
π4

1

Global Models
WS-CDL

and
Choreographies

School on Formal Methods 2009
Steve Ross-Talbot

π4

π4

Global Models 30 mins
Drivers 7
Requirements 3
Solution 2 - need to blend in some of the method slides ….

• Descriptions
• Methodologies

– Inductive and Deductive

WS-CDL 60 mins
As it is
As is should have been
Gaps in how to use it

Uses 60 mins
Some examples

Future 15 mins
Overlord
BPMN2
Scribble

Overview

Agenda

π4

© 2008, Cognizant Technology Solutions. Confidential 3

Global Models

π4

Micrometer Enfield RifleStevenson’s Rocket

Steam Engine

The micrometer removed ambiguity between specification
and implementation leading to both Stevenson’s rocket and
the off shoring of production of the Enfield rifle during the US
Civil War.

The Industrial Revolution and Ambiguity

Drivers

π4

Ambiguity1

in requirements
between architecture and requirements2

between implementation and architecture

Ambiguity exists3 because requirements are divorced from architecture and architecture from
implementation, as a result we end up with:

Poor alignment of IT to business
High cost in managing complexity
High cost of testing
Lack of transparency and control in delivery and change management
Poor reuse of IT assets
Lack of business agility hindered by IT

Removing ambiguity, joining things up, moves us from art to engineering4

What we need is a specification language and a means of measuring
implementation against this language to show correctness or deviation (our
micrometer)

Leads to industrialisation of IT

IT and Ambiguity

Drivers

π4

Functional
Based on some business goal in English

• On-line sales channel connecting buyers to sellers
Typically a flow described as a use case in UML or a sequence
diagram with annotations

• It must be possible to examine any message and see where it has been

Non-functional
Based on business and/or technical constraints

• Seller response time should be less than 5 seconds on offering goods
• Use existing standards with the organisation
• Budget is $500,000 for initial PoC

Expressed in English
• Seller goods.response.receive_time <= 5 seconds
• Must use J2EE

Problem Domain: Requirements

Drivers

π4

<ex1:Payload xmlns:ex1="http://www.cognizant.com/broker">
<ex1:id> 100 </ex1:id>
<ex1:message> Widgets </ex1:message>
<ex1:value> 105 </ex1:value>
<ex1:reserve> 99 </ex1:reserve>
<ex1:provenence> Receiver </ex1:provenence>

</ex1:Payload>

<ex1:Payload xmlns:ex1="http://www.cognizant.com/broker">
<ex1:id> 100 </ex1:id>
<ex1:message> Widgets </ex1:message>
<ex1:value> 105 </ex1:value>
<ex1:reserve> 99 </ex1:reserve>
<ex1:provenence> Receiver, Broker </ex1:provenence>

</ex1:Payload>

<ex1:Update xmlns:ex1="http://www.cognizant.com/broker">
<ex1:Payload>

<ex1:id> 100 </ex1:id>
<ex1:message> Widgets </ex1:message>
<ex1:value> 102 </ex1:value>
<ex1:reserve> 99 </ex1:reserve>
<ex1:provenence> Receiver, Broker, Buyer </ex1:provenence>

</ex1:Payload>
</ex1:Update>

<ex1:Acknowledgement xmlns:ex1="http://www.cognizant.com/broker">
<ex1:Payload>

<ex1:id> 100 </ex1:id>
<ex1:message> Widgets </ex1:message>
<ex1:value> 99 </ex1:value>
<ex1:reserve> 99 </ex1:reserve>
<ex1:provenence> Receiver, Broker, Buyer, Broker </ex1:provenence>

</ex1:Payload>
</ex1:Acknowledgement>

Problem Domain: Functional Requirements

Drivers

π4

<ex1:Payload xmlns:ex1="http://www.cognizant.com/broker">
<ex1:id> 100 </ex1:id>
<ex1:message> Widgets </ex1:message>
<ex1:value> 105 </ex1:value>
<ex1:reserve> 99 </ex1:reserve>
<ex1:provenence> Receiver </ex1:provenence>

</ex1:Payload>

<ex1:Error xmlns:ex1="http://www.cognizant.com/broker">
<ex1:message> Unacceptable goods offered </ex1:message>
<ex1:Payload xmlns:ex1="http://www.cognizant.com/broker">

<ex1:id> 100 </ex1:id>
<ex1:message> Widgets </ex1:message>
<ex1:value> 105 </ex1:value>
<ex1:reserve> 99 </ex1:reserve>
<ex1:provenence> Receiver, Broker </ex1:provenence>

</ex1:Payload>
</ex1:Error>

NFR 1: sendMessage(ex1:Error).receiveTime - sendMessage(ex1:payload).sentTime is less than 5 seconds

Problem Domain: Non-Functional Requirements

Drivers

π4

TOGAF:
An architecture1 description is a formal
description of an information system,
organized in a way that supports reasoning
about the structural properties of the
system2.

Problem Domain: Architecture

Drivers

π4

The reality is that
we draw many pictures and write lots of
text for the requirements and
we draw many pictures and write lots of
text for the architecture

which are disjoint from each other and
then disjoint from any implementation.

A lot of disjoint artefacts which breeds
ambiguity

Problem Domain: Ambiguity

Drivers

π4

Observation

Drivers

How we come up with
solutions today

1. Gather requirements (often
poorly specified)

2. Model a solution (often at the
wrong levels of abstraction
and often not joined up)

3. Derive technical contracts to
drive delivery

4. Implement
5. Unit testing remediation
6. Integration testing,

remediation
7. User acceptance testing,

remediation
8. Production

The model is deduced
from the requirements

Technical contracts are
induced from the model

Integration tests are
induced from the
requirements

π4

Observation

Drivers

π4

The SOA promise

Agility
I can change business rules to reflect business imperatives
I can build new services faster

Alignment
I can see how a service implements a business function
I can track business transactions

Reuse
I can leverage my existing assets
I can build new services faster

De-coupling
I can change service implementation without impacting the system
(but the contract must remain invariant)
I can evolve my IT landscape according to business need

Drivers

π4

The SOA fallacy: it is scale-invariant

As we scale, complexity really hurts
As the number of service components increases so does the
complexity of managing de-coupling, reuse, agility and alignment
As the number of service components increases change becomes
more difficult and time consuming to manage

Imagine changing just one service out of 100
Changing a service contract to have an additional error return type
becomes a problem
How many services use this service?
How many services use the error return types?
How many composite services use this service in some other
composition?

This is why SOA Governance and Architecture Governance is so
important

Drivers

π4

Requirements and Models

Traditionally we gather requirements and refine them. At the top level
(the business goals) we have requirements we might call R0.
Successive refinement occurs through many levels (R1, R2, R3, R4
and R5). Where R5 tend to be requirements for executable code.

Models are used to show how requirements can be satified. Models are
expressed at the same level as the requirements that they satisfy. Thus
we have a high level model that we might call L0 that satifies R0 and so
on.

Requirements

π4

A global model
an unambiguous formal desciption of a set of components and their
ordered interactions coupled with any constraints on their implementation
and behavior. Such a description may be reasoned over to ensure consistency
and correctness against requirements.

A methodological approach
to refinement for both requirements that a solution must meet and models of that
solution

A means of testing
models against requirements to ensure that no ambiguity exists

A solution must provide:

Requirements

π4

Observation

How we could come up
with solutions today

1. Gather requirements
(strongly specified)

2. Model a solution2 (at the
correct levels of abstraction
and joined up)

3. Derive technical contracts to
drive delivery

4. Implement
5. Unit testing remediation
6. Integration testing,

remediation
7. User acceptance testing,

remediation
8. Production

The model is induced1

from the requirements

Technical contracts are
induced from the model

Integration tests are
induced from the
requirements

Requirements

Requirements are
valdiated against the
model

Unit tests are induced
from the requirements

Consider the sequence 1,2,3, X, …
What is X?

π4

Requirements and Models

Requirements are for humans.

Requirements express some need and/or constraint on an outcome
that we might think of as a solution.

The level of a requirement and the semantics of that level are entirely
to do with the level of abtraction that we wish to use in order to make
the points that need to be made.

Refinement moves us from one level to a deeper level,

Requirements

π4

Requirements and Models

Models are for humans.

Models are used to create some representation of some domain.

The level of a model and the semantics of that level are entirely to do with the
level of abtraction that we wish to use in order to make the points that need to
be made.

Abstraction can be seen as a scoping operator over a domain in which some
things are hidden that do nothing to make the points that need to be made.

Models and their levels should be complete and unambiguous with respect to
their level.

A model at any level should be able to be type checked and checked for
consistency so that it may be said to be correct against that level.

Levels should support operators that enable a full or partial mapping from one
level to another.

Requirements

π4

Some considerations

To what do I attach a policy?
What does it mean?
How do I support refinement?
How do I handle conflicts?

Requirements

π4

Some considerations

Where is the Information
Model?
What is the relationship
between in the Information
Model and the
Communication Model?

Requirements

π4

SOA: The three pillars to managing complexity

System

Te
st

ab
le

 A
rc

hi
te

ct
ur

e

C
on

fo
rm

an
ce

R
un

tim
e

M
on

ito
rin

g

The fundamental problem is that there is no A in SOA and
so SOA solutions can easily be misaligned and hard to
manage as they evolve.

What we need is living architecture.

•Ensuring services interoperate correctly
•Ensuring business transaction meets
their SLA’s
•Managing the business on an exceptions
basis

•Ensuring services meet their
collaborative obligations
(interoperability)

•Ensuring architecture meets
requirements before you cut code
•Impact analysis to determine the effect of
change against a precise architectural
description.
•Analysis to ensure that SLA’s are
achievable

Requirements

π4

Standard language to describe system architecture (WS-CDL)

Unambiguous language for describing systems within an enterprise (a system
description for an SOA) and/or the business process connecting enterprises
(Invoices-Payments, Confirmations, etc)
Describes the ordered interactions between peered services, an interaction is the
sending AND receiving of a message (i.e. a RequestToConfirm send from Party
A to the DTCC) or the invoking of a method on a service and it’s subsequent
return (I.e. Party A invokes “getprice” on the Pricing service).

Amenable to the testing of a model against requirements
Amenable to the generation of implementation artefacts
Amenable to the monitoring of implementation against a model

A language for describing all functional reqs

Solution

π4

Fully Webized Open Standard for Rule Modeling, Classification, Serialization,
Interoperation

RuleML identifies expressive sublanguages for Web Rules (Derivation, Reaction,
etc)
RuleML enables markup, translation, interchange, execution, publication,
archiving in XML, RDF, OWL, UML, ASCII

Amenable to the testing of a model against requirements
Amenable to the generation of implementation artefacts
Amenable to the monitoring of implementation against a model

A language for describing all non-functional reqs

Solution

π4

Model, Test, Implement

Programme and Project
Management and Control Structures

Architecture Management and
Control Structures

TOGAF Aligned architecture

Solution Envisioning

Enterprise SOA Alignment
Onsite + Offshore
Delivery Models

Multi Location
Agile

SOA Delivery
(ESA, ESM)

Management and
Control

Coordinated
Acceptance
Lessons
Benefits Mgmt

Portal/UI

ESB Integration

Core
Services

Core
Services

Core
Services

Core
Services

Core
Services

Composite
Business
Services

Define/normalize

Govern

Refine

Guides

Multi Location
Agile

Composite
Business
Services

Composite
Business
Services

Solution

π4

Govern

Programme and Project
Management and Control Structures

Architecture Management and
Control Structures

TOGAF Aligned architecture

Solution Envisioning

Enterprise SOA Alignment
Onsite + Offshore
Delivery Models

Multi Location
Agile

SOA Delivery
(ESA, ESM)

Management and
Control

Coordinated
Acceptance
Lessons
Benefits Mgmt

Portal/UI

Core
Services

Core
Services

Core
Services

Core
Services

Composite
Business
Services

Govern

Composite
Business
Services

Composite
Business
Services

SOA
Governance

Solution

π4

Generate

Programme and Project
Management and Control Structures

Architecture Management and
Control Structures

TOGAF Aligned architecture

Solution Envisioning

Enterprise SOA Alignment
Onsite + Offshore
Delivery Models

Multi Location
Agile

SOA Delivery
(ESA, ESM)

Management and
Control

Coordinated
Acceptance
Lessons
Benefits Mgmt

Portal/UI

ESB Integration

Core
Services

Core
Services

Core
Services

Core
Services

Core
Services

Composite
Business
Services

Govern

Composite
Business
Services

Composite
Business
Services

generate

WSDL Java Java WSDL C#

BPEL Java BPEL

Solution

π4

How to use it

Methodology

Gather requirements
Sequence diagrams & messages

Model
System architecture of services

Test
- the model against requirements

Verify model
Sign off on description - BPMN, HTML

Guide Implementation
UML, WSDL, BPEL, HTML

Implement .
J2EE, .NET

Test
J2EE, .NET against model

Monitor
Runtime enforcement .

Removing Removing AmbiguityAmbiguity means:means:
Driving up qualityDriving up quality
Driving down costsDriving down costs
Increasing agility in a controlled wayIncreasing agility in a controlled way

π4

How to use it

Methodology

π4

Requirements and Models

If a set of requirements at R0 is said to be met by a model L0 and that model L0
is comprised of several parts (usually aligned to lines of business) then a
phased approach can be adopted as follows:

L0
LOBS

L1

refine(L0,L1)

refine(L1,L2)

L2

Methodology

π4

Engagments

LOB1 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5
LOB2 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5
LOB3 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5
LOB4 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5
LOB5 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5
LOB6 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5
LOB7 R0 L0 R1 L1 R2 L2 R3 L3 R4 L4 R5 L5

testreview

test

Testing at design time
reduces

risk of mis-delivery

generate technical contracts

Generating R4 requirements
ensures

Alignment of delivery

Testing against R4
ensures

Alignment of delivery

Methodology

π4

Models and Levels

Having a precise definition of the semantics of a model and the
operators that can be used to map from one layer to another

ensure that models are aligned
provide computable assurance that lower levels implement higher levels

The net effect is lowering the risk of mis-delivery, increasing the quality
of delivery and reducing the time to deliver

Methodology

π4

Levels

The executable code for each participant in L4 including all non-observable behavior
(business logics) needed to implement a runnable state machine.

L5

The end point projects of the participants in L3 (applications, services and components) as
state machines either as generated code or as technical contracts that will drive the
implementation of the state machines.

L4

The observable bound communication model (binding of physical data model to L2) that
needs to be enacted over a set of AS-IS and TO-BE components or application or services
in order to deliver lifecycle processes plus a physical data model for the business entities
such that they are bound to the communication model.

L3

The observable communication model based on L1 that needs to be enacted over a set of
AS-IS and TO-BE components or application or services in order to deliver lifecycle
processes plus a logical data model for the business entities

L2

The lifecycle in terms of process names that are needed to drive a line of business in L0L1

The functional decomposition of an enterprise in terms of lines of business and business
enities needed to enact those lines of business

L0

DescriptionModel

Methodology

π4

Level 0

KeymanMotor CompanyHouse Travel Life Personal

Claims Processing Claims Processing

AS-IS

TO-BE extensions

Level 0 describes only the functional business decomposition of an enterprise in terms of
high level areas of business and business/information entities

Risk

Claim

Policy

Benficiary

Insured

Customer

Person

Company

Methodology

π4

Level 0 AS-IS

Motor House Travel Life Personal

Claims Processing

AS-IS

Level 0 describes only the functional business decomposition of an enterprise in terms of
high level areas of business and business/information entities

Risk

Claim

Policy

Benficiary

Insured

Customer

Person

Claims Processing

LossAdj

ClaimsMgr

Claims Processing

Methodology

π4

Level 0 TO-BE

Motor House Travel Life Personal

Claims Processing

AS-IS

TO-BE extensions

Level 0 describes only the functional business decomposition of an enterprise in terms of
high level areas of business and business/information entities

Risk

Claim

Policy

Benficiary

Insured

Customer

Person

LossAdj

ClaimsMgr

Methodology

π4

Level 1

For each high level areas of business there is an L1
model which describes the lifecycle of key processes
(in this case for insurance policies) that are needed for
that area as well as the business entities that they

require as input and emit as output.

Methodology

π4

Level 2

For each lifescyle process Pn in L1 there is one or more
sub choreographies that describe the communication
model to support Pn in L1. This model does not need to
bind to an underlying concrete information model and is
abstract. So no channel identities and no xpath
expressions.

Methodology

π4

Level 3

For each lifescyle process Pn in L1 there is one or more
sub choreographies that describe the communication
model to support Pn in L1. This model does need to bind
to an underlying concrete information model and is
concrete. So channels with identities and conditionals
with expressions.

Methodology

π4

Level 4

State Machine
Participant1

State Machine
Participant2

State Machine
Participant3

State Machine
ParticipantN

For each participant Pi in L3, using end-point-projection, there is a state
machine that represents the observable behavior of that participant.
The state machine may be generated code or may be hand coded based
on generated technical specificiations. In each case the behavior of the
state machine is testable against an L3.

Methodology

π4

Level 5

Fully executable
Participant1

Fully executable
Participant2

Fully executable
Participant3

Fully executable
ParticipantN

For each State Machinein L4 there is a fully executable application or
process that retains the state behavior that is observable in L3 but adds
non-observable business logic to the state machine.

Methodology

π4

Levels

KeymanMotor CompanyHouse Travel Life Personal

Claims Processing Claims Processing

Risk

Claim

Policy

Benficiary

Insured

Customer

Person

Company ƒ(L0-Model,L1)

ƒ(L1-Model,L0)

partial

full

ƒ(L1-Model,L2)

ƒ(L2-Model,L1)

partial

full

Methodology

π4

Levels

ƒ(L3-Model,L4)

ƒ(L4-Model,L3)

partial

full

ƒ(L2-Model,L3)

ƒ(L3-Model,L2)

partial

full

State Machine
Participant1

State Machine
Participant2

State Machine
Participant3

State Machine
ParticipantN

Methodology

π4

Levels

ƒ(L4-Model,L5)

ƒ(L5-Model,L4)

partial

full

State Machine
Participant1

State Machine
Participant2

State Machine
Participant3

State Machine
ParticipantN

Fully executable
Participant1

Fully executable
Participant2

Fully executable
Participant3

Fully executable
ParticipantN

Methodology

π4

Models and requirements

KeymanMotor CompanyHouse Travel Life Personal

Claims Processing Claims Processing

Risk

Claim

Policy

Benficiary

Insured

Customer

Person

Company

R0 Driven by business goals
We want to open up a new line of business for
company insurance

We want to have a cross functional claims process

L0

This is all about capturing the business goals in some
high level picture that shows what exists and what
needs to be added to meet the goals.

Business architect

Methodology

π4

Models and requirements

R1 Driven by high level
requirements
There must be a policy in existiance prior to updating,
renewing,canceling or querying a policy.

Updating, renewing, cancelling and querying can
happen at any time

Updating, renewing, cancelling and querying can
happen zero or more times until a policy is terminated

Renewals are 3 months prior to expiry

L0 is an input to L1

L1

This is all about taking the L0 and adding in high level
requirements that start to structure and give order to high
level processes that are needed to realize a business goal.
This might also include cross cutting functional concerns
such as accounting, status checks (queries), claims and so
on.

Business/Enterprise
architect

Methodology

π4

Models and requirements

R2 Driven by low level
requirements
All policies will have a policy reference that is a string

The portal process and business rules for initial
qualification will be done in Pega.

A legacy system for policy management will be reused

A set of concrete use cases and supporting sequence
diagrams.

L1 is input to L2

L2

This is all about taking the L1 and adding in low level
requirements that could be thought of as design and technology
decisions. For example we might already know how we will
reuse and augment the AS-IS landscape with the addition of
mediators and mappers and other such services. The aim of L2
is to provide an abstract communication model with no firm
binding to a concerete info model or technology.

Enterprise/Solution
architect

Methodology

π4

Models and requirements

R3 Driven by low level
requirements
Policy expires will be xsd:Date

Policy renewals will occur at expiry - 3 months

Policy termination will be when no referent policy is
included in the latest status of the policy

Pega will use an XMLSchema called Pega.xsd

Legacy system will use a schema called Legacy.xsd

Mapping and mediation will be separate services able
to run on a single machine or different machines

Use BPEL

Example messages and sequence diagrams

L2 is input to L3

L3

This is all about taking the L2
model and binding it to a concrete
information model which might be
inferred or created based on the
example messages. The channel
identities for interactions need to
be bound and any observable
condition needs to be bound. The
model properties may also be
aligned to the delivery technology.

testable

Enterprise/Solution
architect

Methodology

π4

Models and requirements

R4 Driven by and L3 contracts
Generated from an L3 model

L4

WSDL, BPEL, State Charts,
etc

Enterprise/Solution
architect

This is all about taking the L3 model and using it to generate
the necessary technical contracts that specify the state
behavior of the services, application and processes or indeed
the code to implement that state behaviour. These contracts
have everything except the internal business logic of the
services.

Methodology

π4

Models and requirements

R5 Driven by and L3 contracts
Generated from an L3 model and augented by
business logic from low level designs

L5

Executable services,
applications or processes

developer

This is all about taking the L4 technical contracts or indeed L4
generated state machines and adding the necessary business
logic to each service, application or process.
In some cases the code needed is a thin veneer wrapping
some legacy application in others it is the full business logic
required. It all cases the state behavior is held invarient and
by so doing ensures the delivered code meets its integration
obligations.

Methodology

π4

Testing

Testing uses a hypothesis and determines if that hypothesis holds against some
experiment
An experiment may be the running or simulation of running some computable
artefact based on some known inputs and with a hypothesis as to what the
outputs should be.

Methodology

π4

Testing, Models and Requirements

Experiments are based on stimulating (running or simulating) some model at some level
against some known inputs and expected outputs
An input at a system level (across services) is the initial sending of a message in a
sequence diagram.
Inputs at the service level are the messages that each service receives over some known
order.
An output at a system level (across services) is the final receive of a message in a
sequence diagram.
Outputs at the service level are the messages that each service sends in response to some
known input over some known order.

Methodology

π4

Testing, Models and Requirements

Testing can occur at different levels

For any Model M at Level I we may test based on Requirements R
described at that level.
We say that Mi satifies Ri when the testing results in an expected
outcome.
We say that Mi does not satify Ri when the testing results in an
unexpected outcome.

Testing may be automated or manual

Methodology

π4

Levels

X

X

X

X

Implemented

satisfies(L5-Model,R5) returns true if L5-Model satifies R5

satisfies(L4-Model,R4) returns true if L4-Model satifies R4

satisfies(L3-Model,R3) returns true if L3-Model satifies R3

satisfies(L2-Model,R2) returns true if L2-Model satifies R2

satisfies(L1-Model,R1) returns true if L1-Model satifies R1

satisfies(L0-Model,R0) returns true if L0-Model satifies R0

Testing operator

5

4

3

2

1

0

Level

Methodology

π4

Levels

refine(L0-Model,L1) yields an incomplete L5 based on L4 which may be
refined into an L5 but which is structurally bi-similar to L4.

refine(L3-Model,L4) yields an incomplete L4 based on L3 which may be
refined into an L4 but which is structurally bi-similar to L3.

refine(L2-Model,L3) yields an incomplete L3 based on L2 which may be
refined into an L3 but which is structurally bi-similar to L2.

refine(L1-Model,L2) yields an incomplete L2 based on L1 which may be
refined into an L2 but which is structurally bi-similar to L1.

refine(L0-Model,L1) yields an incomplete L1 based on L0 which may be
refined into an L1 but which is structurally bi-similar to L0.

Refinement operator

L5

L4

L3

L2

L1

L0

Model

Methodology

π4

Levels

L0

abstract(L5-Model,L4) yields a complete L4 from an L1L5

abstract(L4-Model,L3) yields a complete L3 from an L1L4

abstract(L3-Model,L2) yields a complete L2 from an L3L3

abstract(L2-Model,L1) yields a complete L1 from an L2L2

abstract(L1-Model,L0) yields a complete L0 from an L1L1

Abstraction operatorModel

Methodology

π4

Levels

abstract(abstract(abstract(abstract(L5-Model,L4),L3),L2),L1),L0) gives an L0 from an
L5 because it is generates or translates from lower to upper levels with no loss wrt to
the semantics of the upper levels.

The same cannot be said of the refine operator because it only provides an incomplete
translation to the lower levels because it does not have the necessary information.

For any models Mi and Mi+1, given that abstract(Mi+1,i) is the same as Mi, then if
satisfy(Mi,Ri) means that satisfy(Mi+1,Ri). That is if we show that for some Mi that is
valid against it’s requirements Ri, and providing that Mi+1 is an implementation of Mi
(abtract(Mi+1,i) = Mi), then Mi+1 also satifies Ri.

Methodology

π4

How to use it

Methodology

START: Gather R0 business
requirements

 Create an L0 model

 Refine R0 requirements to R1,
lifecycle requirements

 Create an L1 model for the R1
requirements

Refine the R1 requirements to
R2, design constraints

Refine the L1 model
to incorporate R2

requirements to
create an L2 model

Refine the R2 requirements
to R3, technical constraints

Refine the L2 model to
incorporate the R3 requirements

to create an L3 model .

Successive refinement of requirements and
models leading to streamlined delivery

Test the L3 model against R3,
R2, and R1 requirements .

Testable

Verifiable

Gather requirements
 Sequence diagrams & messages

Implement .
J2EE, .NET

 Test
- the model against requirements

Guide Implementation
UML, WSDL, BPEL, HTML

Test
J2EE, .NET against model

Monitor
Runtime enforcement .

 Model
 System architecture of services

Model

 Verify model
Sign off on description - BPMN, HTML

Requirements and ModelsDelivery and Execution

Requirements gathering
Modeling
Model testing

π4

START: Gather R0 business
requirements

Create an L0 model

Refine R0 requirements to R1,
lifecycle requirements

Create an L1 model for the R1
requirements

Refine the R1 requirements to
R2, design constraints

Refine the L1 model
to incorporate R2

requirements to
create an L2 model

Refine the R2 requirements
to R3, technical constraints

Refine the L2 model to
incorporate the R3 requirements

to create an L3 model .

© 2009, Cognizant Technology Solutions. Confidential 59

Nine steps to heaven

Successive refinement of requirements and
models leading to streamlined delivery

Test the L3 model against R3,
R2, and R1 requirements .

Testable

VerifiableHow to use it

Methodology

π4

© 2008, Cognizant Technology Solutions. Confidential 60

WS-CDL

π4

WS-CDL

A language to describe the collaborative external observable
behavior of a set of peered systems/services/applications as
an ordered set of interactions over one or more logical
channels that connect them.

As it is

π4

Simple example

Buyer Seller

getQuote

quoteResponse

< 1000 units

Buyer Seller

getQuote

quoteRejected

>= 1000 units

x

As it is

π4

Simple example

As it is

π4

Roles

As it is

π4

Relationships and Participants

As it is

π4

Channels and Info types

As it is

π4

Bindings

As it is

π4

Variables

As it is

π4

Interactions

As it is

π4

Choice

As it is

π4

Interactions

As it is

Interaction I1 over C operation O {
exchange request R1 {
}
exchange response R1 {
}
exchange response { faultname F1
}
exchange response { faultname Fn
}

}

Interaction I1 over C operation O {
exchange request R1 {
}

Choice {
Interaction I2 over C operation O {

exchange response R1 {
}

}

Interaction I3 over C operation O {
exchange response { faultname F1
}

}

Interaction I4 over C operation O {
exchange response { faultname Fn
}

}
}

Implied choice

Explicit choice

Correlation is based on the
channels and message content
through token locators

π4

Workunits

As it is

π4

Blocking

Workunit (G) (R) (B is True)
Body

Where G => guard condition, R => repeat condition, B => blocking attribute, Body => CDL activities within the work unit

A typical order of evaluation is as follows:
(G) Body (R G) Body (R G) Body

With respect to a G then the G is only evaluated when the variables are available and evaluate to True and otherwise we
wait at the guard condition. Thus the Body after the first G only gets executed when G is True. Or put another way Body is
primed ready for action and then is executed when G evaluates to True.

IF G is unavailable or evaluates to False THEN it equates to:
when (G) {

Body
} until (!R)

IF G is always True THEN it equates to:
repeat {

Body
} until (!R)

IF R is always False THEN it equates to:
when (G) {

Body
}

Workunits

As it is

π4

Non-blocking

Workunit (G) (R) (B is False)
Body

A typical order of evaluation is as follows:

(G) Body (R G) Body (R G) Body

Which equates to (in pseudo code):

while (G) {
Body

} until (!R)

IF G is always True THEN it equates to:

repeat {
Body

} until (!R)

IF R is always False THEN it equates to:

if (G) {
Body

}

Workunits

This is what we used

As it is

π4

Workunits

This is what we
provide in the
Pi4Tech tools for
workunits

As it is

π4

Theory

Global Calculus

Distillation of WS-CDL
Reduction rules, etc

End point Calculus

Correspondance to
Global Calculus
Reduction riles, etc

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf

GC

EPr1 EPr2 EPrn

End Point Projection

As it is

π4

Theory

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf

As it is

π4

Theory

http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf

As it is

π4

WS-CDL Benefits

A complete and unambiguous description [of a distributed system] of how
peered roles or participants should interact and the order in which these
interactions should take place.

Enables code generation for a distrbuted system (end point projections) and
guarantees interoperability of that system by design.

Enables us to ask questions of a system so described:
Is it free from deadlocks, livelocks and races?

As it is

π4

Two major gaps

1. Role are not shared between participants
Consider Wallmart. Wallmart is both a buyer and a seller of goods where
“buyer” and “seller” may be roles. Consider a strawberry grower. They
also play the role of “buyer” and “seller”.

WallmartBuyer, WallmartSeller, StrawberryGrowerBuyer and StrawberryGrowerSeller.

Participant Type: Market Participant (Buyer, Seller)
Market Participant: Wallmart(Buyer)
Market Participant: StrawberryGrower(Seller)
Interaction BuyStrawberries (between Wallmart and StraberryGrower)

Bloating of descriptions because participants are not fully fledged types
with instances.

Every interaction changes to include participant instances (actually it is
the message exchanges) as an alternative to roles
Every CDL function changes to include participant instances as an
alternative to roles
Every Assignment changes ….

As it should have been

π4

Two major gaps

2. Message exchanges do not include any form of notification
Consider a scenario in which a buyer registers interest with an auction in
some goods. How would be model notification of price changes?

When period is over
Buyer request price from auctioneer

Buyer registers with auction
When price changes

Auction notifies buyer of change

Models become poorly understood because of an inversion of the
conceptual model needed to provide a solution.

Adding an additional message exchange type to request and response
called notify

As it should have been

π4

One major gap

1. Adding local behavior in-situ
CDL supports a slient action which can be situated at a role which
represents non-observable behavior. It is a place holder and no more.

Today we cannot add any description to the global model for any local
behavior that is non-observable.

We have to generate Java and then add to a generated state machine
the business logic in code. So we mix description with code too early.

Gaps in how to use it

π4

© 2008, Cognizant Technology Solutions. Confidential 83

Examples

π4

START: Gather R0 business
requirements

Create an L0 model

Refine R0 requirements to R1,
lifecycle requirements

Create an L1 model for the R1
requirements

Refine the R1 requirements to
R2, design constraints

Refine the L1 model
to incorporate R2

requirements to
create an L2 model

Refine the R2 requirements
to R3, technical constraints

Refine the L2 model to
incorporate the R3 requirements

to create an L3 model .

© 2009, Cognizant Technology Solutions. Confidential 84

Nine steps to heaven

Successive refinement of requirements and
models leading to streamlined delivery

Test the L3 model against R3,
R2, and R1 requirements .

Testable

Verifiable

Example

Methodology of refinement

π4
eClaims R0 and L0

Example

L0 model and R0 requirements
R0

We want to have a cross functional claims
process available online for both agents and
insured parties.

π4
eClaims R1 and L1

L1 - Key Business Processes

R1

No processing of a claim can occur until
after a claim has been notified.

Status enquiries and claims processing
may happen in parallel.

Only when claims processing has
finished will a claim be settled.

Example

L1 model and R1 requirements

π4
eClaims R2 and L2

Ref Identity Tokens Identity Values Query Expressions Message File
[1] null null null LossDescriptionMessage.xml
[2] null null null PolicyDetailsRequestMessage.xml
[3] null null null PolicyDetailsMessage.xml
[4] null null null LossAcknowledgementMessage.xml
[5] null null null ScheduleClaimMessage.xml

R2

Policies will carry a Policy Reference

Claims will carry a Claim Reference

Loss Adjustors and claimants as well as
agents will be provided with online access
through a web channel.

Existing systems will be reused as services.

Existing services will be reused as is.

A set of concrete use cases and supporting
sequence diagrams.

L1 - Key Business Processes

Example

R2 requirements

π4
eClaims R2 and L2

R2

Policies will carry a Policy Reference

Claims will carry a Claim Reference

Loss Adjustors and claimants as well as
agents will be provided with online access
through a web channel.

Existing systems will be reused as services.

Existing services will be reused as is.

A set of concrete use cases and supporting
sequence diagrams.

L2: First Notification Of Loss (FNOL)

Example

L2 Model and R2 requirements

π4
eClaims R3 and L3

L3 for FNOL
R3

Legacy system will use a schema called
Legacy.xsd.

Correlation identities are provided by
aClaimRef or PolicyRef depending on
context.

A ClaimRef and PolicyRef will be an
xsd:string.

Use BPEL, WSDL1.1 and WebMethods

Example

R3 requirements

π4
eClaims R3 and L3

Ref Identity Tokens Identity Values Query Expressions Message File
[1] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() LossDescriptionMessage.xml
[2] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() PolicyDetailsRequestMessage.xml
[3] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() PolicyDetailsMessage.xml

[4] PolicyRefToken ClaimRefToken
RSA-Motor-ABC123
RSA-Motor-Claim-3

//rsa:PolicyRef/text()
//rsa:ClaimRef/text() LossAcknowledgementMessage.xml

[5] PolicyRefToken ClaimRefToken
RSA-Motor-ABC123
RSA-Motor-Claim-3

//rsa:PolicyRef/text()
//rsa:ClaimRef/text() ScheduleClaimMessage.xml

Example

R3 Requirements

R3 for FNOL (for review)

π4
eClaims R3 and L3

L3 for FNOL (for review)

Technical View

Example

L3 Model

π4
eClaims testing L3 against R3

Testing against platform

Example

L3 Model against which we test

π4
eClaims testing L3 against R3

Testing against requirements

Example

Testing L3 against R3 requirements

π4
eClaims testing L3 against R3

Testing to ensure that the mode is correct:
• against message order,
• against message type,
• against correlation identities,
• against the target platform(s),
• against the information model.

This ensures behavior is correct against requirements

Testing against requirements

Example

Testing L3 against R3 requirements

π4
eClaims generation of R4

Ref Identity Tokens Identity Values Query Expressions Message File
[1] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() LossDescriptionMessage.xml
[2] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() PolicyDetailsRequestMessage.xml
[3] PolicyRefToken RSA-Motor-ABC123 //rsa:PolicyRef/text() PolicyDetailsMessage.xml

[4] PolicyRefToken ClaimRefToken
RSA-Motor-ABC123
RSA-Motor-Claim-3

//rsa:PolicyRef/text()
//rsa:ClaimRef/text() LossAcknowledgementMessage.xml

[5] PolicyRefToken ClaimRefToken
RSA-Motor-ABC123
RSA-Motor-Claim-3

//rsa:PolicyRef/text()
//rsa:ClaimRef/text() ScheduleClaimMessage.xml

Generation of artefacts may include any of the following:
• A UML model for behavior

• State machine diagrams
• Activity diagrams
• UML meta model

• BPMN
• For each process

• WSDL
• For each service

• BPEL
• For each process

• HTML
• Sequence diagrams

• With message examples
• With correlation identity specifications

Technical Context
Services
Correlations
Types

Example

Generating R4 requirements

π4
eClaims generation of R4

WSDL Contract
Types and functions

UML State Machine
Behavior (order)

Example

Generating R4 requirements

π4

An exercise

π4
eClaims generation of R4

AS-IS Picture

Exercise

π4
eClaims generation of R4

AS-IS Requirements

Exercise

1. A claim must have been made before any further processing of a claim can
proceed.

2. Once a claim has been made and validated (see FirstNotificationOfLossFree.scn)
the claim may be subject to any number of status enquiries by any authorised entity
(Loss Adjustor, Claimant, Claims Manager).

3. Once a claim has been made and validated (see FirstNotificationOfLossFree.scn)
the claim may be processed by any authorised entity (Loss Adjustor, Claimant
Claims Manager) where processing advances the status of the claim to a
conclusion.

4. A claim is deemed to have terminated once it reached a conclusion.
5. A conclusion may result in a payment to one or more parties.

R1

1. Implementation of a cross functional eClaims process
2. Key information entities include: Beneficiary, Claim, Claimant, Policy, Survey Report
3. Key constraints include:Portal access is required for: Loss Adjustor, Claimant,

Claims Manager

R0

RequirementLevel

π4
eClaims generation of R4

AS-IS Requirements

Exercise

1. A claim must be submitted by a claimant with a policy number for the claim or
sufficient details to extract a policy number (Name, Address, Post Code) from the
Policy System.

2. A claim is always validated against a policy number. A claim with no valid policy
number is an invalid claim and is rejected.

3. A claim is given a unique claim reference number after it has been shown to be
valid against a policy and this is always used after issue.

4. All claims, except for the first indication of loss will include both claim and policy
reference.

5. We shall use WSDL1.1
6. We shall use BPEL

R3

1. Reuse Legacy Policy system, Workflow system, Accounting System and Claim
system

R2

RequirementLevel

π4
eClaims generation of R4

AS-IS Requirements

Exercise

π4
eClaims generation of R4

AS-IS Requirements

Exercise

π4
eClaims generation of R4

What you will need to do

Exercise

1. Load the eclipse environment into your laptop from the memory sticks

2. You will find
a) R2 and unbound R3 sequence diagrams
b) Set of example messages
c) L0 AS-IS picture and an L0 O-BE picture

3. Create an L1 model and generate an html view of that model

4. Create an L2 model and generate an html view of that model

5. Create an L3 model

6. Copy the sequence diagrams, bind them to the L3 model

7. Test the model agains the bound sequence diagrams

π4

The Future

π4

BPMN2

BPMN2
Combines both local models and global models
Incorporates the benefits of WS-CDL
Based on petri-net theory

+ve’s
• Local and global behaviors
• Industry support

-ve’s
• Roles are on the outside not on the inside and complexity is based on

interaction and action not on roles
• Can it model channel passing (i.e. classic authentification)

Future

π4

Scribble

"Scribbling is necessary for architects, either physical or
computing, since all great ideas of architectural construction
come from that unconscious moment, when you do not realise
what it is, when there is no concrete shape, only a whisper
which is not a whisper, an image which is not an image,
somehow it starts to urge you in your mind, in so small a voice
but how persistent it is, at that point you start scribbling" - Kohei
Honda 2007

Future

π4

Scribble

Three languages in one:

Protocol (minimal type signature
used to guarantee type safety of
conversations)
Conversation (implements of one
or more protocols, with added
constraints/logic)
Language (integrating multiparty
session types, or conversations,
into general programming
languages)

Used as underlying type system
for pi4soa CDL tool suite to
provide conformance checking.
Refined monitoring of end
points.
Refined runtime environment.

Future

π4

Scribble

protocol HelloWorld
{

role You, World;
Hello from You to World;

}

Future

package HelloWorld {
roleType YouRole, WorldRole;
participantType

You {YouRole},
World{WorldRole};
relationshipType

YouWorldRel between
YouRole and WorldRole;

channelType WorldChannelType
with roleType WorldRole;

choreography Main
{

WorldChannelType worldChannel;
interaction operation=hello

from=YouRole to=WorldRole
relationship=YouWorldRel

channel=worldChannel
{ request messageType=Hello; }

}
}

Scribble WS-CDL

π4

Overlord

Uses WS-CDL outside of the scope of
WS-* and within a more general SOA
infrastructure.
Design methodology and runtime
support
Compliment other development
techniques and improve the resiliency
and robustness of SOA-based
applications, no matter how they are
ultimately deployed.

Future

π4

Q&A

