ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Model Transformations

SFM-12: Model-Driven Engineering —June 19, 2012

Alfonso Pierantonio

Dipartimento di Informatica
Universita degli Studi dell’Aquila

alfonso.pierantonio@univaq.it

(Antoine-Laurent de Lavoisier)

ﬁipartimentoinfcrmatica

Universita degli Studi dell'Aquila

(Antoine-Laurent de Lavoisier)

Regardless whether two metamodels are 1somorphic or
not, any transformation among them should produce
not only models but also their complement, somewhat
adhering to the Lavoisier’s law

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Transformations

> Introduction
> Why Model Transformation languages ?
> Dimensions and Classification

A demonstration of ATL

> Objectives
> Metamodels
- Live Demonstration

Bidirectional Transformation for Change Propagation

Summary

> Problem

> Requirements

- Janus Transformation Language

- Change Propagation and non-determinism

Higher-Order Transformations for Automating Co-evolution

- Evolution in MDE

> Metamodel Changes Classification
> Metamodel Differences

> Automated Adaptation

Universita degli Studi dell’Aquila

ﬁ partimentoinformatica

Introduction

In recent years the movement towards developing
software with the use of models has increased rapidly

Models are used to design, develop, deploy, and
manage technology solutions

A partial list of these models might include

business cases, use case diagrams, entity relationship
models, object models, code, test suites, deployment plans,
logical data center models, and exception management

plans

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

patd

Software model in Google images

=z
-
-
Q.
—]
S~
=
=
o)
S~
Iy
Q.
e
i e

ﬁiparti mentoinformatica

Universita degli Studi dell’Aquila

Introduction

Models are employed and characterized according to
several dimensions

domains
eg. software systems, embedded software, web apps, etc.

languages/notations
eg. UML, Simulink, WebML, etc.
concrete syntaxes

diagrammatic or textual

tools and platforms
eg. EMF, GME, Kermeta, etc.

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

DatabaseAn

17th. !

staff_id
staff_fir
staff_last_n ame

ff_detans

FK product_i
st_name

w
report

other_sta

Key fields aré

New values

he '_id’ Primary
ment fields
generated

d is creat

gen l0ade

Auto-Incré
are automatically

Prob\em_Status,Codes

K problem_category_code
crcmem_categcrvg _cescn:ucr
ddleware

eg Comms, Database Wid

etails

other_lo g d

ﬁiparhmentoi nformatica

Universita degli Studi dell’Aquila

=

e
Orosas SuerPusete
- —wer s =

e s

)
©
O
&
i)
o
.OJ
o)
@)
v
v
Q
c
v
-
(a 8]

AT AP

partimentoinformatica

Universita degli Studi dell’Aquila

Introduction

Stakeholders have access to current, accurate, and
appropriate representations of the systems, expressed
in languages with which each is familiar is relevant

Metamodels permits to describe problems in terms of
concepts — and relations among them — proper of the
application domain

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

Transformations

Software lifecycle methodologies have traditionally
been making efforts to automate the production of
concrete models from abstract ones or even to keep
the different system models synchronized

Transformations

Software lifecycle methodologies have traditionally
been making efforts to automate the production of
concrete models from abstract ones or even to keep
the different system models synchronized

In other words, to leverage automation descriptive
models need to be made prescriptive and given a first-
class status, ie. models must be formal and processable

13

Transformations

Model-Driven Engineering (MDE) emphases the use of
models not just for documentation and communication

purposes, but as first-class artifacts to be transformed
into other work products

e.g., other models, source code, and test scripts

A simple definition of a model transformation is that it
is a program which mutates one model into another

Transformations

Model transformations are required to perform complex
tasks

e.g., when integrating tools it is frequently required that after an

initial transformation of a model from one tool to another,

subsequent changes are propagated in a non-destructive manner
Using standard programming languages and libraries to
write even simple model transformations is a challenging,
tedious and error-prone task

Model transformations need specialized support in several
aspects in order to realise their full potential

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Let us consider a simple transformation for bridging
UML classes and RDBMS tables

E Class E Table
o is_persistent : EBoolean
$o.

parent 0.1 parent

H Column

H Attribute
o is_primary : EBoclean

T type : PrimitiveTypes
= length : Elnt

Class Table
Attribute Column

Why model transformation languages ?

“parent” “parent”

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

B Class H Table

o is_persistent : EBoolean

0.1
parent) 0.1 parent

Col
H Attribute [

o is_primary : EBoolean

o length : Eint

T type : PrimitiveTypes

source target
metamodel metamodel

rule Class?2Table (in source: UML!Class;
out target: RDBMS!Table) {

target.name <- source.name;

rule Attribute2Column (in source: UML!Attribute;
out target: RBDMS!Column)

target.name <- source.name;
target.type <- source.type;

target.parent <- source.parent;

partimentoinformatica

Universita degli Studi dell’Aquila

-
(7]
Q
o] 0]
¢9)
-
o] 0]
c
IE
c
@)
f =
T
=
.
O
(Tl
(7]
c
C
—
e
[
©
O
S
>
é;

B Class H Table

o is_persistent : EBoolean

} 0..1

parent 0.1 parent

Col
H Attribute [

o is_primary : EBoolean

o length : Eint

T type : PrimitiveTypes

source target
metamodel metamodel

rule Class?2Table (in source: UML!Class;
out target: RDBMS!Table) {

target.name <- source.name;

rule Attribute2Column (in source: UML!Attribute;
out target: RBDMS!Column)

target.name <- source.name;
target.type <- source.type;

target.parent. <- source.parent;

partimentoinformatica

Universita degli Studi dell’Aquila

-
(7]
Q
o] 0]
¢9)
-
o] 0]
c
IE
c
@)
f =
T
=
.
O
(Tl
(7]
c
C
—
e
[
©
O
S
>
é;

B Class H Table

o is_persistent : EBoolean

0.1
parent 0.1 parent

H Column
T type : PrimitiveTypes
o length : Eint

H Attribute
o is_primary : EBoolean

source target
metamodel metamodel

rule Class2Table (in sour

Ut "2 There is a typing issue!

target.name <- sO

The left-hand side is a table while the

rule Attribute2Column (in right-hand side is a class.
out

target.name <- soO :
target.type <- source.t

target.parent. <- source.parent;

-
(7]
Q
o] 0]
¢9)
-
o] 0]
c
E
c
@)
f =
T
=
.
O
(Tl
(7]
c
C
—
e
7]
©
O
S
>
.!;:

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

B Class H Table
o is_persistent : EBoolean

0.1
parent 0.1 parent

H Column
T type : PrimitiveTypes
o length : Eint

H Attribute
o is_primary : EBoolean

source target
metamodel metamodel

rule Class?2Table (in sour

out tarq| There is a typing issue!
target.name <- sO ' .
However the intention of the designer is
evident: she meant the table, although

rule AttributeZColumn (in | <ha wrote the class.

out

target.name <- soO :
target.type <- source.t

target.parent. <- source.parent;

-
(7]
Q
o] 0]
¢9)
-
o] 0]
c
E
c
@)
f =
T
=
.
O
(Tl
(7]
c
C
—
e
7]
©
O
S
>
.!;:

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

B Class H Table

o is_persistent : EBoolean
0.1
parent 0.1 parent

trace()

H Column
T type : PrimitiveTypes
o length : Eint

H Attribute
o is_primary : EBoolean

source target
metamodel metamodel

. . . Class;
Eg’;fust a simple evaluation of the NS Table) |

me ,;

Runtime lookup of tracing
information to find the right element | yup 1 attribute:
according to the typing of the LHS. : RBDMS!Column) {

target.nam ce.name;
target.type <= ce.type—->;

target.parent <- source.parent; // ~ trace(source.parent);

Why model transformation languages ?

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Why model transformation languages ?

Model transformations are intrinsically difficult and
need specialized linguistic support with

accurate pattern matching, most of the transformation
languages are rule-based which means they have an implicit
matching algorithm

no need to specify control-flow (not completely true, cfr. lazy
rules)

persistency and change propagation, information needs to
be kept about which elements are related to which by a

transformation — this is typically called tracing information

a transformation which can record and utilize such information to
propagate changes as a persistent transformation

ﬁipa rtimentoinformatica
Universita degli Studi dell'Aquila

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

T(Ml) _> <M29 7—/>

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Transformations

Software methodologies have traditionally
endeavoured to automate the production of concrete
models from abstract ones or even to keep the
different system models synchronized

Transformations

Software methodologies have traditionally
endeavoured to automate the production of concrete
models from abstract ones or even to keep the
different system models synchronized

horizontal transformations

Consistency
management

Synchronization

Vertical vs Horizontal

vertical transformations

Forward engineering: Reverse engineering:
Generation Model injection/extraction

H pammentomrormatica

Universita degli Studi dell'Aquila

Transformations

Definition. A transformation consists of a set of
transformation rules that describe how a model in the

source language can be transformed into a model in
the target language.

Definition. A transformation rule is a description of

how one or more constructs in the source language can

be transformed into one or more constructs in the
target language.

conformsTo conformsTo conformsTo

[Source Metamodel }% Transformation } 4>[Target Metamodel }
Language

\ N

Transformations

conformsTo basedOn conformsTo basedOn conformsTo

[Source Model } 4[Transformation Rules]7 [Target Model }

\

executed

\(Transformation W

'L Engine J

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

conformsTo

[Source Metamodel }%

conformsTo

\

basedOn

[Source Model 1

conformsTo

Transformation
Language

|

conformsTo

4[Transformation Rules]7

executed

\(Transformation

S~——

Unidirectional
Transformations

'L Engine

)

conformsTo

4{ Target Metamodel }

basedOn

N

conformsTo

[Target Model }

\

)

part1mentomformat1ca

rsita degli Studi dellAquils

Transformations

conformsTo conformsTo conformsTo

M2 [Source Metamodel }(7 [Transformation } 4{ Target Metamodel }
Language

\ N

Transformations

conformsTo basedOn conformsTo basedOn conformsTo

M1 [Source Model } 4[Transformation Rules]7 [Target Model }

/ \

relates relates
executed

Transformation

MO /_ L Engine

Bidirectional
Transformations

ﬁipammentomformatlca

sita degli Studi dell'Aquila

conformsTo

[Source Metamodel }%

\

conformsTo basedOn

[Source Model 1 4[Transformation Rules]7

/

relates

conformsTo

|

Transformation
Language

conformsTo

executed

S~

Bijective
Bidirectional
Transformations

[
.

Transformation
Engine

conformsTo

basedOn

} 4{ Target Metamodel }

Transformations

N

conformsTo

[Target Model }

\

relates

part1mentomformat1ca

rsita degli Studi dellAquils

conformsTo

Multiplicity

onformsTo basedOn

M1 H[Source Model }

relates

conformsTo

|

conformsTo

~

Transformation
Language

conformsTo

Transformation Rules]7

executed

S~

Non Bijective
Bidirectional
Transformations

[
.

Transformation

Transformations

Multiplicity

ba n conformsTo

H{ Target Model

relates

Engine

ﬁiparhmentomformatlca

sita degli Studi dell'Aquila

33

Classification

A possible classification of model to model
transformation languages is the following

Direct Manipulation
Operational
Relational

Hybrid
Graph-transformation

Rule-based

partimentoinformatica
Universita degli Studi dell'’Aquila

Direct Manipulation

An internal representation of the models is exposed by
means of APls

Users have to typically implement in an object-
oriented language from scratch

transformation rules
scheduling

tracing management
other facilities

Operational approaches

Similar to the direct manipulation but it offers some
dedicated support for model transformations

Typically the metamodeling architecture is extended
with a formalism for expressing computation

Languages: QVT operational mappings, XMF, MTL,
Kermeta, etc.

Relational Approaches

Declarative approaches based on relations, they can be
seen as constraint solving approaches

The relations are specified among source and target
element types using constraints

sometimes the constraints are executed by external solvers,
eg. DLV and Alloy

Side-effect free and implicit target creation, no in-place
transformations

Languages: QVT Relations, Tefkat, JTL, etc.

Hybrid Approaches

It combines the characteristics of both relational/
declarative and operation languages

The most prominent languages are ATL and ETL which
embodies imperative sections within declarative ones

(rules)

Graph Transformations

Graph transformations provide a formal theory and some
established formalisms for the automated manipulation of
models viewed as graphs

Transformation rules are applied to the source graph in
order to obtain the target one

A graph transformation G =t H is a
pair t = (p, m) consisting of a
production rule p : L — R and a total
injective graph morphism (called
matchhm: L — G

Triple Graph Grammars

TGGs defines correspondences between two different
types of models in a declarative way

The correspondences can be made operational by
inducing a forward and backward (incremental)
transformation

Can be used to synchronize and maintain the
correspondences between two models

Languages and Systems: MOFLON, Fujaba

40

Rule-based Approaches

Some of the mentioned approaches are also rule-
based, ie. multiple independent rules

guard => action

The rules are implicitly applied according to the
evaluation of the guards in contrast with explicit
scheduling of certain approaches

A transformation can be decomposed in rules where
some logics is encapsulated within crispy boundaries

change propagation

pattern matching

in place

out of place

Unidirectional

bijective Bidirectionai

non—bijeCtive

Model Tr

ansformation

Direct Manipulation

Operationai

Approaches Relational

Hybrid

Graph Transformations

Rule based

Consistency Management

Synchronization

Horizonta\

vertical
Reverse Engineering

Forward Engineering

ﬁ partimentoinformatica

Universita A
niversita degli Studi dell'Aquila

Transformations

> Introduction
> Why Model Transformation languages ?
> Dimensions and Classification

A demonstration of ATL

> Objectives
> Metamodels
- Live Demonstration

Bidirectional Transformation for Change Propagation

Summary

> Problem

> Requirements

- Janus Transformation Language

- Change Propagation and non-determinism

Higher-Order Transformations for Automating Co-evolution

- Evolution in MDE

> Metamodel Changes Classification
> Metamodel Differences

> Automated Adaptation

Universita degli Studi dell’Aquila

ﬁ partimentoinformatica

A DEMONSTRATION OF ATL

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Objectives

To create a relatively simple transformation for
mapping UML to RDBMS (both simplified)

Metamodels
Sample UML model

ATL Transformation

outline
coding & code illustration

Technology

Platform: Eclipse EMF
Meta-metamodel (M3): Ecore

E NamedElement # ClassDiagram
¥ £ NamedElement

P 2 name : EString
%5 ¥ H Class -> NamedElement
ZF Zf P o is_persistent : EBoolean
P o parent : Class
b SPattrs @ Attribute
H Class ¥ E Attribute -> NamedElement

o is_persistent : EBoolean b o is_primary : EBoolean
b = referenceType : Class

sre T 0..* T L P = parent : Class

T name : EString

parent b o attributeType : Type
¥ H Association -> NamedElement
P S*src: Class
attrs P *trg : Class
v [Model -> NamedElement
b S2classes : Class
b Sfassociations : Association
associations v £ Type
= NULL=10
= Int=1
= String = 2

1 parent| 0..1
classes

E Association

H Attribute
o is_primary : EBoolean

0.1

UML Simplified Metamodel

For the sake of simplicity we consider only a Metaclasses

simplified version of the class diagrams > Model
> Class
> Attribute
- Association

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

5 NamedElement

T name : EString

T

<<enumeration>>
£ PrimitiveTypes
EEnumLiteral0
INT
VARCHAR

H Column

T type : PrimitiveTypes
= length : Eint

-

-

parent 0..1

¥ £ NamedElement
P & name : EString
¥ (Schema -> NamedElement
b Srtables : Table
¥ E Table -> NamedElement
P 5 pkeys : Column
b *fkeys : Table
b F2cols : Column
¥ H Column -> NamedElement
b 2 type : PrimitiveTypes
P © length : Eint
P = parent : Table
v £ PrimitiveTypes
- INT=0
= VARCHAR =1

Metaclasses

> Schema
- Table

> Column

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

RDBMS Metamodel

The ATL program must be written according to the
following mapping schema

Mappings

> The metaclasses are translated according to the following
correspondence

Model Schema
(persistent) Class Table
Attribute Column

Association -> foreign key

- Columns are collected from all inherited attributes of the
superclasses of the persistent class being translated

= Associations source end are assigned to the table
corresponding to the highest persistent subclass

partimentoinformatica
a degli Studi dell'Aquila

Universita

package Data| Company Sampleu

Person

-name : String
-surname : String
-age : int
-inLoveWith : String

[A)

Employed

EMF tree representation

T

Director
-department : String

T

President (P)

Employer (P)

-company : String
-socialNumber * : String

¥ < Model Company Sample
¥ <4 Class Person
<> Attribute name
<> Attribute surname
<> Attribute age
< Attribute inLoveWith
¥ 4 Class Employer
<> Attribute company
<> Attribute socialNumber
4 Class Employee
¥ < Class Director
< Attribute department
<4 Class President
4 Association Employed

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

UML Sample Model

Object Diagram Data[[z Company Sampleu

surname : Column

company : Column EMF tree representation
name : Column

¢ Schema Company Sample
Ii‘ age : Column ¥ 4 Table Employer
4 Column socialNumber
4 Column company
4 Column name
FK socialNumber 4 Column surname
4 Column age
4 Column inLoveWith
¥V <4 Table President
4 Column FK_socialNumber
4 Column department
4 Column name
4 Column surname

4 Column age
President : Table age : Column 4 Column inLoveWith

socialNumber : PKey

Employer : Table

inLoveWith : Column

RDBMS Sample Model

Company Sample : Schema

surname : Column

name : Column

inLoveWith : Column

department : Column

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

What is ATL?

ATL is a hybrid model transformation language

It permits to generate a (fixed) number of target
models starting from a (fixed) number of source
models — no non-determinism!

An ATL transformation program is composed of rules
that define how source model elements are matched
and navigated to create and initialize the elements of
the target models

the creation is implicit as rules are triggered by the matches
the initialization is explicit and defined within the rules

The structure of a program

Module <name>;

create {<targetModel>: <targetMM>} from {<sourceModel>: <sourceMM>};

{<helper definition>}
{<lazy rules>}

{<matched rules>}

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Matched rules

A matched rule specifies the way target model elements
must be generated from source model elements, ie

which source model element(s) must be matched,

the number and the type of the generated target model
element(s), and

the way these target model element(s) must be initialized from
the matched source element(s)

A matched rule is invoked implicitly

rule Model2Schema {

from s:UML!Model

to t:RDBMS!Schema (
name <- s.name,
tables <- s.classes

)

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Matched rules

A matched rule specifies the way target model elements
must be generated from source model elements, ie

which source model element(s) must be matched,

the number and the type of the generated target model
element(s), and

the way these target model element(s) must be initialized from
urce element(s)

rule name

A s invoked implicitly

\/

rule Model2Schema {

from s:UML!Model

to t:RDBMS!Schema (
name <- s.name,
tables <- s.classes

)

Universita degli Studi dell'’Aquila

ﬁ partimentoinformatica

Matched rules

A matched rule specifies the way target model elements
must be generated from source model elements, ie

which source model element(s) must be matched,

the number and the type of the generated target model
element(s), and

the way these target model element(s) must be initialized from
the matched source element(s)

rule Model2Schema {

A matched rule iin.mLon.ed_i.m.n.Li.Li.Lh/
wthe source model |

from s:UML!Model

to t:RDBMS!Schema (
name <- s.name,
tables <- s.classes

)

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Matched rules

A matched rule specifies the way target model elements
must be generated from source model elements, ie

which source model element(s) must be matched,

the number and the type of the generated target model
element(s), and

the way these target model element(s) must be initialized from
the matched source element(s)

A matched rule is invoked implicitly

I I
rule Model2Schema { Target element to be created
from s:UML!Model
to t:RDBMS!Schema

name <- s.name,
tables <- s.classes

)

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Matched rules

A matched rule specifies the way target model elements
must be generated from source model elements, ie

which source model element(s) must be matched,

the number and the type of the generated target model
element(s), and

the way these target model element(s) must be initialized from
the matched source element(s)

A matched rule is invoked implicitly

rule Model2Schema {

from s:UML!Model initialization
to t:RDBMS!Schema (
name <- s.name,
tables <- s.classes

)

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Additional ingredients

Besides matched rules ATL provides

lazy rules: similar to matched rules but do not perform
implicit matching, thus they have to be explicitly invoked

helpers: computational “read-only” units which are used
when the structure of computation does not align to the
metamodel structure, eg. transitive closures, exceptions,
etc.

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Some considerations

Model transformations are at the core of MDE
A partial list of the difficulties

scalability, transformations do not scale well
reuse is not easy, but we are witnessing an old ideas rentrée

the way a transformation is decomposed is driven by the
metamodel structure/granularity

a complete alignment between metamodel and transformation
structure is limited to trivial cases

agility, EMF conformance relies on the Java strong typing

a killer app is missing, ATL is an academic product used by
industry

etc.

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

Eclipse EMF workspace

The workspace of the demonstration with

Metamodels
UML.ecore
RDBMS.ecore

Models

Model UML.xmi
DEMO_Model _UML.xmi (the one used during the demo)
Model RDBMS.xmi

Transformation
DEMO_UML2RDBMS.atl (the one build during the demo)
UML2RDBMS.atl

can be downloaded from
http://bit.ly/KCYe20

ﬁ partimentoinformatica
o

niversita degli Studi dell'Aquila

Transformations

> Introduction
> Why Model Transformation languages ?
> Dimensions and Classification

A demonstration of ATL

> Objectives
> Metamodels
- Live Demonstration

Bidirectional Transformation for Change Propagation

Summary

> Problem

> Requirements

- Janus Transformation Language

- Change Propagation and non-determinism

Higher-Order Transformations for Automating Co-evolution

- Evolution in MDE

> Metamodel Changes Classification
> Metamodel Differences

> Automated Adaptation

Universita degli Studi dell’Aquila

ﬁ partimentoinformatica

BIDIRECTIONALITY AND CHANGE PROPAGATION

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Problem

It is possible to back propagate manual changes
operated on the outcome of a transformation ?

¥ <> Schema Company Sample ¥ <> Schema Company Sample

¥V <4 Table Employer ¥ <4 Table Employer
4 Column socialNumber < Column socialNumber
4 Column company < Column company
4 Column name manual changes 4 Column name
4 Column surname 3 4 Column surname
4 Column age 4 Column age
4 Column inLoveWith 4 Column inLoveWith

¥ <4 Table President v < Table President _
4 Column FK_socialNumber A Cotmn FK_socialNamiber
4 Column de;artment 4 Column department
4 Column name 4 Column name

4 Column surname
4 Column surname 4 Column age

< Column age 4 Column inLoveWith
4 Column inLoveWith &

ﬁipartimentoi nformatica

Universita degli Studi dell'’Aquila

Raising the level of
abstraction

Reverse
engineering

NB: Slide idea borrowed from an itemis AG presentation

artimentoinformatica
(Th a n kS B ra n !) ﬁip Universita degli Studi dell'Aquila

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Problem

It is possible to back propagate manual changes
operated on the outcome of a transformation ?

¥ <> Schema Company Sample ¥ <> Schema Company Sample

¥V <4 Table Employer ¥ <4 Table Employer
4 Column socialNumber < Column socialNumber
4 Column company < Column company
4 Column name manual changes 4 Column name
4 Column surname 3 4 Column surname
4 Column age 4 Column age
4 Column inLoveWith 4 Column inLoveWith

¥ <4 Table President v < Table President _
4 Column FK_socialNumber A Cotmn FK_socialNamiber
4 Column de;artment 4 Column department
4 Column name 4 Column name

4 Column surname
4 Column surname 4 Column age

< Column age 4 Column inLoveWith
4 Column inLoveWith &

ﬁipartimentoi nformatica

Universita degli Studi dell'’Aquila

package Data| Company Sampleu

Person

-name : String
-surname : String
-age : int
-inLoveWith : String

Employee

Director
-department : String

President (P)

Employer (P)

-company : String

-socialNumber * : String

partimentoinformatica

Universita degli Studi dell'’Aquila

package Data| Company Sampleu

Person

-name : String
-surname : String
-age : int
-inLoveWith : String

Director
-department : String

President (P)

Employer (P)

-company : String
-socialNumber * : String

Non determinism,
multiplicity

More than one valid model

Universita degli Studi dell'’Aquila

ﬁ partimentoinformatica

Bidirectionality and Change Propagation

The relevance of bidirectionality in model
transformations has been advocated already in 2005 by
OMG by including a bidirectional language in QVT

Bidirectional transformations are useful for maintaining
the consistency of two (or more) related sources of
information

Transformations may be non-bijective: given a source model,
there could be more than one target model which correctly

related to the source

Transformations may be not total: only the relevant concepts
of the source models are mapped toward the corresponding
target elements

Bidirectionality and Change Propagation

MMg MM’s

The designer may need to manually modify the generated model to resolve
unforeseen requirements or limited expressiveness of the source metamodel

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

source ta rget
. Install Software
InstBaeIIg;;:ion Startinstall()

[Install](_[Ask insl.alling] ? Out of memory()
questions I

Disk error() . 1
Out of memory() Begm. Start install() Install Disk error() Disk Error Memory low
Installation software
[alternative
[Disk Error \ / Memory Low

= stop)
Entry H FixdiiSk] [Entry ShC;‘:;llll;E;:D"] [alternative = continue]
P o] _/\
1 The designer performs some
manual changes on the Non-hierarchical state machine
generated model obtained by flattening the source
model

Out of memory() A, [alternative = stop]

Start Install) Install ! Disk Error Memory low
) shield [Start install() software Disk error()
[m =500] A:! (alternative

= stop|

[alternative = try again]

[alternative = continue, ¢ = 200] Ag

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

source target

/ Install Software

Out of memory()

Stopl)

T ? T~
‘ .\' Begin | feeatiy (Install]m (Disk Error w (M eeeee low

Problem

How to back propagate the manual changes on the
target model towards the source models according to
the knowledge encoded in T?

What about non-bijectivity?

software

[m=500] Ag

partimentoinformatica

Universita degli Studi dell'Aquila

The HSM and NHSM are non isomorphic metamodels,
thus when back propagating changes on the target

Change Propagation

there are two alternatives

- human-out-of-the-loop metamodel are artificially made
isomorphic by programmatically selecting one and only one
model

> human-in-the-loop all the solutions are computed and the
designer select one (or more) of them by inspection

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Requirements for bidirectional transformations

A non-bijective bidirectional transformation R between M and N, and M
more expressive than N, is characterized by

_+

R:Mx N — N

R:Mx N = m*

where R takes a pair otnodels (m, n) and works out how to modify n 50 as to
enforce the relation R. R propagates changes in the opposite direction: Ris a

non-bijective function able to map the target model in a set of corresponding
source models conforming to M

Reachability

<ﬁ(m, n’) =m* &€ M*

_9

R(m’, n’) =n" &N for each m’ € m*

Choice preservation

<~ >
R(m’,R(m’,n’)) = m’ for each m’ € m*

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

source target
' f Install Software

Ask installing
Install N
[questions ? Out of memory()

Stopl)

Out of memory() . :
Begln_ Start install() Install Disk error{) Disk Error Memory low
Installation software
[alternative

Modifications on the target are = sop
back propagated to the source

which is consistently updated _/\

making use of tracing information

_7

[alternative = continue]

The JTL transformation
generates a non-hierarchical
state machine by flattening the
source model

, \\\
[Install](—{Asklnst‘alllng]
questions
% Out of mewlemative < stop]

e ! Out of memory() \N\,
(Disk Error | Nr) \ S(art install() s;?:;aW[Disk Error J [Memory low
: ro (m=5Q AG (alternative
| = [l
|
sfteTnative = continue, ¢ = |@

= stop]

Entry Fix disk
do

Show question Ask /confirm : Ask /confirm
dialog do action H action

Show question
dialog do

lalternative = try again]

/

(alternative = stop] alternative = continue|
N L !

UJ
[alternative = stop] S

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Janus Transformation Language (JTL)

JTL is a bidirectional model transformation language
capable of computing all the possible solutions at once

It has formal semantics based on Answer Set Programming
and therefore can be considered a constraint-based
approach

It back propagates changes occurring on a target model to
the corresponding source ones by giving tracing
information a first-class status

JTLis embedded in a framework available on the Eclipse
platform and can be applied to Ecore meta/models

JTL Environment

ITL Metamodel

Semantic

mapping

N\

JTL Model

N
map

ATL
Virtual Machine

JTL Program

4

serialize

ASP Semantic
Metamodel

\

c2

ASP Semantc
Model

map

_deserialize

™~

MM

source

serialize

M

source

serialize

DLV
Solver

JTL
engine

forward

backward

J

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

JTL Engine

Declarative and relational engine for bidirectional model
transformation based on Answer Set Programming (ASP)

Answer Set Programming:

declarative paradigm of logic programming that uses logic and
proof procedures to define and resolve problems

based on the stable model (answer set) semantics of logic
programming and on the first-order logic

able to dealing with non-deterministic derivations which represent
alternative solutions to a given problem

Each mapping can be read as a transformation in either
direction

Approximation of the ideal model, from which the
modified one can be generated, with respect to the
available transformations and metamodels

ﬁipa rtimentoinformatica
Universita degli Studi dell'Aquila

JTL Engine

Source Metamodel
MM,

N

Target Metamodel
MM,

N

Source Metamodel
Encoding

Source Model
Encoding

Model Transformation
Specification

relations

constraints

Execution Engine

bidirectional rules

Target Metamodel
Encoding

Target Model(s)
Encoding

{}

Source Model
MS

DLV System

~

Target Model
MT

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Models and metamodels encodings

The metamodel encoding is based on
a set of terms each characterized by
the predicate symbols metanode,
metaedge, and metaprop

Begin
Installation

W Start install()

Install Software

)

—7

metanode (HSM, state).

metanode (HSM, compositeState).

metanode (HSM, transition).

metaprop (HSM, name, compositeState).

metaedge (HSM, association, source,
metaedge (HSM, association, target,

(
(
(
metaprop (HSM, name, state).
(
(
(

node (HSM, "sl1", state).
node (HSM, "s2", state).
node (HSM, "tl1l", transition).
prop (HSM, "sl1.1", "sl1l", name,
prop (HSM, "s2.1", "s2", name,
(
(
(
(

prop (HSM, "tl1.1", "tl", trigger,
prop (HSM, "tl1.2", "tl", effect,

edge (HSM, "trl", association,
edge (HSM, "trl", association,

>

\C

transition, state).
transition, state).

"begin installation").
"install software").

source,
target,

"Sl",
"82",

"install software").
"start install").

"tl") .
"tl") .

Models are sets of
entities (predicate
symbol node), each
characterized by
properties (prop) and
related together by
relations (edge).

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Model Transformation Execution

After the encoding phase, the deduction of the target
model is performed according to the model transformation

rules defined in the ASP program
ASP model transformations are specified by means of:

- Relations which describe correspondences among element types of
the source and target metamodels

> Constraints which specify restrictions on the given relations that
must be satisfied in order to execute the corresponding mappings

The transformation process logically consists of the
following steps:

> given the input (meta)models, the execution engine induces all the
possible solution candidates according to the specified relations

> the set of candidates is refined by means of constraints

ﬁipa rtimentoinformatica
Universita degli Studi dell'Aquila

Model Transformation Execution

relation (“'rl”,HSM, state) . “r1”relates the
relation (“rl1”,NHSM, state) . metaclasses State
:— node (HSM, ID, state), not edge (HSM, IDe, owningCompositeState, ID, IDc) and State.
not node’ (NHSM, ID, state) . Each time a state
node (HSM, ID, state), edge (HSM, IDe, owningCompositeState, ID,IDc), | occursinthe HSM
J 4
node (HSM, IDc, compositeState), node’ (NHSM, ID, state)l . “r 1" Padedsthee
node (NHSM, ID, state), not trace node (HSM, ID, compositeState), metSelEEses
not node’ (HSM, ID, state) .)
: Conp6site state
node (NHSM, ID, state), trace_node (HSM,IDc,compositeState),

node’ (HSM, ID, state) . :irrfes;ca(:rfi)aocsr;te

state oceursin-the
HSM ot eld
correspondent/state! s

relation (“r2”,HSM, compositeState) .
relation (“r2”,NHSM, state) .
:— node (HSM, ID, compositeState), not node’ (NHSM, ID, state) .
:~ node (NHSM, ID, state), trace_node (HSM, ID, compositeState), in the NHSM model
not node’ (HSM, ID,compositeState). is genérated, and
vice-versa:

/ Install Software \
Begin Start install() Begin Start install() Install

Installation |——> Installation Software

Install Ask installing

\ questions /

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Execution Engine

The specified transformations are executed by a generic
bidirectional engine consisting of ASP transformation rules

Transformation rules may produce more than one target
models, which are all the possible combinations of
elements that the program is able to create

The invertibility of transformations is obtained by means
of trace information that connects source and target
elements

> during the transformation process, the relationships between models
that are created by the transformation executions can be stored to
preserve mapping information in a persistent way

> all the source elements lost during the forward transformation
execution (for example, due to the different expressive power of the
metamodels) are stored in order to be generated again in the
backward transformation execution.

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Execution Engine

is_source_metamodel conform (MM, ID,MC) :- node (MM, ID,MC), node (MM,MC) .
bad source :- node (MM, ID,MC), not is source metamodel conform(MM,ID,MC).

mapping (MM, ID,MC) :- relation(R,MM,MC), relation (R,MM2,MC2),
node (MM2, ID,MC2), MM!=MM2.

is_target metamodel conform(MM,MC) :- metanode (MM,MC) .

{is_generable (MM, ID,MC) } :- not bad source, mapping (MM, ID,MC),
is target metamodel conform(MM,MC), MM=mmt.

node’ (MM, ID,MC) :- is generable (MM, ID,MC), mapping (MM, ID,MC), MM=mmt.

—

Target elements (node’) are created if the following conditions are

satisfied:

— The considered element is declared in the input source model

— at least a relation exists between a source element and the
candidate target element;

— the candidate target element conforms to the target metamodel,;

— finally, any constraint defined in the relations is violated.

ﬁipartlmentomformatlca

sita degli Studi dell’Aquila

source

/ Install Software

Start Install

Start install()
shield

RREht

[Install HAsk |nst‘alllng]
questions
\] ? Out of mem@temative = stop)

T

Out of memory()
Install

Nry Low \ (alternative

= stop]

[Disk Error
Entry Fix disk
do

Show question Ask /confirm
dialog do action

Show question
dialog do

... [alternative = tryagain] X

Ask /confirm
action

/

[alternative = stop] alternative = continue;
N L !

J
[alternative = stop] S

partimentoinformatica

Universita degli Studi dell’Aquila

source target

/ Install Software

startinstall | gt install()

[Install HAskmst‘allmg]
questions
% Out of memory() A, terative = stop)

T

Install i
Start install() i Disk Error Memory low

Nry Low \ (alternative
= stop]

Show question ey,
o] (altebriatie = try again] A

dialog do
ernative = continue, ¢ = o@

Out of memory()

stryagainl X -

[Disk Error
Entry Fix disk
do

Show question Ask /confirm : Ask /confirm
dialog do action H action

[alternative

S/

[alternative = stop] alternative = continue;
N L !

J
[alternative = stop] S

Only the information encoded
in the transformation is used

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

source target

/ Install Software

Install Ask installing
questions
\ / ? Out of memory() Aq ternative = stop]

Out of memory()

\ ‘“ S T,'In;;a” Start install() schf‘tsvtva" Disk error() Disk Error Memory low
el
er Low [m =500] Ag [alternative
N
(alts evrratile = try again|

[Disk Error
= stop]
[Show question]

Entry Fix disk
do | dialog do A
E =tte nalnve:cunlinue,t:l
[Show question t Ask /confirm : Ask /confirm

dialog do action H action

lalternative = try again]

/

[alternative = stop] alternative = continue;
N L !

- J
[alternative = stop] S

The answer set is filtered
according to the constraints
induced by the source
metamodel

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

source target

/ Install Software

, \\\
[Install HAsk |nst‘alllng]
questions

\ / ? Out of memory() ternative = stop]

i rr \N\,
Out of memory()
£ o, ° ’;,'”l;‘a” Start install() Stl’rf‘::va" piskerror() | Disk Error Memory low
: ie
[Disk Error : er Low \ (m=5Q0) AG (alternative
=¥
Entry Fix disk [al(e= try again]
do
att€Tnative = continue, ¢ = 200

[Show question Ask /confirm : Ask /confirm

Show question
dialog do

lalternative = try again] X

dialog do action H action

/

[alternative = stop] alternative = continue;
N L !

- J
[alternative = stop] S

The answer set is further
reduced by considering the
constraints induced by the
tracing information

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

source target

/ Install Software

startinstall | gt install()

3
[Install HAsklnst‘allmg]
questions
? Out of memory() Aq ternative = stop]

Out of memory() \N\I
g/ Srtinstall oo install) Instal piskerror() | Disk Error Memory low
hield softw.

NFV Low \ [m=500] AG (alternative
N =stop]
Show question ey, R
dialog do] (altebrative = try again] A

aite nalnve:cunlinue,t:z

tryagainl X .

[Disk Error
Entry Fix disk
do

Show question Ask /confirm : Ask /confirm
dialog do action H action

[alternative

/

[alternative = stop] alternative = continue;
N L !

- J
[alternative = stop] S

Additional user-defined
constraints can be added to
browse the space of solutions

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Theorem (compositionality)

——

T
M1 > <M2,/.T>

e

T

v
(M,” ... M.’} . M,’

T ﬁ+ﬂj
)

M ..M 'm<n | (T+T) =T ;T

ITL Metamodel

JTL Environment

/]

Semantic
mapping

N\

ASP Semantic
Metamodel

JTL Model

N
map

ATL
Virtual Machine

c2

ASP Semantc
Model

JTL Program

serialize _

_deserialize

™~

MM

source

M

source

serialize

=

map

serialize

)
7

DLV
Solver

JTL
engine

forward

backward

J

partimentoinformatica

Universita degli Studi dell'’Aquila

Specifying transformation with Janus

JTL provides support for specifying transformations by
means of a QVT-R like syntax

Relational model transformations in JTL can be
applied on Ecore models and metamodels.

JTL has been given formal semantics through a
semantic anchoring towards ASP

The constraint based nature of the JTL semantics
permits further refinements of the solution space.

ﬁipartimen

Specifying transformation with Janus

Fragment of the HSM2NHSM transformation
specified in JTL.

It transforms hierarchical state machines into
flat state machines and the other way round.

~N—

The forward
transformation hsmZ2nhsm(source : HSM, target : NHSM) ({ . .
top relation StateMachine2StateMachine { transformation is Clearly
enforce domain source sSM : HSM::StateMachine; non-injective as many
enforce domain target tSM : NHSM::StateMachine;
}

different hierarchical
machines can be

top relation State2State { flattened to the same
enforce domain source sourceState : HSM::State;
enforce domain target targetState : NHSM::State; model and Consequently
when { transforming

sourceState.owningCompositeState.oclIsUndefined() ; back a modified flat

}
} machine can give place

, , to more than one
top relation CompositeStateZ2State { . . .
enforce domain source sourceState : HSM::CompositeState; hierarchical machine.
enforce domain target targetState : NHSM::State;

}

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

ITL Metamodel

JTL Environment

Semantic
mapping

N\

ASP Semantic
Metamodel

JTL Model

N
map

ATL
Virtual Machine

\

c2

ASP Semantc
Model

JTL Program

4

serialize _

_deserialize

"~

MM

source

M

source

serialize

7

map

serialize

)
7

DLV
Solver

JTL
engine

forward

backward

J

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Only super states are

~ - mapped. Sub states
& platform: /resource/StateMachlneCaseStudy/models/sampleHSM xm 4 platform:/resource/StateMachineCa)
4~ State Machine . = =y < State Machine are not mapped in the

4 State Begin Installation < - = =~y < State Begin Installation ﬂat‘[‘en model: they
< Irtntlal Statefn!t 3 -—-lr Il‘?ltla| State |-n!t are preserved by trace
<4 Final State finish === = === o= @ 4 Final State finish . .
<4 Composite State Install Software < ====F 4 Statelnstall Software /nformat'lon
< State Entry e == e ¢ State Disk Error
< State Ask installing questions -~ ~=3 < State Memory Low
<4 State Install 3 == w3 4 Transition init In the HSM model the
<4 Composite State Disk Error & & 0 - === 4 Transition StartInstall() transition Stop() starts
< State Fix disk do P P " === & Transition install/end f th bstat
< State Entry - ———3 <4 Transition DiskError() rom e .SU sta) e
4 State Ask/confirm action ; ? P s e === < Transition Stop() Ask/conﬁrm action,
<4 State Show question dialog do - S 2 ’,- b === 4 Transition OutOfMemory() wh|Ie in the NHSM
<4 Composite State Memory Low x ’ - —==-% 4 Transition [alternative=continue] d | th
< State Entry g F /’ ¥ === =3 & Transition [alternative=stop] ;no etl t es:-a rgEt tart
e ransition >to starts
4 :tate Show qufestlon dialog dlq i B Properties X p() :
< State Ask/confirm action / B o - from the state DISk
<4 Transition init < Property
error

<4 Transition Startlnstall() 4 = == /’," Cost

< Transition entry/ask P f Effect

<4 Transition ask/install , K Owning State Machine
< Transition install/end« - P Source

< Transition DiskError() <€ —¢ Target .
< Transition entry/fix Trigger Stop() ;!
4 Transition fix/question / =|_'—=
< Transition question/ask '.r' 3
< Transition Stop() % —— -~ -
< Transition QutOfMemory() ¢ Property Value

< Transition entry/question f Effect = Stop()

<> Transition question/ask Source *= State Ask/confirm action
< Transition [alternative=continue] ¥ ’, Target "= Final State finish

< Transition [alternative=stop] # - —— 4 Trigger ‘= Stop()

4 sampleHSM.xmi £2 & sampleNHSMaxmi 52

JTL in practice

=
c
m

=

=

=
o
©
o

=

i i n'lﬁ il o
l/\ l/'l

tate Machine
tate Disk Error & = = =
Final State finish # = = == ==

=

=

£ Properties &2

L S O

R o o o -

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

& sampleNHSM' xmi 52 4 sampleHSM'_1/2/3/4.xmi 2 olm!
& platform:/resource/StateMachineCaseStudy/models/sampleNHSM' xm & platform:/resource/StateMachineCas:
& State Machine ==» 4 State Machine The target is manually
<4 State Start Install Shield —==» 4 State Start Install Shield . g .
< Initial State init < —==%» < Initial State init mOdIﬁed by the fOIIOWIng
<4 Final State finish —=—=—3 4 Final State finish ChangeS:
4 StateInstall Software . L.
4 State Disk Error (1) renaming the initial state
4 State Memory Low € . .
24 from Begin Installation to

< Transition init -
<4 Transition Startnstall() < ~~)¢ Composite Start Insta// Shle/d,

< Transition finish -« < State Fix disk . .

4 Transition DiskError) ¢, 4 State Entry (2) adding the alternative try

< Transition [alternative=stop] 5 <4 State Ask/confirm action . .
<4 Transition [alternative=try again] - < State Show question dialog agaln to the state DISk Error
4 Transition OutOfMemory() _ : % i <4 Composite State Memory Low +A lnctall

< Transition [alternative=continue] < State Entry
< Transition [alternative=stop] x < State Show question dialog Several source mOdEI are

T CREAGAS oM. 4 State Ask/confirm action generated. The change (1) has
I - - = TR < e ‘-A¢ Transition init

| Property Value s 4 Transition Startinstallg been propagated renaming the
Mem Requirement =500 < Transition entry/ask state to Start Install shield: the
’

Name = Install Software <4 Transition ask/install

Owning State Machine "= State Machine <4 Transition install/end Change (2) gives place to a
< Transition DiskError()
4 Transition entry/fix non_b”ecnve mapping and for

<4 Transition fix/question thls reason more
< Transition question/ask .
than one model is generated.
The new transition can be
<4 Transition entry/question eq Ua”y ta rgeted

<4 Transition question/ask

- = o 4 Transition [alternative=continue] tO eaCh one Of the nested

o
| Reopedty Valie T = <4 Transition [alternative=stop] . £
Effect i=[alternative=try again] states; ﬁna”y, the Change

\ Source I= State Ask/confirm action (3) iS out Of the domain Of the
I Target U= State Ask installing questions
I Trigger "= [alternative=try again] | tra nSformaﬁon. In thIS case,
‘ 1 Properties 3] sampleHSM'_ﬁi.xmiﬂ:_ | Properties 3 the new values for memory
‘ Property Value | Property Value

Effect I=[alternative=try again] | Effect !=[alternative=try again] an d cost are not pro pagated

Source = State Ask/confirm action Source = State Ask/confirm action on th e ge ne rated source
\ Target = State Entry Target "= Composite State Install Sof

I Trigger "= [alternative=try again] Trigger = [alternative=try again] 1 m Od EIS .

JTL in practice

| =l Properties X g ;ampIeHSM'_Z.xmi
1 Property Value

1

1

1

1

1

I 1
I Effect =[alternative=try again] 1
1 Source = State Ask/confirm action :
‘ Target = State Install :
I ~ Trigger _ "= [alternative=try again] :
I

1

| = Properties i3 sampleHSM'_3.xmi

ﬁipartimentoinformatica

Universita degli Studi dell'Aquila

Non bijectivity

Non bijectivity is difficult to be handled, the two
approaches

human-out-of-the-loop
human-in-the-loop

are both needed in

synchronization
consistency management and change propagation

respectively

Difficulties with JTL

JTL is very versatile in its application spectrum, it can
be used in both cases, it all depends on the amount of
constraints the implementor provides

Visualization of multiple models is critical, if the
designer needs to inspect them

an intentional definition of the solutions is necessary, eg.
variability modeling

the overlapping parts can be easily factorized by providing
the right constraints without or with little computational
overhead

Transformations

> Introduction
> Why Model Transformation languages ?
> Dimensions and Classification

A demonstration of ATL

> Objectives
> Metamodels
- Live Demonstration

Bidirectional Transformation for Change Propagation

Summary

> Problem

> Requirements

- Janus Transformation Language

- Change Propagation and non-determinism

Higher-Order Transformations for Automating Co-evolution

- Evolution in MDE

> Metamodel Changes Classification
> Metamodel Differences

> Automated Adaptation

Universita degli Studi dell’Aquila

ﬁ partimentoinformatica

HIGHER ORDER TRANSFORMATION FOR AUTOMATING CO-EVOLUTION

Modeling Ecosystem

Metamodels are a pivotal component of MDE

=73 Domain Metamodel .
Lo dep. i
r \
\
\ Artifacts
dep. dep.]
! dep.

Editors

Transformations

Each time a metamodel undergoes modifications, a
number of components might be not valid any longer

Understanding the rationale of the changes to
automatically derive transformations for adapting the
artifacts

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

Modeling Ecosystem

Metamodels are a pivotal component of MDE

=73 Domain Metamodel .
Lo dep. i
r \
\
\ Artifacts
dep. dep.]
! dep.

Editors

Transformations

Each time a metamodel undergoes modifications, a
number of components might be not valid any longer

Understanding the rationale of the changes to
automatically derive transformations for adapting the
artifacts

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

conformsTo

[Source Metamodel }(;

\

conformsTo

basedOn

[Source Model 1

Co-evolution

conformsTo conformsTo

Transformation } —)[Target Metamodel }
Language

N

conformsTo basedOn conformsTo

4[Transformation Rules]7 [Target Model }

\

executed

\(Transformation W

'L Engine J

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Co-evolution

conformsTo conformsTo conformsTo

[Source Metamodel Transformation } 4{ Target Metamodel }
Language

\ N

conformsTo basedO, conformsTo basedOn conformsTo

[Source Model 1 Transformation Rules]7 [Target Model }

\

executed

\(Transformation W

'L Engine J

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Co-evolution

Relfat.lo'ns Changelmpactw >(Adaptation
definition detection J L

Relations definition. The relation between the various
artifacts and the metamodel must be identified

Change impact detection. In this step the relationships
defined in step 1 can be considered in order to assess the
impact on the related artifacts of the changes made in the
domain metamodel.

Adaptation. In this step the developer apply some
adaptation actions on the (corrupted) artifacts. Model
Transformations are used here.

Metamodel/model co-evolution

A metamodel can undergo a number of different kinds
of modifications which are classified in

Non-breaking
Breaking

The breaking modifications can be divided into

Breaking and resolvable: existing instances need to be co-
adapted to conform to the new metamodel version. The co-
evolution can be automatically operated

Breaking and unresolvable: the necessary co-adaptation of
existing models can not be automatically computed due to
the need of further information

» A metamodel can undergo a number of different kinds
of modifications which are classified in
— Non-breaking
— Breaking

» The breaking modifications can be divided into

— Breaking and resolvable: existing instances need to be co-
adapted to conform to the new metamodel version. The co-
evolution can be automatically operated

— Breaking and unresolvable: the necessary co-adaptation of
existing models can not be automatically computed due to the
need of further information

Non-breaking

Breaking and resolvable

Breaking and unresolvable

Generalize metaproperty
Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

Extract (abstract) superclass
Eliminate metaclass
Eliminate metaproperty
Push metaproperty

Flatten hierarchy

Rename metaelement
Move metaproperty
Extract/inline metaclass

Add obligatory metaclass

Add obligatory metaproperty
Pull metaproperty

Restrict metaproperty

Extract (non-abstract) superclass

ﬁipartimentoinformatica

Universita degli Studi dell'Aquila

Metamodel changes classification

Transition

+src_ +out

1 0.*

Transition

+src_ +out

Arc

+yveight : int

——

1 0.*

+dst

1.2

1

Transition

Petrilet

partimentoinformatica

Universita degli Studi dell'Aquila

Sample Petri Net metamodel changes

Transition

+out

+SrCr)

1=

+3IC

+out

Arc

+yveight : int

——

1

+dst

0.*

1.2

1

+out

1

+SrC

Transition

Petrilet

1.2

1

Breaking and resolvable
changes
(extract meta-class)

partimentoinformatica

Universita degli Studi dell'Aquila

Sample Petri Net metamodel changes

Transition

Breaking and resolvable
changes
(extract meta-class)

+SrCr)

et metamodel changes

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Transition

Transition

+yveight : int

——

1.2

\

o

+in

N
N\
N

Transition

0.*

4

7
\N_—’

Petrilet

Breaking and
resolvable change

(Add obligatory

metaproperty)

partimentoinformatica

Universita degli Studi dell'Aquila

Sample Petri Net metamodel changes

weight=? weight=?

o 1w
S~_ .

tp2 pt2
weight=? weight=?

+yveight © int

ﬁL

1.*

\

Transition

+in

A
A)

\ U..*

4

S 7
S -~

Petriet

Breaking and
resolvable change

(Add obligatory

metaproperty)

ﬁ partimentoinformatica

Universita degli Studi dell’Aquila

Model difference representation

conformsTo

ModelElement

KM3
Metamodel updatedElement

TconformsTo

Difference

Metamodel I::) MM2MMD Metamodel
MM transformation (MMD)

7
conformsTo
Toonfo:msTo

Model 5\ Difference Model

detected in (MD)
IconformsTo

Real System

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Metamodel difference representation

conformsTo

KM3
Metamodel

[Y
conformsTo

|

Metamodel
MM

IconformsTo

Model

IconformsTo

MO

Real System

% Mtz
M,
n %

detected in

T T T

| [ModelElement
A

updatedElement

induces
Difference
Metamodel

(MMD)

Toonfo:msTo

Difference Model
(MD)

Since a metamodel is a model itself, metamodel
differences can be represented by exploiting the
previously mentioned approach

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

Sample metamodel difference

prsrc +out | PTAre i
1 0.*

Transition

superTypes

ﬁ c2: Class updatedBement | £€2 : ChangedClass
ac1 : AddedClass name ="PTArc" name ="PTArc"

isAbstract=true
name ="Arc"

c3: Class updatedBement | €€3 : ChangedClass

owner| [| name="TPArc" name ="TPArc"

superTypes

aal: AddedAttribute cd: Class
name = "weight" name ="Integer"

Arc

cc1 : ChangedClass updatedElement c1:Class

+yyeight ; int

. name ="net" name ="PetriNet'
- — , S Aqz (MMz — MM)
1

1 . Transition

Petrilet

ﬁipartimentoi nformatica

Universita degli Studi dell'’Aquila

—>

KM3
Metamodel

TconformsTo

MM1

-
I
|
I
|
I
|
|
|
|
I
I

conformsTo

KM3Diff
Metamodel

x

conformsTo |

|
|
A

7}
conformsTo :
|
1

M1

conformsTo

CTr

|
|
|
|

» M1

conformsTo |
|
|
]

CT-r M2

d) Model Co-evolution

“In realistic applications, the
modifications in A consist of an ‘
“arbitrary combination of the atomic
changes previously summarized |
In order to distinguish them the
following steps are performed:

automatic decomposition of A in two
disjoint (sub) models, A and A_,,
which denote breaking resolvable and
unresolvable changes;

if A, and A_; are parallel independent
then we separately generate the
corresponding co-evolutions;

if A, and A_, are parallel dependent,
they are further refined to identify
and isolate the interdependencies
causing the interferences

partimentoinformatica

Universita degli Studi dell’Aquila

Trancfarm

cr3 Chan jedReference [

e
i

lower=10 ‘

lower=10

atinnal.adaptation of models

cr4 ChangedReference

H

LpdatedElement

|13 : Reference |

lower=1
___ppwner._owner

\‘ c3:Class

owner| name = "Nnt‘

_‘ name = "Transition owner

L tye owner —lpe
\ c2: Class [~ owner | c1: Class

updatedElement

4: Reference

|0WEI’= 1

i
i owner
|

‘ name="Place" | “— Transition

owner,
type

type

l name = "dsl"

name ="src¢"

cr1 Change Reference |

updatedElement
| r1: Reference

updatedElement
| 12: Reference |

‘ name ="out'

Wpe ype

name = "PTArc"

\ ac1 AddedClass | Transition
isAbstract= false

" name="in"

+src +out

1 0.*

| . +out +src

ar2 AddedReference

e L owner owner

name= "dst"
isContainer = false

ar1: AddedReference B 1.# 1

name = "src"
isContainer = false

isOrdered = false
isUnique = false
lower=1
upper=1

isOrdered = false
isUnique = false
lower=1
upper=1

Universita degli Studi dell'’Aquila

ﬁ partimentoinformatica

Trancfarmatinnal adaptation of models

3 : ChangedRef: | erd: ChangedReference | g
e SoEs | Restrict metaproperty change

| .
{ lower=0 ’ ‘ lower=0 1

LpdatedElement updatedElement

r3: Reference r4: Reference]

lower= 1 lower=1 \

wner OWner |

owner

— T —type = — - [tpk
T T T ®iclss T T -—owner_ — ~ ¢:Class TClass

| name ="Transition" name ="Place" I Transition

|
|
|
: Extract metaclass changes
:
|
|
|

owner

owner
type type type

t
cr2 : ChangedReference | | er1: ChangedReference |
name = "dst' ’ \ name = "src"

updatedEIement updatedElement

r1: Reference r2: Reference }

name = "out' name ="in" \

type ype
ac1 : AddedClass +src +out Transition

> 1 0.*
isAbstract = false
name ="PTArc"

+out +src

ar2 : AddedReference ‘ar1 : AddedReference . 1.% 1
e e OWNET owner = :

name ="dst" name ="src"
isContainer = false isContainer= false
isOrdered = false isOrdered = false
isUnique = false isUnigque = false
lower=1 lower=1

ﬁipartimentoi nformatica

Universita degli Studi dell'’Aquila

c2:Class | T ¢1:Class
name = "Place" module H R;

create OUT : ATL from Delta : KM3Diff;

lTrnncfnrmahnnal adaptahnn ~Af rmaandale.

name ="Transition" ‘ owner

owner e
type type

r2 ChangedReference' r1 ChangedReference

‘ rule CreateRenaming {
| name = "dst" ‘ name = "src"

updatedElement updatedElement }
| r1: Reference | r2: Reference | rule CreateExtractMetaClass {

name ="out" name="in"

type ype
j ac1: AddedClass |

I |sAbstract:faIse |
name ="PTArc"

ar2 AddedReference | ~ | ar1: AddedReference |
DA - owner owner |———— -

name ="dst" name ="sr¢"
isContainer = false isContainer= false
isOrdered = false | isOrdered = false
isUnique = false isUnique = false
lower=1 lower=1

upper=1 upper=1

ﬁipartimentoi nformatica

Universita degli Studi dell'’Aquila

Trnncfnrmahnna'

c2:Class
name = "Transition"

owner

owner

cl: Cléss
‘ name ="Place"

type type
cr2: ChangedReference '

name ="dst"' l

updatedElement
r1: Reference

owner

type

module H R;

create OUT : ATL from Delta

cri: ChangedReference |
name="sr¢" |

updatedElement

12 : Reference

name ="out"

type

ype

name="in"

rule CreateRenaming {

}

rule CreateExtractMetaClass

KM3Diff;

\ ac1: AddedClass |
isAhstract= false

name ="PTArc"

ar2 AddedReference

name ="dst"
isContainer = false

owner

owner

name ="sr¢"
isContainer= false

isOrdered = false
isUnique = false
lower=1
upper=1

isOrdered = false
isUnique = false
lower=1
upper=1

;;1 :AddedReference“

module CTR;

create OUT : MM1 from IN :

rule createPTArc (s

{

OclAny,

}
rule createTPArc (s

{

OclAny,

: MMO;

n

n

ﬁipartimentoi nformatica

Universita degli Studi dell'’Aquila

ﬁ partimentoinformatica

Universita degli Studi dell'Aquila

Transformational adaptati~~ ~f m~d-~le-

|er3: Chang edReference crd: Chang edReference |

1 Iowpr- 0 Iowpr- 0

indmedElel11em [updatedElement 7

r3 Reference

Iowpr- 1 \ Iow~r- 1
| __pwner owner

- o | c3:Class | ‘AW R

owner, name ="Net' owner

AﬁR(O,l)

‘ r4 Reference

module H NR;
create OUT : ATL

from Delta : KM3Dif

rule CreateRestrictMetaproperty{

}

rule AddObligatoryMetaclass {

partimentoinformatica

Universita degli Studi dell'’Aquila

Transformational adaptati~= ~# =~d~le:

[cr3 : ChangedReference [r4 Chan edReference module H NR
‘ lower=0 ’ lower=0 1 create OUT
LpdatedElement 7 7 updatedElement

[r3: Reference]

’Iowpr 1
[7 c3: Class] ' }

owner‘ name ="Net" \ owner

e p—

module CTR;
create OUT : MMl from IN : MMO;

helper context MMZ!Net def:createPlacelnstances ()

if (thisModule.placelnstances < 1) then
thisModule.createPlace (self)
->asSequence ()

->union(self.createPlacelInstances())

Sequence {}

Sequence (MM2!Place) =

ATL from Delta : KM3Diff;

GTFEJ&E? rule CreateRestrictMetaproperty{

rule AddObligatoryMetaclass {

CT.,

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

Parallel dependent modifications

The automatic co-adaptation of models relies on the
parallel independence of breaking resolvable and
unresolvable modifications, or more formally

AR|A-R = AR;A-R +A-R;AR
where + denotes the non-deterministic choice

Unfortunately, the distinction between resolvable and
unresolvable changes is not always feasible because of
parallel dependent changes, i.e. situations where
multiple changes are mixed and interdependent one
another

Parallel dependent modifications

+SIC 0.* ==
Place 1 st Transition

+dst +SrC
T.F 0.*

Transition

Arc

+yveight : int

FAY

+src_ +out i

1 0.* 1.*

Transition

+cist
1

Petrilet

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

_Parallel dependent modifications

Transition

Transition

The differences between
MM2 and MMO are not
parallel independent
(although the sub steps
MMO-MM1 and MM1 -
MM_2 are directly
manageable)

The interdependencies
between the atomic changes
in MM2 - MIMO have to be
isolated (i.e. the attribute
weight of the Arc metaclass

partimentoinformatica

Universita degli Studi dell'’Aquila

Priorization of changes

The problem can be solved by sorting out those
modifications, say 0, which are interfering each other

A= (A’ R |A-R);

Moreover, 0 must be the smallest modification
conforming to the difference metamodel

The modification in 0 priorized according to a
dependency analysis whose outcome does not depend
on the metamodel but only on the meta-metamodel,
thus it is always possible

Transformations

> Introduction
> Why Model Transformation languages ?
> Dimensions and Classification

A demonstration of ATL

> Objectives
> Metamodels
- Live Demonstration

Bidirectional Transformation for Change Propagation

Summary

> Problem

> Requirements

- Janus Transformation Language

- Change Propagation and non-determinism

Higher-Order Transformations for Automating Co-evolution

- Evolution in MDE

> Metamodel Changes Classification
> Metamodel Differences

> Automated Adaptation

Universita degli Studi dell’Aquila

ﬁ partimentoinformatica

Conclusions

Whether MDE will miss the boat or will reach the
plateau of productivity very much depends also on the

effectiveness of model transformations

AVISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

-
”

ﬁipa rtimentoinformatica
Universita degli Studi dell'’Aquila

Conclusions

It is a critical mistake thinking model transformations
useful only for code generation like problems

There are plenty of projects
using model transformations
and general model management
in a productive and innovative
way

These applications can increase
of a key factor effectiveness or
even enlarge the application
spectrum

ﬁipartimentoinformatica
Universita degli Studi dell'Aquila

Current research directions

Reuse of Transformations

Generic Transformations
Model Typing

Verification and Testing of Transformation

See Antonio Vallecillo contribution on Saturday

Agility and Model Transformations

Test-driven development of transformations
Transformations by examples

Contact Information

Prof. Alfonso Pierantonio
Dipartimento di Informatica
Universita degli Studi dell’Aquila
I-67100 L’Aquila, Italy

alfonso.pierantonio@univaq.it
http://www.di.univag.it/alfonso

Research Interests: Coupled Evolution of Models, Tranformations and Tools,
Bidirectional Transformations, Model Versioning

ﬁ partimentoinformatica

Universita degli Studi dell'’Aquila

