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COLLECTIVE DYNAMICS

The behaviour of many systems can be interpreted as the
result of the collective behaviour of a large number of
interacting entities.

STy ik

For such systems we are often as interested in the population
level behaviour as we are in the behaviour of the individual
entities.
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COLLECTIVE BEHAVIOUR

In the natural world there are many instances of collective
behaviour and its consequences:
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COLLECTIVE BEHAVIOUR

In the natural world there are many instances of collective
behaviour and its consequences:
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COLLECTIVE BEHAVIOUR

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009
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COLLECTIVE BEHAVIOUR

This is also true in the man-made and engineered world:
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COLLECTIVE BEHAVIOUR

This is also true in the man-made and engineered world:

FICATION MC ICTMC LOCAL2GLOBAL

HMRC: Login

htps:/ fonline.hmrc.gov.uk/1ogin?GAREASONCODE=- 1&GARESOURC

@ HM Revenue
&Customs

Welcome to Online Services

Online Services

HMRC home | Contactus | Help

& | (Qr Inland Revenue Tax Returns

Existing users

Please enter your User 1D and password, then click the
Login’ button below.

Please note: Fields are not case sensitive.
User ID: @

Password: @

Login

» Digital Certificate user

» Lost User ID?
» Lost password?
) Lost or expired Activation PIN?

b If you have lost both your User ID and password
please contact the HM Revenue & Customs (HMRC)
Online Services Helpdesk.

New user
To register for online services please dlick the 'Register’
button below.

» Digital Certificate user

» Frequently Asked Questions (FAQs’
» Computer requirements

» View a demo of HMRC's services

» Registration and Enrolment process

Self assessment tax returns 31st January each year

vt

N
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SOLVING DISCRETE STATE MODELS

a
)
b/

/*}
c c s ‘\ ::7/
b s/

With compositional modelling
approaches we have a
CTMC with global states
determined by the local
states of all the participating
components.
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SOLVING DISCRETE STATE MODELS

When the size of the state
space is not too large they

are amenable to NUMERICAL G1 Qo - Qi
SOLUTION (linear algebra) to Q1 Q2 0 QN
determine a STEADY STATE of Q= : :

TRANSIENT PROBABILITY
DISTRIBUTION.
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SOLVING DISCRETE STATE MODELS

Alternatively they may be

studied using STOCHASTIC
SIMULATION. Each run

generates a single trajectory
through the state space.

Many runs are needed in

order to obtain average .\‘
behaviours.
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STATE SPACE EXPLOSION

carry out numerical solution and extremely time-consuming to

As the size of the state space becomes large it becomes infeasible to
conduct stochastic simulation. J

In these cases we would like to take advantage of the MEAN FIELD or
FLUID APPROXIMATION techniques.

Use CONTINUOUS STATE VARIABLES to approximate the discrete state
space.

Use ORDINARY DIFFERENTIAL EQUATIONS to represent the evolution of
those variables over time.

Appropriate for models in which there are large humbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.
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POPULATION MODELS - TIME SERIES ANALYSIS

CTMC ——> Solution/Simulation
(small populations)

Population model

(large populations)
Fluid ODE ——> Simulation

Fluid methods: approximate description of the collective
(average) behaviour, estimate of certain passage times J

@ M. Tribastone, S. Gilmore, J. Hillston: Scalable Differential Analysis of Process Algebra Models. IEEE Trans.
Softw Eng. 2012.

@ R.A. Hayden, A. Stefanek, J.T. Bradley. Fluid computation of passage-time distributions in large Markov
models. Theor. Comput. Sci. 2012.



INTRODUCTION 13/123

POPULATION MODELS - MODEL CHECKING

(small populations)
Stochastic MC

N

Population model Property specification

Fluid approximation

Understand how and to what extent fluid methods can be used
to efficiently approximate stochastic model checking. J
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GOALS

We will consider population models, composed of many
interacting agents of one or more classes.

We will focus on questions related to the behaviour of individual
agents for medium and large population size.

v

We will investigate:

e individual properties, concerned with the behaviour of a
single or a few agents

@ collective properties, concerned with the behaviour at the
population level.




INTRODUCTION

LECTURE PLAN

Introduction to population CTMC and fluid approximation
for collective and individual behaviour;

Individual properties: model checking
time-inhomogeneous CTMC, decidability, and correctness

Collective properties: linear noise approximation (if there
will be time — not in the book chapter).

15/123

L. Bortolussi, J. Hillston, D. Latella, M. Massink.Continuous Approximation of Collective Systems Behaviour:

a Tutorial. Performance Evaluation, 2013.

L. Bortolussi, J. Hillston: Fluid Model Checking. CONCUR 2012.

L. Bortolussi, J. Hillston: Model Checking Single Agent Behaviours by Fluid Approximation, submitted to
Information and Computation.

L. Bortolussi, R. Lanciani. Model Checking Markov Population Models by Central Limit Approximation.
QEST 2013.
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© FLUID APPROXIMATION
@ Markov population models
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EXAMPLE: P2P NETWORK EPIDEMICS

Network node Y

o A network is
composed of N
interconnected
nodes

o Indistinguishable
individual nodes =
we only count of
how many nodes are
in each state

patch_low

patched

ext_inf

infected
active

infected

inactive e Dynamics specified

- at the collective level
deactivate
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POPULATION CTMC: INDIVIDUALS AND COLLECTIVES

INDIVIDUALS

We have N individuals with state Y,(N) €S, S={1,2,...,n}in
the system (we can have multiple classes; the population is
assumed constant for simplicity).

COLLECTIVE VARIABLES
XM =N y® =1, and X = (xV,.. x{M)

EXAMPLE: NETWORK EPIDEMICS

o Individual state space: S = {susceptible (s),infected and
inactive (d), infected and active (i), patched (p) }

° CoIUective variableﬁ: N N N
Xs( )22;7211{\/]( ):s}, X(S )7Xi( ),Xé )_
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POPULATION CTMC: COLLECTIVE DYNAMICS

COLLECTIVE TRANSITIONS 7 (V)

7 € TN describes a possible action/ event.
7= (R, rT(N)), where
o r'N) = (M (XM is the rate function, giving the speed at
which the event happens.
o R, is the multi-set of update rules,
R- = {ik = j1,..., ik = jk}. M. is the multiplicity of / — j
in R

v

UPDATE VECTOR

With each transition 7, we associate an update vector v, giving
the net change in collective variables due to 7:

Z mr,i—>jej Z m; I—)jeh

(i—j)eR- (i—j)eR-
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EXAMPLE: P2P NETWORK EPIDEMICS

patch_low

infected infected
inactive active

20/123

ext_inf:
infect:
activate:

deactivate:

deactivate

Rext_inf - {S — d}s
Rinfect = {S — dl_> I}s
Ractivate = {d — I}a

Rdeactivate — {I — d}1

r%g%inf :kkextxs;
ri(ﬂgect = ﬁfxs)(i;
Moctivate = KactXa;
r(geactivate = kdeactXi;
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EXAMPLE: P2P NETWORK EPIDEMICS

patch_low

ext_inf patch_high

infected
active

. N .
patch_s! Roatens = {S =P}, Koden o = KiowXs;

N
patch_d: Rpatch_d = {d - P}a rf()agch_d = kIOWXd;

deactivate

patch_i: Rpatch_i = {I — p}, rpatch_i = khigh)(i;
N
loss: Riose ={p—sh, ™M =Kkx,;

21/123
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POPULATION CTMC

A population model is thus given by a tuple
XN = (XM TN x(V) where

o X(V) are the collective variables;

o T7(N) are the collective transitions;

° xéN) is the initial state.

STATE SPACE
SN = {xeN"| 3 x; = N}

CTMC INFINITESIMAL GENERATOR Q = (Qxx/)

Oxx' = Z{G(X) l7eT, X =x+Vv,}.
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EXAMPLE: CLIENT SERVER INTERACTION

recover

process

Sr
CLIENT SERVER
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EXAMPLE: CLIENT SERVER INTERACTION

VARIABLES
@ 4 variables for the client states: C,q, Cw, Crc, Ct.
@ 4 variables for the server states: Sy, Sp, Sip, S).

TRANSITIONS

There are 7 transition in totals.
e request: Crg — Cw, Srg = Sp; kr - min(Crq, Srq)
o reply: Cyw — Ct, Spp — Sj; min(kw Cw, kipSip)
o timeout: Cy, — Cr;; KiwCw




OUTLINE

© FLUID APPROXIMATION

@ Fluid approximation theorems
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FLUID APPROXIMATION

o It applies to population CTMC models with large population
size N (studies the limit as N — o)

o It applies to population densities (normalisation step),
under suitable scaling of rate functions.

e ltis a functional version of the law of large numbers:
in any finite time horizon, the trajectories of the PCTMC
converge to a deterministic trajectory, solution of the fluid
ODE.
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AN INTUITION

As population increases, we observe more events each having
a smaller impact on the population density vector.

A

N

time
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AN INTUITION

As population increases, we observe more events each having
a smaller impact on the population density vector.

A

time
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NORMALIZATION

The normalized model £ = (X, 7V, x{") associated with
M = (X, 7, x{M) is defined by:

o Variables: X = X
(N)
o Initial conditions: )A(éN) - XOT
(

o Normalized transmon # = (R, PM (X)) from 7 € TN)
o rate ?V (X) = rM(x

o update vector Nv )

)-

We assume to have a sequence of (normalised) models XV),
N > 0, that differ only in the total population size.

EXAMPLE

We will consider the normalised P2P network epidemics model,
for an increasing number of netwkr nodes.
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SCALING ASSUMPTIONS

@ E C R"is a open (or compact) set containing the state space of
each X(N)(t) for each N. As here the population remains
constant, it can be taken as the unit simplex in R":

{(xe[01]"[ XX =1}

° ‘N?ﬁ'\’) is required to converge uniformly to a locally Lipschitz

continuous and locally bounded function f,:

sup
xXeE

o If lN?ﬁN) = f. does not depend on N, the rate satisfies the density
dependence condition.

@ The following theorem works also under less restrictive
assumptions (e.g. random increments with bounded variance
and average).
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DRIFT AND LIMIT VECTOR FIELD

DRIFT
The drift or mean increment at level N is

FM(x) = 3~ THM (x)

TET

By the scaling assumptions, F(N) converges uniformly to F, the
limit vector field (locally bounded and Lipschitz continuous):

F(x)=> v f(x).

TET

THE FLUID ODE 18

ax(t) _
= F(x(t)
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CONVERGENCE TO THE FLUID ODE

THEOREM (KURTZ 1970)

If )A(SN) — Xo € E in probability, then for any finite time horizon
T < oo, it holds that:

IP’{ sup [|[XM(t) — x(t)|| > 5} — 0.
0<t<T

THE MOMENT CLOSURE POINT OF VIEW

Alternatively, the fluid ODE can be seen as a (first order)
approximation of the ODE for the average of the PCTMC.
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A LOOK AT K. THEOREM PROOF FOR DENSITY DEPENDENT RATES

ODE SOLUTION, INTEGRAL FORM

x(t) = x(0) + /Ot F(x(s))ds

PERTURBED ODE REPRESENTATION OF A CTMC

XN () = XN (0) + / t F(XM(s))ds + MMt
0

M™)(t) is a stochastic process, in particular a martingale, and by
applying some martingale inequality (e.g. Doob’s), one has that

en = Sup IMM(s)]| -0 as N — oo
s<

The theorem then follows as for proving uniqueness of solutions for
Lipschitz vector fields (Grénwall inequality).
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EXAMPLE: P2P NETWORK EPIDEMICS NORMALISED MODEL

ext_inf:

infect:

activate:

patch_low

@.

patch_high

ext_inf

infected
inactive

infected
active

deactivate

Vext inf — N( 1 1 O 0) I’ixg inf Nkext)/% = Nkext)?s;

Vinteer = 1(=1,1,0,0), PN — Nk e X = Nk Xs Xi;
Voo = 4(0,-1,1,0), PN = Nk oot X
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P2P NETWORK EPIDEMICS: FLUID EQUATIONS

—KextXs — KintXsXj — KiowXs + KiossXp
KextXs + KintXsXi — KactXd — KiowXd + KdeactXi
KactXd — KdeactXi — KnighXi

KiowXs + KiowXa + KnighXi — KiossXp
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P2P NETWORK EPIDEMICS: FLUID AT WORK

probability

0.6

--- CTMC N=100
— ODE

T T an

36/123
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P2P NETWORK EPIDEMICS: FLUID AT WORK

- CTMC N=1000
— ODE

1.0

0.8

probability
0.6

0.4

T T an

0.2

0.0
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STEADY STATE BEHAVIOUR

o Kurtz theorem in general cannot be extended to
convergence of the steady state.

@ The problem is for instance with multi-stable fluid ODEs
(more than one attracting equilibrium):
in this case, in the long run the CTMC will always keep
jumping between these different equilibria, although it will
spend a long time in each attractor.

Kurtz theorem holds also for steady state distributions only if
the fluid ODE has a unique globally attracting steady state.

@ L. Bortolussi, J. Hillston, D. Latella, M. Massink. Continuous Approximation of Collective Systems
Behaviour: a Tutorial. Performance Evaluation, 2013.
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SINGLE AGENT ASYMPTOTIC BEHAVIOUR

o Focus on single individuals Y.

e Fix hand let ZIN) = Y,SN) be the single-agent stochastic
process with state space S (not necessarily Markov).

o Let Q)(x) be defined by
BV (et dt) = | YiP(0) = i XV (1) = x) = ¢ (x)at,
with QM (x) — Q(x).

o Let z(t) be the time inhomogeneous-CTMC on S with
infinitesimal generator Q(t) = Q(x(t)), x(t) fluid limit.

THEOREM (FAST SIMULATION THEOREM)
Forany T < oo, P{ZWN)(t) # z(1),t < T} — 0.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.
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P2P NETWORK EPIDEMICS

SINGLE NODE
YW € {s,d,i,p}

RATES OF ZWV)
@ ext_inf: gN) e(QIt) 1nf(X(N)) ﬁkextxs(lv) = Kext

o (N
@ infect: (N) rﬁfﬁect( (N)) = 1Nkian,-(N) = kiani( :

RATES OF Z
@ ext_inf: Key

@ infect: KipX;
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P2P NETWORK EPIDEMICS

The single agent infinitesimal generator is then Q) (x) = Q(x),
giving the following time dependent Q-matrix Q(x(t)), where
X(t) is the solution of the fluid equations.

—Kext — kiani(t) — Kiow Kext + kiani(t) 0 Kiow
0 —kact - klow kact klow
0 kdeact *kdeact - khigh khfgh

kloss 0 0 - kloss

Transient probabilities for the fluid approximation of the single
agent can be computed by solving the forward Kolmogorov
equations
dn(o, t)
dt

= (0, ) Q(1).
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P2P NETWORK EPIDEMICS: TRANSIENT PROBABILITIES

- CTMC N=100
— ODE

1.0

0.8

probability
0.6

0.4

T T an

0.2

0.0

0 20 40 60 80 100 120
time

N =100
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P2P NETWORK EPIDEMICS: TRANSIENT PROBABILITIES

- CTMC N=1000
— ODE

1.0

0.8

probability
0.6

0.4

T T an

0.2

0.0
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CLIENT SERVER EXAMPLE

SINGLE CLIENT
YN e {rq,w,t,rc}

RATES OF Z(N)
e request: %kr min(Cly", S")

o reply: — mln(ka(N), kipSip))

° t|meout. kto, recover: K

RATES OF z

. - Srq(1)
e request: k, min(1, ch(t))

o reply: min(ky, k,pi’:—((g)

@ timeout: ky; recover: ki
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CLIENT-SERVER: TRANSIENT PROBABILITIES

probability

0.4

probability
00 01 02 03 04 05 06

0.

0.6

0.2

0.0

Tansiont probabity RQ

5 (10000 runs)
50 (10000 runs)

-~ cTMe
— fluid CTMC.

0 100 200 300 400 500
time

request

Transien prosabilty W

-~~~ CTMC N = 15 (10000 runs)
CTMC N = 150 (10000 runs)
— fluid CTMC

300 400 500
time

wait

probaiity

0.10

probaiity

0.002

0.30

0.20

0.00

0.006

004

o.

0.000

Tansent povabily T

5 (10000 runs)
50 (10000 runs)

— fluid CTMC.

0 100 200 300 400 500
time.

think

Tansentpovatiy R

5 (10000 runs)
50 (10000 runs)

— fluid CTMC.

0 100 200 300 400 500

time.

recover
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INDIVIDUAL PROPERTIES

We are interested in the behaviour of a (random) individual.

We will specify such a behaviour in Continuous Stochastic
Logic (CSL). Other possibilities include DFA, DTA, LTL, MiTL.

v

P2P NETWORK EPIDEMICS EXAMPLE

o What is the probability of a node being infected within T
units of time?

o Is the probability of a single node remaining infected for T
units of time smaller than p;?

o Is the probability of a node being patched before getting
infected larger than p,?

o What is the probability of being patched within time T4, and
then remaining uninfected with probability at least ps for T
units of time?

v
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COLLECTIVE PROPERTIES

We will concentrate on collective properties of the form:

"What is the probability that a given fraction of individuals
satisfies the local property ¢ (by time T)?

P2P NETWORK EPIDEMICS EXAMPLE

o What is the probability of at most one tenth of nodes being
infected within T units of time?

o Is the probability of at least one third of nodes remaining
infected for T units of time smaller than p;?

o Is the probability of at least half of nodes being patched
before getting infected larger than p,?
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(TIME-BOUNDED) CONTINUOUS STOCHASTIC LOGIC

SYNTAX

¢ =al o1/ o2 | 0| Pup(XIT07lg) | Prgp(61 UL T2l )

@ ais an atomic proposition;

@ ¢4 A ¢ and —¢ are the usual boolean connectives;
o Pup(XIT:Tlg) is the next state temporal modality.
o Pup(1ULT T2l 5) is the until temporal modality.

DERIVED MODALITIES
EVENTUALLY: FI%Tl¢ = true U071
ALwAYS: GIOTlg = -FI0.TI-¢
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CSL - RESTRICTIONS

SYNTAX

p=alpi Noa| ¢ | P[><]p(x[T1’T2]¢) | Pmp(¢1U[T1’T2]<Z>2)

50/123

o We do not consider timed-unbounded operators:
0<Tq, To < ox0;

@ We do not consider steady state probabilities;

o We do not consider rewards.

Rewards can be easily added.
Time unbounded and steady state properties are more

problematic: Kurtz theorem works only for time-bounded
horizons.
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CSL - NOTATION

We will interpret CSL formulae on a generic stochastic process
Z(t) on S, such that all relevant sets of paths (i.e. those
satisfying until or next formulae) are measurable.

PATHS
A path o of Z(t) is a sequence

) 4
O=8 —8 — ...,

with non null probability of jumping from s; to s;. 1, for each i;

4

NOTATION
e 00t is the state of o at time f;
e oli] is the i-th state of o;
o t,[i] is the time of the i-th jump in o;
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CSL- SEMANTICS

STATE FORMULAE
e sty E aifand only if a € L(s);

e sty = —¢ifandonly if s, ty ~ ¢;
e s,fp =y Nooifandonlyif s, fy = ¢¢ and s, fy = ¢2;
o sty = Pp(v) ifand only if P{c | o, [y =¥} >ap.

PATH FORMULAE
o o, ty = X" Tlg if and only if £,[1] € [Ty, T2] and
o[1], b + :[1] = ¢.

o o,ty = UM Rlgy if and only if 3t € [t + Ty, fp + T2 s.t.
o0t t = ¢oand Vip <t < t, o0t |= ¢4.
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EXAMPLE: P2P NETWORK INFECTION

° Yy = amfected
(a node is infected within T units of time);

° Py = P<p1(G[O’T]ainfected)
(the probability of a single node remaining infected for T
units of time is smaller than py);

° ¢op=P >pz(_‘ainfectedU[O’T] patched )
(the probability of a node being patched before getting
infected is larger than po);

° Yo = F[O’T'](apatched A PZpg(G[O’TZ]_‘ainfected))
(a node is patched within time T4, and then remains not
infected with probability at least p3 for T, units of time).

53/123
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THE IDEA

Approximate the behaviour of an agent Z in the system using
the time-inhomogeneous Markov chain z. }

Model check temporal logic formulae on z. )

OUTLINE OF FOLLOWING TOPICS

e A model checking algorithm for CSL on
time-inhomogeneous CTMC (ICTMC).

o Investigation of its decidability.
e Convergence results (asymptotic correctness for large N).




OUTLINE

9 BEHAVIOUR SPECIFICATION

@ CSL model checking for time-homogeneous CTMC



BEHAVIOUR SPECIFICATION 56/123

CSL MODEL CHECKING: BASIC IDEAS

e The model checking algorithm works by processing bottom
up the parse tree of a formula.

e The intuition is that each state formula determines the set
of states satisfying it. Once this set has been computed,
one can treat the state formula as an atomic proposition.

o Dealing with atomic propositions and boolean connectives
is easy: we just need to explain how to compute the
satisfaction probability of path formulae.
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CSL MODEL CHECKING: NEXT STATE OPERATOR

PATH PROBABILITY X!71:72l¢

e We just need to evaluate the probability that, being in a
state s, we jump within time [T;, T,] to a state that satisfies

}.
o We know the set {s’ | s’ = ¢} by (inductive) hypothesis.
@ We consider time-homogeneous CTMCs.
o The exit rate in state sis q(s) = > g cs 5454(S: ).
@ The rate at which we jump to a ¢-state is
CM;(S) = Zs’|:¢, S'#S q(s,s').

PROBABILITY DENSITY OF X¢

qs(S)
qa(s)

q(s) exp(—q(s)t) = qs(s) exp(—q(s)?)
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CSL MODEL CHECKING: NEXT STATE OPERATOR

PROBABILITY DENSITY OF qu

CZ;(—(SS))Q(S) exp(—q(s)t) = gs(s) exp(—q(s)t)

587123

PROBABILITY OF X772l

Tz
P(s, X! Telg) = gs(s) exp(—q(s)t)at

T

qs(S)

= ——(exp(—q(s)T1) — exp(—q(s)T2))

qa(s)

o We then need to solve the inequality P(s, XI™:"2l¢) >q p to

decide if s satisfies Pop(X[71:721).

e This method requires the CTMC to be time-homogeneous
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CSL MODEL CHECKING: UNTIL OPERATOR

o We start by considering the until path formula ¢ U1,

o We need to compute the probability of all paths that remain
in a ¢4-state before entering a ¢, state before time T.

o The idea is that if we enter a —¢4-state, we should discard
the path, while if we enter a ¢,-state, we are done.

@ We can monitor these two events by “stopping” when they
happen, making —¢1 and ¢»-states absorbing (i.e.
removing outgoing transitions).
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EXAMPLE

Consider the property notinfectedU® lpatched. We need
to make infected and patched states absorbing.

patch_low

infected infected
inactive active

deactivate
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EXAMPLE

Consider the property not infectedUL Tlpat ched.

patch_low

patched

ext_inf

infected infected

inactive

active
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CSL MODEL CHECKING: UNTIL OPERATOR

Let N be the probability matrix: M(0, T)[s, s'] gives the
probability of being in s’ at time T, starting in s at time 0.

MODEL CHECKING ALGORITHM FOR ¢1U[% 71,
@ Make —¢1 and ¢, states absorbing

© Compute the transient probability of the so modified CTMC
at time T (using uniformisation or solving Kolmogorov
equations): M-4,v4,(0, T),

© The desired probability is

P(o f= ¢1UO g, | o[0] = 8) = > Moy ve,ls. 100, T)
S'E¢2
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CSL MODEL CHECKING: ¢{UlTTelg,

We split the problem in two parts:

© Compute the probability of not entering a —¢ in the first T;
units of time, by making —¢4 states absorbing.

@ Compute the probability of the until formula ¢{U1% 2= T1lg,

MODEL CHECKING ALGORITHM FOR ¢ Ul T2l ),
© Compute -4, (0, T1) by transient analysis;
© Compute MN-4,v4,(0, T2 — T1) by transient analysis;
© The desired probability P(o = ¢1UT: T2l g, | o[0] = s) is

Z Z n—'¢1 (Ov T1)[S’ S1]|_|_|¢1 Vo [31732](07 T2 - T‘I)
S1E¢1 So=2

The method works only for time-homogeneous CTMCs.
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@ MoODEL CHECKING CSL FOR ICTMC
@ Model checking non-nested properties
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CSL MODEL CHECKING FOR ICTMC

The fluid limit z of a single agent in a population model is a
time-inhomogeneous CTMC.

IMPLICATIONS
o We cannot use the same algorithms sketched before,
because we cannot always start transient computations
from time 0.
o Non-nested properties can still be dealt with similarly, the
difficulties arises with nested properties.
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CSL MODEL CHECKING FOR ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).
Focus on a non-nested until formula of the type

Pocp(1 UL T 3y)

which can be model checked as customary by solving the
following reachability problem:

What is the probability of reaching a ¢»-state within time T
without entering a —¢¢-state?

SOLUTION

Make —¢1 V ¢o-states absorbing, and compute the probability of
reaching a goal state at time T (e.g., by solving the Kolmogorov
equations or by uniformisation for ICTMC).

v
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P2P NETWORK EPIDEMICS: THE MODEL

patch_low

patched

ext_inf patch_high

infected
active

infected
inactive

infect

deactivate
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P2P NETWORK EPIDEMICS: FI%7lg; tocted FROM STATE S

o |-#®- stat mc N=100 (10000 runs)
1 |--e-- stat mc N=1000 (10000 runs) A A A A A
—a— fluid mc 2% i
@ | o™
o a7
2
= © |
g o
]
8
53
N
o
=
o

15 20

time
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P2P NETWORK EPIDEMICS: —@inrected V% T @patched FROM
STATE §

probability
0.00 0.01 0.02 0.03 0.04 0.05

stat mc N=100 (10000 runs)
stat mc N=1000 (10000 runs)

—A—  fluid mc

10
time

15

20
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NEXT-STATE PROBABILITY

PROBABILITY OF X!"-"2l¢) STARTING AT TIME t,

fo+T>

Prext(to)[s] = / qs(s, 1) - g~ Mo.0Isl gt
fo+T4

where A(ly, t)[s] = f, —Qs,s(7)d is the cumulative rate.

We can reduce the computation of the previous integral to the
following initial value problem from f, + 71 to fH + T».

d _
dtP( ) = Goy(t) - L0

ELU) = —Qs,s(f)

with P(fy + Ty) = 0and L(fy + T1) = A(fo, lp + T1)-
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P2P NETWORK EPIDEMICS: X[%71g; tcieq FROM STATE S

o |-#®- stat mc N=100 (10000 runs)
~ |-~ stat mc N=1000 (10000 runs) _ = A A
—— fluid mc - e
@ | : .l
o a7
2
= © |
8 o
©
8
= <
o O b
N
o
o |
o T T
15 20

time
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CLIENT-SERVER: THE MODEL

recover

process

Sr
CLIENT SERVER
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CLIENT-SERVER: P_7(F=" asmeout)

Pr=?[F<=T timeout] —- 10 clients, 5 servers

1.0

-] - - statmc (10000 runs)
—— fluid m¢

probability

0.2

0.0
I

1500 2000 2500 3000

o
@
=}
IS)
.
o
S
S

time
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. <T
CLIENT—SERVER. P:?(arequest \/ awa[tU_ aﬁmeout)

Pr=?[(request or wait) U<=T timeout] —- 10 clients, 5 servers

- - stat mc (10000 runs)
—— fluid m¢

=)
S
o
@«
g |
o

2 g

5 o

8

]

s
=
3
o
o~
g
o
o
g
o

0 20 40 60 80 100

time
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CLIENT-SERVER: COMPUTATIONAL COST

COMPUTATIONAL COST
@ The cost of analysing the limit fluid system is independent
of N.
o For the client server example (10 clients - 5 servers) it is
~100 times faster than the simulation-based approach
(which increases linearly with N).

757123




P2P NETWORK EPIDEMICS

mc N=100 (10000 runs)
mc N=1000 (10000 runs)
id me.

probability
00 02 04 06 08 10

0 5 10 15
time

20

COMPUTATIONAL COST

MC ICTMC

: COMPUTATIONAL COST

N=100 (10000 runs)
N=1000 (10000 runs)

probabiity
0.00 001 0.02 0.03 004 0.05

Checked property Fluid MC | SMC (N = 100) | SMC (N = 1000)
Kolmogorov Equations | ~ 0.1s ~64s ~101s
X[°’ﬂa,-,,fec,ed ~ 0.06 s ~6s ~24s
_‘ainfectedulo’napaiched ~0.05s ~5s ~20s
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@ Time-dependent probabilities
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CSL MODEL CHECKING FOR ICTMC

Consider a ICTMC with state space S and rates Q = Q(1).

#1001, and XUT1:T2l

Time-homogeneity = we can run each transient analysis/
integral computation from time f, = 0!

This is no more true in time-inhomogeneous CTMCs, as the
probability of a path formula depends on the time at which we
evaluate it.

Problems arise when we consider nested until formulae.

The truth value of ¢ in a state s depends on the time t at which
we evaluate it.
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TIME-DEPENDENT PROBABILITY OF X!t T2lg

PROBABILITY OF X!7":72l¢) STARTING AT TIME t,

fo+To

Pnext(tO)[S] = / Q¢(S, f) . e_/\(to’t)[s]dt
o+ T

where A(fy, t)[s] = f, —Qs,s(7)dT is the cumulative rate.

INTUITION
o Compute & Prext(to)[s]
@ Construct an ODE for Ppex(t) and solve the i.v. problem.

CHECKING P,,(X[TT2l¢))

o Compute the path probability Ppext(ty)[s] of XI[™:"2l¢ as a
function of fy

@ Solve the inequality Ppext(fo)[s] >< p
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P2P NETWORK EPIDEMICS: X010 g, ¢ oy

—
— ‘ —— Prob(p,t0 |=X[0,10] infected)
o .. e .
—
o)}
&
g
22
Q
o~
S S
©
=
|
o T~2.26 false
0 2 4 6 8 10
time

to varying (Red line: P> g(X%"% &, r01eq))
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TIME-DEPENDENT REACHABILITY PROBABILITY

Focus on Pup($1U0 Tlpo). Assume that the truth of ¢4 and ¢
does not depend on time.

Let N(ty, &) = (7s,5,(t1, &2))ij be the probability matrix giving the
probability of being in state s; at time £, given that we are in
state s; at time ;.

We consider N = M4, v4,, the probability matrix of the CTMC in
which —¢1 V ¢, states are made absorbing.
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FORWARD AND BACKWARD KOLMOGOROV EQUATIONS

The device to compute the time dependent probability of an
until formula ¢1U% 714, are the Kolmogorov equations for
ICTMCs.

FORWARD KOLMOGOROV EQUATION
d

EI‘I(& t) = N(s, t)Q(t)

BACKWARD KOLMOGOROV EQUATION

%I‘I(s, t)=-Q(s)N(s,t)

COMPUTING [1(t,t+ T), FOR FIXED T

We just need to combine the two backward and forward
equations by chain rule.
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TIME-DEPENDENT REACHABILITY PROBABILITY

1. CoMPUTE N(t, t+ T), FOR t € [0, T¢]

M(t,t+ T), as a function of ¢, with initial conditions (0, T),
satisfies:
dne,t+T)

T, =Mt t+T)Q(t+T)—Q()N(t,t+T)

2. ADD PROBABILITY FOR GOAL STATES
Py u0.mg,(S, ) isequalto > gy Mogve, (L t+ T)[s, s].

3. COMPARE WITH THRESHOLD p

The truth value T(¢, s, t) of formula ¢ in state s at time t is
obtained by solving the inequality P¢1U[o,n¢2(s, t) > p.

We need to find the zeros of the function Py yp.71,,(S; t) — p-
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P2P NETWORK EPIDEMICS: GIO10—g, ¢ 1oy

® | — Prob(p,t0 |= G[0,10] not_infected
=} p.t0 |= P>0.97(G[0,10] not_infected) | true
~
o
>0
)
3
8g.
=
T~81.8
0
m_ -
o false
T T T T
0 50 100 150
time

from state p (patched)
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CLIENT SERVER: P_7F=08;imeout AS A FUNCTION OF f

probability

0.20

0.15

0.10

0.05

0.00

Pr=?[F<=50 timeout] -- t0 varying —- 10 clients, 5 servers

-
= -
- - statme (10000 runs)
— fluid me
T T T T T
0 10 15 20 25

initial time
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CLIENT-SERVER: P_q 167(F=>°timeout)

Pr=?[F<=50 timeout] - t0 varying

true
o
&
=
\ 0.167
0
<
S
=
3
E
]
S
s g
=]
R4
| false
=)
o ]
&l 5 truth-value
=
T T T T T T
0 20 40 60 80 100

initial time

P_o.167(F=®timeout) from state rq of client.
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COMPUTING THE TIME-DEPENDENT TRUTH IN PRACTICE

The equation SMEET) — (¢t 4 T)Q(t+ T) — Q1)N(t, t + T)
is utterly stiff. Its integration error blows up even for the most
accurate Matlab/Octave solvers.

100.000

time
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COMPUTING THE TIME-DEPENDENT TRUTH IN PRACTICE

The equation SMEET) — (¢t 4 TYQ(t+ T) — Q(1)N(t, t + T)
is utterly stiff. Its mtegratlon error blows up even for the most
accurate Matlab/Octave solvers.

| | | ltime
w w w w
To=0 Ti1=1.T T,=2-T Txk=k-T

Practically, we can exploit the semigroup property
Nt t+ T)=n0(t, T)N(T;,t+T)

and solve backward and forward equations separately, looping
over j.
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@ MoODEL CHECKING CSL FOR ICTMC

@ Nested CSL-formulae
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TIME-DEPENDENT TRUTH

@ When computing the truth value of an until formula, we
obtain a time dependent value T(¢, s, t) in each state.

@ When we consider nested temporal operators, we need to
take this into account.

e The problem is that in this case the TOPOLOGY OF GOAL
AND UNSAFE STATES in the CTMC can CHANGE IN TIME.
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TIME DEPENDENT TRUTH: F=T¢

T(¢,s,t)

true

false 0 A
Ty
At discontinuity times, changes in topology introduce
discontinuities in the probability values.

BUT...

Discontinuities happen at specific and rixep time instants. We
can solve Kolmogorov equations piecewise!




K DISCONTINUITIES T4, ...,
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Tk IN [t t+ T]

| | time

THE GENERIC CK EQUATION

[ [
Tk ] T4
t+T

Nt t+T)=N4(t, T))C(T1)N2(T1, T2)¢(T2) - - - C(T )My (Tx, £+ T).
¢(T;) apply the proper bookkeeping operations to deal with
changes in the topology of absorbing states.

e We can compute (¢, t+ T) by an ODE obtained by
derivation and application of chain rule.

e In advancing time, when we hit a discontinuity point (from
below or above), the structure of the previous equation
changes: integration has to be stopped and restarted.



MC ICTMC 93/123

THE ALGORITHM (SKETCHED)

Proceed bottom-up on the parse tree of a formula.
Case T(Pup(¢1 UL T65), 1):

e Compute T(¢1,t) and T(¢2, t)

o Let Ty,..., Ty be all the discontinuity points of T(¢4, t) and
T(¢2, t) up to a final time T;.

e Compute MN(T;, T; + 1) for each i

e Compute IM(0, T) using generalized CK equations
o Integrate (¢, t+ T)upto Ty.

o Return T(Pup(d1 U0 Tlgp), t) = N(t, t + T) > p.

The use of Kolmogorov equations is feasible if the state space
is small (few dozens of states).

This is usually the case for single agent mean field models.
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P2P NETWORK EPIDEMICS:
F[O’T](apatched A P20.97(G[O’m]_‘ainfecz‘ed))

—— Prob(p,t0 |= F[0,T] (patched AND P>0.97(GJ[0,10] not_infected)) ‘

1.0

0.8

0.6

probability

0.4

0.2

T~81.8
T T
0 50 100 150
time

0.0

from state p (patched)
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CLIENT-SERVER: F=T(P_q167(F=>°timeout))

probability

1.0

0.8

0.6

0.4

0.2

0.0

F<=t(Pr<0.167[F<=50 timeout])

— R(O)=1

- - W(O=1

Y - T(0)=1

-z — = A(0)-=1
T T T T T
0 10 20 30 40

time
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DECIDABILITY

DECIDABILITY

e We use algorithms to solve ODEs with error guarantee
(interval analysis).

e We need to find zeros of function P(s, t) — p (root finding),
and guarantee their number to be finite
(restrict to piecewise-real analytic functions).

e To answer the CSL query for main until formulae, we need
to know if P(s,0) i p (zero test).

e ltis not known if root finding and zero test are decidable.

T

4
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DECIDABILITY

DECIDABILITY

e We use algorithms to solve ODEs with error guarantee
(interval analysis).

e We need to find zeros of function P(s, t) — p (root finding),
and guarantee their number to be finite
(restrict to piecewise-real analytic functions).

e To answer the CSL query for main until formulae, we need
to know if P(s,0) i p (zero test).

e ltis not known if root finding and zero test are decidable.

4

THEOREM (QUASI-DECIDABILITY)

Let o = ¢(p) be a CSL formula, with constants

p = (p1,...,px) € [0,1]% appearing in until formulae. The CSL
model checking for ICTMC problem is decidable forp € E,
where E is an open subset of [0, 1], of measure 1.
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CONVERGENCE OF CSL TRUTH

o We considered also convergence of CSL properties: are
properties that are true in z(t) ultimately true in Z(N)(1)?

e Convergence suffers from similar issues as decidability
(e.g., non-simple zeros , P(s,0) = p).

THEOREM (ASYMPTOTIC CORRECTNESS)

Let » = ¢(p) be a CSL formula, with constants
p=(p1,...,px) € [0, 1]% appearing in until formulae.

Then, forp € E, an open subset of [0, 1]% of measure 1, there
exists Ny such that VN > Ny

S,0 =;m ¢ < 5,0 =;¢.
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FROM LOCAL TO GLOBAL

We restrict the set of properties we consider to non-nested CSL
path formulae .

LOCAL PROPERTY
What is the probability that a given agent Z satisfies ¢?

P{ZM) |y} =2

GLOBAL PROPERTY
What is the probability that a fraction « of agents satisfy ¢?

1@{ 21{2}’\’) = )} Na} =?
J
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FROM LOCAL TO GLOBAL

Consider the client-server model, and the local property:

<T
Y = (request V await)U=" atimeout

P{ZN) = 4} can be
approximated by P{z = ¢},
using the fluid method
presented above.

But how can we compute ]P’{ > {Zj(N) Ey}> Na}?
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FROM LOCAL TO GLOBAL: DECOUPLING OF AGENTS

One consequence of the fluid approximation theorem is that, in
the limit, individual agents become independent. Hence

N N N N
P{ZN £ ¢, ZM = ) ~ P2V = 9)p(ZIM | 4}
BINOMIAL APPROXIMATION

S 1{Z™ =y} ~ Bin(N,P{z = v})
J

100 clients, 50 servers

We ignore correlations
between agents for finite N!

probability

00 02 04 06 08 10

- = statme (10000 runs)

—— binomial fluid mc

[} 20 40 60 80 100
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@ Central Limit Approximation
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CENTRAL LIMIT APPROXIMATION

Master equation:

IP(XN) ) _ Z <f(N)()‘((N) ~0)PXM g, f) — XM XN, t))
If we approximate populations continuously and assume

X(M(1) = x(1) + N~z(1)

then the master equation can be approximated at zeroth order
in N by a Fokker-Planck equation:

8I'I(C(t
Zm <a< Gn(e(o.0) +
1 0
+;262r(x<t» (m (o). ) )= 3 vV

1057123
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CENTRAL LIMIT APPROXIMATION

The solution MN(¢, t) of the Fokker-Planck equation is a

Gaussian distribution
e mean E[((t)] such that

{6rE[C(t)] = Je(X(1)E[S(D)]
E[¢(0)] =0

e covariance matrix Cov[{(t)] such that

{OtCOV[C(f)] = Jr(x(1))Cov[¢(1)] + Cov[¢ (DN E(X(1)) + G(x(t))
Cov[¢(0)] =0

Hence XM)(¢) ~ Norm (N -x(t),/N- COV[C(t)]).
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@ Examples
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COMPUTING GLOBAL PROPERTIES
1. Modify the local agent model by creating unsafe and goal copies of
its states.
Client-server model, local property ¢ = (@request V await) UST atimeout:

think

unsafe

safe

goal

timeout



LOCAL2GLOBAL

COMPUTING GLOBAL PROPERTIES

W
req
- @ ®

goal

timeout

2. From the modified local model, construct a population model. Add
a new variable G, counting how many agents are in a goal state.

3. Apply central limit approximation to this new model.

4. Compute P{G}" > aN} by G} ~ Norm (Ngy(t), /NVar[Cg, ()])

109/123
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(N) > N6}

request V/ Await U= T Qtimeout —

CLIENT-SERVER - P{G

100 clients, 50 servers

- — stat mc (10000 runs)
— linear noise mc

probability
00 02 04 06 08 10

30 40 50

time horizon

N =150, § = 0.05
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CLIENT-SERVER - P{G(N) > N6}

arequest V await U= T Atimeout

500 clients, 250 servers

- — stat mc (10000 runs)
4 — linear noise mc

probability
00 02 04 06 08 10

0 5 10 15 20 25 30

time horizon

N =750, § = 0.05
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CLIENT-SERVER - P{G(N) > N6}

arequest V await U= T Atimeout

1000 clients, 500 servers

- — stat mc (10000 runs)
4 — linear noise mc

probability
00 02 04 06 08 10

0 5 10 15 20 25 30

time horizon

N = 1500, 6 = 0.05
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CLIENT-SERVER - IP{G(N) > N6}

request V/ Await U= T Qtimeout —

500 clients, 250 servers

o
o
O 7 - - ctmc (10000 runs)
o — linear noise
i corrected In
o
N
ISR
5 @
aQ
= 4
S
o
—
ISR
o
o
o
I ——
S 9 20

N =1500,60 =0.2
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CLIENT-SERVER - IP{G(N) > NGO}

arequest\/await ust Atimeout ——

500 clients, 250 servers

- — ctmc (10000 runs)
=) b linear noise .
3 B
o |
©
@
£
SO |
<
o |
N
o4
T [ y
) 20 40 60
time

N = 1500, average value of Ng, and va).
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CLIENT-SERVER - IP{G(N) > No}

arequest V await U= T Atimeout

500 clients, 250 servers

o
o
O 7 - - ctmc (10000 runs)
o — linear noise
i corrected In
o
N
ISR
5 @
aQ
= 4
S
o
—
ISR
o
o
o
I ——
S 9 20

N = 1500, 8 = 0.2, corrected central limit
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@ Conclusions
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CONCLUSIONS

o We discussed an application of mean field theory to model
check properties of medium and large population models.

o We considered first single agent properties, focussing on
CSL and providing a method to model check CSL formulae
versus time-inhomogeneous CTMC.

@ We provided convergence results that guarantee
quasi-consistence of the method.

o We then extended (non-nested) single agent properties to
population level, using the central limit approximation.

e For collective properties, we have also considered a richer
class of path properties specified by (restricted) DTA .
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FUTURE WORK

@ Use error bounds for mean field convergence to provide a
(very rough) estimate of the error.

e Include rewards, and time-unbounded/ steady state, when
possible.

e Working implementation.
e Consider other logics on single agents (e.g. MTL, LTL).

e Consider different properties for collective probabilities,
specified by timed automata or LTL (in a local to global
perspective and in a global perspective).

o Understand accuracy of central limit theorem.
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THE END!
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Thanks for the attention

Questions?
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