
Università degli Studi dell’Aquila Università degli Studi dell’Aquila

Vittorio Cortellessa, Antinisca Di Marco, Catia Trubiani

Computer Science Department, University of L’Aquila, Italy

SFM-12:MDE 12th International School on Formal Methods for the Design of
Computer, Communication and Software Systems: Model-Driven Engineering
Bertinoro, Italy, 18-23 June 2012

2

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Credits for this course go to…

Catia Trubiani
Antinisca Di Marco

Romina Eramo

Alfonso Pierantonio
Davide Arcelli

All my undergraduate and graduate students
who have lost some of their health on

antipatterns

3

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Performance problems

4

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

»  NASA was forced to delay the
launch of a satellite for more
than eight months

»  The delay was caused because
the Flight Operations Segment
software had unacceptable
response times for developing
satellite schedules, and poor
performance in analyzing
satellite status and telemetry
data

Performance problems

5

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Performance problems – how tackled?!
1970-1990

System performance modeling
(QN, PN, …)

1990-2000

Software performance since early
lifecycle phases

2000-2008

Model transformations for
performance model generation

2008-today

Performance model evolution to
support adaptive software to

changes: requirements,
context, …

1970-today

Solve performance models
with (ever more

sophisticated!) tools

Bottleneck analysis

6

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Software models

UML Component Diagram

UML Use Case Diagram

UML Deployment Diagram
Architectural
specification

7

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Performance indices

8

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Software models vs Performance indices
The interpretation of performance indices

is not a trivial task!

9

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

What to change in order to improve the
software performance?

C2

C1

Software
Architectural

Model

Requirements:
responseTime(servicex) < = 8sec

…

C3
C1

C4

C2
C1

performance
analysis

C3 C4

responseTime(servicex) = 10sec

responseTime(servicex) = 7sec

Software models vs Performance indices

10

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

•  Structure (e.g. splitting components)

•  Behavior (e.g. reducing number of messages)

•  Deployment (e.g. moving components across hosts)

Software models vs Performance indices

Models are here intended as
instruments to support decisions

along the software lifecycle

What to change in order to improve the
software performance?

11

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Outline

»  Problem statement
»  (Logic-based) Reasoning on Performance

Antipatterns
»  Performance Antipatterns in Modeling Languages

−  Unified Modeling Language (UML)
−  A Domain Specific Language (PCM)
−  An Architecture Description Language (AEmilia)

»  Advanced MDE techniques

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

12 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

PROBLEM STATEMENT…

… AND DIFFERENT WAYS TO APPROACH IT

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

13 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Software performance process

(Annotated)
Software Model

Model2Model
Transformation

Performance
Model

Model Solution

Results Interpretation &
Feedback Generation

Performance
Results

Modeling Analysis Refactoring

PERFORMANCE
RESULTS
COMPLEXITY

- Numbers to be
interpreted

- Different levels of
granularity

- Cross-checking of
software system
characteristics

e.g. UML+Marte, Automata,
Process Algebras, PCM, …

e.g. Queueing Networks,
Simulation Models, …

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

14 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Software Performance Feedback: state-of-the-art

Approach (Annotated) Software
Architectural Model

Performance Model Framework

Antipattern-
based

Williams et al. 2002 Software Execution Model System Execution
Model

SPE-ED

…… …… …… ……

Parsons et al. 2008 JEE systems Reconstructed runtime
model

PAD

Rule-based

Barber et al. 2002

Domain Reference Arch.

Simulation Model

RARE /ARCADE

…… …… …… ……

Xu 2010 UML Layered QN Perf. Booster

D
es

ig
n

Sp
ac

e
Ex

pl
or

at
io
n

Simple
Criteria

Zheng et al. 2003 UML Simulation Model -

…… …… …… ……

Ipek et al. 2008 Artificial Neural Network Simulation Model -

Meta-
heuristics

Canfora et al. 2005 Workflow Model Workflow QoS Model -

…… …… …… ……

Martens et al. 2010 PCM Simulation Model PerOpteryx

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

15 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Antipattern-based approaches
 - They make use of antipatterns

 knowledge to cope with

 performance issues

Williams, L.G., Smith, C.U.: PASA(SM): An Architectural Approach to Fixing
Software Performance Problems. In: International Computer Measurement
Group Conference, Computer Measurement Group (2002)

…

Parsons, T., Murphy, J.: Detecting Performance Antipatterns in Component
Based Enterprise Systems. Journal of Object Technology 7 (2008)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

16 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Rule-based approaches
 - They encapsulate general

 knowledge on how to improve

 system performance into

 executable rules

 Barber, K.S., Graser, T.J., Holt, J.: Enabling Iterative Software Architecture
 Derivation Using Early Non-Functional Property Evaluation. In: ASE,

IEEE Computer Society (2002)

 …

 Xu, J.: Rule-based automatic software performance diagnosis and
improvement. Perform. Eval. 67 (2010)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

17 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Design space exploration – simple criteria
 - They explore the design space by

 examining alternatives that can

 cope with performance flaws

 Zheng, T., Woodside, C.M.: Heuristic optimization of scheduling and
 allocation for distributed systems with soft deadlines. In Computer
 Performance Evaluation /TOOLS (2003)

 …

 Ipek, E., McKee, S.A., Singh, K., Caruana, R., de Supinski, B.R., Schulz, M.:
 Efficient architectural design space exploration via predictive modeling.
 ACM Trans. on Architecture and Code Optimization (2008)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

18 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Design space exploration – Metaheuristics
 - They make use of evolutionary

 algorithms that look for design

 alternatives aimed at improving

 the system performance

 Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-
 aware service composition based on genetic algorithms. In Beyer, H.G.,
 O'Reilly, U.M., eds.: GECCO, ACM (2005)

 …

 Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve
 software architecture models for performance, reliability, and cost
 using evolutionary algorithms. In WOSP/SIPEW (2010)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

19 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Approach (Annotated) Software
Architectural Model

Performance
Model

Framework

Antipatterns-
based

Williams et al. 2002 Software Execution Model System Execution
Model

SPE-ED

…… …… …… ……

Parsons et al. 2008 JEE systems Reconstructed
runtime model

PAD

Focus of
this course

Unified Modeling
Language (UML),

Palladio Component
Model (PCM),
AEmilia ADL

Queueing
Network,
Simulation

Model,
Markov Chain

Performance
Antipatterns

aNd feeDback on
software

Architectures
(PANDA)

Rule-based

Barber et al. 2002

Domain Reference Arch.

Simulation Model

RARE /ARCADE

…… …… …… ……

Xu 2010 UML Layered QN Perf. Booster

… ……

……

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

20 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Adding antipatterns in the software performance process

(Annotated) Software
Architectural Model

Model2Model
Transformation

Performance
Model

Model Solution

Results Interpretation &
Feedback Generation

Performance
Results

Performance
Antipatterns

Modeling Analysis Refactoring

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

21 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

W.J.Brown, R.C. Malveau, H.W. Mc Cornich III, and T.J. Mowbray.
“Antipatterns: Refactoring Software, Architectures, and Project in Crisis”, 1998.

» What to avoid and how to solve (performance) problems!

» Antipatterns: Negative features of a software system
»  Conceptually similar to design

patterns: recurring solutions to
common design problems

» The definition includes common
mistakes (i.e. bad practices) in
software development as well
as their solutions

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

22 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

C. U. Smith and L. G.Williams. “More new software performance antipatterns:
Even more ways to shoot yourself in the foot”, 2003.

Antipattern Problem Solution

Blob

Occurs when a single class
or component either 1)

performs all of the work of
an application or 2) holds all

of the applications data.
Either manifestation results
in excessive message traffic

that can degrade
performance.

Refactor the design to
distibute intelligence

uniformly over the applications
top-level classes, and to keep

related data and behavior
together.

… … …

»  Performance Antipatterns : why are they complex?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

23 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Performance Antipatterns classification

C. U. Smith and L. G.Williams. “More new software performance antipatterns:
Even more ways to shoot yourself in the foot”, 2003.

Antipattern Problem Solution

Unbalanced

Processing

Concurrent
Processing

Systems

Processing cannot make
use of available

processors.

Restructure software or change
scheduling algorithms to enable

concurrent execution.

“Pipe and Filter”
Architectures

The slowest filter in a
“pipe and filter”

architecture causes the
system to have

unacceptable throughput.

Break large filters into more
stages and combine very small

ones to reduce overhead.

Extensive

Processing

Extensive processing in
general impedes overall

response time.

Move extensive processing so
that it doesn’t impede high

traffic or more important work.

… … …

The Ramp
Occurs when processing
time increases as the

system is used.

Select algorithms or data
structures based on maximum
size or use algorithms that

adapt to the size.

Single-
value

Multiple-
values

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

24 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Single-value vs Multiple-values
» Single-value: performance indices are evaluated in a

certain interval, i.e. the mean, max or min values.

» Multiple-values: performance indices are evaluated along
the time, i.e. the values trend (or evolution).

time

∆

time
∆ 2∆ n∆ …

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

25 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Software performance process: introducing automation

(Annotated) Software
Architectural Model

Performance
Model

Model Solution

Results Interpretation &
Feedback Generation

Performance
Results

Performance
Antipatterns

Modeling Analysis Refactoring

Model2Model
Transformation

Antipattern-based
Rules and Actions

Detection & Solution of
Performance Antipatterns

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

26 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» A bird’s-eye look to the problem

…

1- Representing
Antipatterns

2- Detecting
Antipatterns

3- Solving
Antipatterns

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

27 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

What are the software architectural model elements we
need for representing antipatterns?

Representing Antipatterns:

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

28 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Detecting Antipatterns:
How to explore the architectural models
to recognize antipattern occurrences?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

29 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

…

Solving Antipatterns:
What are the refactoring actions that lead the
architectural model to remove performance flaws?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

30 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

(LOGIC-BASED) REASONING
ON PERFORMANCE ANTIPATTERNS

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

31 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Graphical representation of the “Blob” Antipattern

PROBLEM: “occurs when a single class or component either 1) performs all of the
work of an application or 2) holds all of the applications data. Either manifestation
results in excessive message traffic that can degrade performance”

(Annotated) Software
Architectural Model M

(Annotated) Software
Architectural Model M

i	

i	

i	

i	

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

32 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Graphical representation of the “Blob” Antipattern

SOLUTION: “Refactor the design to distribute intelligence uniformly over the
applications top-level classes, and to keep related data and behavior together”

(Annotated) Software
Architectural Model M’

(Annotated) Software
Architectural Model M’

i	

i	

i	

i	
op’i!

op’i!

op’i!

op’i!

op’i!

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

33 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Graphical representation of the “Concurrent Processing Systems”
Antipattern

PROBLEM: “Occurs when processing cannot make use of available processors”

(Annotated) Software
Architectural Model M

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

34 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Graphical representation of the “Concurrent Processing Systems”
Antipattern

SOLUTION: “Restructure software or change scheduling algorithms to enable
concurrent execution ”

(Annotated) Software
Architectural Model M’

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

35 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Graphical representation of the“Empty Semi Trucks” Antipattern

PROBLEM: “Occurs when an excessive number of requests is required to perform a
task. It may be due to inefficient interface that, in some cases, implies an inefficient
use of available bandwidth (low size messages)”

(Annotated) Software
Architectural Model M

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

36 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Graphical representation of the “Empty Semi Trucks” Antipattern

SOLUTION: “The Batching performance pattern combines items into messages
to make better use of available bandwidth (in case of low size messages).
The Coupling performance pattern, Session Facade design pattern, and Aggregate
Entity design pattern provide more efficient interfaces.”

(Annotated) Software
Architectural Model M’

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

37 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

First Order Logic-based representation of antipatterns

How to make more “formal”
(i.e. machine-processable) the

specifications of antipatterns???

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

38 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Different model elements of antipatterns can be
organized into “Views”

STATIC VIEW: software resources,
relationships among them, …
to model static aspects

clientRole

supplierRole

Relationship

DYNAMIC
VIEW

Message

senderRole

receiverRole

DEPLOYMENT
VIEW

ProcesNode

utilization

deployedInstance

Views overlapping!

SoftwareEntity
Instance

DYNAMIC VIEW: interactions such as
messages between sw resources, …
to model dynamic aspects

DEPLOYMENT VIEW: hardware resources, …
to model deployment aspects

STATIC
VIEW

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

39 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Basic Idea: a performance antipattern can be formalized
as a logical predicate LPantipatName

» A logical predicate is made of (Static, Dynamic,
Deployment) basic predicates, BPi

LPantipatName = BP1 (∧, ∨) … (∧, ∨) BPn

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

40 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  The Empty Semi Trucks antipattern occurs when the following
predicate is true:

where represents the set of SoftwareEntityInstance(s), and
represents the set of Service(s).

∧

(∨
)

All the (swEx, S) instances satisfying the predicate must be
pointed out to the designer for a deeper analysis.

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

41 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Auxiliary elements in the formalization process
»  Functions
> FfunctionName elaborates information of the model
 (e.g. FnumMsgs is a function counting the number of messages sent by

an instance of the class/component model element)

»  Thresholds
> ThthresholdName is a value (estimated by the software architects) used

to establish the acceptable range of values for system features

(e.g. ThmaxMsgs is a threshold value representing the upper bound for
an acceptable number of messages exchanged among two software
instances. It can be estimated, for example, as the average number
of all messages sent by all software entities, plus the corresponding
variance)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

42 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  The Concurrent Processing Systems antipattern occurs when the
following predicate is true:

where represents the set of ProcesNode(s).

∧ (

)

∧ (

) ∨

∧

All the (Px, Py) instances satisfying the predicate must be pointed out
to the designer for a deeper analysis.

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

43 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

∨
∧

(

»  The Blob antipattern occurs when the following predicate is true:

where represents the set of SoftwareEntityInstance(s), and
represents the set of Service(s).

∨)

)

(

)

∨

(
∧

All the (swEx, swEy, S) instances satisfying the predicate must be
pointed out to the designer for a deeper analysis.

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

44 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Each antipattern can be
expressed by means of
first-order logics

» But this is only OUR
interpretation of their
textual description

 *see more details in:

V. Cortellessa, A. Di Marco, and
C. Trubiani. “An approach for

modeling and detecting
Software Performance

Antipatterns based on first-
order logics”, accepted for
publication in the journal of

Software and Systems Modeling
(SoSyM), 2012.

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

45 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Key-Question:

Once we have (somehow) “represented” antipatterns,

how can we detect them in a software model?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

46 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

First rough approach

a Java rule-engine application
able to parse any XML

document compliant to a
Schema that we have defined as

antipattern vocabulary.

An excerpt of the Java
application for the

“Concurrent Processing
Systems” antipattern

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

47 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» A case study: the “E-commerce System”
software model excerpt

performance model

Requirement Required Value	 Predicted Value	
RT(browseCatalog) 1.2 sec 1.5 sec
RT(makePurchase) 2 sec 2.77 sec

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

48 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» A preliminary complex step: setting thresholds

design properties
(e.g. excessive message traffic)

performance results
(e.g. high network utilization)

D
et

ec
ti

ng
 A

nt
ip

at
te

rn
s

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

49 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Workload: a trouble-making factor

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

50 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Performance Antipattern instances in ECS:

Antipattern Problem Solution

Blob

libraryController performs most of
the work, it generates excessive

message traffic towards bookLibrary

Refactor the design to keep related data and
behavior together, i.e. delegate some work

from libraryController to bookLibrary

Concurrent
Processing Systems

Processing cannot make use of the
processor webServerNode

Restructure software or changing scheduling
algorithms between processors libraryNode

and webServerNode

Empty Semi

Trucks

An excessive number of requests are
sent by the userController to perform

the task of registering users

Refactor the design combining items into
messages to make better use of available

bandwidth

D
et

ec
ti

ng
 A

nt
ip

at
te

rn
s

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

51 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

D
et

ec
ti

ng
 A

nt
ip

at
te

rn
s

The (libraryController,
bookLibrary,
browseCatalog)
instance satisfies
the Blob predicate,
hence it must be
pointed out to the
designer for a
deeper analysis

» An example: detecting the Blob antipattern instance

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

52 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

And another Key-Question

Once we have (somehow) “detected” antipatterns,

which refactoring actions must be taken

to remove (some of) them?

First rough approach

First-Order-Logic representation of antipatterns can help:

refactoring actions can be (automatically)

obtained from negating predicates!

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

53 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» An example: solving the Blob antipattern instance

The removal of the Blob
antipattern gives rise to a new
software architectural model
(called here as “ECS \ {blob}”) So

lv
in

g
A

nt
ip

at
te

rn
s

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

54 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

ECS \ {est}

ECS \ {cps}

Performance Analysis of some
refactored models

Modeling Analysis

Response Time,
Utilisation, …

Queueing
Network MVA Prima-UML

ECS \ {blob}

Unified Modeling
Language (UML)

(Annotated) Software
Architectural Model

RT(browseCatalog) < = 1.2 sec RT(makePurchase)	 < = 2 sec

ECS 1.5 sec 2.77 sec
ECS \ {blob} 1.14 sec 2.18 sec
ECS \ {cps} 1.15 sec 1.6 sec
ECS \ {est} 1.5 sec 2.24 sec

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

55 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Yet another Key-Question??? Yes!

How to drive the process of antipattern solution?

Who guarantees that the removal of antipatterns will lead to
“better” performance?

First approach

A guilt-based one, but still many issues to solve!

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

56 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

PERFORMANCE ANTIPATTERNS
IN MODELING LANGUAGES

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

57 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

» Antipattern-based process
(Annotated) Software
Architectural Model

Performance
Results

Detecting Antipatterns
(i.e. Results Interpretation)

(Annotated) Software
Architectural Model

Candidate1

(Annotated) Software
Architectural Model

Candidaten

Antipatterns-based
Rules and Actions

…

Solving Antipatterns
(i.e. Feedback Generation)

Model2Model
Transformation

Model Solution

Performance
Model

- Generic Modeling
Languages (UML)

- Domain Specific
Languages (PCM)

- Architecture Description
Languages (Aemilia)

- …

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

58 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Our experience in UML

Modeling Analysis Refactoring

Response Time,
Utilisation, …

OCL code

OCL engine for the
Detection of Antipatterns

Unified Modeling
Language (UML) Prima-UML Queueing

Network

Mean Value
Analysis

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

59 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  UML model

UML Use Case Diagram
UML Component Diagram

UML Deployment Diagram

Requirement: each hardware resource has not to be used more than 80% under the
mean workload of 70 requests/second concurrently in execution in the system.

Service Demand
(input parameters)

Utilization
(output indices)

webServerNode 2.02 msec 27%
libraryNode 7.05 msec 96%
controlNode 3 msec 41%
dbNode_cpu 15 msec 20%
dbNode_disk 30 msec 41%

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

60 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  An example: the Blob antipattern as OCL rule

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

61 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Detecting antipatterns in UML

“Blob” Antipattern occurrence

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

62 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Solving Antipatterns in UML

“Blob” Antipattern removal

Requirement: each hardware resource has not to be used more than 80% under the
mean workload of 70 requests/second concurrently in execution in the system.

Notice that these values have changed due to the load re-distribution

Service Demand
(input parameters)

Utilization
(output indices)

webServerNode 4.07 msec 61%
libraryNode 5 msec 75%
controlNode 3 msec 41%
dbNode_cpu 15 msec 20%
dbNode_disk 30 msec 41%

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

63 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Our experience in PCM

Modeling Analysis Refactoring

Palladio Component
Model (PCM) PCM2SimuCom

Simulation
Models

Simulation

Response Time,
Utilisation, …

Java code

Java engine for the
Detection & Solution of

antipatterns

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

64 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  PCM model

Requirement Required Value	 Predicted Value	
RT(system) 10 sec 18.71 sec

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

65 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  An example: the Concurrent Processing
Systems antipattern as Java code

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

66 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Detecting antipatterns in PCM

“Concurrent
Processing
Systems”

Antipattern
occurrence

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

67 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Solving antipatterns in PCM

<<redeploy>>

“Concurrent
Processing
Systems”

Antipattern
removal

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

68 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  The solution process in PCM

<<redeploy>>

“Concurrent
Processing
Systems”

Antipattern
removal

required value

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

69 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Our experience in AEmilia

Modeling Analysis Refactoring

Response Time,
Utilisation, …

OCL code

OCL engine for the
Detection of Antipatterns

AEmilia
specification TwoTowers Markov

chain

TwoTowers

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

70 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  AEmilia specification

Requirement Required Value	 Predicted Value	
Throughput(system) 15 reqs/sec 12.19 reqs/sec

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

71 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  An example: the Extensive Processing
antipattern as OCL code (applied on the
Aemilia MM!)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

72 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Detecting antipatterns in AEmilia

“Extensive Processing”
Antipattern occurrence

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

73 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Solving antipatterns in AEmilia

“Extensive Processing”
Antipattern removal

Requirement Required Value	 Predicted Value	
Throughput(system) 15 reqs/sec 18.29 reqs/sec

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

74 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Looking at different modeling notations…

representing
detecting

solving
Generic Modeling

Language
(i.e. UML +

Marte profile)

...any modeling
language has

“antipatterns-
concepts”

Domain Specific
Language

(i.e. Palladio
Component Model)

Architectural
Description
Language

(i.e. AEmilia)

… UML

PCM
AEmilia

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

75 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

ADVANCED MODEL-DRIVEN TECHNIQUES…

TO TACKLE THE PROBLEM IN A LANGUAGE-
INDEPENDENT WAY

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

76 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

MDE support: metamodel and model transformations

representing
detecting

solving

Generic Modeling
Language

(i.e. UML +
Marte profile)

...any modeling
language has

“antipatterns-
concepts”

Domain Specific
Language

(i.e. Palladio
Component Model)

Architectural
Description
Language

(i.e. AEmilia)

…

M
2:

 M
et

am
od

el
s

M
1:

 M
od

el
s

UML model
(Marte annotated) PCM model AEmilia

specification

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

77 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

PAML: Perf.Antipatterns Modeling Language

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

78 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

The “Model Elements Specification” sub-MM: SML+

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

79 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

The “Blob” antipattern as PAML-based model

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

80 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Antipatterns in concrete modeling languages

Performance Antipatterns

SML+

UML+MARTE Palladio Component Model Aemilia ADL

Blob

SoftwareEntity

ProcesNode

BasicResDemand

…

…

UML Component

UML Node
…

PCM Basic Component

PCM Resource Container

…
ARCHI_ELEM_TYPE

…
…

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

81 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

MDE approach for managing antipatterns

Results Interpretation &
Feedback Generation

Performance
Antipatterns

EX
TR

A
CT

IN
G

REPRESEN
TIN

G

D
ET

EC
TI

N
G

A

N
D

 S
O

LV
IN

G

Extractor Engine

SML+ representation of
the architectural model

PAML

Antipatterns Modeling

Performance Antipatterns
as PAML-based Models

Parsing Engine

Performance Antipatterns
as Instances in the
Architectural Model

…

<<implement>>

<<conformTo>>

Performance
Results

(Annotated) Software
Architectural Model

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

82 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Is UML+Marte expressive enough to specify antipatterns?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

83 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Is PCM expressive enough to specify antipatterns?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

84 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Is Aemilia expressive enough to specify antipatterns?

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

85 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

Expressiveness of considered modeling languages
UML + Marte profile Palladio Component Model

Antipattern Detectable Solvable Detectable Solvable

Blob

Unbalanced
Processing

Concurrent
Processing Systems

Pipe and Filter
Architectures ✖
Extensive
Processing

Tower of Babel

… … … … …

The Ramp

Traffic Jam

More is Less

AEmilia

Detectable Solvable

≈ ≈

… …

= fully detectable/solvable = partially detectable/solvable = not detectable/solvable

✔ ✔ ✔
✔

✔

✔

✔

✔

✔
✔ ✔ ✔

✔ ✔
✔ ✔

✔
✔
✔

✔
✔

✔
✔

✔ ✔
✔

✔

✔ ✖ ✖

✖ ✖ ✖ ✖ ✖

✖

✖ ✖ ✖ ✖ ✖

✖ ✖

✖
✖

✔ ✖ ≈

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

86 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

»  Embedding Antipatterns neutral concept in concrete
modeling notations
−  Antipatterns are based on a dedicated general purpose language

(SML+)

−  Weaving models can map the concepts of SML+ into concrete
modeling notations (parameter passing)

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

87 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

REPRESENTATION

A transformation T is generated, starting from the WM,
between the neutral representation of antipatterns and the
concrete modeling language

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

88 Problem Reasoning
on PA

MDE
techniques

PA in Modeling
Languages

DETECTION

A transformation T’ is generated, starting from the same
WM, to provide an OCL-based executable semantics

89

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Open Issues - Basics

−  Gap textual/formal representations
−  Threshold setting

−  Uncertainty/incompleteness in :
>  Models, AP specifications, workload, op. profile

−  Validation on larger model repositories (real case
studies)

90

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Open Issues - Advanced

−  Evaluating the framework on:
>  Precision (ratio of actual antipatterns found)
>  Recall (ratio of antipatterns found overall)

−  Language-specific antipatterns (other languages to
experiment?)

−  Antipattern at the model level and the code level

−  Combining approaches (antipatterns with
metaheuristics)

−  Tool construction and integration

91

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Open Issues – Process related

−  Legacy constraints
−  Conflicting solutions
−  Overlapping solutions (composition)

−  Combination with other quality attributes
(maintenability, reliability, etc…)

92

“Software Performance Antipatterns:
Modeling and Analysis”, SFM-12: MDE

Thank you! Questions

{vittorio.cortellessa,
antinisca.dimarco,

catia.trubiani}@univaq.it

We are obviously open to collaborations
on any mentioned and non-mentioned

point in this domain

