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COLLECTIVE DYNAMICS

The behaviour of many systems can be interpreted as the
result of the collective behaviour of a large number of
interacting entities.

For such systems we are often as interested in the population
level behaviour as we are in the behaviour of the individual
entities.
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COLLECTIVE BEHAVIOUR

In the natural world there are many instances of collective
behaviour and its consequences:
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COLLECTIVE BEHAVIOUR

This is also true in the man-made and engineered world:

Spread of H1N1 virus in 2009
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COLLECTIVE BEHAVIOUR

This is also true in the man-made and engineered world:

Love Parade, Germany 2006
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COLLECTIVE BEHAVIOUR

This is also true in the man-made and engineered world:

Self assessment tax returns 31st January each year
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SOLVING DISCRETE STATE MODELS

With compositional modelling
approaches we have a
CTMC with global states
determined by the local
states of all the participating
components.
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SOLVING DISCRETE STATE MODELS

When the size of the state
space is not too large they
are amenable to NUMERICAL

SOLUTION (linear algebra) to
determine a STEADY STATE or
TRANSIENT PROBABILITY

DISTRIBUTION.

Q =


q1,1 q1,2 · · · q1,N
q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))
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SOLVING DISCRETE STATE MODELS

Alternatively they may be
studied using STOCHASTIC

SIMULATION. Each run
generates a single trajectory
through the state space.
Many runs are needed in
order to obtain average
behaviours.
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STATE SPACE EXPLOSION

As the size of the state space becomes large it becomes infeasible to
carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

In these cases we would like to take advantage of the MEAN FIELD or
FLUID APPROXIMATION techniques.

Use CONTINUOUS STATE VARIABLES to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ORDINARY DIFFERENTIAL EQUATIONS to represent the evolution of
those variables over time.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics.
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POPULATION MODELS - TIME SERIES ANALYSIS

Population model

CTMC

Fluid ODE

Solution/Simulation
(small populations)

(large populations)

Simulation

Fluid methods: approximate description of the collective
(average) behaviour, estimate of certain passage times

M. Tribastone, S. Gilmore, J. Hillston: Scalable Differential Analysis of Process Algebra Models. IEEE Trans.
Softw Eng. 2012.

R.A. Hayden, A. Stefanek, J.T. Bradley. Fluid computation of passage-time distributions in large Markov
models. Theor. Comput. Sci. 2012.
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POPULATION MODELS - MODEL CHECKING

Population model Property specification

Stochastic MC

Fluid approximation

(small populations)

??

Understand how and to what extent fluid methods can be used
to efficiently approximate stochastic model checking.
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GOALS

We will consider population models, composed of many
interacting agents of one or more classes.

We will focus on questions related to the behaviour of individual
agents for medium and large population size.

We will investigate:
individual properties, concerned with the behaviour of a
single or a few agents
collective properties, concerned with the behaviour at the
population level.
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LECTURE PLAN

Introduction to population CTMC and fluid approximation
for collective and individual behaviour;
Individual properties: model checking
time-inhomogeneous CTMC, decidability, and correctness
Collective properties: linear noise approximation (if there
will be time — not in the book chapter).

L. Bortolussi, J. Hillston, D. Latella, M. Massink.Continuous Approximation of Collective Systems Behaviour:
a Tutorial. Performance Evaluation, 2013.

L. Bortolussi, J. Hillston: Fluid Model Checking. CONCUR 2012.

L. Bortolussi, J. Hillston: Model Checking Single Agent Behaviours by Fluid Approximation, submitted to
Information and Computation.

L. Bortolussi, R. Lanciani. Model Checking Markov Population Models by Central Limit Approximation.
QEST 2013.
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EXAMPLE: P2P NETWORK EPIDEMICS

Network node Y

suscept.

infected
inactive

patched

infected
active

ext_inf infect

infect
activate

deactivate

patch_high

patch_low

patch_low

loss

A network is
composed of N
interconnected
nodes
Indistinguishable
individual nodes⇒
we only count of
how many nodes are
in each state
Dynamics specified
at the collective level
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POPULATION CTMC: INDIVIDUALS AND COLLECTIVES

INDIVIDUALS

We have N individuals with state Y (N)
i ∈ S, S = {1,2, . . . ,n} in

the system (we can have multiple classes; the population is
assumed constant for simplicity).

COLLECTIVE VARIABLES

X (N)
j =

∑N
i=1 1{Y (N)

i = j}, and X(N) = (X (N)
1 , . . . ,X (N)

n )

EXAMPLE: NETWORK EPIDEMICS

Individual state space: S = {susceptible (s),infected and
inactive (d), infected and active (i), patched (p) }
Collective variables:
X (N)

s =
∑n

j=1 1{Y (N)
j = s}, X (N)

d , X (N)
i , X (N)

p .
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POPULATION CTMC: COLLECTIVE DYNAMICS

COLLECTIVE TRANSITIONS T (N)

τ ∈ T (N) describes a possible action/ event.
τ = (Rτ , r

(N)
τ ), where

r (N)
τ = r (N)

τ (X(N)) is the rate function, giving the speed at
which the event happens.
Rτ is the multi-set of update rules,
Rτ = {i1 → j1, . . . , ik → jk}. mτ,i→j is the multiplicity of i → j
in Rτ

UPDATE VECTOR

With each transition τ , we associate an update vector vτ , giving
the net change in collective variables due to τ :

vτ,i =
∑

(i→j)∈Rτ

mτ,i→jej −
∑

(i→j)∈Rτ

mτ,i→jei ,
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EXAMPLE: P2P NETWORK EPIDEMICS

suscept.

infected
inactive

patched

infected
active

ext_inf infect

infect

activate

deactivate

patch_high

patch_low

patch_low

loss

ext_inf: Rext_inf = {s → d}, r (N)
ext_inf = kextXs;

infect: Rinfect = {s → d , i → i}, r (N)
infect = kinf

N XsXi ;
activate: Ractivate = {d → i}, r (N)

activate = kactXd ;
deactivate: Rdeactivate = {i → d}, r (N)

deactivate = kdeactXi ;
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EXAMPLE: P2P NETWORK EPIDEMICS

suscept.

infected
inactive

patched

infected
active

ext_inf infect

infect

activate

deactivate

patch_high

patch_low

patch_low

loss

patch_s: Rpatch_s = {s → p}, r (N)
patch_s = klowXs;

patch_d: Rpatch_d = {d → p}, r (N)
patch_d = klowXd ;

patch_i: Rpatch_i = {i → p}, r (N)
patch_i = khighXi ;

loss: Rloss = {p → s}, r (N)
loss = klXp;
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POPULATION CTMC

A population model is thus given by a tuple
X (N) = (X(N), T (N),x(N)

0 ), where

X(N) are the collective variables;
T (N) are the collective transitions;
x(N)

0 is the initial state.

STATE SPACE

S(N) = {x ∈ Nn |
∑

xi = N}

CTMC INFINITESIMAL GENERATOR Q = (qx,x′)

qx,x′ =
∑
{rτ (x) | τ ∈ T , x′ = x + vτ}.
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EXAMPLE: CLIENT SERVER INTERACTION

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

ready

process

reply

log

requestlogging

processreply

CLIENT SERVER

timeout
tim
eout

Crq

Cw

Crc Ct

Srq

Srp

SpSl
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EXAMPLE: CLIENT SERVER INTERACTION

VARIABLES

4 variables for the client states: Crq, Cw , Crc , Ct .
4 variables for the server states: Srq, Sp, Srp, Sl .

TRANSITIONS

There are 7 transition in totals.

request: Crq → Cw ,Srq → Sp; kr ·min(Crq,Srq)

reply: Cw → Ct ,Srp → Sl ; min(kwCw , krpSrp)

timeout: Cw → Crc ; ktoCw

. . .
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FLUID APPROXIMATION

It applies to population CTMC models with large population
size N (studies the limit as N →∞)
It applies to population densities (normalisation step),
under suitable scaling of rate functions.
It is a functional version of the law of large numbers:
in any finite time horizon, the trajectories of the PCTMC
converge to a deterministic trajectory, solution of the fluid
ODE.
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AN INTUITION

As population increases, we observe more events each having
a smaller impact on the population density vector.

time

X
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time

X
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NORMALIZATION

The normalized model X̂ (N) = (X̂, T̂ (N), x̂(N)
0 ) associated with

X (N) = (X, T (N),x(N)
0 ) is defined by:

Variables: X̂ = X
N

Initial conditions: x̂(N)
0 =

x(N)
0
N

Normalized transition τ̂ = (Rτ , r̂
(N)
τ (X̂)) from τ ∈ T (N):

rate r̂ (N)
τ

(X
N

)
= r (N)

τ (X).
update vector 1

N vτ .

We assume to have a sequence of (normalised) models X̂ (N),
N > 0, that differ only in the total population size.

EXAMPLE

We will consider the normalised P2P network epidemics model,
for an increasing number of netwkr nodes.
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SCALING ASSUMPTIONS

E ⊂ Rn is a open (or compact) set containing the state space of
each X̂(N)(t) for each N. As here the population remains
constant, it can be taken as the unit simplex in Rn:
{x ∈ [0,1]n |

∑
i xi = 1}.

1
N r̂ (N)
τ is required to converge uniformly to a locally Lipschitz

continuous and locally bounded function fτ :

sup
x∈E

∥∥∥∥ 1
N

r̂ (N)
τ (x)− fτ (x)

∥∥∥∥→ 0.

If 1
N r̂ (N)
τ = fτ does not depend on N, the rate satisfies the density

dependence condition.

The following theorem works also under less restrictive
assumptions (e.g. random increments with bounded variance
and average).
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DRIFT AND LIMIT VECTOR FIELD

DRIFT

The drift or mean increment at level N is

F (N)(x) =
∑
τ∈T

vτ
N

r̂ (N)
τ (x)

By the scaling assumptions, F (N) converges uniformly to F , the
limit vector field (locally bounded and Lipschitz continuous):

F (x) =
∑
τ∈T

vτ fτ (x).

THE FLUID ODE IS

dx(t)
dt

= F (x(t))
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CONVERGENCE TO THE FLUID ODE

THEOREM (KURTZ 1970)

If x̂(N)
0 → x̂0 ∈ E in probability, then for any finite time horizon

T <∞, it holds that:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

THE MOMENT CLOSURE POINT OF VIEW

Alternatively, the fluid ODE can be seen as a (first order)
approximation of the ODE for the average of the PCTMC.
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A LOOK AT K. THEOREM PROOF FOR DENSITY DEPENDENT RATES

ODE SOLUTION, INTEGRAL FORM

x(t) = x(0) +

∫ t

0
F (x(s))ds

PERTURBED ODE REPRESENTATION OF A CTMC

X̂(N)(t) = X̂(N)(0) +

∫ t

0
F (X̂(N)(s))ds + M(N)(t)

M(N)(t) is a stochastic process, in particular a martingale, and by
applying some martingale inequality (e.g. Doob’s), one has that

εN = sup
s≤t
‖M(N)(s)‖ → 0 as N →∞

The theorem then follows as for proving uniqueness of solutions for
Lipschitz vector fields (Grönwall inequality).
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EXAMPLE: P2P NETWORK EPIDEMICS NORMALISED MODEL

suscept.

infected
inactive

patched

infected
active

ext_inf infect

infect

activate

deactivate

patch_high

patch_low

patch_low

loss

ext_inf: vext_inf = 1
N (−1,1,0,0), r̂ (N)

ext_inf = Nkext
Xs
N = Nkext X̂s;

infect: vinfect = 1
N (−1,1,0,0), r̂ (N)

infect = Nkinf
Xs
N

Xi
N = Nkinf X̂sX̂i ;

activate: vact = 1
N (0,−1,1,0), r̂ (N)

act = Nkact X̂d ;
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P2P NETWORK EPIDEMICS: FLUID EQUATIONS



dxs(t)
dt

= −kextxs − kinf xsxi − klowxs + klossxp

dxd (t)
dt

= kextxs + kinf xsxi − kactxd − klowxd + kdeactxi

dxi(t)
dt

= kactxd − kdeactxi − khighxi

dxp(t)
dt

= klowxs + klowxd + khighxi − klossxp
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P2P NETWORK EPIDEMICS: FLUID AT WORK
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P2P NETWORK EPIDEMICS: FLUID AT WORK
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STEADY STATE BEHAVIOUR

Kurtz theorem in general cannot be extended to
convergence of the steady state.
The problem is for instance with multi-stable fluid ODEs
(more than one attracting equilibrium):
in this case, in the long run the CTMC will always keep
jumping between these different equilibria, although it will
spend a long time in each attractor.

Kurtz theorem holds also for steady state distributions only if
the fluid ODE has a unique globally attracting steady state.

L. Bortolussi, J. Hillston, D. Latella, M. Massink. Continuous Approximation of Collective Systems
Behaviour: a Tutorial. Performance Evaluation, 2013.
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SINGLE AGENT ASYMPTOTIC BEHAVIOUR

Focus on single individuals Y (N)
h .

Fix h and let Z (N) = Y (N)
h be the single-agent stochastic

process with state space S (not necessarily Markov).
Let Q(N)(x) be defined by

P{Y (N)
h (t + dt) = j | Y (N)

h (t) = i , X̂(N)(t) = x} = q(N)
i,j (x)dt ,

with Q(N)(x)→ Q(x).
Let z(t) be the time inhomogeneous-CTMC on S with
infinitesimal generator Q(t) = Q(x(t)), x(t) fluid limit.

THEOREM (FAST SIMULATION THEOREM)

For any T <∞, P{Z (N)(t) 6= z(t), t ≤ T} → 0.

R. Darling, J. Norris. Differential equation approximations for Markov chains. Probability Surveys, 2008.
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P2P NETWORK EPIDEMICS

SINGLE NODE

Y (N) ∈ {s,d , i ,p}

RATES OF Z (N)

ext_inf: 1
X (N)

s
r (N)
ext_inf(X(N)) = 1

X (N)
s

kextX
(N)
s = kext

infect: 1
X (N)

s
r (N)
infect(X(N)) = 1

N kinf X
(N)
i = kinf X̂i

(N)

RATES OF z
ext_inf: kext

infect: kinf xi
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P2P NETWORK EPIDEMICS

The single agent infinitesimal generator is then Q(N)(x) = Q(x),
giving the following time dependent Q-matrix Q(x(t)), where
x(t) is the solution of the fluid equations.
−kext − kinf xi(t)− klow kext + kinf xi(t) 0 klow

0 −kact − klow kact klow

0 kdeact −kdeact − khigh khigh

kloss 0 0 − kloss



Transient probabilities for the fluid approximation of the single
agent can be computed by solving the forward Kolmogorov
equations

dΠ(0, t)
dt

= Π(0, t)Q(t).
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P2P NETWORK EPIDEMICS: TRANSIENT PROBABILITIES
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P2P NETWORK EPIDEMICS: TRANSIENT PROBABILITIES
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CLIENT SERVER EXAMPLE

SINGLE CLIENT

Y (N) ∈ {rq,w , t , rc}

RATES OF Z (N)

request: 1
C(N)

rq
kr min(C(N)

rq ,S(N)
rq )

reply: 1
C(N)

w
min(kwC(N)

w , krpS(N)
rp )

timeout: kto; recover: krc

RATES OF z

request: kr min(1, srq(t)
crq(t) )

reply: min(kw , krp
srp(t)
cw (t) )

timeout: kto; recover: krc
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CLIENT-SERVER: TRANSIENT PROBABILITIES
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INDIVIDUAL PROPERTIES

We are interested in the behaviour of a (random) individual.

We will specify such a behaviour in Continuous Stochastic
Logic (CSL). Other possibilities include DFA, DTA, LTL, MiTL.

P2P NETWORK EPIDEMICS EXAMPLE

What is the probability of a node being infected within T
units of time?
Is the probability of a single node remaining infected for T
units of time smaller than p1?
Is the probability of a node being patched before getting
infected larger than p2?
What is the probability of being patched within time T1, and
then remaining uninfected with probability at least p3 for T2
units of time?
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COLLECTIVE PROPERTIES

We will concentrate on collective properties of the form:

”What is the probability that a given fraction of individuals
satisfies the local property φ (by time T )”?

P2P NETWORK EPIDEMICS EXAMPLE

What is the probability of at most one tenth of nodes being
infected within T units of time?
Is the probability of at least one third of nodes remaining
infected for T units of time smaller than p1?
Is the probability of at least half of nodes being patched
before getting infected larger than p2?
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(TIME-BOUNDED) CONTINUOUS STOCHASTIC LOGIC

SYNTAX

φ = a | φ1 ∧ φ2 | ¬φ | P./p(X[T1,T2]φ) | P./p(φ1U[T1,T2]φ2)

a is an atomic proposition;
φ1 ∧ φ2 and ¬φ are the usual boolean connectives;
P./p(X[T1,T2]φ) is the next state temporal modality.
P./p(φ1U[T1,T2]φ2) is the until temporal modality.

DERIVED MODALITIES

EVENTUALLY: F [0,T ]φ ≡ true U[0,T ]φ

ALWAYS: G[0,T ]φ ≡ ¬F [0,T ]¬φ
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CSL - RESTRICTIONS

SYNTAX

φ = a | φ1 ∧ φ2 | ¬φ | P./p(X[T1,T2]φ) | P./p(φ1U[T1,T2]φ2)

We do not consider timed-unbounded operators:
0 ≤ T1,T2 <∞;
We do not consider steady state probabilities;
We do not consider rewards.

Rewards can be easily added.

Time unbounded and steady state properties are more
problematic: Kurtz theorem works only for time-bounded
horizons.
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CSL - NOTATION

We will interpret CSL formulae on a generic stochastic process
Z (t) on S, such that all relevant sets of paths (i.e. those
satisfying until or next formulae) are measurable.

PATHS

A path σ of Z (t) is a sequence

σ = s0
t0→ s1

t1→ . . . ,

with non null probability of jumping from si to si+1, for each i ;

NOTATION

σ@t is the state of σ at time t ;
σ[i] is the i-th state of σ;
tσ[i] is the time of the i-th jump in σ;
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CSL- SEMANTICS

STATE FORMULAE

s, t0 |= a if and only if a ∈ L(s);

s, t0 |= ¬φ if and only if s, t0 6|= φ;

s, t0 |= φ1 ∧ φ2 if and only if s, t0 |= φ1 and s, t0 |= φ2;

s, t0 |= P./p(ψ) if and only if P{σ | σ, t0 |= ψ} ./ p.

PATH FORMULAE

σ, t0 |= X[T1,T2]φ if and only if tσ[1] ∈ [T1,T2] and
σ[1], t0 + tσ[1] |= φ.

σ, t0 |= φ1U[T1,T2]φ2 if and only if ∃t̄ ∈ [t0 + T1, t0 + T2] s.t.
σ@t̄ , t̄ |= φ2 and ∀t0 ≤ t < t̄ , σ@t , t |= φ1.
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EXAMPLE: P2P NETWORK INFECTION

ψ1 = F [0,T ]ainfected
(a node is infected within T units of time);

φ1 = P<p1(G[0,T ]ainfected )
(the probability of a single node remaining infected for T
units of time is smaller than p1);

φ2 = P>p2(¬ainfectedU[0,T ]apatched )
(the probability of a node being patched before getting
infected is larger than p2);

ψ2 = F [0,T1](apatched ∧ P≥p3(G[0,T2]¬ainfected ))
(a node is patched within time T1, and then remains not
infected with probability at least p3 for T2 units of time).
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THE IDEA

Approximate the behaviour of an agent Z in the system using
the time-inhomogeneous Markov chain z.

Model check temporal logic formulae on z.

OUTLINE OF FOLLOWING TOPICS

A model checking algorithm for CSL on
time-inhomogeneous CTMC (ICTMC).
Investigation of its decidability.
Convergence results (asymptotic correctness for large N).
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CSL MODEL CHECKING: BASIC IDEAS

The model checking algorithm works by processing bottom
up the parse tree of a formula.
The intuition is that each state formula determines the set
of states satisfying it. Once this set has been computed,
one can treat the state formula as an atomic proposition.
Dealing with atomic propositions and boolean connectives
is easy: we just need to explain how to compute the
satisfaction probability of path formulae.
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CSL MODEL CHECKING: NEXT STATE OPERATOR

PATH PROBABILITY X[T1,T2]φ

We just need to evaluate the probability that, being in a
state s, we jump within time [T1,T2] to a state that satisfies
φ.
We know the set {s′ | s′ |= φ} by (inductive) hypothesis.
We consider time-homogeneous CTMCs.
The exit rate in state s is q(s) =

∑
s′∈S, s′ 6=s q(s, s′).

The rate at which we jump to a φ-state is
qφ(s) =

∑
s′|=φ, s′ 6=s q(s, s′).

PROBABILITY DENSITY OF Xφ
qφ(s)

q(s)
q(s) exp(−q(s)t) = qφ(s) exp(−q(s)t)
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CSL MODEL CHECKING: NEXT STATE OPERATOR

PROBABILITY DENSITY OF Xφ
qφ(s)

q(s)
q(s) exp(−q(s)t) = qφ(s) exp(−q(s)t)

PROBABILITY OF X[T1,T2]φ

P(s,X[T1,T2]φ) =

∫ T2

T1

qφ(s) exp(−q(s)t)dt

=
qφ(s)

q(s)
(exp(−q(s)T1)− exp(−q(s)T2))

We then need to solve the inequality P(s,X[T1,T2]φ) ./ p to
decide if s satisfies P./p(X[T1,T2]φ).
This method requires the CTMC to be time-homogeneous
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CSL MODEL CHECKING: UNTIL OPERATOR

We start by considering the until path formula φ1U[0,T ]φ2.
We need to compute the probability of all paths that remain
in a φ1-state before entering a φ2 state before time T .
The idea is that if we enter a ¬φ1-state, we should discard
the path, while if we enter a φ2-state, we are done.
We can monitor these two events by “stopping” when they
happen, making ¬φ1 and φ2-states absorbing (i.e.
removing outgoing transitions).
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EXAMPLE

Consider the property notinfectedU[0,T ]patched. We need
to make infected and patched states absorbing.

suscept.

infected
inactive

patched

infected
active

ext_inf infect

infect
activate

deactivate

patch_high

patch_low

patch_low

loss
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EXAMPLE

Consider the property notinfectedU[0,T ]patched.

suscept.

infected
inactive

patched

infected
active

ext_inf infect

patch_low
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CSL MODEL CHECKING: UNTIL OPERATOR

Let Π be the probability matrix: Π(0,T )[s, s′] gives the
probability of being in s′ at time T , starting in s at time 0.

MODEL CHECKING ALGORITHM FOR φ1U[0,T ]φ2

1 Make ¬φ1 and φ2 states absorbing
2 Compute the transient probability of the so modified CTMC

at time T (using uniformisation or solving Kolmogorov
equations): Π¬φ1∨φ2(0,T ),

3 The desired probability is

P(σ |= φ1U[0,T ]φ2 | σ[0] = s) =
∑

s′|=φ2

Π¬φ1∨φ2 [s, s′](0,T )
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CSL MODEL CHECKING: φ1U[T1,T2]φ2

We split the problem in two parts:
1 Compute the probability of not entering a ¬φ1 in the first T1

units of time, by making ¬φ1 states absorbing.
2 Compute the probability of the until formula φ1U[0,T2−T1]φ2

MODEL CHECKING ALGORITHM FOR φ1U[T1,T2]φ2

1 Compute Π¬φ1(0,T1) by transient analysis;
2 Compute Π¬φ1∨φ2(0,T2 − T1) by transient analysis;
3 The desired probability P(σ |= φ1U[T1,T2]φ2 | σ[0] = s) is∑

s1|=φ1

∑
s2|=φ2

Π¬φ1(0,T1)[s, s1]Π¬φ1∨φ2 [s1, s2](0,T2 − T1)

The method works only for time-homogeneous CTMCs.
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CSL MODEL CHECKING FOR ICTMC

The fluid limit z of a single agent in a population model is a
time-inhomogeneous CTMC.

IMPLICATIONS

We cannot use the same algorithms sketched before,
because we cannot always start transient computations
from time 0.
Non-nested properties can still be dealt with similarly, the
difficulties arises with nested properties.
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CSL MODEL CHECKING FOR ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).
Focus on a non-nested until formula of the type

P./p(φ1U [0,T ]φ2)

which can be model checked as customary by solving the
following reachability problem:

What is the probability of reaching a φ2-state within time T
without entering a ¬φ1-state?

SOLUTION

Make ¬φ1 ∨ φ2-states absorbing, and compute the probability of
reaching a goal state at time T (e.g., by solving the Kolmogorov
equations or by uniformisation for ICTMC).
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P2P NETWORK EPIDEMICS: THE MODEL

suscept.

infected
inactive

patched

infected
active

ext_inf infect

infect
activate

deactivate

patch_high

patch_low

patch_low

loss
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P2P NETWORK EPIDEMICS: F [0,T ]ainfected FROM STATE s
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P2P NETWORK EPIDEMICS: ¬ainfectedU[0,T ]apatched FROM

STATE s
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NEXT-STATE PROBABILITY

PROBABILITY OF X[T1,T2]φ STARTING AT TIME t0

Pnext (t0)[s] =

∫ t0+T2

t0+T1

qφ(s, t) · e−Λ(t0,t)[s]dt

where Λ(t0, t)[s] =
∫ t

t0
−qs,s(τ)dτ is the cumulative rate.

We can reduce the computation of the previous integral to the
following initial value problem from t0 + T1 to t0 + T2.

d
dt

P(t) = qs,S0(t) · e−L(t)

d
dt

L(t) = −qs,s(t)

with P(t0 + T1) = 0 and L(t0 + T1) = Λ(t0, t0 + T1).
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P2P NETWORK EPIDEMICS: X[0,T ]ainfected FROM STATE s
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CLIENT-SERVER: THE MODEL

request

think

wait

recover

re
qu
es
t

reply

thinkrecover

timeout

ready

process

reply

log

requestlogging

processreply

CLIENT SERVER

timeout
tim
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Srp

SpSl
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CLIENT-SERVER: P=?(F≤T atimeout)
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CLIENT-SERVER: P=?(arequest ∨ awaitU≤T atimeout)
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CLIENT-SERVER: COMPUTATIONAL COST
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COMPUTATIONAL COST

The cost of analysing the limit fluid system is independent
of N.
For the client server example (10 clients - 5 servers) it is
∼100 times faster than the simulation-based approach
(which increases linearly with N).
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P2P NETWORK EPIDEMICS: COMPUTATIONAL COST
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COMPUTATIONAL COST

Checked property Fluid MC SMC (N = 100) SMC (N = 1000)
Kolmogorov Equations ∼ 0.1 s ∼ 64 s ∼ 101 s

X[0,T ]ainfected ∼ 0.06 s ∼ 6 s ∼ 24 s
¬ainfected U[0,T ]apatched ∼ 0.05 s ∼ 5 s ∼ 20 s



OUTLINE

1 INTRODUCTION

2 FLUID APPROXIMATION
Markov population models
Fluid approximation theorems

3 BEHAVIOUR SPECIFICATION
Individual Properties
CSL model checking for time-homogeneous CTMC

4 MODEL CHECKING CSL FOR ICTMC
Model checking non-nested properties
Time-dependent probabilities
Nested CSL-formulae
Theoretical results

5 FROM INDIVIDUAL TO COLLECTIVE BEHAVIOUR
From local properties to global properties
Central Limit Approximation
Examples
Conclusions



INTRODUCTION FLUID APPROXIMATION BEHAVIOUR SPECIFICATION MC ICTMC LOCAL2GLOBAL 78 / 123

CSL MODEL CHECKING FOR ICTMC

Consider a ICTMC with state space S and rates Q = Q(t).

φ1U[0,T ]φ2 and X[T1,T2]φ

Time-homogeneity⇒ we can run each transient analysis/
integral computation from time t0 = 0!

This is no more true in time-inhomogeneous CTMCs, as the
probability of a path formula depends on the time at which we
evaluate it.
Problems arise when we consider nested until formulae.

The truth value of φ in a state s depends on the time t at which
we evaluate it.
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TIME-DEPENDENT PROBABILITY OF X[T1,T2]φ

PROBABILITY OF X[T1,T2]φ STARTING AT TIME t0

Pnext (t0)[s] =

∫ t0+T2

t0+T1

qφ(s, t) · e−Λ(t0,t)[s]dt

where Λ(t0, t)[s] =
∫ t

t0
−qs,s(τ)dτ is the cumulative rate.

INTUITION

Compute d
dt0

Pnext (t0)[s]

Construct an ODE for Pnext (t0) and solve the i.v. problem.

CHECKING P./p(X[T1,T2]φ)

Compute the path probability Pnext (t0)[s] of X[T1,T2]φ as a
function of t0
Solve the inequality Pnext (t0)[s] ./ p
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P2P NETWORK EPIDEMICS: X[0,10]ainfected
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TIME-DEPENDENT REACHABILITY PROBABILITY

Focus on P./p(φ1U[0,T ]φ2). Assume that the truth of φ1 and φ2
does not depend on time.

Let Π(t1, t2) = (πsi ,sj (t1, t2))i,j be the probability matrix giving the
probability of being in state sj at time t2, given that we are in
state si at time t1.

We consider Π = Π¬φ1∨φ2 , the probability matrix of the CTMC in
which ¬φ1 ∨ φ2 states are made absorbing.
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FORWARD AND BACKWARD KOLMOGOROV EQUATIONS

The device to compute the time dependent probability of an
until formula φ1U[0,T ]φ2 are the Kolmogorov equations for
ICTMCs.

FORWARD KOLMOGOROV EQUATION

d
dt

Π(s, t) = Π(s, t)Q(t)

BACKWARD KOLMOGOROV EQUATION

d
ds

Π(s, t) = −Q(s)Π(s, t)

COMPUTING Π(t , t + T ), FOR FIXED T
We just need to combine the two backward and forward
equations by chain rule.
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TIME-DEPENDENT REACHABILITY PROBABILITY

1. COMPUTE Π(t , t + T ), FOR t ∈ [0,Tf ]

Π(t , t + T ), as a function of t , with initial conditions Π(0,T ),
satisfies:

dΠ(t , t + T )

dt
= Π(t , t + T )Q(t + T )−Q(t)Π(t , t + T )

2. ADD PROBABILITY FOR GOAL STATES

Pφ1U[0,T ]φ2
(s, t) is equal to

∑
s′|=φ2

Π¬φ1∨φ2(t , t + T )[s, s′].

3. COMPARE WITH THRESHOLD p
The truth value T(φ, s, t) of formula φ in state s at time t is
obtained by solving the inequality Pφ1U[0,T ]φ2

(s, t) ./ p.

We need to find the zeros of the function Pφ1U[0,T ]φ2
(s, t)− p.
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P2P NETWORK EPIDEMICS: G[0,10]¬ainfected
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CLIENT SERVER: P=?F≤50atimeout AS A FUNCTION OF t0
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CLIENT-SERVER: P<0.167(F≤50timeout)
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COMPUTING THE TIME-DEPENDENT TRUTH IN PRACTICE

The equation dΠ(t ,t+T )
dt = Π(t , t + T )Q(t + T )−Q(t)Π(t , t + T )

is utterly stiff. Its integration error blows up even for the most
accurate Matlab/Octave solvers.
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COMPUTING THE TIME-DEPENDENT TRUTH IN PRACTICE

The equation dΠ(t ,t+T )
dt = Π(t , t + T )Q(t + T )−Q(t)Π(t , t + T )

is utterly stiff. Its integration error blows up even for the most
accurate Matlab/Octave solvers.

time

T0 = 0 T1 = 1 · T T2 = 2 · T Tk = k · T· · ·

Practically, we can exploit the semigroup property

Π(t , t + T ) = Π(t ,Tj)Π(Tj , t + T )

and solve backward and forward equations separately, looping
over j .
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TIME-DEPENDENT TRUTH

When computing the truth value of an until formula, we
obtain a time dependent value T(φ, s, t) in each state.

When we consider nested temporal operators, we need to
take this into account.

The problem is that in this case the TOPOLOGY OF GOAL

AND UNSAFE STATES in the CTMC can CHANGE IN TIME.
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TIME DEPENDENT TRUTH: F≤Tφ

t0
false

true

Td

T(φ, s, t)

At discontinuity times, changes in topology introduce
discontinuities in the probability values.

BUT...
Discontinuities happen at specific and FIXED time instants. We
can solve Kolmogorov equations piecewise!
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k DISCONTINUITIES T1, . . . ,Tk IN [t , t + T ]

time

t t + T

T1 T2 Tk Tk+1· · ·

THE GENERIC CK EQUATION

Π(t , t + T ) = Π1(t ,T1)ζ(T1)Π2(T1,T2)ζ(T2) · · · ζ(Tk )Πk+1(Tk , t + T ).

ζ(Tj) apply the proper bookkeeping operations to deal with
changes in the topology of absorbing states.

We can compute Π(t , t + T ) by an ODE obtained by
derivation and application of chain rule.
In advancing time, when we hit a discontinuity point (from
below or above), the structure of the previous equation
changes: integration has to be stopped and restarted.
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THE ALGORITHM (SKETCHED)

Proceed bottom-up on the parse tree of a formula.
Case T(P./p(φ1U [0,T ]φ2), t):

Compute T(φ1, t) and T(φ2, t)
Let T1, . . . ,Tm be all the discontinuity points of T(φ1, t) and
T(φ2, t) up to a final time Tf .
Compute Π(Ti ,Ti + 1) for each i
Compute Π(0,T ) using generalized CK equations
Integrate d

dt Π(t , t + T ) up to Tf .

Return T(P./p(φ1U [0,T ]φ2), t) = Π(t , t + T ) ./ p.

The use of Kolmogorov equations is feasible if the state space
is small (few dozens of states).

This is usually the case for single agent mean field models.
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P2P NETWORK EPIDEMICS:
F [0,T ](apatched ∧ P≥0.97(G[0,10]¬ainfected))
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from state p (patched)



INTRODUCTION FLUID APPROXIMATION BEHAVIOUR SPECIFICATION MC ICTMC LOCAL2GLOBAL 95 / 123

CLIENT-SERVER: F≤T (P<0.167(F≤50timeout))
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DECIDABILITY

DECIDABILITY

We use algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding),
and guarantee their number to be finite
(restrict to piecewise-real analytic functions).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

p
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DECIDABILITY

DECIDABILITY

We use algorithms to solve ODEs with error guarantee
(interval analysis).
We need to find zeros of function P(s, t)− p (root finding),
and guarantee their number to be finite
(restrict to piecewise-real analytic functions).
To answer the CSL query for main until formulae, we need
to know if P(s,0) ./ p (zero test).
It is not known if root finding and zero test are decidable.

THEOREM (QUASI-DECIDABILITY)
Let φ = φ(p) be a CSL formula, with constants
p = (p1, . . . ,pk ) ∈ [0,1]k appearing in until formulae. The CSL
model checking for ICTMC problem is decidable for p ∈ E,
where E is an open subset of [0,1]k , of measure 1.
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CONVERGENCE OF CSL TRUTH

We considered also convergence of CSL properties: are
properties that are true in z(t) ultimately true in Z (N)(t)?
Convergence suffers from similar issues as decidability
(e.g., non-simple zeros , P(s,0) = p).

THEOREM (ASYMPTOTIC CORRECTNESS)
Let φ = φ(p) be a CSL formula, with constants
p = (p1, . . . ,pk ) ∈ [0,1]k appearing in until formulae.
Then, for p ∈ E, an open subset of [0,1]k of measure 1, there
exists N0 such that ∀N ≥ N0

s,0 |=Z (N) φ⇔ s,0 |=z φ.
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FROM LOCAL TO GLOBAL

We restrict the set of properties we consider to non-nested CSL
path formulae ψ.

LOCAL PROPERTY

What is the probability that a given agent Z satisfies ψ?

P{Z (N) |= ψ} =?

GLOBAL PROPERTY

What is the probability that a fraction α of agents satisfy ψ?

P
{∑

j

1{Z (N)
j |= ψ} ./ Nα

}
=?
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FROM LOCAL TO GLOBAL

Consider the client-server model, and the local property:

ψ = (arequest ∨ await )U≤T atimeout
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fluid mc P{Z (N) |= ψ} can be

approximated by P{z |= ψ},
using the fluid method
presented above.

But how can we compute P
{∑

j 1{Z (N)
j |= ψ} ≥ Nα

}
?
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FROM LOCAL TO GLOBAL: DECOUPLING OF AGENTS

One consequence of the fluid approximation theorem is that, in
the limit, individual agents become independent. Hence

P{Z (N)
1 |= ψ,Z (N)

2 |= ψ} ≈ P{Z (N)
1 |= ψ}P{Z (N)

2 |= ψ}

BINOMIAL APPROXIMATION∑
j

1{Z (N)
j |= ψ} ∼ Bin(N,P{z |= ψ})
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We ignore correlations
between agents for finite N!
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CENTRAL LIMIT APPROXIMATION

Master equation:

∂P(X̄(N), t)
∂t

=
∑
τ∈T

(
f (N)
τ (X̄(N) − v̄τ )P(X̄(N) − v̄τ , t)− f (N)

τ (X̄(N))P(X̄(N), t)
)

If we approximate populations continuously and assume

X̄(N)(t) = x(t) + N−
1
2 ζ(t)

then the master equation can be approximated at zeroth order
in N by a Fokker-Planck equation:

∂Π(ζ(t), t)
∂t

= −
∑
s,h

∂

∂Φs
Fh(x(t))

(
∂

∂ζh
ζsΠ (ζ(t), t)

)
+

+
∑
`,r

1
2

G`r (x(t))

(
∂2

∂ζ`ζr
Π (ζ(t), t)

)
; G(x) =

∑
τ∈T

vτvT
τ fτ (x).
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CENTRAL LIMIT APPROXIMATION

The solution Π(ζ, t) of the Fokker-Planck equation is a

Gaussian distribution

mean E[ζ(t)] such that{
∂tE[ζ(t)] = JF (x(t))E[ζ(t)]

E[ζ(0)] = 0

covariance matrix Cov[ζ(t)] such that{
∂tCov[ζ(t)] = JF (x(t))Cov[ζ(t)] + Cov[ζ(t)]JT

F (x(t)) + G(x(t))

Cov[ζ(0)] = 0

Hence X(N)(t) ∼ Norm
(

N · x(t),
√

N · Cov[ζ(t)]
)

.
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COMPUTING GLOBAL PROPERTIES

1. Modify the local agent model by creating unsafe and goal copies of
its states.
Client-server model, local property φ = (arequest ∨ await )U≤T atimeout :

CG
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Crc

CG
rq

CU
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Crq

CG
w

CU
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Cw

CG
t

CU
t

C t

goal

unsafe

safe

timeout

think
rec req reply

timeout

think

rec req reply

timeout

req

reply
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COMPUTING GLOBAL PROPERTIES

CG
rc

CU
rc

Crc

CG
rq

CU
rq

Crq

CG
w

CU
w

Cw

CG
t

CU
t

C t

goal

unsafe

safe

timeout

think
rec req reply

timeout

think

rec req reply

timeout

req

reply

2. From the modified local model, construct a population model. Add
a new variable Gφ, counting how many agents are in a goal state.
3. Apply central limit approximation to this new model.
4. Compute P{G(N)

φ ≥ αN} by G(N)
φ ∼ Norm

(
Ngφ(t),

√
NVar[ζgφ

(t)]
)
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CLIENT-SERVER - P{G(N)

arequest∨awaitU≤T atimeout
≥ Nθ}
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CLIENT-SERVER - P{G(N)

arequest∨awaitU≤T atimeout
≥ Nθ}
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CLIENT-SERVER - P{G(N)

arequest∨awaitU≤T atimeout
≥ Nθ}
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CLIENT-SERVER - P{G(N)

arequest∨awaitU≤T atimeout
≥ Nθ}
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CLIENT-SERVER - P{G(N)

arequest∨awaitU≤T atimeout
≥ Nθ}
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CLIENT-SERVER - P{G(N)

arequest∨awaitU≤T atimeout
≥ Nθ}
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CONCLUSIONS

We discussed an application of mean field theory to model
check properties of medium and large population models.
We considered first single agent properties, focussing on
CSL and providing a method to model check CSL formulae
versus time-inhomogeneous CTMC.
We provided convergence results that guarantee
quasi-consistence of the method.
We then extended (non-nested) single agent properties to
population level, using the central limit approximation.
For collective properties, we have also considered a richer
class of path properties specified by (restricted) DTA .
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FUTURE WORK

Use error bounds for mean field convergence to provide a
(very rough) estimate of the error.
Include rewards, and time-unbounded/ steady state, when
possible.
Working implementation.
Consider other logics on single agents (e.g. MTL, LTL).
Consider different properties for collective probabilities,
specified by timed automata or LTL (in a local to global
perspective and in a global perspective).
Understand accuracy of central limit theorem.
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THE END!

Thanks for the attention

Questions?
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