Formal Specification
and 7Testing of
Modeld Transformaltions

Manuel Wimmer, Loli Burgueio, Lars Hamann,
Martin Gogolla, Antonio Vallecillo,

Universidad de Malaga/Univertat Bremen
http://www.lcc.uma.es/~av

4 'ma
@ Universitat Bremen ol

Introduction

Progress Bar

MDE

MDE is about formulating SE activities in terms of
Models and Model Transformations between them

Models describe different views of the (same) system,
at different levels of abstraction

Structural models, analysis models, behavioural models,
run-time models, ...

Model Transformations describe the relationships
between these views

Refinement relations, development relations, abstraction
relations, mapping relations, ...

Formal Specification and Testing of Model Transformations SFM 2012 3

Model Transformation

A model transformation is

(1) The specification of the relationship between one set of
source models and one set of output models

(2) The process that generates such relationship

Krzysztof Czarnecki, Simon Helsen: “Feature-based survey of model transformation
approaches”. IBM Systems Journal 45(3): 621-646 (2006)

Davide di Ruscio, Romina Eramo, Alfonso Pierantonio: “"Model Transformations”. Proc. of
SMF’12, LNCS 7320, 91-136, 2012.

Formal Specification and Testing of Model Transformations SFM 2012

Model Transformations

Although specified at a very high level of abstraction,
model transformations are becoming very complex
as the complexity of the relations they are able to describe
grows...

Formal Specification and Testing of Model Transformations SFM 2012 5

Model Transformation Challenges

Chains of Transformations
Consider the MDA scenario: CIM -> PIM -> PSM -> Code
Higher Order Transformations

Transformations may produce transformations that may
produce transformations ...

Underspecified Metamodels
Consider the UML metamodel: many optional features, ...
Complexity of Input Models

Large graphs, combinatorial explosion how to combine
model elements, ...

No model transformation specifications exist

Is it possible to reuse an existing model transformation
for a given scenario?

Formal Specification and Testing of Model Transformations SFM 2012 6

Even very simple transformations may
not be that simple!

Formal Specification and Testing of Model Transformations SFM 2012

Example 1

PersonMM A
Parenthood
+parent|0..2
R e’ss"" +child
+name : tring [oNn
rage i Personsg to Families
[T |
Male +husband +wife Female
0..1 0..1
FamilyMM A
+famFather Fatherhood +father
Family 0 1] Member
+lastName : String +firstName : String

+famMother Motherhood +mother| ,age : int ,

0..1 1 +gender : Gender «enumeration>
" ' Gender
+famSon Sonhood 450N female

0.1 0 male
+famDaughter Daughterhood ,qaughter

0..1 0.*

Formal Specification and Testing of Model Transformations

SFM 2012

Persons2Family Transformation in ATL

module Persons2Families;
create 0UT : Families from IN : Persons;

rule Father2Family/{

from f : Persons!Male (not f.child —> isEmpty())
to fam : Families!Family (
lastName <—f.name.substring(f.name.lastIndexO0f(’,’)+2,

f. . name.size())),
mb : Families!Member (

firstName <— f.name.substring(l,f.name.lastIndex0f(’,’))
age <— f.age, gender <— #male, famFather <— fam)

}

rule Mother2Family{

from m Persons ! Female (not m.child —> isEmpty ())
to mb : Families ! Member (

firstName <— m.name.substring(l,m.name.lastIndex0f(’,’)),
age <— m.age, gender <— #female, famMother <— m.husband)

}

rule Son2Family{

from s : Persons!Male (s.child —> isEmpty())
to mb : Families ! Member (

firstName <— s.name.substring(l,s.name.lastIndex0f(’,’))
age <— s.age, gender <— F#male,

famSon <—s.parent—>select(e|e.oclIsTypeOf (Persons!Male)))

rule Daughter2Family{
from d : Persons!Female (d.child —> isEmpty())
to mb : Families ! Member (

firstName <—d.name.substring(l,d.name.lastIndexO0f(’,%)),
age <— d.age, gender <— #female ,

famDaughter <— d.parent—>select(e|e.oclIsTypeOf (Persons!Male)))

}

Formal Specification and Testing of Model Transformations SFM 2012

Persons2Family Transformation in ATL

4 N
This cannot be wrong!

N

to mb : Families!Member (
firstName <— m.name.substring (1l ,m.
age <— m.age, gender <— F#female, famMot

}

rule Son2Family{

from s : Persons!Male (s.child —> isEmpty ())

to mb : Families!Member (
firstName <— s.name.substring(l,s.name.lastIndex0f(’,’
age <— s.age, gender <— #male,
famSon <—s.parent—>select(e|e.oclIsTypeOf (Persons!Male

rule Daughter2Family{

from d : Persons!Female (d.child —> isEmpty())

to mb : Families ! Member (
firstName <—d.name.substring(1l,d.name.lastIndex0f(’,’)
age <— d.age, gender <— #female,
famDaughter <— d.parent—>select(e|e. oclIsTypeDf(Persons'Hale)))

Formal Specification and Testing of Model Transformations SFM 2012 10

Persons2Family Transformation in ATL

g Have you tried this? h

| m1: Male : Female
'age =28 age=25
| fullname ="John" fullname ="Mary’

<— #female, famMother <— m.husband)

sons ! Male (s.child —> isEmpty ())
~ Families ! Member (
firstName <— s.name.substring(l,s.name.lastIndex0f(’,7)),
age <— s.age, gender <— #male,
E on <—s.parent—>select(e|e.ocllIsTypeOf (Persons!Male)))

hter2Family{

Persons ! Female (d.child —> isEmpty())

Families ! Member (

tName <—d.name.substring(1l,d.name.lastIndex0f(’,’)),

— d.age, gender <— F#female,

aughter <— d.parent—>select(e|e.oclIsTypeOf (Persons!Male)))

Formal Specification and Testing of Model Transformations SFM 2012 11

Not as easy as one might have thought

m1_: Male : Female
age = 28 age= 25
fullname ="John" fullname ="Mary"
An internal error occurred during:
"Launching Persons2Families".

java.lang.ClassCastException:
org.eclipse.m2m.atl.engine.emfvm.lib.OclUndefined cannot be cast to
org.eclipse.m2m.atl.engine.emfvm.lib.HasFields

Formal Specification and Testing of Model Transformations SFM 2012 12

UniMM

= Person

S name : EString

H Student

S

H Teacher

||

H Tutor

Formal Specification and Testing of Model Transformations

Example 2

Copy Transformation

Create a copy of a model
by using a model
transformation

ECMFA 2011 13

Copy Transformation in ATL

module Copier;
create OUT : MM2 from IN : MM1;

rule Student {
from s1 : MM1!Student
to s2 : MM2!Student (

name <- ul.name (\
. It is so simple - this

rule Teacher { cannot be wrong!)

from t1 : MM1!Teacher \
to t2 : MM2!Teacher (
name <- ul.name

)
by

rule Tutor {
from t1l : MM1!Tutor
to t2 : MM2!Tutor (
name <- ul.name

)
b

Formal Specification and Testing of Model Transformations SFM 2012 14

Let us try it out!

Input Model
S1: Student T1: Teacher
name = Xavi name = Alonso

Output Model ~

S1: Student T1: Teacher

name = Xavi name = Alonso

Formal Specification and Testing of Model Transformations SFM 2012 15

Not as easy as one might have thought

Input Model
S1: Student T1: Teacher T2: TUTOR
name = Xavi name = Alonso name = Iniesta

An internal error occurred during: "Launching Copier".

d

org.eclipse.m2m.atl.engine.emfvm.VMEXception: Trying to
register several rules as default for element DynamicEODbjectimpl@T2

(eClass: EClassimpl@1cebdb2a (name: Tutor) ...) : Student and
Teacher

Formal Specification and Testing of Model Transformations SFM 2012 16

Example 3
Class Diagrams 2 Relations Transgformation

Class Diagram Relations
Attribute
Package —— Schema Column
general ype - 9 type : String
. * « | attributes . columns
Class Table
classes P tables
A A
Source MI\/IE i Target MM

--------- Class2Relations.atl --------

Reuse a transformation that implements the "One Table per
Class” strategy. But no other documentation is available...

Formal Specification and Testing of Model Transformations ECMFA 2011 17

Not as easy as one might have thought

Input Model Output Model
Person Person
id : String id
{size < 10}
Student @
Student
/id : String —
{size < 7} id_|id

It turns out that derived attributes are not properly
treated by the transformation, i.e., invalid target 9
models are produced

Formal Specification and Testing of Model Transformations ECMFA 2011 18

Specification and 7esting of
Model Transformalions

Some questions

What is testing?

What should be tested on a model transformation?
Should all properties to the tested treated equally?
Which are those properties?

Should we always aim for the best?

Formal Specification and Testing of Model Transformations SFM 2012 20

MT Testing Landscape

Plethora of testing approaches for MTs ranging from
full verification to
lightweight certification

Two classification dimensions

Level on which they are defined
General ones are usable for all transformations
Specific ones have to be defined for each transformation

Related to syntax or semantics
“Syntactic” properties are checked on specifications
Conformance (G), Correct output models (S)

“Semantic” properties are checked on executions

E.g., Rule confluence (G), termination (G), preservation of some
properties (S), etc.

Formal Specification and Testing of Model Transformations SFM 2012 21

General Transformation Properties

MT Implementation

T™MM

?ATL Metamodel

Syntactic
™ Properties
2 ATL Model
:
Semantic
—
Ex(T™M) Properties
SoM TaM
A A
I |
1]
Ex(SoM) Ex(TaM)

Formal Specification and Testing of Model Transformations SFM 2012 22

Specific Transformation Properties

MT Specification MT Implementation
SMM TMM
A A

| describes >]

>
SM € _ ™
< fulfills
A A
I I
I [
1 |
Ex(SM) —> Ex(TM)
Syntactic
SoM Properties TaM
A A
I
: . | |
emantic
Ex(SoM) Properties Ex(TaM)

Formal Specification and Testing of Model Transformations SFM 2012 23

Defining Specific, Syntactical Properties

Model Level
Complete Models
Model Fragments

Metamodel Level
Graphical Constraint Languages
Textual Constraint Languages

Formal Specification and Testing of Model Transformations SFM 2012 24

Model Level Specification

Complete Models S

Target
Model

SoM > Ex(TM) > TaM

Model Fragments Actual
Target

Model

SoM | Ex(TM) | TaM

=

Expected
Target
Model

TaM

Expected
Target
Model

TaM

Pros: Modeling Languages are enough to specify test cases
Cons: Have to be defined for each new test source model

Formal Specification and Testing of Model Transformations

SFM 2012

25

Metamodel Level Specification

Graphical Constraint Languages

P(Mother2Female)
Families Persons
mother :
m:Member [€ fam:Family f:Female
firstName=X fullName=X.concat(“_").concat(Y)
lastName=Y

Textual Constraint Language

context MFDS inv Src_Trg_Mother2Female:
Female.allInstances—> forAll(f |
Family.allInstances—> exists (fam |
fam.mother.firstName.concat(’_.’).concat(fam.lastName)
= f.fullName

)
) 4

Formal Specification and Testing of Model Transformations SFM 2012 26

Specifying and 7esting
Modeld Transformalions.
Jhe Jractls Approack

Motivation for Tracts

In general it is very difficult and expensive (time and
computational complexity-wise) to validate in full the
correctness of a model transformation (even the
simplest ones).

We propose a cost-effective MT testing approach based
on the concept of Tract, which is a generalization of the
concept of Model Transformation Contract.

Formal Specification and Testing of Model Transformations SFM 2012 28

Contracts as Specifications

Specification: A document that specifies, in a complete, precise, verifiable manner,

the requirements, design, behavior, or other characteristics of a system or
[[EEE Standard Computer Dictionary]

component...
ansrormanon whato
fulfills describes VS.
ATL, ETL, QVIT-R, Transformation How?
QVT-O, RubyTL, Implementation

TGG, GT, ...

Implementation:
(1) The process of translating a design into hardware components, software

components, or both.

(2) The result of the process in (1)
[I[EEE Standard Computer Dictionary]

Formal Specification and Testing of Model Transformations SFM 2012 29

Contracts as Filters

Transformation
Specification

Transformation
Valid? / Implementation \

. ¥
Input Model J Output Model

Formal Specification and Testing of Model Transformations SFM 2012 30

Contracts as Oracles

Transformation
Specification

Transformation

/ Implementation \ Valid?

[L I - -
Input Model J Output Model ‘

Formal Specification and Testing of Model Transformations SFM 2012 31

o

Contracts as Implementation

Transformation
Specification

T

A 4

Transformation
Implementation

Input Model

U

Formal Specification and Testing of Model Transformations

i

Output Model

SFM 2012

32

« A Tract defines

Tracts

a set of constraints on the source and target

metamodels,

a set of source-target constraints, and

a tract test suite (a collection of source models
satisfying the source constraints)

MM

._

CD

Constraint

Source

Target

Formal Specification and Testing of Model Transformations

Tract

*

Test suite Constraint
JAN
Source Target Source-target

SFM 2012

33

Set-Theory based View on Tracts

target mm cd

target mm constraints

transformation T
AR R IR g N :
E : V] :
source tract §constraints : > target tract §con straints
Etract test suite ET(tract test suite) '

source-target tract
constraints

Formal Specification and Testing of Model Transformations SFM 2012 34

Set-Theory based View on Tracts

source mm cd

source mm constraints

transformation T
[I ; N ;
E : V] ;
source tract §constraints : > target tract §con straints
Etract test suite ET(tract test suite) '

source-target tract
constraints

Formal Specification and Testing of Model Transformations SFM 2012 35

The elements of a Tract

source mm cd target mm cd

source mm constraints target mm constraints

transformation T

) I I : N ¢ttt ;
E : V] 5

| source tract .constraints ; > target tract §c onstraints
fract test suite § :

EIT(iF’ati test suite)

I source-target tractl
I constraints I

Formal Specification and Testing of Model Transformations SFM 2012 36

Black-box testing of MTs

For each tract

Input test suite models are automatically generated using
ASSL

Input models are transformed into output models by the
transformation under test

The results are checked with the USE tool against the
constraints defined for the transformation

Different tracts are defined for every transformation

Each one defines either a use case or a special condition
or a negative test case

Formal Specification and Testing of Model Transformations SFM 2012 37

Tracts for the Families 2 Persons MT

Source Metamodel: Family
Target Metamodel: Person

FamilyMM Al
+famFather Fatherhood +father
Family 01] Member
+lastName : String) +firstName : String
+famMother Motherhood +mother| age : int -
+gender : Gender «enumeration>
0..1 1 ' Gender
+famSon Sonhood +S0N female
0.1 0.* male
+famDaughter Daughterhood ,qaughter
0..1 0.*
PersonMM A
Parenthood
+parent|0..2
Porson. | . wig
+name : String [
+age : int
l husband wife :
Male |- * Female
0..1 0.1

Formal Specification and Testing of Model Transformations SFM 2012 38

Example of Tract: “Members only”

Tract: Members only - interested in families consisting
only of members

Precondition

context MembersOnlyTract
inv SCR_MembersOnly:
Member . allInstances—>forAll (m |
m.familyFather —>size () + m.familyMother —>size () +
m.familySon—>size () + m.familyDaugther—>size () = 0)

Test Source Model

MembersOnly A
m1 : Member m2 : Member m3 : Member m4 : Member
firstName = "Brigita" firstName = "Martin" firstName = "Carmen" firstName = "Antonio"

Formal Specification and Testing of Model Transformations SFM 2012 39

4

Example of Tract: “Members only’

Generation of source models is done by means of ASSL
(A Snapshot Sequence Language)

ASSL allows to generate Object Diagrams for Class
Diagrams

ASSL is an imperative programming language with
features for randomly choosing attribute values or
association ends

ASSL supports backtracking for finding object diagrams
with particular properties

Formal Specification and Testing of Model Transformations SFM 2012 40

Example of Tract: “Members only”

ASSL Code for Input Model Generation

procedure mkMembersOnly (numMember:Integer)
var theMember: Sequence(Member) ;

begin
theMember:=CreateN (Member ,[numMember]) :

for i:Integer in [Sequence{l..numMember }]| begin
[theMember —>at(i)]. firstName:=Any([Sequence{
¢Ada’ . XBel) 7Cam? ;2 Day? . 2Eva’,; 2Flo? »VGen?2 ' Hao’ *Ina? ;2Jen’ .
’Ali’ ,’Bob’,’Cyd’,’Dan’,’Eli’,’Fox’,’Gil’ ,’Hal’,’Ike’,’Jan’ }]);
end ;
end ;

Formal Specification and Testing of Model Transformations SFM 2012 41

Example of Tract: “Members only”

Tract: Members only - interested in families consisting
only of members

Postcondition

context MembersOnlyTract
inv SRC_TRG_MembersOnly:
Member . alllnstances—>forAll (m |
Female.alllnstances—>one (p | p.fullName—=m.firstName))
and Member .alllnstances—>size () = Person.alllnstances—>size ()

Transformation Result

An internal error occurred during: "Launching Families2Persons”.
java.lang.ClassCastException:

org.eclipse.m2m.atl.engine.emfvm.1lib.0clUndefined cannot be cast to

org.eclipse .m2m.atl.engine.emfvm.1lib.HasFields

Formal Specification and Testing of Model Transformations SFM 2012

Example of Tract: “Members only”

Issue INn Transformation

helper context Families!Member def: familyName: String =
if not self.familyFather.oclIsUndefined() then
self . familyFather.lastName
else
if not self.familyMother.oclIsUndefined() then
self . familyMother .lastName
else
if not self.familySon.oclIsUndefined() then
self . familySon.lastName
else

endif
endif

endif ;

rule Member2Male {
from
s: Families!Member (not s.isFemale())
to
t: Persons!Male (fullName <— s.firstName + ’,’ + s.familyName)

-

Formal Specification and Testing of Model Transformations SFM 2012 43

Example of Tract: “Members only”

Possible Solution: Stronger Precondition

context Member
inv NoIsolatedMembers:
Member . allInstances—>forAll (m |
m.familyFather —>size () + m.familyMother —>size () +
m.familySon—>size () + m.familyDaugther—>size () > 0)

Other Solutions?

Formal Specification and Testing of Model Transformations SFM 2012 44

Tracts for the Person 2 Family MT

Source Metamodel: Person
Target Metamodel: Family

PersonMM A
Parenthood
+parent|0..2
Person | . child
+name : String [
+age :int
| husband if :
Male |+H1usoan *WI® | Female
0..1 0..1
FamilyMM A
+famFather Fatherhocd +father
Family 01] Member
+lastName : String +firstName : String
+famMother Motherhood +mother| age : int maration
0 1 1 |+gender : Gender | | “€Mumerato
" Gender
+famSon Sonhood +s0n female
01 0~ male
+famDaughter Daughterhood . daughter
0..1 0.*

Formal Specification and Testing of Model Transformations SFM 2012 45

Example of Tract: “mfds”

Tract: mfds - interested in families consisting of one
mother, father, daughter, and son

mother(m)-father(f)-daughter(d)-son(s)

m f

Formal Specification and Testing of Model Transformations SFM 2012 46

Tract constraints (1/2)

Src_Constraints

inv SRC_fullName_EQ_firstSepLast:
Person.alllnstances—>forAll(p|
p.fullName=firstName(p).concat(sep()).concat(lastName(p)))

“ Trg_Constraint

inv TRG_oneDaughterOneSon:
Family.alllnstances—>forAll(fam |
fam.daughter—>size ()=1 and fam.son—>size ()=1)

Src_Trg_Constraint

inv SRC_TRG_mfdsPerson_2_mfdsFamily:
Female.alllnstances—>forAll(m,d| Male.alllnstances—>forAll(f, B s|
mfdsPerson(m,f,d,s) implies
Family.alllnstances—>exists(fam|mfdsFamily(fam,m,f . d,s))))

Formal Specification and Testing of Model Transformations SFM 2012 47

Tract constraints (2/2)

« Src_Trg_Constraint

inv SRC_TRG_forPersonOneMember:
Female.alllnstances—>forAll(p| Member.alllnstances—>one(m|
p-fullName=fullName(m) and p.age=m.age and m.gender = #female and
(p-child—>notEmpty () implies (let fam=m.famMother in
p.-child—>size ()=fam.daughter —>union(fam.son)—>size())) and
(p.parent—notEmpty() implies m.famDaughter.isDefined()) and
(p.husband.isDefined() implies m.famMother.isDefined()))) and
Male.alllnstances—>forAll(p| Member.alllnstances—>one(m|
p.fullName=fullName(m) and p.age=m.age and m.gender = #male and
(p.child—>notEmpty () Iimplies (let fam=m.famFather in
p.child—>size ()=fam.daughter —>union(fam.son)—>size ())) and
(p.parent—>notEmpty() implies mn.famSon.isDefined()) and
(p.wife.isDefined() implies m.famFather.isDefined())))

Formal Specification and Testing of Model Transformations SFM 2012 48

Mdfs Tract

=10l x|

File Edit State View Help Plugins Help

@B S| o] B> F|E

_ A Person2Family

B _§Classes

Person

Female

Male

Family

Member

mfdsTract

B _4 Associstions

Parenthood

Marriage

Motherhood

Fatherhood

Daughterhood

Sonhood

B 1A Invariants

Person:: SMM_parentsFi

Family:: TMM_mumFemale_dadMale
mfdsTract:: SRC_fullName_EG_firstSepLast
mfdsTract:: SRC_allPersoninhfds)
mfdsTract:: TRG_oneDaughterOneSon
mfdsTract::SRC_TRG_mfdsPerson_2_mfdsFamily
mfdsTract:: SRC_TRG_forPersonOneMember
__ | Pre-Postconditions

L R R R R

L E R X K R J

*

L B N R

context self : mfdsTractinv TRG_oneDaughterOneSon:
Family.allinstances->forAll{fam : Family |
{(fam.daughter-=size = 1) and (fam.son->size = 1)))

0.2 parent
Person

Parenthood

fullName : String
age : Integer

~

+ child

zzenumeration=>

{
Female

Marriage

Gender

0.1 wife

0..1 famMother Matherhood

Male
0..1 husband

female
male

1 mother

Fatherhood

1

=="" (0.1 famFather

Family

0..1 famDaughter

Member
firsthame : String
age : Integer

1 father

+ daughter _-

Daughterhood

gender : Gender
|

0.1 famSon Sonhood

* 30N

mfdsTract

sep() : String

firstName(p : Person) : String
lastName(p : Person) : String
fullName(m : Member) : String

mfdsPerson(m : Person, f: Person, d: Person, s : Person) : Boolean
mfdsFamily(fam : Family, m: Person, f : Person, d : Person, s : Person) : Boolean

Formal Specification and Testing of Model Transformations

SFM 2012 49

ASSL to generate the input models

procedure genMfdsPerson (numMFDS:Integer) -- number of mfds patterns
var lastNames:Sequence(String), m:Person ... -- further variables

begin

—— variable initialization
lastNames:=[Sequence{’Kennedy’ ... ’0Obama’ }]; -- more
firstFemales:=[Sequence{’Jacqueline’ ... ’Michelle’ }]; -- constants
firstMales:=[Sequence{’John’ ... ’Barrack’}]; -- instead

ages:=[Sequence{30,36,42,48 ,54,60,66,72,781}]; -~ of

munms :=[Sequence{ }]; dads:=[Sequence{}];

—— creation of objects
for i:Integer in [Sequence{l..numMFDS}] begin

m:=Create(Female); f:=Create(Male); -- mother father
d:=Create(Female); s:=Create(Male); -- daughter son
mums : = [mums —>append(m) |; dads:=[dads—>append(f) |;

= - = = = = = - assignment of attributes
lastN:=Any([lastNames]); firstN:=Any([firstFemales]) ;

[m]. fullName:=[firstN.concat(’,’).concat(lastN)]|;[m]. age:=Any([ages]) ;
firstN:=Any([firstMales]) ;

[f]. fullName:=[firstN.concat(’,’).concat(lastN)];[f]. age:=Any([ages]) ;
Lx -- analogous handling of daughter d and son s

=R oS s e e e e sl s e raationtof T d et adn nks
Insert (Marriage ,[m] ,[£f]) ;

Insert (Parenthood ,[m] ,[d]); Insert(Parenthood ,[f], [d]
Insert (Parenthood ,[m] ,[s]); Insert(Parenthood ,[f] ,[s]

|
)iz

Formal Specification and Testing of Model Transformations SFM 2012 50

Generation of negative cases

o Object diagram

Female1:Female Male1:Male
fullName="Elizabeth Reagan' fullMame=""ilzon Reagan'

age=60 age=42
____________—_

—_—
Female2:Female Male2:Male Female3:Female Male3:Male
fullName="Barbara Reagan' fullName="Milhous Reagan' fullName="Alta Reagan' fullName="Ronald Reagan'
age=66 age=42 |- age=30
T T
FemaleS:Female Male5:Male] Femaled:Female Maled:hMale
fullName="Lee Carter' fullName="John Carter' fullame='Thelma Reagan' | | fullName="James Reagan'
age=78 age=42 age=60 age=30

—

age=45

Femalet:Female ME_I[EBZMale

fulllame='Thelma Carter' fullName="Jefferson Carter'
age=66 age=45

Formal Specification and Testing of Model Transformations SFM 2012 51

Errors in the transformation code
Errors in the Tract specification

Kinds of problems found

Source-target semantic gap/mismatches

Unmarried couples, families with a single father or mother, married couples whose
members have maintained their last names,...cannot be transformed.

Person Family Person Family Person Family
f ; T ' / %
7 / /
fam f fam _ m - f fam
\
s s s
Formal Specification and Testing of Model Transformations SFM 2012

52

Summary

Pros:

Modular: Allows partitioning the input space into smaller,
focused behavioural units

Specific: allows defining specific tests for the input models

Black-box: Tests the MT as-is, independent from
implementation

Cost-effective: Small tests are easy to define and to check

Cons:. E¢¢;
It does not guarantee full correctness |
(“certification” vs. full validation)

Completeness and coverage of input
models is not guaranteed

Tracts are not easy to specify in general —

Formal Specification and Testing of Model Transformations SFM 2012 53

Jracts By-Example

Tract example: SM2T (StateMachine 2 LookUpTable)

Source MM: State Machine
Target MM: Lookup Table

SimpleStateMachine A

SimpleLookUpTable A

StateMachine

+hame : String

1
+stateT0..*

State

+tgt

+incoming

+transition|0..*

+hame : String

1
+SIC

0..”
+outgoing

Transition

1

0..*

+event : String

LookUpTable
+eventI0..*

Event +event 0.* Chénge
+name : String| 1 “change |+SM : String

+fromState : String
+toState : String

We want only one lookup table

Where each entry is an event of the source model

SM2T: More restrictions

Source MM: State Machine
Target MM: Lookup Table

SimpleStateMachine A

SimpleLookUpTable A

StateMachine

+hame : String

+transition|0..*

LookUpTable

+eventIO..*

1
+stateT0. g - ;
+tgt +incoming
. State 1 0.*
+hame : String +Src +outgoing

Transition

Event

+event

0.”

Change

1

0.*

+event : String

+name : String

1

+change

+sm : String
+fromState : String
+toState : String

Multiplicity constraints
Uniqueness on names of the state machines
Unigueness on names of states within the same machine

Formal Specification and Testing of Model Transformations

SFM 2012

56

SM2T: More restrictions

Source MM: State Machine
Target MM: Lookup Table

SimpleStateMachine Al QA
StateMachi
+name : String .
context StateMachine I1nv uniqueNames:
self.state—>isUnique (name) and
+state| 0.} :] ‘ : : Ch
StateMachine.alllnstances—>isUnique (name) ange
State g |+sm - String
+name : String “—=Ctate : String

aq

Multiplicity constraints
Unigueness on names of the State Machines
Unigueness on names of states within the same machine

Formal Specification and Testing of Model Transformations SFM 2012 57

Tracts for SM2T

Six Tracts to start with

— 1S0T: state machines with single states and no transitions.

SM1

A

1S0T

— 2S1T: state machines with two states and one transition between them. In
this case the entries of the resulting lookup table will have the form {x —

(SM2,A.B)}. -

A)

Tracts for SM2T

— 282T: state machines with two states and two transition between them. In
this case the entries of the resulting lookup table will be of the form {x
(SM3,A,B),y > (SM3,B,A)}.

SM3 X
Ca) (e
U\ y)
2S2T

— 1S1T: state machines with single states and one transition. In this case the
entries of the resulting lookup table will have the form {x + (SM4,4A,4)}.
N - SM4 - . _ - -

a)
)

1S1T

Tracts for SM2T

— 383T: state machines with three states and three transitions, forming a cycle.
In this case the entries of the resulting lookup table will be of the form
{x + (SM5,A,B),y + (SM5,B,C),z +> (SM5,C,A)}. SMS

3S3T

— 3S9T: state machines with three states and 9 transitions (see figure 21).
In this case the entries of the resulting lookup table will have the form
{x0 + (SM6,A,A),x1 > (SM6,A, B) x2 +> (SM6,B,A),y0 — (SM6,B,B).yl +>
(sM6,B. C),y2 + (SM6,C,B),z0 — (SM6,C,C),z1 +> (SM6,C,A),z2 > (SM6,A,C)}.

2527
y0

_(= s)

Tract example: Constraints

Tract for SM2:

w
N

2S1T

Src_Constraints

context 2S1T—Tract
inv SCR_2S1T:
StateMachine . alllnstances—>forAll (sm |

(sm.state—>size() = 2) and (sm.transition—>size() = 1)
(sm.transition.src <> sm.transition.tgt)

Trg_Constraint

context 2S1T—Tract
inv TRG_2S1T: LookUpTable.alllnstances—>size() = 1

Tract example: Constraints
Tract for SM2:

Src_Trg_Constraint

context 2S1T—Tract
inv SRC_TRG_2S1T:

StateMachine.alllnstances—>size () = LookUpTable.change—>size () and
LookUpTable.change—>forAll (c |

StateMachine.alllnstances—>one(sm | (sm.name = c.sm) and
(sm.transition.src—>collect(name) = c.fromState.asSet()) and
(sm.transition.tgt—>collect (name) =

c.toState.asSet()) and
(sm.transition.event = c.event.name))

LookUpTable
SM2
% - Change
‘ 5) vent
A : o , T sm fromState toState
2S1T X SM2 A B

ASSL Code for SM2

procedure mk2S1T(numSM:Integer)
var theStateMachines: Sequence(StateMachine),
theStates: Sequence(State),
theTransitions: Sequence(Transition);
begin
theStateMachines:=CreateN(StateMachine ,[numSM]) ;
theStates:=CreateN(State ,[2*% numSM]) ;

theTransitions:=CreateN(Transition ,[numSM]) ;
for i:Integer in [Sequence{l..numSM}]| begin
[theStateMachines—>at(i)]|.name:= [’SM’.concat(i.toString())];
[theTransitions—>at(i)].event:= [’E’.concat(i.toString())];
[theStates—>at(2%xi—1)].name:= [’ST’.concat((2%xi—1).toString())];
[theStates—>at (2%i)]|.name:= [’ST’.concat((2%i).toString())];

Insert (States ,[theStateMachines—>at(i)] ,[theStates—>at(2xi—1)]) ;
Insert (States ,[theStateMachines—>at(i)] ,[theStates—>at(2xi)]) ;

Insert (Transition, [theStateMachines—>at(i)], [theTransitions—>at (i)
—]);

Insert (Cause ,[theTransitions—>at(i)] ,[theStates—at(2xi—1)]) ;
Insert (Effect ,[theTransitions—>at(i)] ,[theStates—>at(2xi)]) ;

end ;
end ;

Exercise 1: Specify and implement

UniMM

= Person

S name : EString

o

H Student |

| H Teacher .

||

H Tutor

Formal Specification and Testing of Model Transformations

Copy Transformation

Create a copy of a model
by using a model
transformation

a) What tracts do we need?

b) Identify use cases

c) Write the ATL transformation
d) Prove its correctness

ECMFA 2011 64

Exercise2: nSM2fSM

NSM2fSM: Translate a nested state machine into a flat
state machine
Implementation: In-place Transformation

Specification: What Tracts do we need?

__....' H StateMachine l b \
S name : EString | A (82 d
_ J a
s1 > C > S3
states 0.* S2.1
0.* transitions Y
S2.2
States , E states “ e |__d Transition |
» | 2 name : Ebtnng l L~ | event:EString
i i trg L |
u Composwe\tate | B blmplebtate | b d
\ 4 d \
a C
S1 > S2.1 > S2.2 > S3
N

Tractable Modeld
Trangformalion 7y ping

Motivation for MT Typing

MDE tackles complexity of large systems, but this
requires to model-in-the-large

This results in megamodels

Increasing need for precise and abstract mechanisms
Reason about the designed systems
Test individual components

Assigning types to models and model transformations
and arrange them in type hierarchies

Light-weight approach to type model transformations
using tracts

Formal Specification and Testing of Model Transformations SFM 2012 67

Definitions: Type and Subtype/Supertype

Type (of an <X>): A predicate characterizing a collection of <X>s.

Subtype/supertype: Atype Ais a subtype of atype B, and B is a
supertype of A, if every <X> which satisfies A also satisfies B.

[ISO/IEC 10746-2]

Typing models
Model types are needed fo describing the signature of
model operations
The type of a model is basically its metamodel

We can talk about “subtyping” and “safe replaceability”

M’ extends M iff M’ contains all classes, attributes and
relationships of M, and M’ imposes the same or weaker
constraints than M

Formal Specification and Testing of Model Transformations SFM 2012 69

Typing Models (2/2)

CD_struct
K Attribute
Package type : String
I general
Class
classes -
CD_struct_behav
Attribute
Package type : String
general
T « ol . Operation
classes| Class > type : String
Isggztlrea;r:: o operations |

Typing MTs (1/2)

Dual nature of model transformations: models and
operations

Naive type 1: Models typed by TL ATL Metamodel
meta-model of their modeling
language (e.g., QVT or ATL)

«conformsTo»

A
|
]
T ATL Model

I”

Naive type 2: types of input and output models (“structura
type)

Two transformations: T: M-> Nand T : M" > N’

T’ structurally substitute of T iff (M" < M) A (N" < N)

M [€==-4 T == N

JAY JAY JAY

M k==d4 T == N

Typing MTs (2/2)

To reason properly about subtype relationships
between transformations, the behavioural type of a
transformation must be considered

But...

Typing model transformation as operations is difficult

Type of any behavioral software artefact is complex;

manipulating and reasoning about behavioural types
expensive

Current types capture full behaviour of the artefact
independently from any context of use

Traditionally requires heavyweight reasoning
techniques and tools such as theorem provers

Model Transformation Typing using Tracts

/0

Legend:
M, M’ ... Source MMs
... Target MMs

< fulfills ng“‘ Tracts
= /
M € — — - T -—-=> N i
A A o o
=
M’ € — — - T) L - = > N’ T

Requirement for behavioural subtyping
Structural subtyping is prerequisite

S~ ﬂ/

Tracts consist of source conditions ($), target conditions (J), and

source/target conditions (R)

T behavioural specification of T and 7 “behavioural specification of T’
T" behavioural substitute of Tiff (§ =2 H$HA (T =23) A (R'= R)

Model Transformation Typing by Example

ErSchema RelDBSchema

RelDBSchemaFK

ad E

ErSchema RelDBSchema

é RelDBSchemaFK

Entity
key() : Set(Attribute)

RelSchema
key() : Set(Attribute)

RelendC
card : Cardinality

Aftribute

iy iskey : Boolean - ForeianKe
Cardinality

one
many DataType

Model Transformation Typing by Example
Three Transformations

ER 2 Rel Town (TName , TPop)

Town Country |::> Country (CName, CPop)

liesIn (TName, CName)

ERC 2 Rel Town (TNaawe , TPop)

> Country (CName, CPop)
T +°"* <fesi=>—— Count D
own ountry (

liesIn (TNaue, CNawe)
Town (TNaxe, TPop,
CName > CName->Country.ClNawue)

ERC_2_ RelFK Country(CName, CPop)

trafo_GG

trafo_SG

Model Transformation Typing:
Relationships between Transformations

SourceG — A TractG TargetG
SourceS Tracts TargetS
SourceG TractG TargetG
SourceS :V’\ TractSG TargetS

trafo_SS

SourceG TractG TargetG
SourceS ;/'\ Tracts Targets
trafo_GG
trafo_SS trafo_SG

Discussion

Correctness of a MT implementation

check that a given transformation conforms to a tract, i.e., it
conforms to a certain type

Safe substitutability of MTs; two step process:
first input models are automatically generated and then

for each of these we can check whether the transformation
fulfils the associated tract

Incremental and systematic transformation development

extend source and target metamodels by subtyping through
small increments

accompanied by corresponding tracts including test suites;
benefit: rapid and direct feedback provided
Declarative vs imperative tracts

only the relationship between source and target elements can
be characterized;

but tracts also be described in an operational way when

including operations mapping source elements to target
elements

Jool Sapport for Tracls

Tracts Tool Support based on USE

USE - The UML-based Specification Environment
Modeling of UML Class Diagrams and Object Diagrams
Support for full OCL
ASSL for generating Object Diagrams
Powerful API for validating models

- Model with . USE
SW | Specification
. b
g, UML OCL
Developer structure constraints
\ I & behavior & queries
validates System by manpulating State
and observing | (Objects, Links)
SFM 2012 79

Formal Specification and Testing of Model Transformations

Metamodels as Class Diagrams
1ol x|

File Edit State View Help Plugins Help

|8 E || B> F|E[|=

_ A Person2Family

B _4Classes 2
® Person Parenthood
® Female 0.2 parent
® Male 2 Person
@ Family . 4y
® Member fullName : String [+ child
® midsTract 2 m

B _4 Associations 7 4 <<enumeration=»
Parenthood [Marriage Gender
o i z Female Male
° ::{::?r: - Z 0.1 wife 0.1 husband 'e;:'a'e

% male
® Fatherhood g
® Daughterhood Z 0.1 famMother Motherhood 1 mother
.: l

® Sonhood 7 Fatherhood

B 4 invariants 2 — —""0.1 famFather T father —j—Member
@ Person: SMM_parentsFM amly - f'se"j';t“e :eStrng
@ Family: TMM_mumFemale_dadMale j EERamenRRl 0.1 femDeughter + daughter A agnt.!er 'e(’;e:'nder
® mfdsTract::SRC_fullName_EG_firstSeplLast i Daughterhood g8 ‘I
: ir::;:;::;tg?:é_aﬂ%;sﬁ:?:?s Son] 0.1 famSon Sonhood + s0n
® mfdsTract:SRC_TRG_mfdsPerson_2_mfdsFamily | =
#® mfdsTract:SRC_TRG_forPersonOneMember mfdsTract

__ | Pre-Postconditions 5 sep() : String
... firstName(p : Person) : String
context self : mfdsTractinv TRG_oneDaughterOneSaon: :’?:’me(p : ;”332) :.S;'f'g
Family.alllnstances->forAll{fam : Family | Lo - Membsr). Sting ‘ . .
((fam.daughter-»size = 1) and {fam.son-»size = 1)) mfdsPerson(m : Person, f: Person, d : Person, s : Person) : Boolean
' ' mfdsFamily(fam : Family, m: Person, f : Person, d : Person, s : Person) : Boolean

Formal Specification and Testing of Model Transformations SFM 2012 80

Models as Object Diagrams

b Object diagram -

Fﬂ' ;1 :Fam'u

familyName="Brown' familyName='Blue'

familyFather famityMother
familyMothe fambyFather tdther

other fathe @mbers: Member Memberg: Member
Member1:Member Member4:Member firstName="Jen’ firstName="Fox’
firsthName="Flo' firstName="Eva'

Family3:Family

familyName='Green'

famjlyMother
mother

| Member3 Member
firstName="Eva' firstName="Fox'

Formal Specification and Testing of Model Transformations SFM 2012 81

Checking the Tracts

C:\Windows\system32\cmd.exe = ©

ise”> check —-d
hecking structure...
hecking invariants...
hecking invariant (1> "MFDS::SRC_OneDaughterOneSon’: FAILED.
—> false : Boolean
Instances of MFDS violating the invariant:
-> Set{@mfsd> : Set(MFDS>
hecking invariant (2> *MFDS::SRC_TRG_FatherSon2Male’: FAILED.
—> false : Boolean
Instances of MFDS violating the invariant:
-> Set{@nmfsd> : Set(MFDS>
hecking invariant (3> "MFDS::SRC_TRG_Female2MotherDaughter’ : OK.
hecking invariant <(4)> "MFDS::SRC_TRG_Male2FatherSon’: OK.
hecking invariant <(5)> *MFDS::SRC_TRG_MembherSize_EQ_PersonSize’: FAILED.
—-> false : Boolean
Instances of MFDS violating the invariant:
-> Set{@mfsd> : Set{(MFDS>
checking invariant (6> “MFDS::SRC_TRG_MotherDaughter2Female’: FAILED.
-> false : Boolean
Instances of MFDS violating the invariant:
-> Set{@mfsd> : Set(MFDS>
hecking invariant (7> ‘NoChildrenTract::SRC_NoChildren’: OK.
hecking invariant (8> ‘NoChildrenTract::SRC_TRG_NoChildren’: OK.
hecked 8 invariants in 0A.835s, 4 failures.
use >

Formal Specification and Testing of Model Transformations SFM 2012

82

Test ATL Model Transformations for EMF-based Models

Bridge EMF and USE

Inputs

Output

Formal Specification and Testing of Model Transformations

ASSL program

ConfomisTo §
(éonforénsTo

N

.
[}
4
.
.
.
.
by
.
[l
-,
L}
e,
..(

Source MM
(EMF)

ATL Transformation

(1)
Y

Source MM
(USE)

N

Set of

Source Models

Set of

Source Models

(EMF)

Target MM
(EMF)

l(l)

Target MM
(USE)

C

Set of
Target Models
(USE)

T(S)

v @ (

Set of
Target Models
(EMF)

)

(6)

<

Result

SFM 2012

Tracts

% Cond
Confg:rmsTé

83

1. Select ATL transformation (.atl)

looYMofScript\AuxParaPruebas\Families2Persons.atl

2. Select source metamodel (.ecore)

- Tracts for EMF

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

Result:

3.4(JiglooYMofScripth\auxParaPruebas\Families.ecore

3. Select target metamodel (.ecore)

|3.4(JiglooYMofScript)\AuxParaPruebas\Persons.ecore

4. Selectthe tracts file

iglooYMofScript)AuxParaPruebas\FamilyToPerson.ocl

6. Select ASSL file

||IooYMofScript)\AuxParaPruebas\FaminToPerson.assI!

7. Signature of the invocation to ASSL file:
mkSource2(3, 6, 3, 3)

8. Select a temporal folder

‘ I:E\Eclipse3.4(JiglooYMofScript)\AuxParaPruebas\templ

checking structure...
checking invariants...
checking invariant (1) ‘Family::SRC_TRG_FatherSon2

-=false : Boolean
Instances of Family violating the invariant:

-> Set{@Family1,@Family2, @Family3} : Set(Family)
checking invariant (2) "Family::SRC_TRG_Female2Mg
checking invariant (3) "Family:SRC_TRG_Male2F athe
checking invariant (4) "Family:SRC_TRG_MemberSiz

-=false : Boolean
Instances of Family violating the invariant:

-> Set{@Family1,@Family2, @Family3} : Set(Family)
checking invariant (5) "Family:SRC_TRG_MotherDaut

->false : Boolean
Instances of Family violating the invariant:

-> Set{@Family1,@Family2,@Family3} : Set(Family)
checking invariant (6) "Family:SRC_TRG_MotherDau
checked 6 invariants in 0.012s, 3 failures.

L]

[« |

| Check I

Formal Specification and Testing of Model Transformations

SFM 2012

Tracts for EMF

Time for a Tool Demo!

Formal Specification and Testing of Model Transformations SFM 2012 85

Jhe Future of 7ractls

Next steps

Incorporate existing works on the effective generation
of input test cases, oracles, test inputs coverage

Study tracts properties:
composability, subsumption, refinement,...
Tracts for bi-directional transformations
Improve engineering aspects
Visual specification of tracts
Diagnostics
Improve tool support

Define libraries of tracts

Formal Specification and Testing of Model Transformations SFM 2012 87

Thanks!

Manuel Wimmer, Loli Burgueino, Lars Hamann,
Martin Gogolla, Antonio Vallecillo,

Universidad de Malaga/Univertat Bremen
http://www.lcc.uma.es/~av

100 % Completed!

Y 'ma
@ Universitat Bremen suivensioa

