
Information Theory and Security:
Quantitative Information Flow

Pasquale Malacaria
pm@dcs.qmul.ac.uk

School of Electronic Engineering and Computer Science
Queen Mary University of London

Information Theory and Security: Quantitative Information Flow – p. 1/54

Plan

Give some answers to the following questions:

1. Why Information Theory?
2. What is leakage of confidential data?
3. How to measure leakage?
4. How to reason about leakage?
5. How to implement a leakage analysis?

From horses to the Linux Kernel

Information Theory and Security: Quantitative Information Flow – p. 2/54

The Problem

Consider the following simple program

if (password==guess) access=1; else
access=0;

unavoidable leakage of confidential information:
1. Observing access=1: guessed the right password
2. Observing access=0: eliminated one possibility from

the search space.
3. So the real security question is not whether or not

programs leak, but how much.
4. Some QIFfers: Chatzikokolakis, Chotia, Clark, Chen,

Heusser, Hunt, Kopf, Malacaria, McCaimant, Mu,
Palamidessi, Panangaden, Rybalchenko, Smith,
Tereauchi.

Information Theory and Security: Quantitative Information Flow – p. 3/54

Why Information Theory?

Shannon’s entropy measures the information content of a
random variable.
Consider a 4 horses race: the random variable W means
"the winner is".
W can take four values, value i standing for "the winner is
the i−th horse".

Information content of a random variable = the minimum
space needed to store and transmit the possible outcomes
of a random variable.

Information Theory and Security: Quantitative Information Flow – p. 4/54

Some intuitions on Information Theory

Shannon’s entropy measures the minimum space needed
to store and transmit the possible outcomes of a random
variable.

1. If we know who will win (probability 1), then no space
needed to store or transmit the information content of
W , i.e. W has 0 information content.

2. Other extreme: all 4 horses are equally likely to win.
Then the information content of W is 2 because using 2
bits is possible to store 4 values.

3. If there were only two possible values and they were
equally likely then the information content of W would
be 1 because in 1 bit is possible to store 2 values.

Information Theory and Security: Quantitative Information Flow – p. 5/54

Some intuitions on Information Theory

Hence entropy of W , H(W) should take values 0, 2, 1
respectively when W follows the distributions
1. p1 = 0, 0, 0, 1 (for the first case),
2. p2 = 1/4, 1/4, 1/4, 1/4 (for the second case) and
3. p3 = 1/2, 1/2, 0, 0 (for the third case).
Use Shannon’s entropy formula

H(W) = −
∑

i

pi log2 pi

e.g.

H(p2) = −
∑

i

1/4 log2 1/4 = 4 ∗ (1/4 log2(4)) = 2

Information Theory and Security: Quantitative Information Flow – p. 6/54

Information=Uncertainty

1. If we know who will win (probability 1) then uncertainty
on (the value of) W = 0.

2. Other extreme: all 4 horses are equally likely to win.
Then uncertainty on W (wrt 4 possibilities) is maximal =
2 bits (4 possible values).

3. If there were only two possible values and they were
equally likely then the information content of W = 1 bit
(2 possible values).

H(W) = Information content of W= Uncertainty about W

Information Theory and Security: Quantitative Information Flow – p. 7/54

Some intuitions on Information Theory

Related notions: Conditional Entropy: what is the uncertainty
on W given knowledge of the horse arriving last?

If we know the winner then knowing the loser won’t
change the uncertainty on the winner
If all 4 horses equally likely to win then the loser will
eliminate one possible winner
If 2 out of 4 horses are possible winners then the loser
will not affect the uncertainty about the winner
(assuming the last is not one of the two possible
winners)

H(W | Last) = 0, log2(3), log2(2) respectively

Information Theory and Security: Quantitative Information Flow – p. 8/54

Some intuitions on Information Theory

Conditional Entropy: what is the uncertainty on W given
knowledge of the horse arriving last?
Easy formal definition:

H(X|Y) = H(X,Y)−H(Y)

H(X,Y) is the joint entropy of X and Y and is just the
entropy defined on the joint probabilities:

H(X,Y) =
∑

x,y

p(x, y) log2 p(x, y)

H(X|Y) =Uncertainty about X,Y minus uncertainty on Y

Information Theory and Security: Quantitative Information Flow – p. 9/54

Some intuitions on Information Theory

H(X|Y) = H(X,Y)−H(Y)

H(W | Last) = 0, log2(3), log2(2) respectively

Information Theory and Security: Quantitative Information Flow – p. 10/54

Some intuitions on Information Theory

Related notions:
Mutual Information: difference in uncertainty on W before
and after knowledge of the horse arriving last?

I(W ; Last) = H(W)−H(W | Last) = 0, 2−log2(3), 1−log2(2) = 0 r

Information Theory and Security: Quantitative Information Flow – p. 11/54

What is Leakage?

Leakage=difference in the uncertainty about the secret h
before and after observations O on the system:

H(h)−H(h|O) = I(h;O) (mutual information)

In general we also want to take into account contextual
information
Leakage: Conditional Mutual information: I(h;O|L)
difference in the uncertainty about the secret h before and
after observations on the system O given contextual
information L

the correlation between secret h and observations O
given L, a measure of the information h,O share given
L

Information Theory and Security: Quantitative Information Flow – p. 12/54

What is Leakage?

Leakage=difference in the uncertainty about the secret h
before and after observations O on the system:

Leakage: Conditional Mutual information: I(h;O|L)
difference in the uncertainty about the secret h before and
after observations on the system O given contextual
information L

This definition can be used for leakage in programs and
probabilistic systems or loss of anonymity in Anonymity
protocols ((Chastikokolakis-Palamidessi-Panangaden,
Chen-Malacaria)

Information Theory and Security: Quantitative Information Flow – p. 13/54

Channel Capacity

Leakage=difference in the uncertainty about the secret h
before and after observations O on the system:
Question: what is the maximum leakage for a system?
Consider all possible distribution on the secret and pick
the maximum leakage in this set

CC = max
h

I(h;O|L)

Information Theory and Security: Quantitative Information Flow – p. 14/54

Some intuitions on Information Theory

If we consider leakage in deterministic programs things
simplify; in fact:

I(h;O|L) = H(O|L)−H(O|h, L)

a program is a function from inputs to output P (h, L) = O, so

H(O|h, L) = 0

Information Theory and Security: Quantitative Information Flow – p. 15/54

Example

Assume h is 4 bit (1 . . . 16).
P(h) is the program l = h % 4;

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

0 1 2 3

H(O) = −
∑

p log2(p) = 4
1

4
log2(4) = 2 bit

Meaning: on average observing one output will leave you
with a 2 bits (four values) uncertainty about the secret
Notice the preimage of P(H) (i.e. O−1) which partitions the
high inputs.

Information Theory and Security: Quantitative Information Flow – p. 16/54

Partitions vs Random Variables

We can see partitions over a space equipped with a
probability distribution as a random variable.
Usually a random variable is defined a map f from a space
equipped with a probability distribution to a measurable
space.
So f−1 is a partition on a space equipped with a probability
distribution

Information Theory and Security: Quantitative Information Flow – p. 17/54

The Lattice of Information

Leakage=H(O) where O is the random variable “output
observations” of the program.
It corresponds to the partition on the high inputs given by
O−1.
observation = partial information = sets of indistinguishable
items

Information Theory and Security: Quantitative Information Flow – p. 18/54

LoI and Information Theory

Apparently LoI and Information theory have nothing in
common.
A surprising result by Nakamura shows otherwise:

Theorem (Nakamura): If LoI is built over a probabilistic
space then the best measure is Shannon Entropy

Measure here is a lattice semivaluation, i.e. a real valued
map ν s.t.

ν(X # Y) ≤ ν(X) + ν(Y)− ν(X % Y) (1)
X & Y implies ν(X) ≤ ν(Y) (2)

(No stronger notion is definable on LoI)

Information Theory and Security: Quantitative Information Flow – p. 19/54

LoI and Information Theory

Shannon point: Information Theory measures the amount
of information. It doesn’t describe what the information is
about.
E.g. a coin toss and the US presidential race: both
described by H(X) ≤ 1 So what does describe
information?

Answer: A set of processes that can be translated
between each other without losing information

d(X,Y) = H(X|Y) +H(Y |X)

A set of processes s.t. for all X,Y , d(X,Y) = 0
d defines a pseudometric on a space of random vars, i.e. a
metric on the information items.

Information Theory and Security: Quantitative Information Flow – p. 20/54

LoI and Information Theory

Shannon point 2: define the following order on this space:

X ≥d Y ⇔ H(Y |X) = 0

The intuition here is that X provides complete information
about Y , or equivalently Y has less information than X, so
Y is an abstraction of X (some information is forgotten).

X & Y ⇔ X ≤d Y

So LoI is also the lattice of information in Shannon’s sense

Information Theory and Security: Quantitative Information Flow – p. 21/54

Quantifying Leakage and Partitions

Leakage: uncertainty about the inputs after observing the
outputs of a program

Measured using Shannon Entropy using the following steps
1. Take some code l = h % 4

2. Interpret the code in LoI: find partition on high inputs

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

3. Quantify using Entropy (Measure the partition)

−
∑

p log2(p)

Information Theory and Security: Quantitative Information Flow – p. 22/54

How to reason about leakage?

We give an example how to reason about loops (Malacaria
POPL 2007):
Consider
l=0;
while(l < h) {
if (h==2) l=3 else l++
}

It=0 It=1 It=2 It=3
O 0 1,3 ε 3
h 0 1,2 ε 3

Information Theory and Security: Quantitative Information Flow – p. 23/54

How to reason about leakage?

We can also use the Lattice of Information:
l=0;
while(l < h) {
if (h==2) l=3 else l++
}

It=0 It=1 It=2 It=3
O 0 1,3 ε 3
h 0 1,2 ε 3

Information Theory and Security: Quantitative Information Flow – p. 24/54

Implementing the analysis

Joint work with Jonathan Heusser
Similar ideas also in Backes, Kopf, Rybalchenko

Information Theory and Security: Quantitative Information Flow – p. 25/54

Where we aim to be

Information Theory and Security: Quantitative Information Flow – p. 26/54

From Programs to Partitions

Given a partition and input probability distribution,
quantification is simple. Just plug-in your measure.

More difficult is to get the partition for a program:
Π : Program → Partition

Tool to calculate Π(P) for subset of ANSI-C programs.

Information Theory and Security: Quantitative Information Flow – p. 27/54

Automatically Calculating Π(P)

With 2 bit pin,
P ≡ if(pin==4) ok else ko

4 1 2 3

Partition defined by number and sizes of equivalence
classes

Two step approach:
Find a representative input for each possible output
For each found input, count how many other inputs lead
to the same output

Information Theory and Security: Quantitative Information Flow – p. 28/54

Automatically Calculating Π(P)

Create two instances P "= and P= out of P applying
self-composition, inputs are h, h′ and ouputs l, l′

P"=(i) ≡ h = i;P ;P ′; assert(l += l′)

P=(i) ≡ h = i;P ;P ′; assert(l = l′)

translated to SAT queries for SAT solving and model
counting.

P"= responsible for finding set of representative inputs Sinput

with unique outputs (l += l′)

P= model counts every element of Sinput

Information Theory and Security: Quantitative Information Flow – p. 29/54

Algorithm for P += by example

P ≡ if(h==4) 0 else 1
Input: P"=
Output: Sinput

Sinput ← ∅
h ← random
Sinput ← Sinput ∪ {h}
while P"=(h) not unsat do

(l, h′) ← Run SAT solver on P "=(h)
Sinput ← Sinput ∪ {h′}
h ← h′

P"= ← P"= ∧ l′ += l

end

Sinput = {0, 4} thus P has two equivalence classes

Sinput is input to the algorithm for P=

Information Theory and Security: Quantitative Information Flow – p. 30/54

Algorithm for P= by example

P ≡ if(h==4) 0 else 1
Sinput = {0, 4}

Input: P=, Sinput

Output: M
M = ∅
while Sinput += ∅ do

h ← s ∈ Sinput

#models ← Run allSAT solver on P=(h)
M = M ∪ {#models}
Sinput ← Sinput \ {s}

end

Partition for program P is M = {1 model}{3 models}

Information Theory and Security: Quantitative Information Flow – p. 31/54

Implementation: AQUA

Constr
aints

Self-
Comp

Spear
Format

C

SAT

S_input

#SAT

Partition

CBMC

Optimisations

Language
translation

P!= P
=

Main features & constraints
runs on subset of ANSI-C,
without memory alloc, only
integer secrets, no interactive
input
no annotations needed except
cmdline options
supports non-linear arithmetic
and integer overflows
Tool chain: CBMC, Spear,
RelSat, C2D
Computation easily distributed

Information Theory and Security: Quantitative Information Flow – p. 32/54

Loops and Soundness

Bounded loop unrolling is a source of unsoundness: not all
possible behaviours are considered.

l=0; while(l < h) { l++; }
⇓

l=0; if(l < h) { l++; if(l < h) { l++; . . .

All untreated inputs end up in a “sink state”.
Program above with 4 bit variables and 2 unrollings
generates partition: {1}{1}{14}

Entropy can be over-approximated by distributing the sink
state into singletons: {1}{1} {1} . . . {1}︸ ︷︷ ︸

14x

Information Theory and Security: Quantitative Information Flow – p. 33/54

From C to SPEAR
int main() {

int h1,h2,h3,l;
l = h1+h2+h3;

}

CBMC translates C to SSA constraints
tmp11 == (h110 + h210)
l11 == (h310 + tmp11)

For loops are unrolled completely, while loops up to user
defined iteration.
CBMC is not used for model checking here!

Generate P "= by translating intermediate language above

Information Theory and Security: Quantitative Information Flow – p. 34/54

P+= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 0:i12 # secret initialisations
p = h210 0:i12
p = h110 0:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p /= l11__ l11

Information Theory and Security: Quantitative Information Flow – p. 35/54

P+= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 0:i12 # secret initialisations
p = h210 0:i12
p = h110 0:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p /= l11__ l11
model found:
h110__=5, h210__=5, h310__=5, l11__=15

Information Theory and Security: Quantitative Information Flow – p. 36/54

P+= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 5:i12 # secret initialisations
p = h210 5:i12
p = h110 5:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p /= l11__ l11
blocking clauses to not find same solutions again
p /= l11__ 15:i12

Information Theory and Security: Quantitative Information Flow – p. 37/54

P= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 ?:i12 # secret initialisations
p = h210 ?:i12
p = h110 ?:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p = l11__ l11

translated to CNF and fed to model counters (relsat, c2d)

Information Theory and Security: Quantitative Information Flow – p. 38/54

Estimating Entropy

Example: Sample S with 3 equivalence classes to get the
partition on an input space of 7 bit (128 unique inputs).

{5}{5}{6} (
5

128
,

5

128
,

6

128
)

Intuition: Estimate remaining number of equivalence
classes proportional to the sample S and distribute
remaining inputs equally.

3 eq. classes sampled with coverage 5+5+6
128 = 1

8

Remaining 7
8 of inputs (112) will be split in 7 ∗ 3 = 21

equivalence classes.

Information Theory and Security: Quantitative Information Flow – p. 39/54

Computational Problems

The previous tools show that implementing a precise QIF
analysis for secret sizes of more than a few bits is
computationally unfeasible; roughly speaking this is
because classical QIF computes the entropy of a random
variable whose complexity is the same as computing all
possible runs of the program.
So is QIF for real code possible?
Change the question: from “How much does it leaks?” to
“Does it leak more than k?”.
We look for a lower bound to the channel capacity

Information Theory and Security: Quantitative Information Flow – p. 40/54

Channel capacity

Channel capacity for P , i.e. the maximum possible leakage
for P

if (password==guess) access=1; else
access=0;

Suppose the password is a 64 bits randomly chosen string.
Two blocks: B1 = {password} probability 1

264 ,
B2 = {+= password} 264 − 1 elements, probability 1− 1

264 .
Entropy = 3.46944695× 10−18: as expected a password
check of a big password should leak very little.
But if 1

2 = p(B1) = p(B2). Then the entropy = 1 which is the
channel capacity, i.e.
Channel Capacity given two classes: 1 = log2(2).

Information Theory and Security: Quantitative Information Flow – p. 41/54

Leakage for Linux Kernel Code

Heusser-Malacaria 2010: first application of these theories
to real industrial code:

1. We can quantify leakage for real C Code, e.g. Linux
Kernel Code: CVE (mitre.org) reported vulnerabilities

2. We can prove that the official patch eliminate the leaks

Demo

Information Theory and Security: Quantitative Information Flow – p. 42/54

Experimental Results on C Code

Description CVE Bulletin LOC k" Patch Proof log2(N)

AppleTalk CVE-2009-3002 237 64 ! 6 bit
tcf_fill_node CVE-2009-3612 146 64 ! 6 bit
sigaltstack CVE-2009-2847 199 128 ! 7 bit
cpuset† CVE-2007-2875 63 64 × 6 bit

SRP getpass – 93 8 ! 1 bit
login_unix – 128 8 – 2 bit

Table 1: Experimental Results. "Number of unwind-
Information Theory and Security: Quantitative Information Flow – p. 43/54

Quantifying Loss of Anonymity

Let’s now consider protocols: Anonymity protocols:
Examples: a voting protocol (elect someone), an
anonymous browsing protocol, anonymous messaging
Main difference with programs:
Non-determinacy, same input may produce different
observations:
But the idea of leakage is the same: difference in the
uncertainty about the secret h before and after observations O
on the system:

H(h)−H(h|O) = I(h;O) (mutual information)

Information Theory and Security: Quantitative Information Flow – p. 44/54

Defining anonymity protocols

An anonymity protocol φ is a matrix where φi,k is the
probability of observing ok given the anonymous event hi.

o1 o2 . . . on
h1 φ1,1 φ2,1 . . . φn,1

h2 φ1,1 φ2,1 . . . φn,2
...

hm φ1,m φ2,m . . . φn,m

Table 2: Protocol matrix

Information Theory and Security: Quantitative Information Flow – p. 45/54

Maximum loss of anonymity

Given an anonymity protocol how much information is
leaked about confidential information?
e.g. in an election there is always some information leaked
about voters preference:
e.g. if candidate A got 100%A of the votes then we know
exactly who Bob voted for...
We can study the problem of maximum loss of anonymity
using a powerful mathematical technique: Lagrange
Multipliers

Information Theory and Security: Quantitative Information Flow – p. 46/54

Lagrange Multipliers

Suppose we want to maximize the following function:

10− (x− 5)2 − (y − 3)2

Answer: minimize (x− 5)2 and (y − 3)2 , i.e. x = 5, y = 3.
Suppose however we add the constraint x+ y = 1. Then the
above solution is no longer correct.
Try

10− (x− 5)2 − (y − 3)2 + λ(x+ y − 1)

the number λ is the Lagrange Multiplier

Information Theory and Security: Quantitative Information Flow – p. 47/54

Lagrange Multipliers

Maximize

10− (x− 5)2 − (y − 3)2 + λ(x+ y − 1)

Lagrange Technique:
Find the maximum of the function

10− (x− 5)2 − (y − 3)2 + λ(x+ y − 1)

by differentiating on x, y and λ. So

−2x+ 10 + λ = 0, −2y + 6 + λ = 0, x+ y − 1 = 0

y + 2 + y = 1, i.e. y = −1

2
, x =

3

2
, λ = −7

Information Theory and Security: Quantitative Information Flow – p. 48/54

Maximum loss of anonymity

Applying the technique to our problem:
We want to maximize (over the secret h)

I(h;O) (mutual information)

subject to some constraint; one always present constraint:∑
i hi = 1

Information Theory and Security: Quantitative Information Flow – p. 49/54

Channel Distribution

Theorem: The probabilities hi maximizing I(h;T) subject to
the family of constraint (Ck)k∈K (where Ck ≡

∑
j hjfj,k = Fk

and fj,k, Fk are constants) are given by solving in hi the
equations

∑

os∈Ôi

φi,s log(
φi,s

os
)− d+

∑

k

λkfi,k = 0

(where d = 1
log 2)

Information Theory and Security: Quantitative Information Flow – p. 50/54

Channel Capacity

Theorem: The channel capacity for I(h;T) subject to the
family of constraint (Ck)k∈K (where Ck ≡

∑
j hjfj,k = Fk and

fj,k, Fk are constants) is given by
∑

i

hi(d−
∑

k

λkfi,k)

Moreover in the case of the single constraint
∑

i hi = 1 the
above simplify to

d− λ0

Information Theory and Security: Quantitative Information Flow – p. 51/54

Example: Binary symmetric channel

h = o = {0, 1}

φ0,0 = φ1,1 = 1− p

φ0,1 = φ1,0 = p

Using
∑

i hiφk,i = ok we get

o0 = (1− p)h0 + ph1 o1 = ph0 + (1− p)h1

Information Theory and Security: Quantitative Information Flow – p. 52/54

Anonymity Protocols

(Chen-Malacaria) applied this technique to studying
maximum loss of anonymity for anonymity protocols like
Dyning Cryptographers, Crowds and Onion Routing.
The results extend previous work by
Chastikokolakis-Palamidessi-Panangaden (it doesn’t need
assumption of symmetry about the protocol participants)

Information Theory and Security: Quantitative Information Flow – p. 53/54

Conclusions

Information Theory and the Lattice of Information are
valuable tools in defining, understanding and measuring
leakage of information.
They allow for powerful reasoning principles e.g. loops.
Automated tool built on SAT solving and model counting
to calculate entropy: entropy estimators can improve
performance
Real code can be analysed (Basin-Kopf: cryptographic
side-channels, Heusser-Malacaria: Linux kernel
memory)

Information Theory and Security: Quantitative Information Flow – p. 54/54

