
Formal Specification
and Testing of

Model Transformations

Manuel Wimmer, Loli Burgueño, Lars Hamann,
Martin Gogolla, Antonio Vallecillo,

Universidad de Málaga/Univertät Bremen
http://www.lcc.uma.es/~av

Introduction

Progress Bar

MDE

MDE is about formulating SE activities in terms of
Models and Model Transformations between them

Models describe different views of the (same) system,
at different levels of abstraction

Structural models, analysis models, behavioural models,
run-time models, …

Model Transformations describe the relationships
between these views

Refinement relations, development relations, abstraction
relations, mapping relations, …

3SFM 2012Formal Specification and Testing of Model Transformations

Model Transformation

A model transformation is
(1) The specification of the relationship between one set of
source models and one set of output models
(2) The process that generates such relationship

• Krzysztof Czarnecki, Simon Helsen: “Feature-based survey of model transformation
approaches”. IBM Systems Journal 45(3): 621-646 (2006)

• Davide di Ruscio, Romina Eramo, Alfonso Pierantonio: “Model Transformations”. Proc. of
SMF’12, LNCS 7320, 91-136, 2012.

SFM 2012Formal Specification and Testing of Model Transformations 4

Model Transformations

Although specified at a very high level of abstraction,
model transformations are becoming very complex
as the complexity of the relations they are able to describe
grows…

5SFM 2012Formal Specification and Testing of Model Transformations

Model Transformation Challenges

6SFM 2012Formal Specification and Testing of Model Transformations

Chains of Transformations
Consider the MDA scenario: CIM -> PIM -> PSM -> Code

Higher Order Transformations
Transformations may produce transformations that may
produce transformations …

Underspecified Metamodels
Consider the UML metamodel: many optional features, …

Complexity of Input Models
Large graphs, combinatorial explosion how to combine
model elements, …

No model transformation specifications exist
Is it possible to reuse an existing model transformation
for a given scenario?

7

Even very simple transformations may
not be that simple!

SFM 2012Formal Specification and Testing of Model Transformations

Example 1

Persons to Families

8SFM 2012Formal Specification and Testing of Model Transformations

Persons2Family Transformation in ATL

SFM 2012Formal Specification and Testing of Model Transformations 9

Persons2Family Transformation in ATL

10

This cannot be wrong!



SFM 2012Formal Specification and Testing of Model Transformations

Persons2Family Transformation in ATL

11

Have you tried this?

SFM 2012Formal Specification and Testing of Model Transformations

Not as easy as one might have thought

12

An internal error occurred during:
"Launching Persons2Families".

java.lang.ClassCastException:
org.eclipse.m2m.atl.engine.emfvm.lib.OclUndefined cannot be cast to
org.eclipse.m2m.atl.engine.emfvm.lib.HasFields

SFM 2012Formal Specification and Testing of Model Transformations

Example 2

Copy Transformation

13ECMFA 2011Formal Specification and Testing of Model Transformations

UniMM
Create a copy of a model
by using a model
transformation

Copy Transformation in ATL

module Copier;
create OUT : MM2 from IN : MM1;

rule Student {
from s1 : MM1!Student
to s2 : MM2!Student (

name <- u1.name
)

}

rule Teacher {
from t1 : MM1!Teacher
to t2 : MM2!Teacher (

name <- u1.name
)

}

rule Tutor {
from t1 : MM1!Tutor
to t2 : MM2!Tutor (

name <- u1.name
)

}

14SFM 2012Formal Specification and Testing of Model Transformations

It is so simple - this
cannot be wrong!

Let us try it out!

15SFM 2012Formal Specification and Testing of Model Transformations

S1: Student

name = Xavi

T1: Teacher

name = Alonso

S1: Student

name = Xavi

T1: Teacher

name = Alonso

Input Model

Output Model

Not as easy as one might have thought

16

An internal error occurred during: "Launching Copier".

org.eclipse.m2m.atl.engine.emfvm.VMException: Trying to
register several rules as default for element DynamicEObjectImpl@T2
(eClass: EClassImpl@1cebdb2a (name: Tutor) …) : Student and
Teacher

SFM 2012Formal Specification and Testing of Model Transformations

S1: Student

name = Xavi

T1: Teacher

name = Alonso

T2: TUTOR

name = Iniesta

Input Model

Example 3
Class Diagrams 2 Relations Transformation

17ECMFA 2011Formal Specification and Testing of Model Transformations

Class Diagram Relations

Reuse a transformation that implements the “One Table per
Class” strategy. But no other documentation is available…

Schema

Table
tables

*

Column
type : String

*columns

Package

classes
* attributes*

general

Attribute
type : String

Class
*

Class2Relations.atl
Source MM Target MM

Not as easy as one might have thought

18ECMFA 2011Formal Specification and Testing of Model Transformations

Input Model Output Model

Person

id : String
{size < 10}

Student

/id : String
{size < 7}

Person

id …

Student

id …id

It turns out that derived attributes are not properly
treated by the transformation, i.e., invalid target
models are produced

Specification and Testing of
Model Transformations

Some questions

What is testing?

What should be tested on a model transformation?

Should all properties to the tested treated equally?

Which are those properties?

Should we always aim for the best?

SFM 2012Formal Specification and Testing of Model Transformations 20

MT Testing Landscape

21Formal Specification and Testing of Model Transformations

Plethora of testing approaches for MTs ranging from
full verification to
lightweight certification

Two classification dimensions
Level on which they are defined

General ones are usable for all transformations
Specific ones have to be defined for each transformation

Related to syntax or semantics
“Syntactic” properties are checked on specifications

Conformance (G), Correct output models (S)

“Semantic” properties are checked on executions
E.g., Rule confluence (G), termination (G), preservation of some
properties (S), etc.

SFM 2012

General Transformation Properties

22SFM 2012Formal Specification and Testing of Model Transformations

TMM

MT Implementation

TM

ATL Metamodel

ATL Model

Ex(TM)

Syntactic
Properties

Semantic
Properties

SoM TaM

Ex(SoM) Ex(TaM)

Specific Transformation Properties

23SFM 2012Formal Specification and Testing of Model Transformations

TMM

MT Implementation

TM

Ex(TM)

Syntactic
Properties

Semantic
Properties

SoM TaM

Ex(SoM) Ex(TaM)

SMM

SM

Ex(SM)

describes >

< fulfills

MT Specification

Defining Specific, Syntactical Properties

24SFM 2012Formal Specification and Testing of Model Transformations

Model Level
Complete Models
Model Fragments

Metamodel Level
Graphical Constraint Languages
Textual Constraint Languages

Complete Models

Model Fragments

Model Level Specification

25SFM 2012Formal Specification and Testing of Model Transformations

Ex(TM)SoM TaM TaM=

Ex(TM)SoM TaM TaM

Expected
Target
Model

Actual
Target
Model

Expected
Target
Model

Actual
Target
Model

Pros: Modeling Languages are enough to specify test cases
Cons: Have to be defined for each new test source model

Graphical Constraint Languages

Textual Constraint Language

Metamodel Level Specification

26SFM 2012Formal Specification and Testing of Model Transformations

P(Mother2Female)
Families

m:Member fam:Family
mother

f:Female
firstName=X
lastName=Y

fullName=X.concat(“_”).concat(Y)

Persons

context MFDS inv Src_Trg_Mother2Female:
Female.allInstances−> forAll(f |

Family.allInstances−> exists (fam |
fam.mother.firstName.concat(’␣’).concat(fam.lastName)
= f.fullName

)
)

Specifying and Testing
Model Transformations:

The Tracts Approach

Motivation for Tracts

In general it is very difficult and expensive (time and
computational complexity-wise) to validate in full the
correctness of a model transformation (even the
simplest ones).

We propose a cost-effective MT testing approach based
on the concept of Tract, which is a generalization of the
concept of Model Transformation Contract.

28SFM 2012Formal Specification and Testing of Model Transformations

Contracts as Specifications

29SFM 2012Formal Specification and Testing of Model Transformations

Transformation
Implementation

Transformation
Specification

describesfulfills

Specification: A document that specifies, in a complete, precise, verifiable manner,
the requirements, design, behavior, or other characteristics of a system or
component… [IEEE Standard Computer Dictionary]

Implementation:
(1) The process of translating a design into hardware components, software
components, or both.
(2) The result of the process in (1)

[IEEE Standard Computer Dictionary]

What?

How?

vs.

Tracts

ATL, ETL, QVT-R,
QVT-O, RubyTL,

TGG, GT, …

Contracts as Filters

30SFM 2012Formal Specification and Testing of Model Transformations

Transformation
Implementation

Transformation
Specification

Valid?

Input Model Output Model

Contracts as Oracles

31SFM 2012Formal Specification and Testing of Model Transformations

Transformation
Implementation

Transformation
Specification

Valid?

Input Model Output Model

Contracts as Implementation

32SFM 2012Formal Specification and Testing of Model Transformations

Transformation
Implementation

Transformation
Specification

Input Model Output Model

T

Tracts

A Tract defines
a set of constraints on the source and target
metamodels,
a set of source-target constraints, and
a tract test suite (a collection of source models
satisfying the source constraints)

33SFM 2012Formal Specification and Testing of Model Transformations

34Formal Specification and Testing of Model Transformations

Set-Theory based View on Tracts

SFM 2012

35Formal Specification and Testing of Model Transformations

Set-Theory based View on Tracts

SFM 2012

The elements of a Tract

SFM 2012 36Formal Specification and Testing of Model Transformations

Black-box testing of MTs

For each tract
Input test suite models are automatically generated using
ASSL

Input models are transformed into output models by the
transformation under test

The results are checked with the USE tool against the
constraints defined for the transformation

Different tracts are defined for every transformation
Each one defines either a use case or a special condition
or a negative test case

37SFM 2012Formal Specification and Testing of Model Transformations

Source Metamodel: Family
Target Metamodel: Person

Tracts for the Families 2 Persons MT

SFM 2012Formal Specification and Testing of Model Transformations 38

Tract: Members only - interested in families consisting
only of members

Precondition

Test Source Model

Example of Tract: “Members only”

SFM 2012Formal Specification and Testing of Model Transformations 39

Example of Tract: “Members only”

SFM 2012 40Formal Specification and Testing of Model Transformations

Generation of source models is done by means of ASSL
(A Snapshot Sequence Language)

ASSL allows to generate Object Diagrams for Class
Diagrams

ASSL is an imperative programming language with
features for randomly choosing attribute values or
association ends

ASSL supports backtracking for finding object diagrams
with particular properties

ASSL Code for Input Model Generation

Example of Tract: “Members only”

SFM 2012Formal Specification and Testing of Model Transformations 41

Tract: Members only - interested in families consisting
only of members

Postcondition

Transformation Result

Example of Tract: “Members only”

SFM 2012Formal Specification and Testing of Model Transformations 42

Issue in Transformation

Example of Tract: “Members only”

SFM 2012Formal Specification and Testing of Model Transformations 43

Possible Solution: Stronger Precondition

Other Solutions?

Example of Tract: “Members only”

SFM 2012Formal Specification and Testing of Model Transformations 44

Source Metamodel: Person
Target Metamodel: Family

Tracts for the Person 2 Family MT

SFM 2012Formal Specification and Testing of Model Transformations 45

Tract: mfds - interested in families consisting of one
mother, father, daughter, and son

Example of Tract: “mfds”

SFM 2012Formal Specification and Testing of Model Transformations 46

mother(m)-father(f)-daughter(d)-son(s)

Src_Constraints

Trg_Constraint

Src_Trg_Constraint

Tract constraints (1/2)

SFM 2012 47Formal Specification and Testing of Model Transformations

Should we introduce Family.size
= Person.size/4?

Tract constraints (2/2)

SFM 2012 48Formal Specification and Testing of Model Transformations

Src_Trg_Constraint

SFM 2012 49Formal Specification and Testing of Model Transformations

Mdfs Tract

ASSL to generate the input models

SFM 2012Formal Specification and Testing of Model Transformations 50

Generation of negative cases

SFM 2012Formal Specification and Testing of Model Transformations 51

Kinds of problems found

Errors in the transformation code
Errors in the Tract specification
Source-target semantic gap/mismatches

Unmarried couples, families with a single father or mother, married couples whose
members have maintained their last names,…cannot be transformed.

SFM 2012Formal Specification and Testing of Model Transformations 52

Summary

Pros:
Modular: Allows partitioning the input space into smaller,
focused behavioural units
Specific: allows defining specific tests for the input models
Black-box: Tests the MT as-is, independent from
implementation
Cost-effective: Small tests are easy to define and to check

Cons:
It does not guarantee full correctness
(“certification” vs. full validation)
Completeness and coverage of input
models is not guaranteed
Tracts are not easy to specify in general

SFM 2012Formal Specification and Testing of Model Transformations 53

Tracts By-Example

Source MM: State Machine
Target MM: Lookup Table

We want only one lookup table
Where each entry is an event of the source model

Tract example: SM2T (StateMachine 2 LookUpTable)

SM2T: More restrictions

Source MM: State Machine
Target MM: Lookup Table

Multiplicity constraints
Uniqueness on names of the state machines
Uniqueness on names of states within the same machine

SFM 2012Formal Specification and Testing of Model Transformations 56

SM2T: More restrictions

Source MM: State Machine
Target MM: Lookup Table

Multiplicity constraints
Uniqueness on names of the State Machines
Uniqueness on names of states within the same machine

SFM 2012Formal Specification and Testing of Model Transformations 57

Tracts for SM2T
Six Tracts to start with

Tracts for SM2T

Tracts for SM2T

Tract example: Constraints
Tract for SM2:

Src_Constraints

Trg_Constraint

Tract example: Constraints
Tract for SM2:

Src_Trg_Constraint

T Event
Change

sm fromState toState

x SM2 A B

LookUpTable

ASSL Code for SM2

Exercise 1: Specify and implement

Copy Transformation

64ECMFA 2011Formal Specification and Testing of Model Transformations

UniMM
Create a copy of a model
by using a model
transformation

a) What tracts do we need?
b) Identify use cases
c) Write the ATL transformation
d) Prove its correctness

Exercise2: nSM2fSM

nSM2fSM: Translate a nested state machine into a flat
state machine
Implementation: In-place Transformation
Specification: What Tracts do we need?

S1
S2

S3
S2.1

S2.2

a
c

b
d

S1 S3S2.1 S2.2a c

b
d

b

d

Tractable Model
Transformation Typing

Motivation for MT Typing

SFM 2012Formal Specification and Testing of Model Transformations 67

MDE tackles complexity of large systems, but this
requires to model-in-the-large

This results in megamodels

Increasing need for precise and abstract mechanisms
Reason about the designed systems
Test individual components

Assigning types to models and model transformations
and arrange them in type hierarchies

Light-weight approach to type model transformations
using tracts

[ISO/IEC 10746-2]

Subtype/supertype: A type A is a subtype of a type B, and B is a
supertype of A, if every <X> which satisfies A also satisfies B.

Type (of an <X>): A predicate characterizing a collection of <X>s.

Definitions: Type and Subtype/Supertype

Typing models

Model types are needed fo describing the signature of
model operations

The type of a model is basically its metamodel

We can talk about “subtyping” and “safe replaceability”

M’ extends M iff M’ contains all classes, attributes and
relationships of M, and M’ imposes the same or weaker
constraints than M

SFM 2012Formal Specification and Testing of Model Transformations 69

Typing Models (2/2)
CD_struct

Package

classes
*

*
general

Attribute
type : String

Class
*

CD_struct_behav

Package

classes
*

*
general

Attribute
type : String

Class
* Operation

type : String

operations *
isAbstract :

Boolean

Typing MTs (1/2)

TL

T

ATL Metamodel

ATL Model

T

T’

N

N’

M

M’

«conformsTo»

To reason properly about subtype relationships
between transformations, the behavioural type of a
transformation must be considered

But…
Typing model transformation as operations is difficult
Type of any behavioral software artefact is complex;
manipulating and reasoning about behavioural types
expensive
Current types capture full behaviour of the artefact
independently from any context of use
Traditionally requires heavyweight reasoning
techniques and tools such as theorem provers

Typing MTs (2/2)

Model Transformation Typing using Tracts

T

T ’

N

N’

M

M’

Legend:
M, M’ … Source MMs
N, N’ … Target MMs
T, T ‘ … Tracts

T

T’

< fulfills

< fulfills

Model Transformation Typing by Example

Model Transformation Typing by Example
Three Transformations

Model Transformation Typing:
Relationships between Transformations

Correctness of a MT implementation
check that a given transformation conforms to a tract, i.e., it
conforms to a certain type

Safe substitutability of MTs; two step process:
first input models are automatically generated and then
for each of these we can check whether the transformation
fulfils the associated tract

Incremental and systematic transformation development
extend source and target metamodels by subtyping through
small increments
accompanied by corresponding tracts including test suites;
benefit: rapid and direct feedback provided

Declarative vs imperative tracts
only the relationship between source and target elements can
be characterized;
but tracts also be described in an operational way when
including operations mapping source elements to target
elements

Discussion

Tool Support for Tracts

Tracts Tool Support based on USE

SFM 2012Formal Specification and Testing of Model Transformations 79

USE - The UML-based Specification Environment
Modeling of UML Class Diagrams and Object Diagrams
Support for full OCL
ASSL for generating Object Diagrams
Powerful API for validating models

SFM 2012 80Formal Specification and Testing of Model Transformations

Metamodels as Class Diagrams

SFM 2012 81Formal Specification and Testing of Model Transformations

Models as Object Diagrams

SFM 2012 82Formal Specification and Testing of Model Transformations

Checking the Tracts

Test ATL Model Transformations for EMF-based Models

Bridge EMF and USE

SFM 2012Formal Specification and Testing of Model Transformations 83

Tracts for EMF
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

SFM 2012Formal Specification and Testing of Model Transformations 84

Tracts for EMF

Time for a Tool Demo!

SFM 2012Formal Specification and Testing of Model Transformations 85

The Future of Tracts

Next steps

Incorporate existing works on the effective generation
of input test cases, oracles, test inputs coverage

Study tracts properties:
composability, subsumption, refinement,…

Tracts for bi-directional transformations

Improve engineering aspects
Visual specification of tracts

Diagnostics

Improve tool support

Define libraries of tracts

87SFM 2012Formal Specification and Testing of Model Transformations

Manuel Wimmer, Loli Burgueño, Lars Hamann,
Martin Gogolla, Antonio Vallecillo,

Universidad de Málaga/Univertät Bremen
http://www.lcc.uma.es/~av

Thanks!

100 % Completed!

