Expressiveness Issues in Calculi for Artificial Biochemistry

A
$$\rightarrow^{r} C_{1}+...+C_{n}$$
 A ::= $\tau@r;C_{1}|...|C_{n}+b@s;\mathbf{0}$
A+B $\rightarrow^{s} D_{1}+...+D_{m}$ B ::= $\overline{b}@s;D_{1}|...|D_{m}$

What is the computational power of this calculus?

Gianluigi ZavattaroUniversity of Bologna

Based on joint work with Luca Cardelli

Plan of the talk

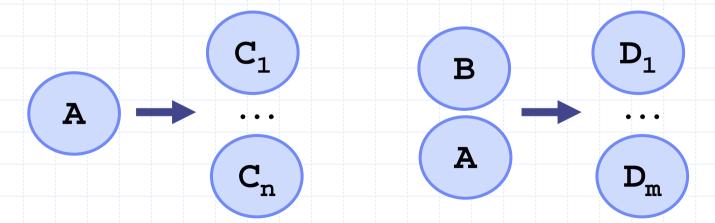
- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

Basic Chemistry

- Molecules belong to Species
- Behavior described by reactions:

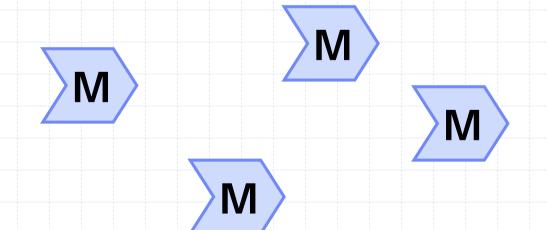
■ Monomolecular: $A \rightarrow C_1+...+C_n$

■ Bimolecular: $A+B \rightarrow D_1+...+D_m$



Basic Biochemistry

- Molecules form and modify complexes
 - by means of association and dissociation

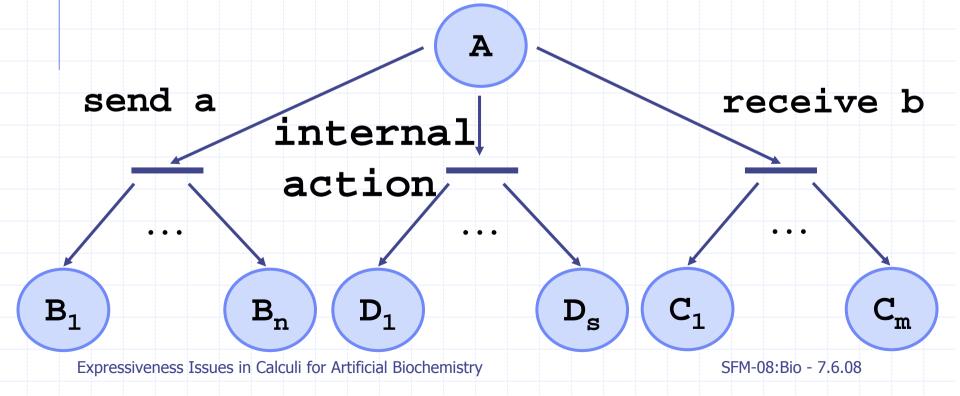


Plan of the talk

- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

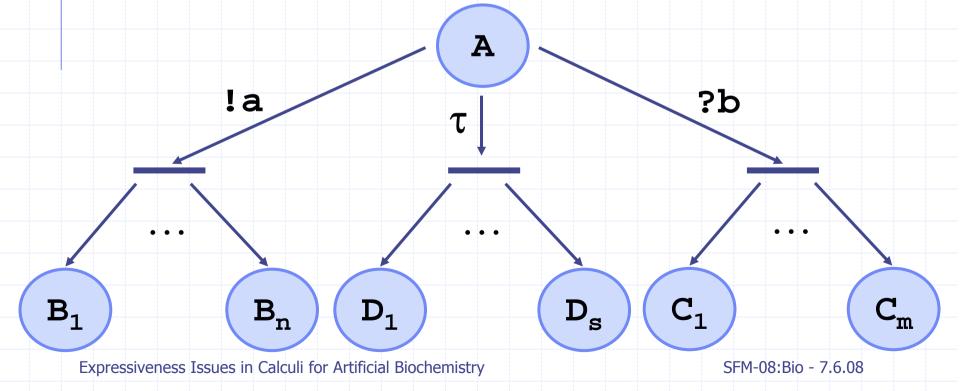
Chemical Ground Forms

 Stochastic variant of Milner's CCS, with an equivalent graphical notation (Stochastic Collective Automata)



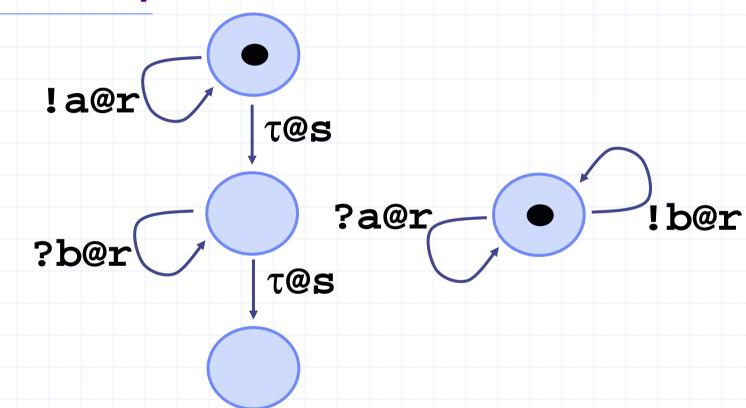
Chemical Ground Forms

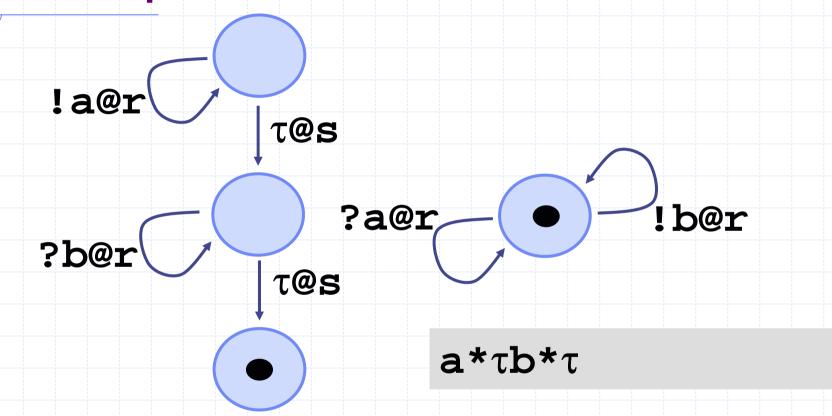
 Stochastic variant of Milner's CCS, with an equivalent graphical notation (Stochastic Collective Automata)

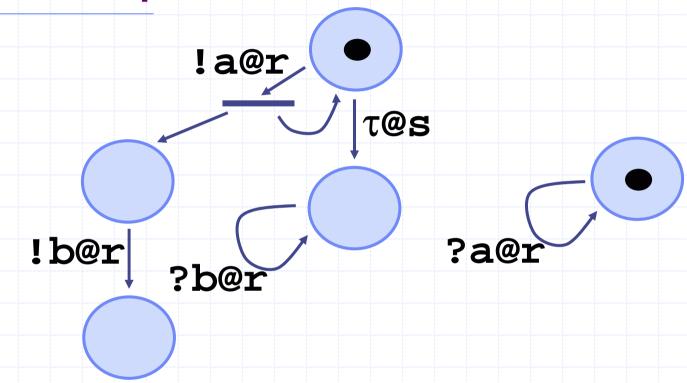


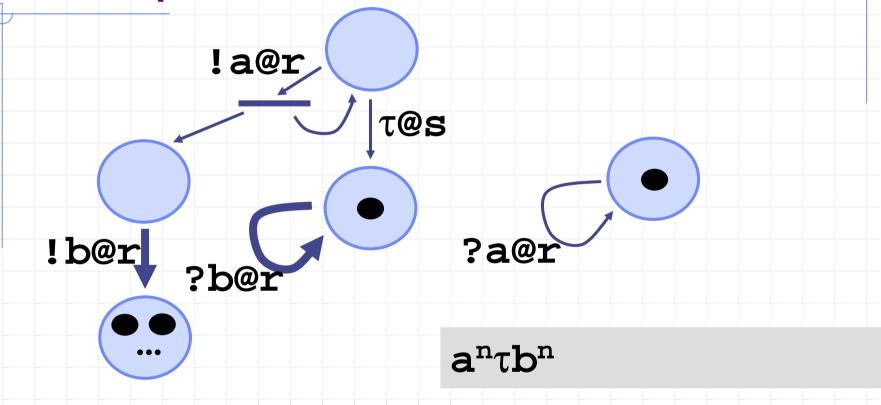
Why stochastic...

- Actions take (a variable amount of) time
- Each action has an associated rate r
 - Internal delay: τ@r
 - Pr(internal delay < t) = 1-e^{-rt}
 - Synchronization between complementary actions: ?a@r, !a@r
 - Pr(synchronization time < t) = 1-e^{-rt}









CGF = Basic Chemistry

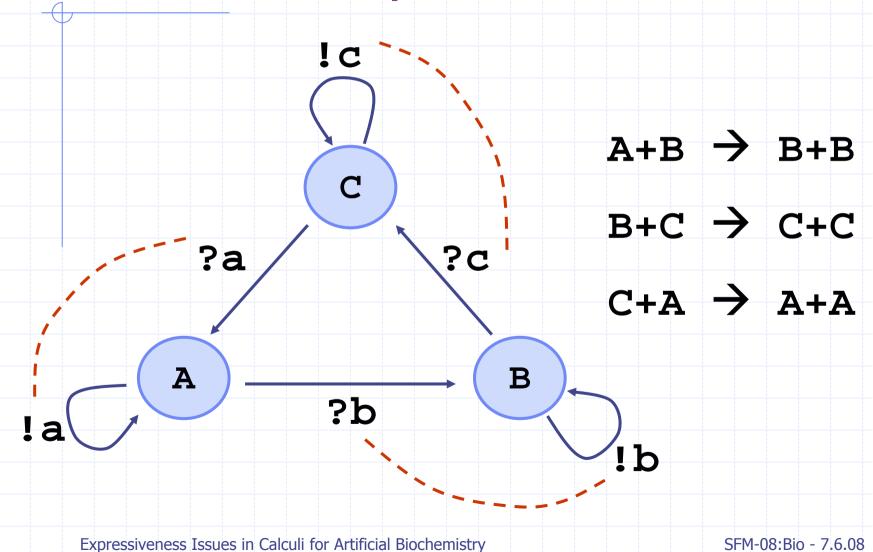
[TCS08]

Continuous-State Continuous Semantics Chemistry BC **CGF** Discrete-State Discrete **Semantics** Chemistry

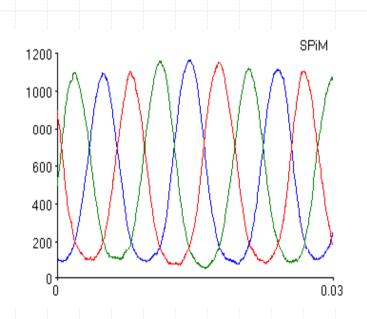
Expressiveness Issues in Calculi for Artificial Biochemistry

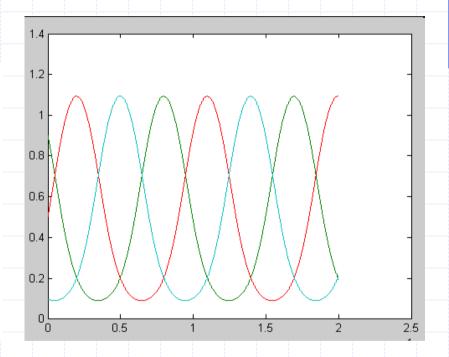
SFM-08:Bio - 7.6.08

A nice example



with a nice behaviour...





Discrete-State Semantics

Continuous-State Semantics

Expressiveness Issues in Calculi for Artificial Biochemistry

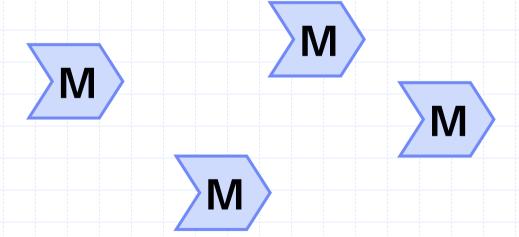
SFM-08:Bio - 7.6.08

Plan of the talk

- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

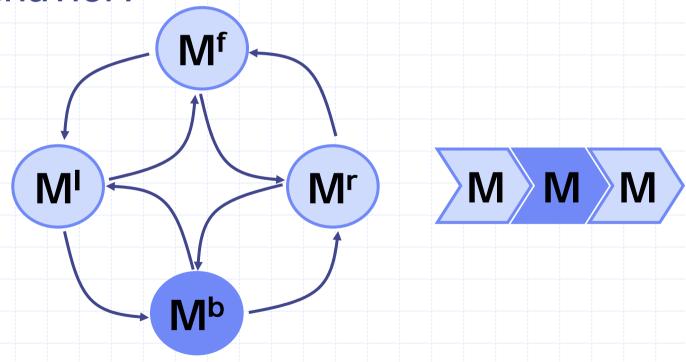
Polymerization

Monomers associate and dissociate



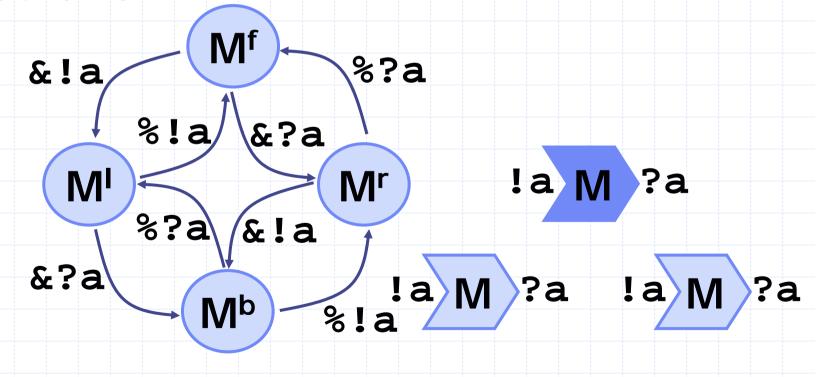
Association and Dissociation

How to model the actin-like monomer behavior?



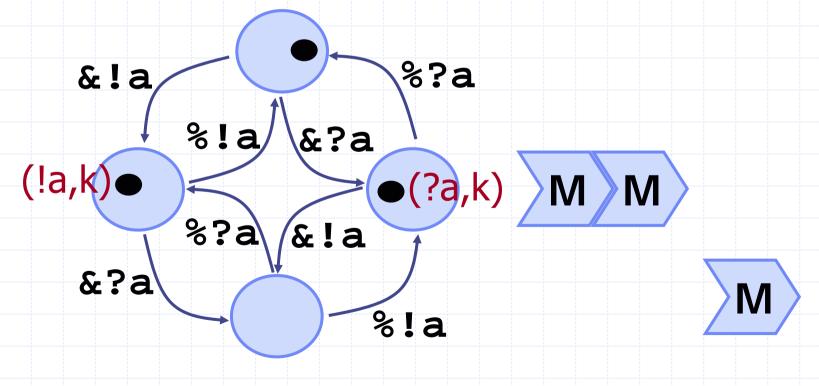
Association and Dissociation

How to model the actin-like monomer behavior?



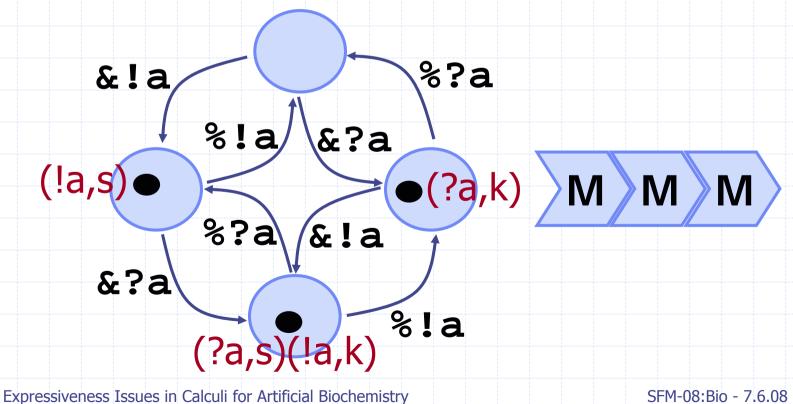
Expressiveness Issues in Calculi for Artificial Biochemistry

- Each association has a unique key
 - Keys are stored in the molecule's history

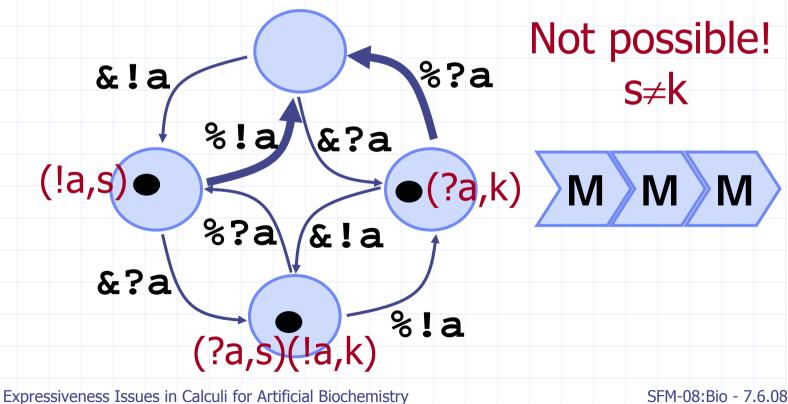


SFM-08:Bio - 7.6.08

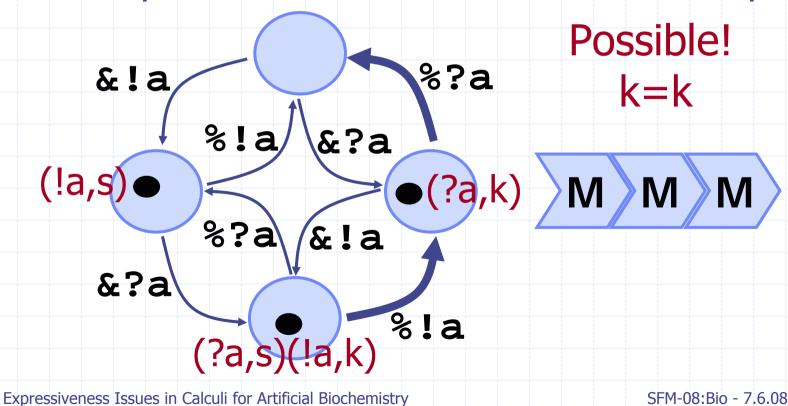
- Each association has a unique key
 - Keys are stored in the molecule's history



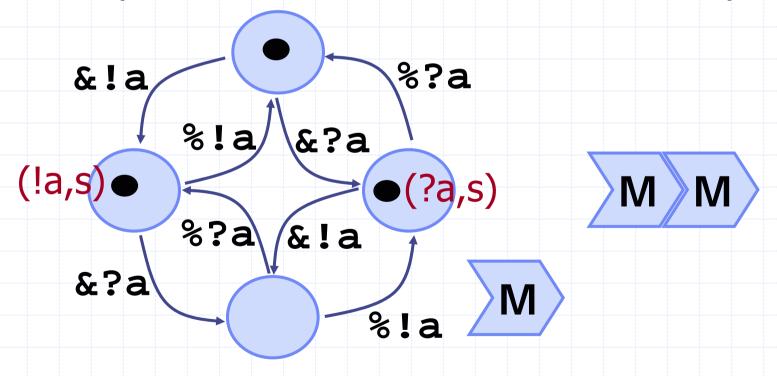
- Each association has a unique key
 - Keys are stored in the molecule's history



- Each association has a unique key
 - Keys are stored in the molecule's history



- Each association has a unique key
 - Keys are stored in the molecule's history



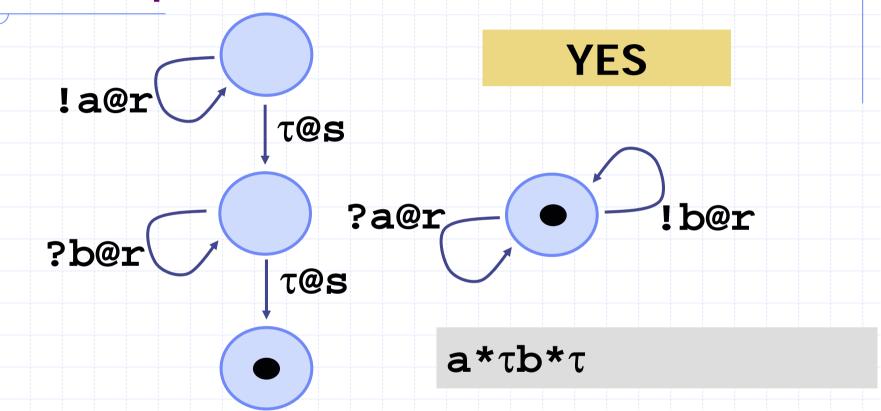
Plan of the talk

- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

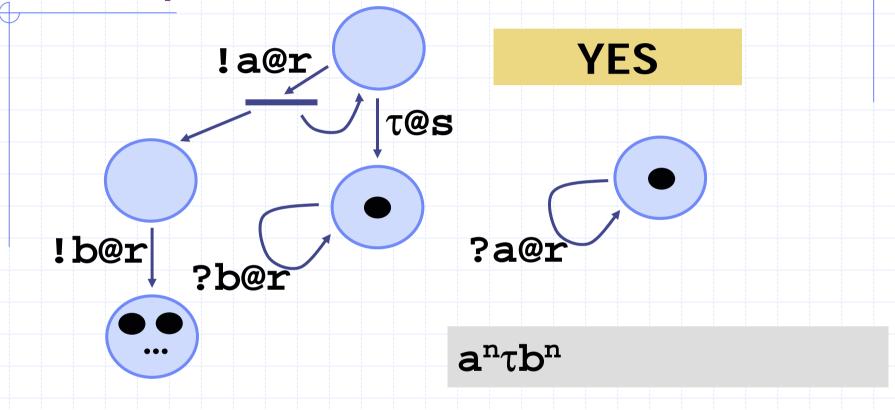
Existential termination for CGF

 Given a CGF system, decide whether there exists a computation leading to a deadlock

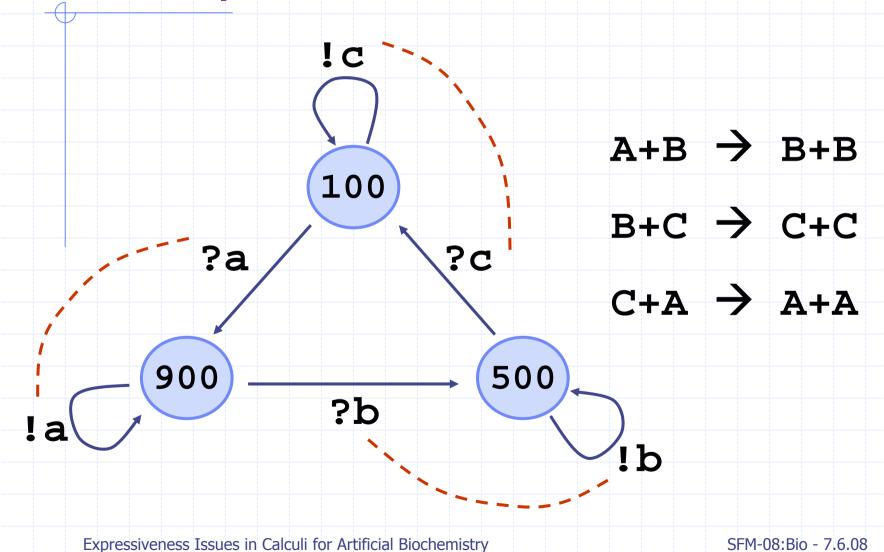
Example 1: does it terminate?



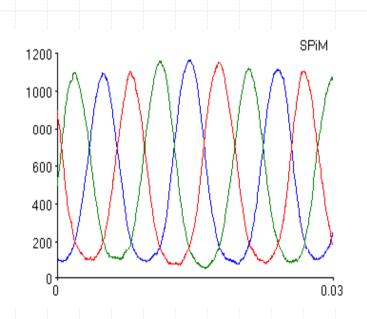
Example 2: does it terminate?

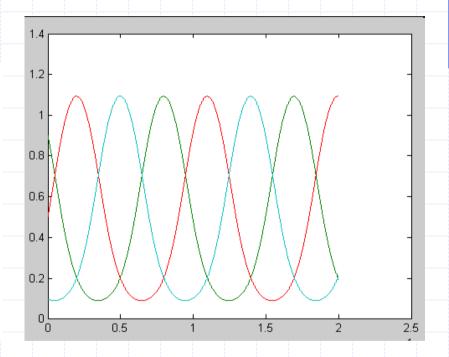


Example 3: does it terminate?



with a nice behaviour...





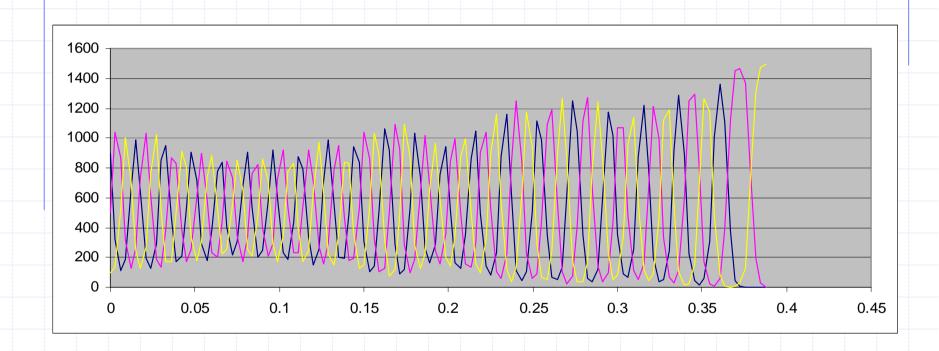
Discrete-State Semantics

Continuous-State Semantics

Expressiveness Issues in Calculi for Artificial Biochemistry

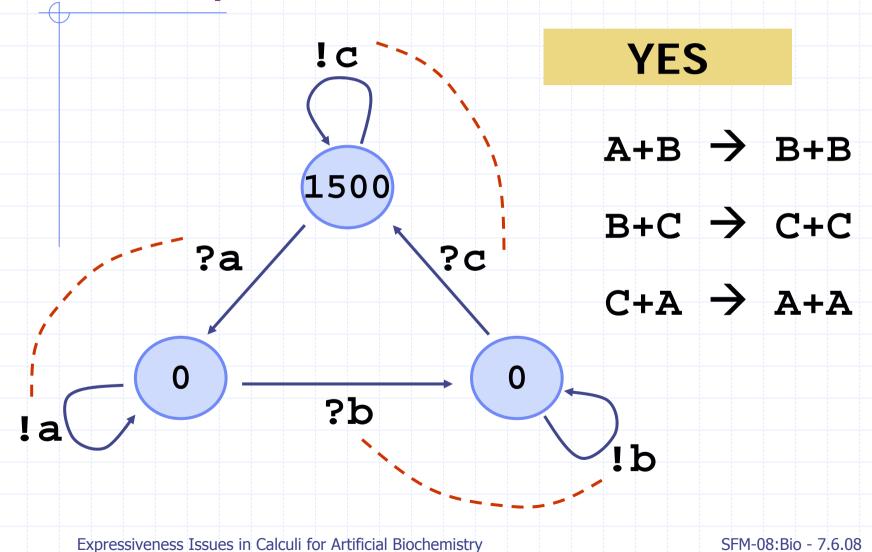
SFM-08:Bio - 7.6.08

with a nice behaviour...



But in a longer simulation...

Example 3: does it terminate?

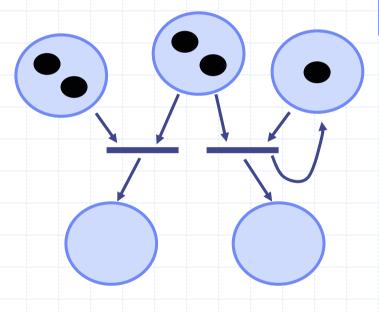


Decidability of termination

- We reduce existential termination for CGF to termination for Petri Nets
 - Petri Nets is an interesting infinite state system in which many properties (reachability, coverability, termination, divergence,...) are decidable

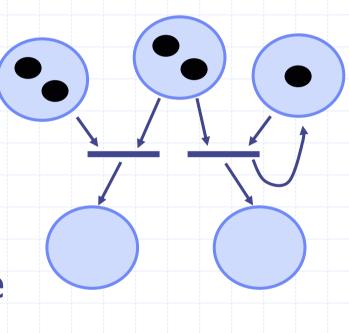
Petri nets

- A Petri net is a triple
 - A finite set of Places
 - A finite set of
 Transitions: pairs of
 multisets of places
 (preset,postset)
 - An initial marking (multiset of places)



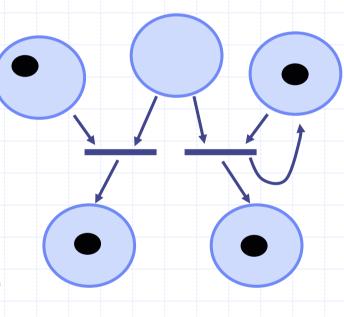
Petri nets

- A transition is enabled
 - when it is possible to consume tokens in the preset
- When a transition fires
 - tokens are placed in the postset



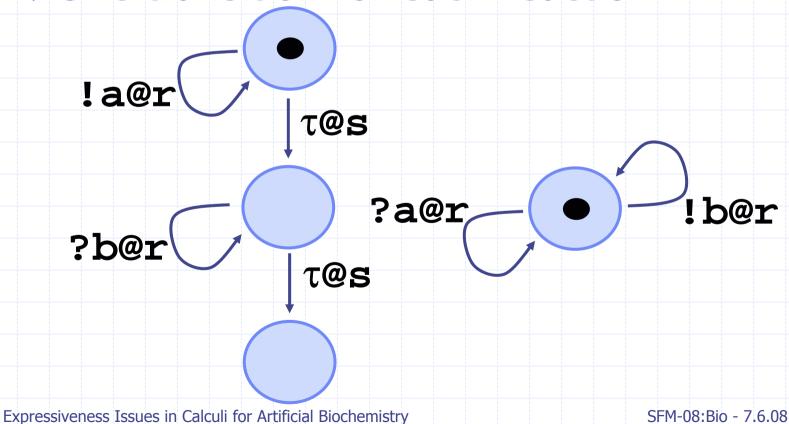
Petri nets

- A transition is enabled
 - when it is possible to consume tokens in the preset
- When a transition fires
 - tokens are placed in the postset



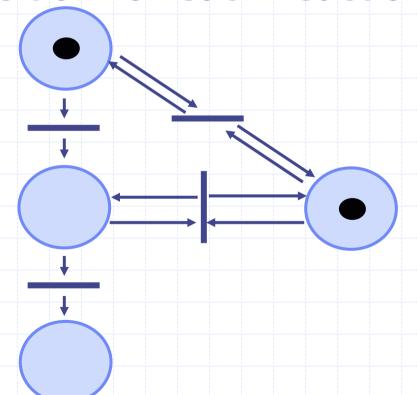
A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction



A Petri net semantics for CGF

- One place for each Species
- One transition for each reaction



Plan of the talk

- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

Turing completeness of BGF

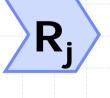
In BGF we model Random Access Machines:

[Min67]

- Registers: r₁ ... r_n hold natural numbers
- Program: sequence of numbered instructions
 - i: Inc(r_j): add 1 to the content of r_j and go to the next instruction
 - i: DecJump(r_j,s): if the content of r_j is not 0 then decrease by 1 and go to the next instruction; otherwise jump to instruction s

Registers as Linearly growing polymer

- Initially empty register r_j: a seed Z_j
- Increment on r_j: produce a new monomer and associate it to the polymer
- Decrement on r_j: remove last monomer



 R_{j}

&?1. RAM encoding i: Inc(r_j) k: DecJump(r_j,s) ?zero_j I_k ?inc. !inc; !dec; !zero; ?ack. ?ack. Ri register r_i: !ack; ?dec_ !ack Expressiveness Issues in Calculi for Artificial Biochemistry SFM-08:Bio - 7.6.08

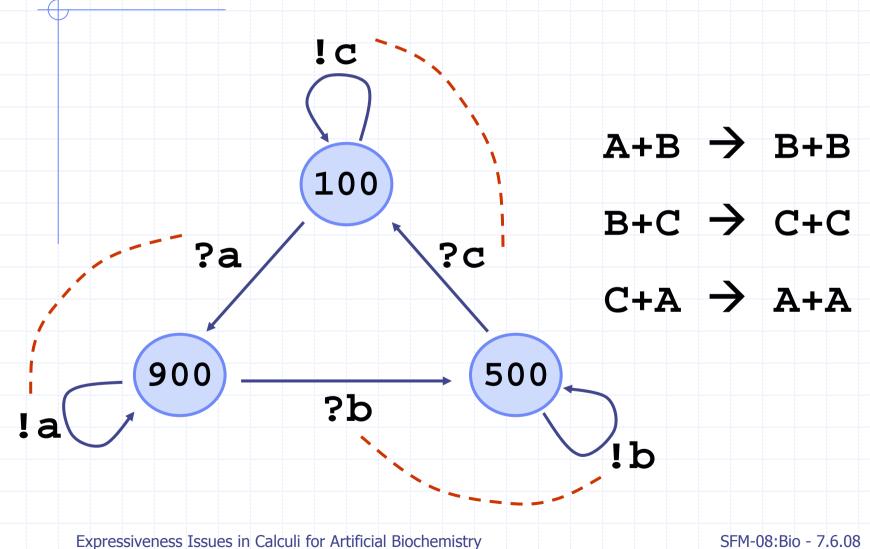
Plan of the talk

- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

Petri Nets strike back...

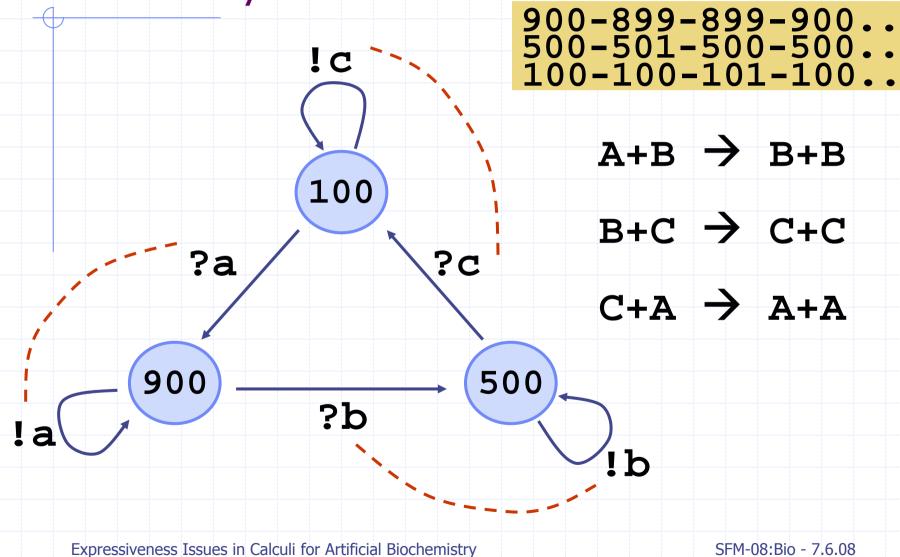
- In Petri nets, termination of all computations is decidable
 - the translation from CGF to Petri nets allows us to prove that (nondeterministic) universal termination in CGF is decidable

Example 3: does it (nondeterministically) universally terminate?

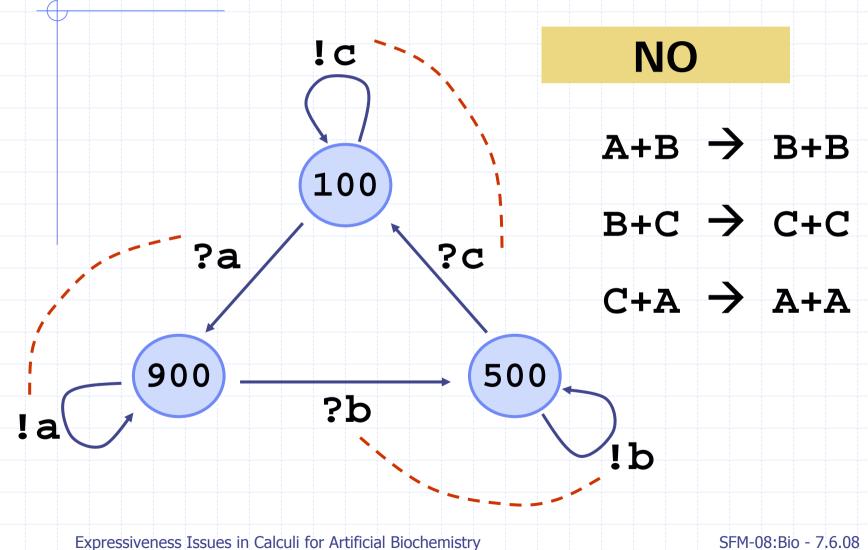


Example 3: does it (nondeterministically)

universally terminate?



Example 3: does it (nondeterministically) universally terminate?

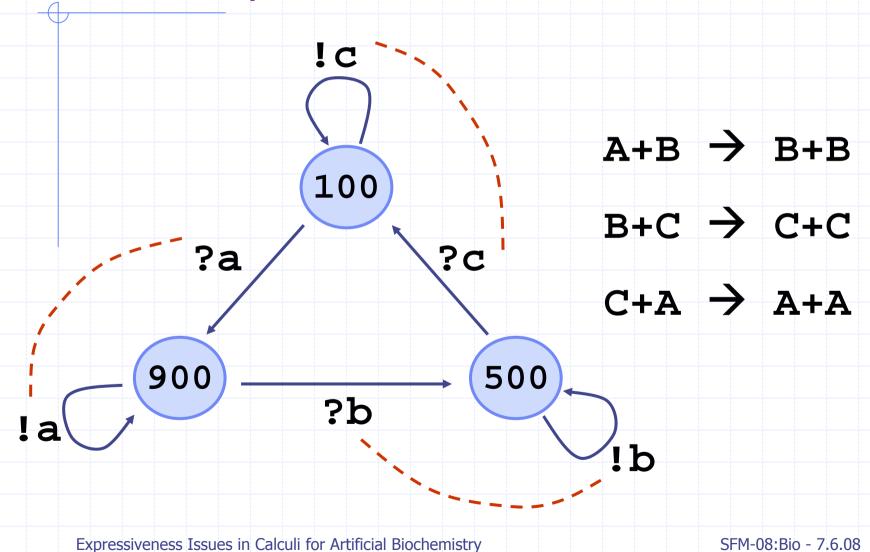


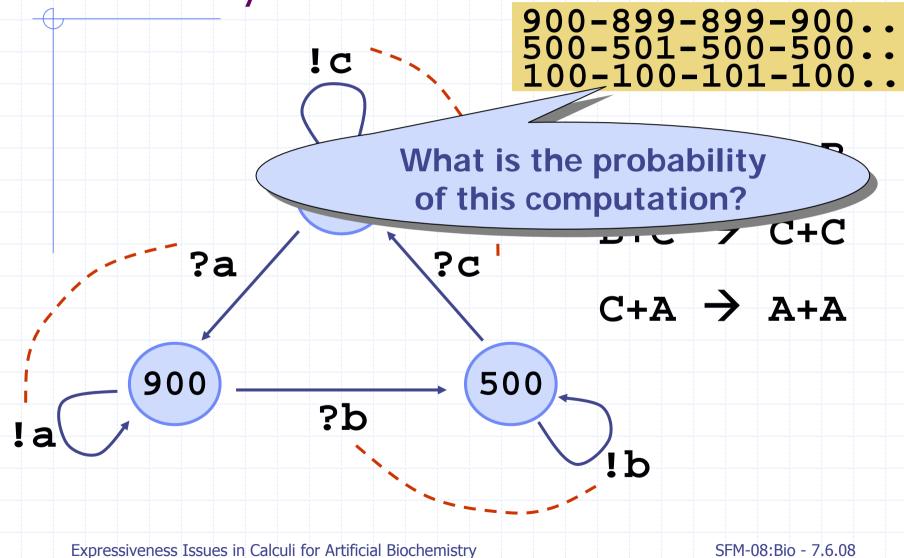
Plan of the talk

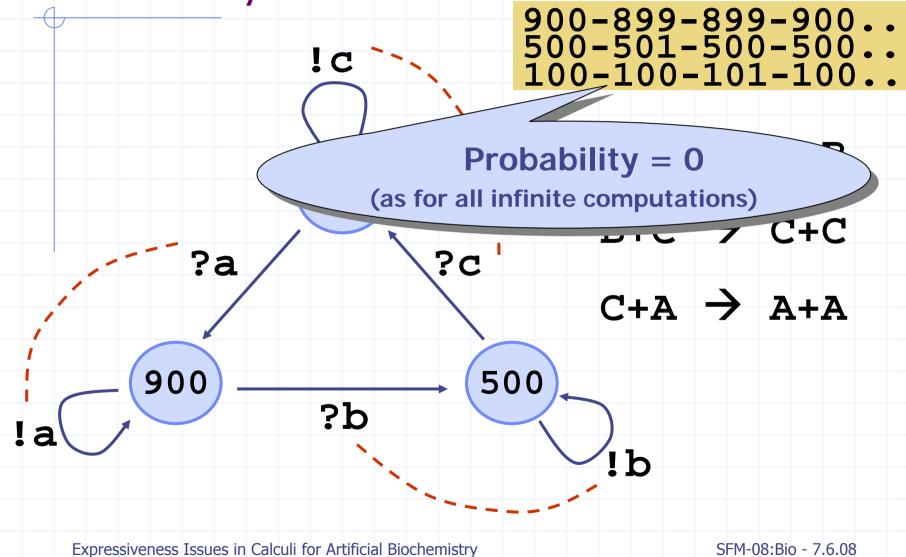
- Basic Chemistry and Basic Biochemistry
 - Biochemistry = Chemistry + complexation
- Chemical Ground Form (CGF)
 - A process algebra for basic chemistry
- Biochemical Ground Form (BGF)
 - A process algebra for basic biochemistry
- Considered TERMINATION problems:
 - Existential termination in CGF (DECIDABLE)
 - Existential termination in BGF (UNDECIDIBLE)
 - Universal termination in CGF
 - Nondeterministic -all computations terminate- (DECIDABLE)
 - Probabilistic -terminate with probability 1- (UNDECIDABLE)

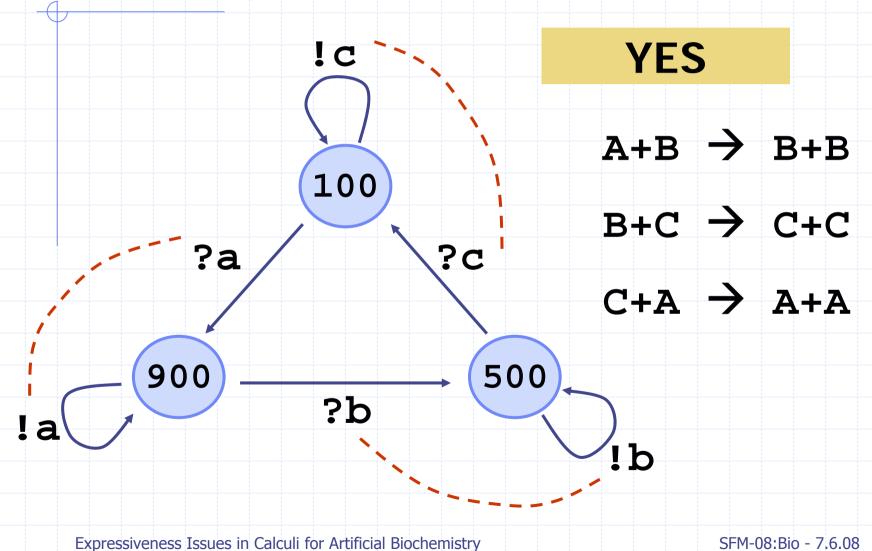
Probabilistic universal termination

- Given a CGF system, decide whether the probability for the system to terminate is 1
 - This corresponds to checking whether there exists an infinite computation with associated probability > 0









Is probabilistic universal termination decidable?

- It is undecidable [Concur08]
- The overall proof includes the proof of the following interesting result:
 - even if RAMs cannot be deterministically modeled in CGF (remember Petri nets modeling of CGF), they can be probabilistically approximated up to any arbitrarily small error ε

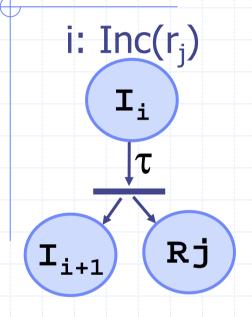
Approximate k: DecJump(r_j,s) RAM modeling I_k i: Inc(r_i) **Problem:** !dec. wrong jump! τ Rj I_{k+1} r_i with content n_i: Rj Rj Rj ?dec; n_i instances

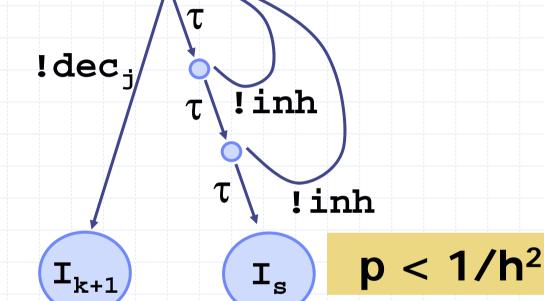
Expressiveness Issues in Calculi for Artificial Biochemistry

SFM-08:Bio - 7.6.08

Approximate k: DecJump(r_j,s) RAM modeling

Ik





But in an unbounded computation,

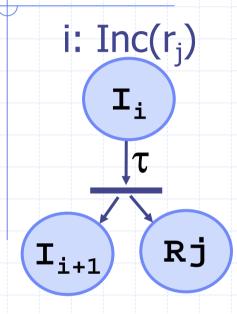
with infinitely many DecJump's, the prob. of a wrong jump is 1

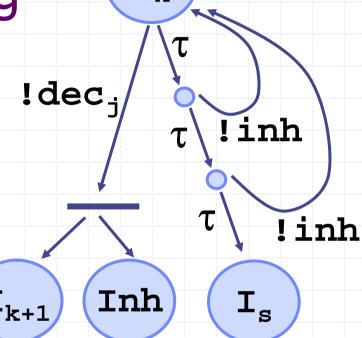
Approximate k: DecJump(r_j,s) RAM modeling I_k i: Inc(r_i) !dec; !inh !inh Rj Inh I_{k+1} r_i with content n_i: Inh Rj Rj Rj Inh Inh ?inh ?dec; h instances n, instances

Expressiveness Issues in Calculi for Artificial Biochemistry

SFM-08:Bio - 7.6.08

Approximate k: DecJump(r_j,s) RAM modeling





r_j wit

Incrementing the occurrences of Inh the prob. of a wrong jump is

$$<\sum_{k=h}^{\infty} \frac{1}{k^2}$$

LL.

Related work

- Magnasco. Chemical Kinetics is Turing Universal. Phys Rev Lett. 1997
 - Exploit different reaction rates to model "finite logical circuits with unbounded memory" using unbounded chemical species
- Liekens and Fernando. Turing Complete Catalytic Particle Computers. In Proc. ECAL'07. 2007
 - Approximate bounded computations of RAMs
- Soloveichik et al. Computation with Finite
 Stochastic Chemical Reaction Networks. In Nat.
 Computing. 2008
 - Approximate also unbounded computations of RAMs

References

- Cardelli. On process rate semantics. To appear in *Theoretical Computer Science*. 2008
 - Definition of CGF and proof of equivalence with chemical kinetics
- Cardelli. Artificial Biochemistry. In Proc. Algorithmic Bioprocesses '08. To appear in LNCS. 2008
 - Informal introduction of association/dissociation mechanisms
- Cardelli and Zavattaro. On the computational power of biochemistry. In Proc. AB'08. To appear in LNCS. 2008
 - Definition of BGF and proof of Turing completeness
- Zavattaro and Cardelli. Termination problems in chemical kinetics. In Proc. Concur'08. To appear in LNCS. 2008
 - Decidability and nondecidability of nondeterministic and probabilistic versions of properties in CGF