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Why Formal Analysis?

Why Formal Analysis?

• 1994: The pentium processor computes wrong 
divisions
– INTEL forced to replace most processors
– Economic damage of 450 million US Dollars
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• 1995: The software MacInTax spreads the 
secrets of US tax payers
– Error in the debug code distributed with MacInTax
– Users can use it to access the server of Intuit
– Everybody can read and modify any tax form

Why Formal Analysis?

• 1995: Problems in Denver Airport
– The fully automated baggage system fails
– Scheduled to open in 1993

The system looses or tears apart luggage
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– The system looses or tears apart luggage
– Considerable congestion
– Considerable lack of design
– In 2005 the system is still not working
– The system is too complex
– Extensive research activity is necessary 

Why Formal Analysis?

• 1996: Vector Ariane 5 explodes during take-off

– The control software assigns a 64 bit number to a 16 bit variable
– The code was recycled from Ariane 4
– Ariane 5 is fast and its lateral speed does not fit in 16 bits 
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Ariane 5 is fast and its lateral speed does not fit in 16 bits 
– Result: overflow – the system shuts down
– The back up computer is started
– … but the software is the same
– Result: again overflow – the system shuts down
– Ariane, without guidance, self destroyes
– Damage: 1 billion Euros

Why Formal Analysis?
• 1982 Mutual exclusion solved with small shared variables

– Rabin proposes a randomized distributed algorithm
– The proof is semi-formal but credible

• 1990 Some problems appear
– Nancy Lynch gives a lecture on Rabin’s algorithm

R b t  S l  i  th  ib  d t i  t  f li  th  f
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– Roberto Segala is the scribe and tries to formalize the proof
– Problem in an informally obvious step 

• Two events are compared but they belong to different probability 
spaces

– Nondeterminsm is the cause of the problem

• 1991 An attack is found

• Later many other algorithms turned out to be bogus
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Why Formal Analysis?

• 1978: Needham and Schroeder
– Propose an authentication protocol
– The correctness proof is semi-formal

• 1981: Problems with freshness
– Replay attacks are possible
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eplay attac s are poss ble

• 1995: An attack found
– Parallel sessions may lead to attack

• Needham: you changed my definitions

• Later: many protocols have been attacked

Lessons that we can Learn
• Formal methods are useful (necessary)

– Need to define what we want
• Objectives should be clear and accepted
• We should communicate with others

N d t  p  p p ti s i sl
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– Need to prove properties rigorously
• We may miss pieces otherwise
• We need techniques

– Need modular verification techniques
• We want to reuse existing proofs

– Need ways to automate the analysis
• Large systems require considerable effort

Hierarchical 
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and 
Compositional Approach

Hierarchical Compositional Verification

S
Some properties 

verified here
Modules verified 

separately
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I11 I12 I2 I3

S1 S2 S3

Implementation
• Typically some form of behavioral inclusion

– Traces
• Ordinary, complete, quiescent, fair

– Failures
• Traces followed by actions the system refuses to perform

– Tests
• Occurrence of some success event in appropriate contexts
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• Nice properties
– Transitive
– Compositional
– Affine with logical implication

• … when properties are sets of behaviors

• Hard to check
– Usually Pspace-complete
– But simulation relations help

Proving Implementation

• Behavioral inclusion
– Behaviors are full computations

• Possibly infinite length
– Properties of complex objects

• Global reasoning
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– Easy to end up with “proofs by intuition”

• Simulation relations
– Sound for behavioral inclusion
– Properties of single computational steps

• Local reasoning
– Easier to be rigorous
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Why Nondeterminism with Probability?

Why Nondeterminism with Probability?
Distributed Algorithms

• Some problems are unsolvable
– Consensus [FLP85]

• … but are solvable with randomization
– Probabilistic consensus [Ben83,AH90]

• Probability and nondeterminism coexist
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• Probability and nondeterminism coexist
– Probability: 

• Processes flip coins
– Nondeterminism: 

• Several processes in parallel
• Do not care whether the coin is fair

• Quantitative analysis
– What is the worst expected complexity?

Why Nondeterminism with Probability?
Stochastic Games

• Nondeterminism
– Each player has several moves available

P b bili

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 15

• Probability
– Moves may involve coin flipping

• Quantitative analysis
– What is the best probability to win the game?

Why Nondeterminism with Probability?
Security

• Nondeterminism
– User behavior (adversary in Dolev-Yao)
– Relative speeds of agents
– Agent behavior (usually deterministic)
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• Probability
– Users and agents flip coins

• Nonces, keys, random protocols

• Quantitative analysis
– Probability of attack (negligible)

Why Nondeterminism with Probabililty?
Concurrency Theory

• Nondeterminism
– Scheduling within parallel composition
– Unknown behavior of the environment
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– Underspecification

• Probability
– Environment may be stochastic
– Processes may flip coins
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How Probability with Nondeterminism?
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The Main Idea

• Add probability to Concurrency Theory
– Nondeterminism should remain
– Should obtain a conservative extension
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• Proposals to tackle the problem
– Replace points with measures
– Replace functions with measurable functions

Probability and Nondeterminism: How?

• Reactive, Generative Systems [LS89,GSST90]
– Labeled transition systems

• Add probabilities to the arcs
– Process algebras

R l   ith b bili ti  

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 20

• Replace + with probabilistic +

• Probabilistic Automata [Seg95]
– Labeled transition systems

• Replace target states with target measures in transitions
– Process Algebras

• Add a probabilistic + operator (named ⊕)

Automata

A = (Q , q0 , E , H , D)
Transition relation
D ⊆ Q × (E∪H) × Q
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Internal (hidden) actions

External actions: E∩H = ∅

Initial state: q0 ∈ Q

States

Probabilistic Automata

PA = (Q , q0 , E , H , D)
Transition relation
D ⊆ Q × (E∪H) × Disc(Q)
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Internal (hidden) actions

External actions: E∩H = ∅

Initial state: q0 ∈ Q

States

Example: Automata

A = (Q , q0 , E , H , D)

q0 q2 q4
d

n n

choc

h
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coffee

q1

q3 q5

n

n

ch

Execution: q0 n q1 n q2 ch q3 coffee q5

Trace: n n coffee

Example: Probabilistic Automata

q0

q1 q3 q5fair
flip 1/2

2/3

beep
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q0

q2 q4

unfair

flip

1/2

1/3
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Example: Probabilistic Automata

q0

qh qpflip 1/2
1/2

beep
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q0

qtflip
2/3

1/3 qz
buzz

Example: Probabilistic Automata

q0

q1 q3 q5fair
flip 1/2

2/3

beep
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q0

q2 q4

unfair

flip

1/2

1/3

What is the probability of beeping?

Example: Probabilistic Executions

q0 q1 q3

q4

q5
1/2

1/2

µ(beep) = 1/2

fair beepflip 1/2
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q4

q0 q2

q3

q4

q5

unfair flip

2/3

1/3

beep
µ(beep) = 2/3

µ(beep)  1/2

2/3

Example: Probabilistic Executions

q1

q3

q4

q5

fair

flip beep1/2
1/2

1/2

1/4

7/12
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q0

q2

q4

q3

q4

q5unfair

flip

beep2/3

1/3

1/2

1/2 2/6

7/12

• Sample set
– Set of objects Ω

• Sigma-field (σ-field)
– Subset F of 2Ω satisfying

• Inclusion of Ω
• Closure under complement
• Closure under countable union

Measure Theory

Why not F = 2Ω ?
Flip a fair coin infinitely many times
Ω = {h,t}∞

µ(ω) = 0 for each ω∈Ω

µ(first coin h) = 1/2
Theorem: there is no probability 

Example: set of executions

Study probabilities of 
sets of executions

which sets can I measure?
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Closure under countable union
• Closure under countable intersection

• Measure on (Ω,F)
– Function µ from F to ℜ≥0

• For each countable collection {Xi}I of pairwise disjoint sets of F, µ(∪IXi) = ΣIµ(Xi)

• (Sub-)probability measure
– Measure µ such that µ(Ω) = 1 (µ(Ω) ≤ 1)

• Sigma-field generated by C ⊆ 2Ω

– Smallest σ-field that includes C

p y
measure on 2Ω such that µ(ω) = 0 
for each ω∈Ω.

Cones and Measures
• Cone of α

– Set of executions with prefix α
– Represent event “α occurs”

• Measure of a cone
P d  d  f 

Cα
α
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Theorem
A measure on cones extends uniquely
to a measure on the σ-field generated by cones

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

– Product edges of α
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Examples of Events
• Eventually action a occurs

– Union of cones where action a occurs once
• Action a occurs at least n times

– Union of cones where action a occurs n times
• Action a occurs at most n times

C mpl m t f ti   s t l st 1 tim s
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– Complement of action a occurs at least n+1 times
• Action a occurs exactly n times

– Intersection of previous two events
• Action a occurs infinitely many times

– Intersection of action a occurs at least n times for all n
• Execution α occurs and nothing is scheduled after

– Set consisting of α only
– Cα intersected complement of cones that extend α

Schedulers - Probabilistic Executions
Scheduler 

Function         σ : exec*(A) → SubDisc(D)

if σ(α)((q,a,ν)) > 0 then q = lstate(α)
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Probabilistic execution generated by σ from state r 

Measure µσ,r(Cs) = 0                if r ≠ s

µσ,r µσ,r(Cr) = 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∑

∈Das
raqr qasCC

),,(
,, )()),,)((()()(

ν
ασασ ννασµµ

Summing Up
Automata Probabilistic Automata

Executions Probabilistic Executions
(measures over executions)

schedulers
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Traces ???

Trace inclusion ???

trace function

implementation relation
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Related Models

Transition relation
D ⊆ Q × SubDisc( E∪H × Q )

Internal (hidden) actions

External actions: E∩H = ∅

Generative Probabilistic Automata

GPA = (Q , q0 , E , H , D)

q0

q1

q3

q4

q3

q5

q5

fair

f i

flip beep

b

1/2
1/2

1/2

1/2
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Initial state: q0 ∈ Q

States
• Actions are chosen probabilistically within a transition
• It is possible to deadlock within a transition

A probabilistic execution “is” a generative Probabilistic Automaton

q2

q3

q4

q5unfair

flip

beep2/3
1/3

/

Ex. Generative Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip 1/2

1/2

2/3

beep

Probabilistic 
Automaton
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q2 q4
flip 1/3

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep

1/3

1/2

Generative
Probabilistic
Automaton
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Transition relation
D ⊆ Q × (E∪H) × (0,1] × Q

Internal (hidden) actions

External actions: E∩H = ∅

Reactive Systems [LS89,GSST90] 
(revised)

RA = (Q , q0 , E , H , D) Disc(Q)
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Initial state: q0 ∈ Q

States

• For each s and each a            Σ {p| ∃t (s,a,p,t) ∈ D} ∈ {0,1}

This is a Deterministic Probabilistic Automaton

Example: Reactive Systems

q0

q1

q2

q3

q4

q5fair

unfair

flip 1/2

1/2

2/3

beep

Reactive
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q2 q4
flip 1/3

q0

qh

qt

qpflip

flip

1/2
1/2

2/3
1/3

beep

qz
buzz

Non reactive

Transition relation
D ⊆ Q × (E∪H) × (0,1] × Q

Internal (hidden) actions

External actions: E∩H = ∅

Generative Systems (revised) [GSST90]

GA = (Q , q0 , E , H , D) SubDisc((E∪H) × Q)
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Initial state: q0 ∈ Q

States

• For each s                  Σ {p| ∃t,a (s,a,p,t) ∈ D} ≤ 1

This is a special Generative Probabilistic Automaton
(at most one transition from each state)

Transition relation
D ⊆ Q × (E∪H) × (0,1] × I × Q

Internal (hidden) actions

External actions: E∩H = ∅

Reactive Systems [LS89,GSST90]

RA = (Q , q0 , E , H , D) ?
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Initial state: q0 ∈ Q

States

• If (s,a,p,i,t) ∈ D and (s,b,q,i,r) ∈ D, then         a=b, p=q, t=r

• For each s and each a            Σ {p| ∃i,t (s,a,p,i,t) ∈ D} ∈ {0,1}

1/2a.F + 1/2a.F + 1b.G

Reactive Systems [LS89,GSST90]

F F G

1/2 1/2 1
a a b

1
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1/2a.F + 1/2a.F + 1b.G
(1/2a.F+1/2a.F+1b.G , a , 1/2 , F) (1/2a.F+1/2a.F+1b.G , b , 1 , F)

(1/2a.F+1/2a.F+1b.G , a , 1/2 , 1, F)

(1/2a.F+1/2a.F+1b.G , a , 1/2 , 2, F)

(1/2a.F+1/2a.F+1b.G , b , 1 , 3, F)

(1/2a.F+1/2a.F+1b.G , a , 1 , F)

Some Considerations

• According to [GSST90]
– Generative is more detailed than reactive
– Reactive retrieved from generative by abstraction

• Renormalize probabilities on actions
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q0

q1

q2

q3

q4

q5

q6

q7

q8

a d

e

f

a

bb

.1
.1

.2

.6

c

q0

q1

q2

q3

q4

q5

q6

q7

q8

a d

e

f

a

bb

.5
.5

.25

.75

c
abstraction

This is fine with deterministic systems
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Some Considerations
The idea of [GSST90] does not work with nondeterminism

q0

qh qpflip 1/2
1/2

beep

resolution of
nondeterminism

d q
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qtflip
2/3
1/3

qz
buzz

abstraction?
q0 qh

qt

qp

d 1/2

7/24
beep

qz
buzz5/24

flip

flip

q

q0 qh

qt

qp

d 1

7/12
beep

qz
buzz5/12flip

q

Some Considerations
The idea of [GSST90] does not work with nondeterminism

q0

qh qpflip 1/2
1/2

beep

resolution of
nondeterminism

d
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qtflip
2/3
1/3

qz
buzz

q0

qh

qt

qpflip
7/12

5/12

beep

qz
buzz

abstraction?

Markov Decision Processes [Bel57]

Transition probabilities
p : Q × Q × Act → [0,1]

Available actions
A : Q → 2Act

Initial state:  Q

MDP = (Q , q0 , A , p)
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• A associates a set of available actions with each state
• For each state s and each action a ∈ A(s)

– 0 ≤ pst(a) ≤ 1 for each state t
– Σt∈Q pst(a)=1

Initial state: q0 ∈ Q

States

This is a Reactive System or a Deterministic Probabilistic Automaton

Labeled Concurrent Markov Chains
[HJ89 from Var85] – Strictly Alternating

LCMC = (N , P , q0 , E , H , Dn , Dp)

Transition relation
Dn ⊆ N × (E∪H) × P

Q D

(   ∪N)

[PLS00]
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Dp : P → Disc(N)
Internal (hidden) actions
External actions: E∩H = ∅
Initial state: q0 ∈ N
Probabilistic states
Nondeterministic states

⊆ P × {τ} × Disc(N)Dp ⊆ P × N
p : P × N →[0,1]

∀s∈P Σq p(s,q) = 1

Other Models

• Rabin’s Probabilistic Automata
– Introduced in the context of language theory
– Extended by our Probabilistic Automata

• Unlabeled systems [Var85,BA95,BK98]
– Can be Probabilistic Automata with a single invisible action
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Can be Probabilistic Automata with a single invisible action
– Labels may be associated with states
– The theory does not change

• Markov Chains
– Unlabeled systems that enable one transition from each state

• Probabilistic Input/Output Automata
– Add Input/Output distinction on actions
– Useful to handle composition of generative PAs

   l

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 48

How about Process Algebras?
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Probabilistic Process Algebra
[BS01,PS05] - (convenience of alternation)

E :: = 0 | E+E | α.P | X | rec X.E
P :: = ∆(E) | P⊕pP

Alternating prefix Probabilistic processes
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-

∆(E)  ⎯→ E

P1 ⎯→ Ε P2 ⎯→ Ε

P1⊕pP2 ⎯⎯→ E

Probabilistic processes

-

α.P ⎯→ Pα 1

q r

pq+(1-p)r

P1 ⎯→ Ε P2 ⎯→ Ε

P1⊕pP2 ⎯→ E

q

pq

Convex Combination of Measures

• Let µ1 and µ2 be probability measures
• Let p1 and p2 be reals in [0,1] such that p1+p2=1
• Define a new measure µ = p1µ1+p2µ2 as follows

∀X  (X)  (X) (X) 
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– ∀X, µ(X) = p1µ1(X)+p2µ2(X) 

• Theorem: µ is a probability measure

• Same result extends to countable summation

Probabilistic Process Algebra
[BS01,PS05] - (convenience of alternation)

E :: = 0 | E+E | α.P | X | rec X.E
P :: = ∆(E) | P⊕pP

Probabilistic processesAlternating prefix Non-alternating prefix
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-

∆(E)  ⎯→ δ(E)

P1 ⎯→ µ1 P2 ⎯→ µ2

P1⊕pP2 ⎯→ pµ1+(1-p)µ2

Measures associated with probabilistic expressions

P ⎯→ µ

P ⎯→ µτ

-

α.P ⎯→ δ(P)α

P ⎯→ µ

α.P ⎯→ µα

Example and Considerations

α.(∆(E) ⊕1/2∆(F)) + α.(∆(E) ⊕2/3∆(F))

••
This is a Probabilistic Automaton

α.(∆(E) ⊕1/2∆(F)) + α.(∆(E) ⊕2/3∆(F))
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transformation

split/merge
transitions

E F E F

• •

αα

ττ
2/31/2

alternating

E F E F

αα

1/2 2/3

non-alternating

∆(E) ⊕1/2∆(F) ∆(E) ⊕2/3∆(F)
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Parallel Composition

Composition of Probabilistic Automata

||
A1 = (Q1,q1,E1,H1,D1) A2 = (Q2,q2,E2,H2,D2)

A1 || A2 = (Q1×Q2 , (q1,q2) , E1∪E2 , H1∪H2 , D)
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D = (q,a,µ1×µ2){ }if a ∈ Ei∪Hi then (πi(q) , a , µi ) ∈ Di

if a ∉ Ei∪Hi then µi = δ(πi(q)) i ∈ {1,2}

D = (q,a,(s1,s2)){ }if a ∈ Ei∪Hi then (πi(q) , a , si ) ∈ Di

if a ∉ Ei∪Hi then si = πi(q) i ∈ {1,2}
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Example: Composition of Automata

d chocq0 q2

q1

q4
n

n

n
ch s0 s1

s2
d

choc

E = {n,d,choc,coffee} E = {n,d,choc,coffee}
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coffee
q3 q5

n
s3

coffee

(q0,s0) (q2,s1)

(q3,s1)

(q4,s2)

(q5,s3)

d

ch

choc

coffee

Ex. Composition of Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/
2

2/3

1/3

beep

s0

s1

s2

s3

s4

ch
fair

unfair

1/2

1/2

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 56

q2 q4flip 1/3unfair

(s0,q0)

(s1,q0)

(s2,q0)

(s3,q1)

(s4,q2)

(s3,q3)

(s3,q4)
(s4,q3)

(s4,q4)

(s3,q5)

(s4,q5)

ch

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

Projections

Let α be an execution of A1 || A2

α = (q0,s0) d (q2,s1) ch (q3,s1) coffee (q5,s3)

What are the contributions of A1 and A2? 
d choc q
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(q0,s0) (q2,s1)

(q3,s1)

(q4,s2)

(q5,s3)

d

ch
choc

coffee

π1(α) ≡ q0 d q2 ch q3 coffee q5

π2(α) ≡ s0 d s1 coffee s3

Theorem 
α ∈ execs(A1||A2) iff   ∀i ∈ {1,2} πi(α) ∈ execs(Ai) 

d choc

coffee

q0 q2

q1

q4

q3 q5

n

n

n
chs0 s1

s2

s3

d
choc

coffee

Measure Theory: Image Measure

• Measurable function from (Ω1,F1) to (Ω2,F2)
– Function f from Ω1 to Ω2

– For each element X of F2, f-1(X) ∈ F1

I  f( )
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• Image measure f(µ)
– f(µ)(X) = µ(f-1(X))

Ω1 Ω2
Xf-1(X) f

µ f(µ)

Projections

The projection function is measurable
π(µ) : image measure under π of µ
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Theorem
If µ is a probabilistic execution of A1 || A2

then
πi (µ) is a probabilistic execution of Ai

Example: Projection

Projection onto 
right component

(s0,q0)

(s1,q0)

(s2,q0)

(s3,q1)

(s4,q2)

(s3,q3)

(s3,q4)
(s4,q3)

(s4,q4)

(s3,q5)

(s4,q5)

ch
fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

flip 1/2 beep
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Note that the scheduler 
is randomized

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3

1/3

1/2

1/2

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep
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• Let M = MP||CF
• Suppose that MP satisfies Φ provided that the 

environment (CF) satisfies Ψ
• Suppose that CF satisfies Ψ with probability p
• Can I conclude that M satisfies Φ with probability p?

Use of Projections
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f p y p

• This example is taken from a real case study [PLS01]
– Randomized consensus protocol of Aspnes and Herlihy [AH90]
– MP is a complex non randomized protocol
– CF is a relatively simple randomized coin flipper

MP Ψ ⇒ Φ CF  [Ψ] ≥p

M [Φ] ≥p

Formal Argument
Let µ be a probabilistic execution of M.

µ 
µ(π2

-1(Ψ)) ≥ p
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inverse imageprojection

MP

π2(µ) 

π2(µ)(Ψ) ≥ pπ1(π2
-1(Ψ)) sat. Φ

CF

π1(µ) 
M

Composition for Generative PAs

How to synchronize two generative transitions?

• SCCS
– Easy. Each automaton chooses independently
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• CSP, CCS
– Difficult to handle nondeterminism between independent actions
– There are some proposals [AHK99,PP05]

• I/O automata
– Ok if only output transitions are generative [WSS94,Seg95]

Composition for Generative PAs
(Problems)

When and how should transitions synchronize?

(q1,s1)

(q3 s3)

(q2,s2)a 1/4

1/4b
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q1

q3

q2a 1/2

1/2b
s1

s3

s2a 1/2

1/2b

(q3,s3)

(q1,s1)

(q3,s3)

(q2,s2)a 1/2

1/2b

?

Composition for Generative PAs
(Problems)

When and how should transitions synchronize?

q2 s2

Pr Lft Rht Effect
1/9 a a a
1/9 a b removed or δ

a and b in common
c and d independent
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q1

q4

q2a 1/3

1/3
b ?q3c

1/3

s1

s4

2a 1/3

1/3
b s3d

1/3

1/9 a d ?
1/9 b a removed or δ
1/9 b b b
1/9 b d ?
1/9 c a ?
1/9 c b ?
1/9 c d ???Nondeterminism

Composition for Generative PAs
(A solution)

Introduce Input/Output Distinction (PIOAs)
– Reactive on Input
– Generative on output
– Impose input enabling
– Input transitions synchronize as before
– Output transitions synchronize with appropriate input transitions
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q1

q3

q2a 1/2

1/2b
s1

s4

s2
a 1/2

1/2

b

s3 (q1,s1)

(q3,s4)

(q2,s2)a 1/4

1/4
a (q2,s3)b

1/2
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Transition relation
D ⊆ Q × (E∪H) × (0,1] × Q

Internal (hidden) actions

External actions: E∩H = ∅
E titi d i t  I O

Probabilistic I/O Automata (revised)
[Wu, Smolka, Stark 94]

PIOA = (Q , q0 , E , H , D)
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E partitioned into I, O

Initial state: q0 ∈ Q

States

• For each s and each input a       Σ {p| ∃t (s,a,p,t) ∈ D} ∈ {1}
• For each s                                    Σ {p| ∃t,a∈O∪H (s,a,p,t) ∈ D} = 1

Deterministic PIOAs with at most 1 generative transition from each state

Composition of PIOAs
([WSS94] definition)

• Problem 
– How to choose between the generative transitions of the two 

components?

• Solution
Assi n a wei ht to each component
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– Assign a weight to each component
– Use relative weights to choose the process that moves

• Looks a lot like Stochastic Process Algebras
– Actions occur with an exponentiallly distributed delay
– Race conditions between processes are resolved by the delays
– It is a generalization of assigning weights to processes

• The weights are the rates of the actions
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Language Inclusion

Summing Up
Automata Probabilistic Automata

Executions Probabilistic Executions
(measures over executions)

schedulers
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Traces Trace distributions
(measures over traces)

Trace inclusion Trace distribution inclusion

trace function

implementation relation

Trace Distributions

The trace function is measurable

Trace distribution of µ
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µ
tdist(µ) : image measure under trace of µ

Trace distribution inclusion preorder
A1 ≤TD A2 iff  tdists(A1) ⊆ tdists(A2)

Trace Distribution Inclusion 
is not Compositional

q0

q1

q3

q2

q4

s0

s1

s2 s3

c0

c1 c2

c4c3

a a d

cb

a

b c fe
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q3 q4 2 3 43

(s0,c0) (s1,c0)
(s1,c2) (s1,c4) (s3,c4)

(s2,c3)(s1,c3)(s1,c1)

cf

be
da
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How to Get Compositionality

• Restrict the power of composition
– Probabilistic reactive modules [AHJ01]
– Switched probabilistic I/O automata [CLSV04]

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 73

• Trace Distribution Precongruence
– Coarsest precongruence included in preorder 

• That is: close under all contexts
– Alternative characterizations 

• Principal context [Seg95]
• Testing [Seg96]
• Forward simulations [LSV03]

… yet, Proving Language Inclusion 
is Difficult

• Language inclusion is a global property
– Need to see the whole result of 

resolving nondeterminism
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• We seek local proof techniques
– Local arguments are easier

• We use simulation relations
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Bisimulations

Bisimulation Relations

We have the following objectives

• Same definitional style as for automata
– Where are the key differences?

 d f  l
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– Keep definitions simple

• Uniform treatment
– The literature is not uniform
– This causes a lot of confusion
– How can we see everything from a single point of view?

Strong Bisimulation on Automata

Strong bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that q q′a

R R

∀ q, s, a, q′ ∃ s′

+
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q0

q1

q3

q2

q4

s0

s1

s3

a a

b

a

b b

s s′a
R R

Strong Bisimulation on 
Probabilistic Automata

Strong bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that q µa

R R

∀ q, s, a, µ ∃ µ′

+
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q0

q1

q3

q2

q4

s0

s1

s3

a

b

a

b b11

∀C ∈Q/R . µ (C ) = µ′ (C )

s µ′a
R R

1

1

⇔
µ R µ′ [LS89]
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Weak Bisimulation on Automata

Weak bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that q q′a

R R

∀ q, s, a, q′ ∃ s′

+
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q0

q1

q3

q2

q4

s1

s3

τ τ

bb b

s s′a
R R

s ⇒ s′

⇔

∃α: trace(α)=a, fstate(α)=s, lstate(α)=s′

a

Weak bisimulation on
Probabilistic Automata

Weak bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that q µa

R R

∀ q, s, a, µ ∃ µ′

+
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q0

q1

q3

q2

q4

s1

s3

τ

bb b

s µ′a
R R

11 1

∀C ∈Q/R . µ (C ) = µ′ (C )
⇔

µ R µ′ [LS89]

Weak Transition

There is a probabilistic execution µ such that

q ρa
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– µ(exec*) = 1

– trace(µ) = δ(a)

– fstate(µ) = δ(q)

– lstate(µ) = ρ

(it is finite)

(its trace is a)

(it starts from q)

(it leads to ρ)

q ⇒ s iff ∃α: trace(α)=a, fstate(α)=q, lstate(α)=sa

Probabilistic Bisimulations
• These two Probabilistic Automata are not bisimilar

q1

2 8 3 7 4 6

s1

2 8 4 6

a a a a a
~

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 82

• Yet they satisfy the same formulas of a logic PCTL
– The logic observes probability bounds on reachability properties

• Bisimilar if we match transitions with convex combinations of transitions

q2 q3 q2 q3 q2 q3

.2 .8 .3 .7 .4 .6

s2 s3 s2 s3

.2 .8 .4 .6

b c b c b c b c b c
~p

Bisimulation on Alternating Models
Mixed Type - Embeddings

• Define a relation on all states
– So we mix probabilistic and nondeterministic states

• Embed into NA model
– Embeddings preserve all states

Ch k bi i il it   i  i  NA
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A1

A2

SA
A

~M?

E (A1)

E (A2 )

NA

• Check bisimilarity on images in NA

E

E ~?

Bisimulation on Alternating Models
Nondeterministic Type - Transformations

• Define a relation on nondeterministic states
• Transform into ΝΑ model 

– transformations preserve nondeterministic states
• Check bisimilarity on images in N
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T (A1)

T (A2 )

NA

A1

A2

SA
A

~N ? ~?

T

T
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q1

a

s1

a
1

Bisimulation on Alternating Models
Example

q1

a

s1

a

T
~N

q1

a

s1

a
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q3

1

s3

1

q2

τ

~q2

q3

1

s3

T

q3

1

s3

1

~
~M

E

Bisimulation on Alternating Models 
Literature

In literature there are also
• Strong bisimulation of Hansson on SA LCMCs

– Relates only nondeterministic states

• Strong bisimulation of Philippou on A LCMCs
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Strong bisimulation of Philippou on A LCMCs
– Relates all states
– Probabilistic states are a technicality

• Weak bisimulation of Philippou on A LCMCs
– Relates all states
– Probabilistic states are meaningful
– Uses conditional probabilities on self loop

Bisimulation on Alternating Models
Connections to Literature

RA SA A

N pM
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Strong  ~ ~pM ~M ~N ~pM

~M ~N

Weak  ≈ ≈pM

Bisimulation on Alternating Models
Examples

E F E F

•
• •

•

E F E F

aa

aa
ττ

1/2 2/31/22/3

transformation
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E F E F

E F E F

•
• •

•

E F E F

aa

aa

ττ
1/2 2/31/22/3

E F

•
τ

7/12

a

E F
5/12

a

~  ~p ~  ~p

transformation

Example: Weak on Alternating

q1

q

a

τ

s1

a

s~  
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q2

q3 q4 q5

b c

τ

.3.3.4

s2

s4 s5

b c

.5.5
~p

Alternating vs. non-Alternating

Theorem 
R is a bisimulation on alternating model 

iff
For each s R t  each a  and each equivalence class C
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• Same result for weak bisimulations
• Consequence: efficient decision procedures

For each s R t, each a, and each equivalence class C
max {µ(C), s → µ} = max {µ(C), t → µ} aa
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Alternating vs. non-Alternating
Previous result does not hold in the non-alternating model

b
c
d

1/2

1/4

1/4

b
c
d

1/2

1/8

3/8a a· ·

c

1/2
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b
c
d

b
c
d

1/4

1/2
1/4

1/4

1/4

1/2

b
c
d

b
c
d

1/8

1/2
3/8

1/8

3/8

1/2

·
·

·
·

b1/2

1/4

1/4

Polynomial for strong
Exponential for weak

Alternating vs. non-Alternating

• Alternating
– Efficient decision procedures

• Maximum probabilities

• Non-Alternating
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– Strong bisimulations
• Efficient decision procedures
• Comparison of convex reachability sets
• More complex than maximum probabilities

– Weak bisimulations
• Exponential complexity
• Extremal points of reachability sets can be exponential
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Simulations

Forward Simulations (Automata)

Forward simulation from A1 to A2  (A1 ≤F A2)
Relation R ⊆ Q1 x Q2 such that

∀ q, s, a, q′ ∃ s′
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q q′

s s′a

a
R R

q0

q1

q3

q2

q4

s0

s1

s3 s4

a a

cb

a

b c

Simulation Implies Trace Inclusion

• The step condition can be applied repeatedly

s s1
a s2

b s3
c s4

d …
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q q1
a q2

b q3
c q4

d …

• Thus existence of simulation implies trace inclusion
– Even more it implies a close correspondence between executions

Forward Simulations

Forward simulation from A1 to A2  (A1 ≤F A2)
Relation R ⊆ Q1 x Q2 such that

∀ q, s, a, µ′ ∃ σ′s1 1/31/3
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q µ′

s σ′a

a
R R

q µ
q1

q2

s1

s2

s3

1/2

1/2

1/3

1/3

1/3

1/3

1/6

1/6

1/3

Lifting of R
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Considerations about Lifting
• It is the solution of a maximum flow problem
• Alternative characterization

– µ1 R µ2 iff for each upward closed set X
• µ1(X) µ2(X)

1/3
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q1

q2

s1

s2

s3

1/2

1/2

1/3

1/3

1/3

1/3

1/6

1/6

1/3

Lifting of R

s d

Lifting and Transfer of Masses
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q1 q2 s1 s2 s3

Lifting and joint Measures

µ1 R µ2 iff there exists a probability 
measure w on Q1 × Q2 such that
– support(w) ⊆ R

Th   ( ) 0 l  
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• That is, w(s1,s2)>0 implies s1 R s2

– w(s1,Q2) = µ1(s1)
• That is, the left marginal is µ1

– w(Q1,s2) = µ2(s2)
• That is, the right marginal is µ2

Example: Simulations

q0 s0

aaa
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q1 q3

q5q4

q2 s3s2s1

s6s5 s7s4

cb ccbb

Simulation Implies Trace Inclusion
• The step condition can be applied repeatedly

s ρ1 ρ2 ρ3 ρ4 …
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q µ1 µ2 µ3 µ4 …

q µ1 µ2 µ3 µ4

Example: 
Failure of Weak Forward Simulations

q0

q2q1

τ
s0

τ
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q2q1

q6q5q4q3

q10q9q8q7

dcba

ττ

s6s5s4s3

s10s9s8s7

dcba
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Characterization:
Probabilistic Forward Simulations

Forward simulation from A1 to A2  (A1 ≤PF A2)
Relation R ⊆ Q1 x Disc(Q2) such that

σ σ′′≡ σ′ a
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q µ′

σ σ ≡ σ  

a
R R

Theorem [LSV02] A1 ≤PF A2 iff    A1 ≤TDC A2

∀ q, σ, a, µ′ ∃ σ′′, σ′

Summing up … we have seen
• Why formal analysis
• Why Probability and Nondeterminism
• Probabilistic Automata

– Definition
• Replace points with measures
• Replace functions with measurable functions
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– Related Models
• Compositionality
• Language inclusion (equivalence)
• Bisimulations

– The world is simpler than it seems to be
• Simulations

– Sound for language inclusion
– … and also complete

A Note about Formal Analysis
• Formal methods are too heavy to use

– Is it reasonable to apply them all the times?
– Is it reasonable to use them all the times?
– Is it reasonable to know them?
– Are automatic tools everything we need?
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• Rarely we can be absolutely rigorous
– We rather limit the places where to use intuition
– Formal methods give a lot of sanity checks
– It is useful to be aware of the formal meaning of what we say
– It is useful to have theoretical results

• Some doubts can be eliminated quickly
• Some bugs may be discovered in a few seconds

Th k Y
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Thank You

Case Study:
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Agent Authentication
Bellare Rogaway 93

Segala, Turrini

Bellare and Rogaway MAP1 Protocol

A BRA

[B.A.RA.RB]s
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• Nonces are generated randomly
• The key s is the secret for a Message Authentication Code

– Specifically, MAC based on pseudo-random functions

[A.RB]s
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Nonces

• Number ONCE
– Typically drawn randomly

Cl i
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• Claim
– For each constant c and polynomial p
– There exists k such that for each k ≥ k
– If n1,n2,…,np(k) are random nonces from {0,1}k

– Then  Pr[∃i≠ j ni= nj]<k-c

Message Authentication Code

• Triple (G,A,V)
– G on input 1k generates s ∈ {0,1}k

– For each s and each a
• Pr[V(s,a,A(s,a))=1]=1
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• Forger
– On input 1k obtains MAC of strings of its choice
– Outputs a pair (a,b)
– Successful if V(s,a,b)=1 and a different from previous queries

• Secure MAC
– Every feasible forger succeeds with negligible probability

MAP1: Matching Conversations

• Matching conversation between A and B
– Every message from A to B delivered unchanged

• Possibly last message lost
• Response from B returned to A

– Every message received by A generated by B
• Messages generated by B delivered to A
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• Messages generated by B delivered to A
• Possibly last message lost

• Correctness condition
– Matching conversation implies acceptance
– Negligible probability of acceptance without 

matching conversation

MAP1: Correctness Proof
• Let A be a PPT machine that interacts with the agents

• Show that A induces “no-match” with negligible probability
– Argue that repeated nonces occur with negligible probability
– Argue that A is an attack against a message authentication code

• Features
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– Relies on underlying pseudo-random functions
– Proves correctness assuming truly random functions
– Builds a distinguisher for PRFs if an attack exists

• Criticism
– The arguments are semi-formal and not immediate
– Three different concepts intermixed

• Nonces 
• Message authentication codes
• Matching conversations

MAP1: Hierarchical Analysis

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5
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• Agents indexed by X, Y, t
• Need to find suitable simulations

– Step conditions lead to local arguments
– Yet transitions cannot be matched exactly

Adversary
Keep history

(no forged signatures)

Adversary
Keeps history

(PPT function f)

Adversary
Keeps history

(PPT function f)

Nonce Generators
• State

– valueX,Y,t initially ⊥
– FreshNonces initially {0,1}k

• Transitions
– Input NonceRequestX,Y,t

Eff t

IdealCoin flip
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– Effect
• Let v ∈R {0,1}k

• valueX,Y,t = v
• FreshNonces = FreshNonces-{v}

– Output NonceResponseX,Y,t(n)
– Precondition

• n = valueX,Y,t
– Effect

• valueX,Y,t = ⊥

• Let v ∈R FreshNonces
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Adversary

• Keeps a variable history
– Holds all previous messages

• Real adversary
– Runs a cycle where
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• Computes the next message to send using a PPT function f
• Sends the message
• Waits for the answer if expected

• Ideal adversary
– Highly nondeterministic
– Stores all input
– Sends messages that do not contain forged authentications

Problems with Simulations

• Problem
– Consider a transition of the real nonce generator
– With some probability there is a repeated nonce
– The ideal nonce generator does not repeat nonces
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The ideal nonce generator does not repeat nonces
– Thus, we cannot match the step

• Solution
– Match transitions up to some error

Approximate Simulations [ST07]

• Change equivalence on measures

– µ1 ≡ε µ2 iff
• µ1 = (1-ε)µ1’ + εµ1’’
• µ2 = (1-ε)µ2’ + εµ2’’
• µ1’ ≡ µ2’

µ1’ µ1’’

µ2’ µ2’’

(1-ε) ε

≡

µ1

µ2
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1 2

• Add parameterizations
– Consider families of PIOA parameterized by k

• Require ε smaller than any polynomial in k
– …provided that computations are of polynomial length

{2/3 q1, 1/3 q2}             =      2/3 {1/2 q1, 1/2 q2}  + 1/3{1 q1}

{1/3 s1, 1/3 s2, 1/3 s3}   =      2/3 {1/2 s1, 1/2 s2}  + 1/3{1 s3}

? ε = 1/3

Approximate Simulations

{Ak}  {Rk}  {Bk}

• For each constant c and polynomial p
• There exists k such that for each k ≥ k
• Whenever
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– ν1 reached within p(k) steps in Ak
– ν1 L(Rk,γ) ν2
– ν1 → ν1’

• There exists ν2’ such that
– ν2 → ν2’
– ν1’ L(Rk,γ+k-c) ν2’ 

ν1 ν1′

ν2 ν2’
γ γ+k-c

Approximate Simulations
Step Condition

(1-γ) γν2

(1-γ-k-c) γν2’ k-c
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≡

ν1

γν1’ (1-γ-k-c) k-c

γ(1-γ)

ρp(k)

Simulation Implies Behavioral Inclusion

• The step condition can be applied repeatedly

s ρ1 ρ2 ρ3 …
0 k-c 2k-c 3k-c p(k)k-c
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µp(k)q µ1 µ2 µ3 …

• Observation
– p(k)k-c can be smaller than any k-c’ by choosing c=c’+degree(p)
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Execution Correspondence under 
Approximated Simulations

If     {Ak}  {Rk}  {Bk}   then

• For each constant c and polynomial p
• There exists k such that for each k ≥ k
• For each scheduler σ1
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– ν1 reached within p(k) steps in Ak with σ1

• There exists σ2 such that
– ν2 reached within p(k) steps in Bk with σ2
– ν1 L(Rk,p(k)k-c) ν2

• Observation
– p(k)k-c can be smaller than any k-c’ by choosing c=c’+degree(p)

Example: Approximate Simulations
Bellare-Rogaway MAP1 Protocol

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5

1 2
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• Negation of the step condition
– 1: Two random nonces are equal with high probability
– 2: Function f defines a forger for a signature scheme

Adversary
Keep history

(no forged signatures)

Adversary
Keeps history

(PPT function f)

Adversary
Keeps history

(PPT function f)

Negation of Step Condition
{Ak}  {Rk}  {Bk}

• There exists constant c and polynomial p
• For each k there exists k ≥ k
• There exists

– ν1 reached within p(k) steps in Ak
L(R ) 

(1-γ) γ

≡
ν1

ν2

(1-γ-k-c) γν2’ k-c

γ(1-γ)
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– ν1 L(Rk,γ) ν2
– ν1 → ν1’

• There is no ν2’ such that
– ν2 → ν2’
– ν1’ L(Rk,γ+k-c) ν2’ 

ν1 ν1′

ν2 ν2’
γ γ+k-c

• Signature forged in ν1’
– Probability at least k-c

• Nonce replicated in ν1’
– Probability at least k-c

γν1’ (1-γ-k-c) k-c

Nonces

• Number ONCE
– Typically drawn randomly

Cl i
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• Claim
– For each constant c and polynomial p
– There exists k such that for each k ≥ k
– If n1,n2,…,np(k) are random nonces from {0,1}k

– Then  Pr[∃i≠ j ni= nj]<k-c

Problems with Nondeterminism
MAP1 Protocol [BR93]

• Authentication protocol
– Symmetric key signature schema
– Computational Dolev-Yao
– Adversary queries agents

• Potential problems
A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5
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Potential problems
– Let s be the shared key
– Adversary queries k agents
– Agent i replies if ith bit of s is 1
– The adversary knows the shared key

• Solution
– One query at a time
– Wait for the answer (agents as oracles)

Adversary
Keeps history

(PPT function f)

M  Ab t A i t d 
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More About Approximated 
Simulations
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Conditional Automata
• Let A be a probabilistic automaton
• Let B be a set of bad states
• Let G = Q-B be a set of good states

• Let A|G be the same as A except that
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| p
– DA|G = {(q,a,µ|G) : (q,a,µ) DA and µ(G)>0}

Theorem 
idQ is a polynomially accurate simulation from A to A|G 

iff B is negligible
idQ is a polynomially accurate simulation from A|G to A 

iff B is negligible

A Property of Approximated Lifting

Given a relation R from Q1 to Q2

Then µ1 L(R,ε) µ2 iff there exists 
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w: Q1 × Q2 → [0,1]
– w supported on R
– w(Q1,Q2) = 1-ε
– w(s,Q2) ≤ µ1(a)
– w(Q1,s) ≤ µ2(a)

Approximated Correspondence

µp(k)

ρp(k)

q µ1

s ρ1

µ2

ρ2

µ3

ρ3

…

…
0 k-c 2k-c 3k-c p(k)k-c
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This means that …

q q1

s s1
a

a q2

s2
b

b q3

s3
c

c qp(k)

sp(k)

…

…
R R R R R R w(.,.)

Transitivity
Claim. µ L(R,ε) ρ and ρ L(R’,τ) η imply µ L(RR’,ε+τ) η

ηp(k)t η1 η2 η3 …
0 k-c+k-c’ 2(k-c+k-c’) 3(k-c+k-c’) p(k)(k-c+k-c’)
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µp(k)

ρp(k)

q µ1

s ρ1

µ2

ρ2

µ3

ρ3

…

…
0 k-c 2k-c 3k-c p(k)k-c

0 k-c’ 2k-c’ 3k-c’ p(k)k-c’

Are approximated simulations transitive?

• We do not know
– … but the result of the previous slide suffices

s0 r0q0
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s1 s2 s3 r1 r3q1

a aaaa

b bb b b

2-k

Are Approximated Simulations 
Compositional?

No. Need a more refined relation.

s S(R,ε) q iff
∀ q, s, a, µ′ ∃ σ′

Step condition

F  h  th  i t  k

Probabilistic Automata and Equivalences
Bertinoro, June 21, 2010                                                 Roberto Segala - University of Verona 132

q µ′

s σ′a

a
R

q µ

ε

For each c there exists k
For each k > k, each µ1, µ2, γ, w

If µ1 L(Rk,γ) µ2 via w
then
Σ {w(q1,q2) : q1 not(S(Rk,k-c)) q2} < k-c

Conditional automata continue to work
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How About Weak Relations?

• Only one constraint to add
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– Length of matching steps bounded
• By a constant
• By a polynomial on length of history

A Note about Formal Analysis
• Formal methods are too heavy to use

– Is it reasonable to apply them all the times?
– Is it reasonable to use them all the times?
– Is it reasonable to know them?
– Are automatic tools everything we need?
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• Rarely we can be absolutely rigorous
– We rather limit the places where to use intuition
– Formal methods give a lot of sanity checks
– It is useful to be aware of the formal meaning of what we say
– It is useful to have theoretical results

• Some doubts can be eliminated quickly
• Some bugs may be discovered in a few seconds

Th k Y
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Thank You


