 - if $P \to P'$ then $\llbracket P \rrbracket \to^* \llbracket P' \rrbracket$,
 - if $\llbracket P \rrbracket \to^* Q$ then $\exists P' : P \to^* P' \land Q \to^* \llbracket P' \rrbracket$.

Encoding Bioambients

Example

Encoding specifies compartment and parent compartment names:

$$[\![P]\!] \equiv [\![P]\!]_{c,pc}$$

Basic operators are homomorphically coded

Nested compartments are represented by private names

Encoding Bioambients Communications

Local communication:

Example

 $m[local\ c!\{a\}.P|local\ c?\{x\}.Q] \rightarrow m[P|Q\{a/x\}]$ p

Versari (UniBO) π @ calculus SFM08-Bio 28 / 42

Encoding Bioambients Communications

Sibling-to-sibling communication:

Example

$$m[s2s \ c!\{a\}.P] \mid n[s2s \ c?\{x\}.Q] \rightarrow m[P] \mid n[Q\{a/x\}]$$

$$s2s \ c!\{a\}.P$$

$$s2s \ c?\{x\}.Q$$

$$n$$

$$s2s \ c?\{x\}.Q$$

Versari (UniBO) π @ calculus SFM08-Bio 29 / 42

Encoding Bioambients Communications

Parent-to-child communication:

Example

$$m[p2c \ c!\{a\}.P \mid n[c2p \ c?\{x\}.Q]] \rightarrow m[P \mid n[Q\{a/x\}]]$$

$$p2c \ c!\{a\}.P$$

$$c2p \ c?\{x\}.Q$$

$$p$$

$$c2p \ c?\{x\}.Q$$

Versari (UniBO) π @ calculus SFM08-Bio 30 / 42

Encoding Bioambients Capabilities

Merge:

Example

$$m[merge + c.P|Q] \mid n[merge - c.R|S] \rightarrow m[P|Q|R|S]$$

Encoding Bioambients Capabilities

Enter/accept:

Example

$$\textit{m}[\textit{enter } c.P|Q] \mid \textit{n}[\textit{accept } c.R|S] \ \rightarrow \ \textit{n}[\ R \mid S \mid \textit{m}[P|Q]\]$$

Versari (UniBO)

Encoding Bioambients Capabilities

Exit/expel:

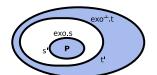
Example

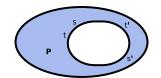
Encoding Brane

Basic Encodings

Example

$$r|r'(P \circ s(Q)) \circ t|t'(R)$$


$$\begin{bmatrix}
P
\end{bmatrix} & \triangleq & \begin{bmatrix}
P
\end{bmatrix}_{pc} \\
\begin{bmatrix}
P \circ Q
\end{bmatrix}_{pc} & \triangleq & \begin{bmatrix}
P
\end{bmatrix}_{pc} | \begin{bmatrix}
Q
\end{bmatrix}_{pc} \\
\begin{bmatrix}
s(P)
\end{bmatrix}_{pc} & \triangleq & (\nu c)(\begin{bmatrix}
s
\end{bmatrix}_{c,pc} | \begin{bmatrix}
P
\end{bmatrix}_{c}) \\
\begin{bmatrix}
s \mid r
\end{bmatrix}_{c,pc} & \triangleq & [
s
\end{bmatrix}_{c,pc} | [
r
]_{c,pc}$$


Encoding Brane Actions

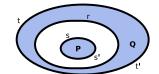
Exocytosis

Example

$$(\hspace{-0.5cm} \mid exo^{\perp}.t \mid t'(\hspace{-0.5cm}\mid\hspace{-0.5cm} s'(\hspace{-0.5cm}\mid\hspace{-0.5cm} P)\hspace{-0.5cm}\mid\hspace{-0.5cm} Q)\hspace{-0.5cm}) \hspace{-0.5cm} \rightarrow \hspace{-0.5cm} (\hspace{-0.5cm}\mid\hspace{-0.5cm} P\hspace{-0.5cm}\circ\hspace{-0.5cm}s \mid\hspace{-0.5cm} s' \mid t \mid t'(\hspace{-0.5cm}\mid\hspace{-0.5cm} Q)\hspace{-0.5cm}))$$

Versari (UniBO) π @ calculus SFM08-Bio 35 / 42

Encoding Brane Actions


Phagocytosis

Example

$$phago.s|s'(P) \circ phago^{\perp}(r).t|t'(Q) \rightarrow t|t_0(r(s|s'(P)) \circ Q)$$

phago.s

Versari (UniBO)

Encoding Comparison

Example

The encodings of BioAmbients and Brane Calculi

- reflect the similar tree structure of compartments:
 the difference is the scope of the name of compartments
- reflect the atonality/bitonality of operations:
 the difference is the name broadcasted to the involved processes
- show that the key mechanisms for handling the compartment structure are the same (scoping of communication, broadcast-like messages to notify changes in the structure)

Conclusion

π **0** Features

- simple (very close to π -Calculus syntax)
- conservative (almost same π -Calculus semantics)
- concise (reactions are specified once, additional information on compartments and volumes are specified only if required)
- little implementation effort as extension of current implementations of the π -Calculus
- compartments with dynamical structure
- cross-compartment elements are straightforwardly and consistently specified
- almost unlimited compartment semantics (able to encode BioAmbients, Brane Calculi, Projective Brane, ...)

Future Work

Future work

- ullet further encodings of bio-inspired calculi into $\pi @$
 - ullet or in stochastic $\pi @$ by preserving stochastic semantics
- further investigation on the expressiveness of priority
- ullet non-interleaving semantics for $\pi \ensuremath{\mathbb{Q}}$

C. Ene and T. Muntean.

Expressiveness of point-to-point versus broadcast communications. In G. Ciobanu and G. Paun, editors, *FCT*, volume 1684 of *Lecture Notes in Computer Science*, pages 258–268. Springer, 1999.

D. T. Gillespie.

Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem., 81(25):2340-2361, 1977.

R. Milner.

Communicating and mobile systems: the π -calculus. Cambridge University Press, New York, NY, USA, 1999.

A. Phillips and L. Cardelli.

A correct abstract machine for the stochastic pi-calculus. In *Bioconcur'04*. ENTCS, August 2004.

I. Phillips.

Ccs with priority guards.

In K. G. Larsen and M. Nielsen, editors, CONCUR, volume 2154 of Lecture Notes in Computer Science, pages 305–320. Springer, 2001.

C. Versari.

A core calculus for a comparative analysis of bio-inspired calculi. In R. D. Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages 411-425. Springer, 2007.

C. Versari.

Encoding catalytic p systems in pi@. Electr. Notes Theor. Comput. Sci., 171(2):171-186, 2007.

C. Versari and N. Busi.

Stochastic simulation of biological systems with dynamical compartment structure.

In M. Calder and S. Gilmore, editors, CMSB, volume 4695 of Lecture Notes in Computer Science, pages 80–95. Springer, 2007.

C. Versari, N. Busi, and R. Gorrieri.

On the expressive power of global and local priority in process calculi. In L. Caires and V. T. Vasconcelos, editors, *CONCUR*, volume 4703 of *Lecture Notes in Computer Science*, pages 241–255. Springer, 2007.

I. Cappello and P. Quaglia.

A translation of Beta-binders in a prioritized pi-calculus. To appear.