Imperial College London

Fluid analysis of Markov Models

Jeremy Bradley, Richard Hayden, Anton Stefanek Imperial College London

Tutorial, SFM:DS 2013

20 June 2013

You can download this presentation now from:
http://www.doc.ic.ac.uk/~jb/pub/sfm-ds2013.pdf or
http://tinyurl.com/sfm-ds-fluid

How can we...
scale
resource
provision
design

to meet

while minimising

?

We want to be able to engineer complex systems

We want to be able to engineer complex systems

We want to be able to reason about performance

We want to be able to engineer complex systems

We want to be able to reason about performance

We want to be able to optimise key cost functions

We want to be able to engineer complex systems

We want to be able to reason about performance

We want to be able to optimise key cost functions
...at the same time

Process modelling with Stochastic systems

Process Algebra

A process algebra model consists of agents which engage in actions.

Process Algebra

A process algebra model consists of agents which engage in actions.

Process Algebra

A process algebra model consists of agents which engage in actions.

Process Algebra

A process algebra model consists of agents which engage in actions.

The semantics of the language define an underlying state space by way of a labelled transition system.

Process Algebra

A process algebra model consists of agents which engage in actions.

The semantics of the language define an underlying state space by way of a labelled transition system.

A process algebra model

Process Algebra

A process algebra model consists of agents which engage in actions.

The semantics of the language define an underlying state space by way of a labelled transition system.

A process algebra model $\xrightarrow{\text { semantic rules }}$

Process Algebra

A process algebra model consists of agents which engage in actions.

The semantics of the language define an underlying state space by way of a labelled transition system.

A process algebra model $\xrightarrow{\text { semantic rules }}$ Labelled transition system

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.
The semantics of the language define an underlying state space and also a performance model in terms of a CTMC.

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.
The semantics of the language define an underlying state space and also a performance model in terms of a CTMC.

SPA model

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.
The semantics of the language define an underlying state space and also a performance model in terms of a CTMC.

$$
\text { SPA model } \xrightarrow{\text { semantics }}
$$

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.
The semantics of the language define an underlying state space and also a performance model in terms of a CTMC.

$$
\text { SPA model } \xrightarrow{\text { semantics }} \text { LTS }
$$

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.
The semantics of the language define an underlying state space and also a performance model in terms of a CTMC.

$$
\text { SPA model } \xrightarrow{\text { semantics }} \text { LTS } \xrightarrow{\text { filter }}
$$

Stochastic Process Algebra

A stochastic process algebra model also consists of agents which engage in actions, but with the actions having a random duration associated with them.

where the action duration is exponentially distributed with rate λ.
The semantics of the language define an underlying state space and also a performance model in terms of a CTMC.

$$
\text { SPA model } \xrightarrow{\text { semantics }} \text { LTS } \xrightarrow{\text { filter }} \text { CTMC }
$$

PEPA: Stochastic process algebra

- Many SPAs exist and capture performance and behavioural features in different ways. e.g. iGSMPA ${ }^{[1]}, \mathrm{IMC}^{[2]}, \mathrm{sFSP}^{[3]}$, EMPA ${ }^{[4]}$, TIPP $^{[5]}$
- PEPA $^{[6]}$ is useful because:
- it is a formal, algebraic description of a system
- it is compositional
- it is parsimonious (succinct)
- it is easy to learn!
- it is used in research and in industry

[^0]
What can you do with PEPA?

It allows you to answer key performance questions

Steady state analysis

What is the long-run average behaviour of my system?

What can you do with PEPA?

It allows you to answer key performance questions

Transient analysis

What is the behaviour of my system at time, t ?

What can you do with PEPA?

It allows you to answer key performance questions

Transient analysis

What is the behaviour of my system at time, t ?

What can you do with PEPA?

It allows you to answer key performance questions

Transient analysis

What is the behaviour of my system at time, t ?

What can you do with PEPA?

It allows you to answer key performance questions
Passage time analysis

How long does it take my system to complete a key transaction?

Tool Support

- PEPA has several methods of execution and analysis, through comprehensive tool support:
- PEPA Eclipse plugin: Edinburgh ${ }^{[7]}$
- Möbius: Urbana-Champaign, Illinois ${ }^{[8]}$
- PRISM: Birmingham ${ }^{[9]}$
- ipc: Imperial College London ${ }^{[10]}$
- gpa: Imperial College London ${ }^{[11]}$

[^1]
PEPA Syntax

Syntax:

$$
P::=(a, \lambda) \cdot P|P+P| P \not 囚_{L} P|P / L| A \stackrel{\text { def }}{=} P
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{ } P_{2}$
- Action hiding: P / L
- Constant label: $A \stackrel{\text { def }}{=} P$

PEPA Syntax

Syntax:

$$
P::=(a, \lambda) \cdot P|P+P| P \not 囚_{L} P|P / L| A \stackrel{\text { def }}{=} P
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{ } P_{2}$
- Action hiding: P / L
- Constant label: $A \stackrel{\text { def }}{=} P$

PEPA Syntax

Syntax:

$$
P::=(a, \lambda) \cdot P|P+P| P \not 囚_{L} P|P / L| A \stackrel{\text { def }}{=} P
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{ } P_{2}$
- Action hiding: P / L
- Constant label: $A \stackrel{\text { def }}{=} P$

PEPA Syntax

Syntax:

$$
P::=(a, \lambda) \cdot P|P+P| P \underset{L}{\Perp} P|P / L| A \stackrel{\text { def }}{=} P
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{ } P_{2}$
- Action hiding: P / L
- Constant label: $A \stackrel{\text { def }}{=} P$

PEPA Syntax

Syntax:

$$
P::=(a, \lambda) \cdot P|P+P| P \not 囚_{L} P|P / L| A \stackrel{\text { def }}{=} P
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{ } P_{2}$
- Action hiding: P / L
- Constant label: $A \stackrel{\text { def }}{=} P$

PEPA Syntax

Syntax:

$$
P::=(a, \lambda) \cdot P|P+P| P \not 囚_{L} P|P / L| A \stackrel{\text { def }}{=} P
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $P_{1}+P_{2}$
- Cooperation: $P_{1} \underset{L}{ } P_{2}$
- Action hiding: P / L
- Constant label: $A \stackrel{\text { def }}{=} P$

Why exponential?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

Memorylessness

What is $\mathbb{P}(X \leq t \mid X>u)$ if $X \sim \exp (\lambda)$?

Why exponential?

1. Described by a single parameter

Why exponential?

1. Described by a single parameter
2. Memorylessness

Why exponential?

1. Described by a single parameter
2. Memorylessness
3. Ability to describe other distributions using phase-type combinations

Prefix: $(a, \lambda) . A$

- Prefix is used to describe a process that evolves from one state to another by emitting or performing an action

Prefix: $(a, \lambda) . A$

- Prefix is used to describe a process that evolves from one state to another by emitting or performing an action
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot Q
$$

...means that the process P evolves with rate λ to become process Q, by emitting an a-action

Prefix: $(a, \lambda) . A$

- Prefix is used to describe a process that evolves from one state to another by emitting or performing an action
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot Q
$$

...means that the process P evolves with rate λ to become process Q, by emitting an a-action

- λ is an exponential rate parameter

Prefix: $(a, \lambda) . A$

- Prefix is used to describe a process that evolves from one state to another by emitting or performing an action
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot Q
$$

...means that the process P evolves with rate λ to become process Q, by emitting an a-action

- λ is an exponential rate parameter
- As a labelled transition system, this becomes:

$$
\text { Prefix : } \quad P \xrightarrow{(a, \lambda)} Q
$$

Choice: $P_{1}+P_{2}$

- PEPA uses a type of choice known as competitive choice

Choice: $P_{1}+P_{2}$

- PEPA uses a type of choice known as competitive choice
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}
$$

means that P can evolve either to produce an a-action with rate λ or to produce a b-action with rate μ

Choice: $P_{1}+P_{2}$

- PEPA uses a type of choice known as competitive choice
- Example:

$$
P \stackrel{\text { def }}{=}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}
$$

means that P can evolve either to produce an a-action with rate λ or to produce a b-action with rate μ

- As a labelled transition system:

Choice: $P_{1}+P_{2}$

- $P \stackrel{\text { def }}{=}(a, \lambda) \cdot P_{1}+(b, \mu) \cdot P_{2}$
- This is competitive choice since:
- P_{1} and P_{2} are in a race condition - the first one to perform an a or a b will dictate the direction of choice for $P_{1}+P_{2}$
- What is the probability that we see an a-action?

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- $P_{1} \bowtie P_{2}$ defines concurrency and communication within PEPA

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- $P_{1} \bowtie P_{2}$ defines concurrency and communication within PEPA
- The L in $P_{1} \leadsto P_{2}$ defines the set of actions over which two components are to cooperate

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- $P_{1} \leadsto P_{2}$ defines concurrency and communication within PEPA
- The L in $P_{1} \underset{L}{ } P_{2}$ defines the set of actions over which two components are to cooperate
- Any other actions that P_{1} and P_{2} can do, not mentioned in L, can happen independently

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- $P_{1} \leadsto P_{2}$ defines concurrency and communication within PEPA
- The L in $P_{1} \underset{L}{\bowtie} P_{2}$ defines the set of actions over which two components are to cooperate
- Any other actions that P_{1} and P_{2} can do, not mentioned in L, can happen independently
- If $a \in L$ and P_{1} enables an a, then P_{1} has to wait for P_{2} to enable an a before the cooperation can proceed

Cooperation: $P_{1} \underset{L}{\otimes} P_{2}$

- $P_{1} \leadsto P_{2}$ defines concurrency and communication within PEPA
- The L in $P_{1} \underset{L}{\bowtie} P_{2}$ defines the set of actions over which two components are to cooperate
- Any other actions that P_{1} and P_{2} can do, not mentioned in L, can happen independently
- If $a \in L$ and P_{1} enables an a, then P_{1} has to wait for P_{2} to enable an a before the cooperation can proceed
- Easy source of deadlock!

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- If $P_{1} \xrightarrow{(a, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, T)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, \lambda)} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

Cooperation: $P_{1} \underset{L}{ } P_{2}$

- If $P_{1} \xrightarrow{(a, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, T)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, \lambda)} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

- T represents a passive rate which, in the cooperation, inherits the λ-rate of from P_{1}

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- If $P_{1} \xrightarrow{(a, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, T)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, \lambda)} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

- T represents a passive rate which, in the cooperation, inherits the λ-rate of from P_{1}
- If both rates are specified and the only a-evolutions allowed from P_{1} and P_{2} are, $P_{1} \xrightarrow{(a, \lambda)} P_{1}^{\prime}$ and $P_{2} \xrightarrow{(a, \mu)} P_{2}^{\prime}$ then:

$$
P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, \min (\lambda, \mu))} P_{1}^{\prime} \underset{\{a\}}{\bowtie} P_{2}^{\prime}
$$

Cooperation: $P_{1} \underset{L}{\otimes} P_{2}$

- The general cooperation case is where:
- P_{1} enables m a-actions
- P_{2} enables n a-actions
at the moment of cooperation
- ...in which case there are $m \times n$ possible transitions for $P_{1} \underset{\{a\}}{\bigotimes} P_{2}$

Cooperation: $P_{1} \underset{L}{\bowtie} P_{2}$

- The general cooperation case is where:
- P_{1} enables m a-actions
- P_{2} enables n a-actions
at the moment of cooperation
- ...in which case there are $m \times n$ possible transitions for $P_{1} \underset{\{a\}}{\bowtie} P_{2}$
- with $m n$ a-actions having cumulative rate $P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, R)}$ where $R=\min \left(r_{a}\left(P_{1}\right), r_{a}\left(P_{2}\right)\right)$

Cooperation: $P_{1} \underset{L}{\otimes} P_{2}$

- The general cooperation case is where:
- P_{1} enables m a-actions
- P_{2} enables n a-actions
at the moment of cooperation
- ...in which case there are $m \times n$ possible transitions for $P_{1} \underset{\{a\}}{\bowtie} P_{2}$
- with $m n$ a-actions having cumulative rate $P_{1} \underset{\{a\}}{\bowtie} P_{2} \xrightarrow{(a, R)}$ where $R=\min \left(r_{a}\left(P_{1}\right), r_{a}\left(P_{2}\right)\right)$
- $r_{a}(P)=\sum_{i: P \xrightarrow{\left(a, r_{i}\right)}} r_{i}$ is the apparent rate of an action $a-$ the total rate at which P can do a

Hiding: P / L

- Used to turn observable actions in P into hidden or silent actions in P / L
- L defines the set of actions to hide
- If $P \xrightarrow{(a, \lambda)} P^{\prime}$:

$$
P /\{a\} \xrightarrow{(\tau, \lambda)} P^{\prime} /\{a\}
$$

- τ is the silent action
- Used to hide complexity and create a component interface
- Cooperation on τ not allowed

PEPA: A Transmitter-Receiver

$$
\text { System } \stackrel{\text { def }}{=} \text { (Transmitter } \otimes \text { Receiver }) \not \bowtie_{L} \text { Network }
$$

A simple model of a transmitter-receiver over a network

PEPA: A Transmitter-Receiver

$$
\text { System } \stackrel{\text { def }}{=} \text { (Transmitter || Receiver) } \not \Perp \text { Network }
$$

A simple model of a transmitter-receiver over a network

PEPA: A Transmitter-Receiver

$$
\text { System } \stackrel{\text { def }}{=}(\text { Transmitter || Receiver }) \unrhd_{L}^{\triangleleft} \text { Network }
$$

Transmitter $\stackrel{\text { def }}{=}\left(\right.$ transmit, $\left.\lambda_{1}\right) \cdot\left(t_{-}\right.$recover, $\left.\lambda_{2}\right)$.Transmitter
Receiver $\stackrel{\text { def }}{=}($ receive,$~ \top) .(r$ recover, $\mu)$. Receiver
Network $\stackrel{\text { def }}{=}$ transmit, \top).(delay, $\left.\nu_{1}\right) .\left(\right.$ receive,$\left.\nu_{2}\right)$.Network

A simple model of a transmitter-receiver over a network

PEPA: A Transmitter-Receiver

$$
\text { System } \stackrel{\text { def }}{=}(\text { Transmitter || Receiver }) \unrhd_{L}^{\triangleleft} \text { Network }
$$

Transmitter $\stackrel{\text { def }}{=}\left(\right.$ transmit, $\left.\lambda_{1}\right) \cdot\left(t\right.$ recover,$\left.\lambda_{2}\right)$.Transmitter
Receiver $\stackrel{\text { def }}{=}($ receive,$~ \top) \cdot\left(r_{-}\right.$recover, μ).Receiver
Network $\stackrel{\text { def }}{=}$ transmit, \top).(delay, $\left.\nu_{1}\right) .\left(\right.$ receive,$\left.\nu_{2}\right)$.Network
where $L=\{$ transmit, receive $\}$.

A simple model of a transmitter-receiver over a network

TR example: Labelled transition system

$\begin{aligned} \text { with } X_{1} & \rightarrow(\text { Transmitter } \| \text { Receiver }) \bowtie \text { Network } \\ X_{2} & \rightarrow(\text { Transmitter } \| \text { Receiver }) \underset{L}{ } N^{\prime} \text { Network }^{\prime} \text { and so on. }\end{aligned}$

Voting Example I

Voters vote and Pollers record those votes.
Pollers can break individually and recover individually. If all Pollers break then they are all repaired in unison.

$$
\begin{aligned}
\text { System } & \stackrel{\text { def }}{=}(\text { Voter || Voter || Voter }) \\
& \left.\underset{\{\text { voote }\}}{\infty}(\text { Poller } \underset{L}{\triangleleft} \text { Poller }) \underset{L^{\prime}}{\infty} \text { Poller_group_0 }\right)
\end{aligned}
$$

where

- $L=\{$ recover_all $\}$
- $L^{\prime}=\{$ recover, break, recover_all $\}$

Voting Example II

$$
\text { Voter } \stackrel{\text { def }}{=}(\text { vote, } \lambda) \cdot(\text { pause }, \mu) . \text { Voter }
$$

Voting Example II

$$
\begin{aligned}
& \text { Voter } \begin{array}{l}
\stackrel{\text { def }}{=}(\text { vote }, \lambda) \cdot(\text { pause }, \mu) \cdot \text { Voter } \\
\text { Poller } \stackrel{\text { def }}{=}(\text { vote }, \top) \cdot(\text { register, } \gamma) \cdot \text { Poller } \\
\\
\quad+(\text { break }, \nu) \cdot \text { Poller_broken }
\end{array}
\end{aligned}
$$

Voting Example II

$$
\begin{aligned}
\text { Voter } & \stackrel{\text { def }}{=}(\text { vote }, \lambda) \cdot(\text { pause }, \mu) \cdot \text { Voter } \\
\text { Poller } & \stackrel{\text { def }}{=}(\text { vote }, T) \cdot(\text { register, } \gamma) \cdot P o l l e r \\
& +(\text { break }, \nu) \cdot P o l l e r _b r o k e n ~
\end{aligned} \begin{aligned}
\text { Poller_broken } & \stackrel{\text { def }}{=}(\text { recover }, \tau) \cdot P o l l e r \\
& +(\text { recover_all, } \top) \cdot \text { Poller }
\end{aligned}
$$

Voting Example III

$$
\text { Poller_group_0 } \xlongequal{\text { def }}(\text { break }, ~ T) . P o l l e r _g r o u p _1
$$

Voting Example III

$$
\begin{aligned}
\text { Poller_group_0 } & \stackrel{\text { def }}{=}(\text { break, } \top \text {).Poller_group_1 } \\
\text { Poller_group_1 } & \stackrel{\text { def }}{=}(\text { break, } \top) \cdot P o l l e r _g r o u p _2 \\
& +(\text { recover, } \top) \cdot \text { Poller_group_0 } 0
\end{aligned}
$$

Voting Example III

$$
\begin{aligned}
& \text { Poller_group_0 } \xlongequal[=]{\text { def }}(\text { break }, ~ \top) \text {.Poller_group_1 } \\
& \text { Poller_group_1 } \xlongequal{\text { def }}(\text { break }, ~ \top) . \text { Poller_group_2 } \\
& +(\text { recover , T).Poller_group_0 } \\
& \text { Poller_group_2 } \xlongequal{\text { def }}(\text { recover_all, } \delta) \\
& \text {.Poller_group_0 }
\end{aligned}
$$

An Overview of model-based Fluid Analysis

Mean field/fluid analysis

- Addresses the state-space explosion problem for discrete-state Markov models of computer and communication systems
[12] Jane Hillston. "Fluid flow approximation of PEPA models". In: Second International Conference on the Quantitative Evaluation of Systems (QEST). IEEE, Sept. 2005, pp. 33-42. DOI: 10.1109/QEST.2005.12.
[13] Michel Benaïm and Jean-Yves Le Boudec. "A class of mean field interaction models for computer and communication systems". In: Performance Evaluation 65.11-12 (Nov. 2008), pp. 823-838. DoI: 10.1016/j.peva.2008.03.005.
[14] Marco Gribaudo. "Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents". In: 6th European Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218-219. DoI: 10.1007/978-3-642-02924-0.

Mean field/fluid analysis

- Addresses the state-space explosion problem for discrete-state Markov models of computer and communication systems
- Derives tractable systems of differential equations approximating mean number of components in each local state, for example:
- Fluid analysis of process algebra models ${ }^{[12]}$
- Mean-field analysis of systems of interacting objects ${ }^{[13,14]}$
[12] Jane Hillston. "Fluid flow approximation of PEPA models". In: Second International Conference on the Quantitative Evaluation of Systems (QEST). IEEE, Sept. 2005, pp. 33-42. DoI: 10.1109/QEST. 2005.12.
[13] Michel Benaïm and Jean-Yves Le Boudec. "A class of mean field interaction models for computer and communication systems". In: Performance Evaluation 65.11-12 (Nov. 2008), pp. 823-838. DoI: 10.1016/j.peva.2008.03.005.
[14] Marco Gribaudo. "Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents". In: 6th European Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218-219. DoI: 10.1007/978-3-642-02924-0.

Mean field/fluid analysis

- Addresses the state-space explosion problem for discrete-state Markov models of computer and communication systems
- Derives tractable systems of differential equations approximating mean number of components in each local state, for example:
- Fluid analysis of process algebra models ${ }^{[12]}$
- Mean-field analysis of systems of interacting objects ${ }^{[13,14]}$
- Can develop these techniques to capture key performance measures of interest from large CTMCs, e.g. passage-time measures, reward-based measures
[12] Jane Hillston. "Fluid flow approximation of PEPA models". In: Second International Conference on the Quantitative Evaluation of Systems (QEST). IEEE, Sept. 2005, pp. 33-42. DoI: 10.1109/QEST. 2005.12.
[13] Michel Benaïm and Jean-Yves Le Boudec. "A class of mean field interaction models for computer and communication systems". In: Performance Evaluation 65.11-12 (Nov. 2008), pp. 823-838. DoI: 10.1016/j.peva.2008.03.005.
[14] Marco Gribaudo. "Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents". In: 6th European Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218-219. DoI: 10.1007/978-3-642-02924-0.

A simple agent

A simple agent - replicated

12

A simple agent - replicated

Rer

A simple agent - replicated
ver per

A simple agent - replicated
ver per rex

A simple agent - replicated

TH Ter The Ne Re

A simple agent - replicated

A simple agent - replicated

Fluid/mean field analysis works best when you have many replicated parallel agents or groups of replicated parallel agents. Agent groups can synchronise.

GPEPA - Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar to that of PEPA.

GPEPA - Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar to that of PEPA.

An sequential agent, P, can have the following syntax:

GPEPA - Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar to that of PEPA.

An sequential agent, P, can have the following syntax:

$$
P::=(a, \lambda) \cdot P
$$

SPA Markovian prefix

GPEPA - Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar to that of PEPA.

An sequential agent, P, can have the following syntax:

$$
\begin{gathered}
P::=(a, \lambda) \cdot P \\
\mid P+P
\end{gathered}
$$

SPA Markovian prefix
SPA competitive choice

GPEPA - Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar to that of PEPA.

An sequential agent, P, can have the following syntax:

$$
\begin{gathered}
P::=(a, \lambda) \cdot P \\
\mid P+P \\
\mid C \stackrel{\text { def }}{=} P
\end{gathered}
$$

SPA Markovian prefix
SPA competitive choice
Agent name

GPEPA - Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar to that of PEPA.

An sequential agent, P, can have the following syntax:

$$
\begin{gathered}
P::=(a, \lambda) \cdot P \\
\mid P+P \\
\mid C \stackrel{\text { def }}{=} P
\end{gathered}
$$

Sequential agents allow a modeller to define behaviour with associated exponential delays.

GPEPA - Syntax

For parallelism and communication between sequential agents, we need compositional agents.

GPEPA - Syntax

For parallelism and communication between sequential agents, we need compositional agents.

A compositional agent, Q, can have the following syntax:

GPEPA - Syntax

For parallelism and communication between sequential agents, we need compositional agents.

A compositional agent, Q, can have the following syntax:

$$
Q::=Q \underset{L}{\bowtie} Q
$$

Group $\{P[n]\}$

Group cooperation
Parallel grouping
where $P[n]$ represents a parallel group of n sequential agents P. Group represents a group label used to identify the parts of the model that are going to be approximated using fluid analysis.

GPEPA Example

Client $\stackrel{\text { def }}{=}\left(r e q, r_{r e q}\right)$.Client_waiting Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Client_think

Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$. Client

GPEPA Example

$$
\text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right) . \text { Client_waiting }
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$. Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server

GPEPA Example

$$
\text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right) . \text { Client_waiting }
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$. Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server
$C S(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { reeq,data }\}}{\infty}$ Servers $\{\operatorname{Server}[s]\}$

GPEPA Example

$$
\begin{equation*}
\text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right) . C l i e n t _w a i t i n g ~ \tag{t}
\end{equation*}
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$.Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server
$C S(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { reeq,data }\}}{\infty}$ Servers $\{\operatorname{Server}[s]\}$

GPEPA Example

$$
\begin{equation*}
\text { Client } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) . \text { Client_waiting } \tag{t}
\end{equation*}
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$. Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server
$C S(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { reeq,data }\}}{\infty}$ Servers $\{\operatorname{Server}[s]\}$

GPEPA Example

Client $\xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right)$.Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
$$
\begin{aligned}
\text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) . S e r v e r _g e t ~
\end{aligned} \quad+\left(\text { break, } r_{\text {break }}\right) \text { Server_broken }
$$
Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {reset }}\right)$.Server

$\operatorname{CS}(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { freq,data }\}}{\bowtie}$ Servers $\{$ Server $[s]\}$

GPEPA Example

Client $\xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right)$.Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
$$
\begin{aligned}
\text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) . S e r v e r _g e t ~
\end{aligned} \quad+\left(\text { break, } r_{\text {break }}\right) \text { Server_broken }
$$
Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {reset }}\right)$.Server

$\operatorname{CS}(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { freq,data }\}}{\bowtie}$ Servers $\{$ Server $[s]\}$

GPEPA Example

Client $\xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right)$.Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
$C_{t}(t)$
\[\begin{aligned} \& Server \stackrel{def}{=}\left(req, r_{req}\right) . Server_get
\&+\left(break, r_{break}\right) Server_broken \end{aligned} \]
$$
S(t)
$$
Server_get $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {resete }}\right)$.Server

GPEPA Example

$$
\begin{align*}
& \text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{r e q}\right) \text {.Client_waiting } \tag{t}\\
& \text { Client_waiting } \stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right) \text {. Client_think } \\
& \text { Client_think } \stackrel{\text { def }}{=}\left(\text { think }, r_{\text {think }}\right) \text {.Client } \\
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \text {.Server_get } \\
& S(t) \\
& +\left(\text { break }, r_{\text {break }}\right) \text {.Server_broken } \\
& \text { Server_get } \stackrel{\text { def }}{=}\left(\text { data, } r_{\text {data }}\right) . \text { Server } \\
& \text { Server_broken } \stackrel{\text { def }}{=}\left(r e s e t, r_{\text {resete }}\right) \text {.Server } \\
& S_{b}(t)
\end{align*}
$$

ODEs - Means

Ideally, we want the distribution of say $C(t)$ for each t

ODEs - Means

Ideally, we want the distribution of say $C(t)$ for each t This can be too expensive

ODEs - Means

Ideally, we want the distribution of say $C(t)$ for each t This can be too expensive
Can derive ODEs approximating the means

$$
\begin{array}{rlll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}[S(t)] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{t}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{b}(t)\right] / \mathrm{d} t & =\cdots
\end{array}
$$

ODEs - Means

Ideally, we want the distribution of say $C(t)$ for each t
This can be too expensive
Can derive ODEs approximating the means

$$
\begin{array}{rlll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}[S(t)] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{t}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{b}(t)\right] / \mathrm{d} t & =\cdots
\end{array}
$$

These can be numerically solved, cheaper than simulation

ODEs - Means

ODEs - Higher moments

Can extend the ODEs

$$
\begin{array}{rlll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}[S(t)] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{t}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{b}(t)\right] / \mathrm{d} t & =\cdots
\end{array}
$$

ODEs - Higher moments

Can extend the ODEs

$$
\begin{array}{rlll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}[S(t)] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{t}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{b}(t)\right] / \mathrm{d} t & =\cdots
\end{array}
$$

with ODEs for higher moments

$$
\begin{aligned}
\mathrm{d} \mathbb{E}\left[S_{g}(t)^{2}\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}[C(t) S(t)] / \mathrm{d} t & =\cdots
\end{aligned}
$$

ODEs - Higher moments

Can extend the ODEs

$$
\begin{array}{rlll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}[S(t)] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{t}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{b}(t)\right] / \mathrm{d} t & =\cdots
\end{array}
$$

with ODEs for higher moments

$$
\begin{array}{ll}
\mathrm{d} \mathbb{E}\left[S_{g}(t)^{2}\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}[C(t) S(t)] / \mathrm{d} t & =\cdots
\end{array}
$$

E.g. can get variance as

$$
\operatorname{Var}[C(t)]=\mathbb{E}\left[C(t)^{2}\right]-\mathbb{E}[C(t)]^{2}
$$

ODEs - Higher moments

ODEs - Higher moments

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy consumption?

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy consumption?
Servers consume energy in the Server_get state

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy consumption?
Servers consume energy in the Server_get state

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy consumption?
Servers consume energy in the Server_get state

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy consumption?
Servers consume energy in the Server_get state

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy consumption?
Servers consume energy in the Server_get state

The total energy consumption is the process

$$
\int_{0}^{t} S_{g}(u) \mathrm{d} u
$$

ODEs - moments of rewards

Can extend the ODEs for moments of counts

$$
\begin{array}{lll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S(t)^{2}\right] / \mathrm{d} t=\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t) S_{g}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)^{3}\right] / \mathrm{d} t=\cdots
\end{array}
$$

ODEs - moments of rewards

Can extend the ODEs for moments of counts

$$
\begin{array}{llll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S(t)^{2}\right] / \mathrm{d} t=\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t) S_{g}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)^{3}\right] / \mathrm{d} t=\cdots
\end{array}
$$

with ODEs for the mean accumulated rewards

$$
\begin{aligned}
\mathrm{d} \mathbb{E}\left[\int_{0}^{t} S_{g}(u) \mathrm{d} u\right] / \mathrm{d} t & =\mathbb{E}\left[S_{g}(t)\right] \\
\mathrm{d} \mathbb{E}\left[\int_{0}^{t} S(u) C(u) \mathrm{d} u\right] / \mathrm{d} t & =\mathbb{E}[S(t) C(t)]
\end{aligned}
$$

ODEs - moments of rewards

Can extend the ODEs for moments of counts

$$
\begin{array}{llll}
\mathrm{d} \mathbb{E}[C(t)] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S(t)^{2}\right] / \mathrm{d} t & =\cdots \\
\mathrm{d} \mathbb{E}\left[C_{w}(t) S_{g}(t)\right] / \mathrm{d} t & =\cdots & \mathrm{d} \mathbb{E}\left[S_{g}(t)^{3}\right] / \mathrm{d} t & =\cdots
\end{array}
$$

with ODEs for the mean accumulated rewards

$$
\begin{aligned}
\mathrm{d} \mathbb{E}\left[\int_{0}^{t} S_{g}(u) \mathrm{d} u\right] / \mathrm{d} t & =\mathbb{E}\left[S_{g}(t)\right] \\
\mathrm{d} \mathbb{E}\left[\int_{0}^{t} S(u) C(u) \mathrm{d} u\right] / \mathrm{d} t & =\mathbb{E}[S(t) C(t)]
\end{aligned}
$$

and ODEs for higher moments of accumulated rewards
$\mathrm{d} \mathbb{E}\left[\left(\int_{0}^{t} S_{g}(u) \mathrm{d} u\right)^{2}\right] / \mathrm{d} t=\cdots$

ODEs - moments of rewards

ODEs - moments of rewards

GPA - Grouped PEPA Analyser

Why tool?

 $\left.d \mathbb{E}\left[C(t) C_{W}(t)\right] / d t+-(-1.0) \cdot\left(\min \left(\mathbb{E}\left[C(t) C_{w}(t)\right]\right) \cdot\left(f_{\text {data }}\right) \cdot\left(\mathbb{E}\left[C(t) S_{8}(t)\right]\right) \cdot\left(S_{\text {tatat }}\right)\right)\right)$

 $\left.d \mathbb{E}\left[S_{g}(t) C_{N}(t)\right] / d t+-\{-1: 0) \cdot\left(\min \left(\left[\mathbb{E}\left[S_{g}(t) C_{N}(t)\right]\right) \quad\left({ }_{\text {datat }}\right) \cdot\left(\mathbb{E} \mid S_{g}(t)^{2}\right]\right) \cdot\left(f_{\text {data }}\right)\right)\right)$

$\left.\left.d \mathrm{E}\left[C_{N}(t) S(t)\right] / d t+=\min \left(\mathrm{E} \mid \mathrm{C}_{\mathrm{w}}(\mathrm{t})^{2}\right]\right) \cdot\left(\delta_{\text {dutata }}\right) \cdot\left(\mathrm{E}\left[S_{g}(t) C_{W}(t)\right]\right) \cdot\left(r_{\text {rata }}\right)\right)$

$\mathbb{d E}\left[S(t)^{2}\right] / d t+-(2.0) \cdot\left\langle\left(\mathbb{Q}\left[S(t) S_{b}(t)\right]\right) \cdot(\right.$ rimet $\left.)\right)$
$d \mathbb{E}\left[s(t) S_{b}(t)\right] / \mathrm{dt}+-(-1.0) \cdot\left(\left[\left(\mathbb{E}\left[(t) S_{0}(t)\right]\right) \cdot(\right.\right.$ neat $\left.)\right)$
$d \mathbb{E}\left[S(t) S_{b}(t)\right] / \mathrm{dt}+-\left(\mathbb{E}\left[S_{b}(t)^{2}\right]\right) \cdot\left(r_{\text {ranet }}\right)$
$d \mathbb{E}\left[S_{b}(t)^{2}\right] / d t+-(-2.0) \cdot\left(\left(\left[E\left[S_{b}(t)^{2}\right]\right) \cdot(\right.\right.$ temet $\left.)\right)$
$d \mathbb{E}[S(t)] / d t+-\left[E\left[S_{b}(t)\right]\right] \cdot($ freate $)$
$d \mathbb{d}\left[S_{b}(t)\right] / d t+-(-1.0) \cdot\left(\left(\mathbb{E}\left[S_{b}(t)\right]\right) \cdot(\right.$ teent $\left.)\right)$
$d \mathbb{E}\left[5(t)^{2} 1 / d t+-\left(\mathbb{Z}\left[S_{\mathrm{b}}(\mathrm{t})\right]\right) \cdot(\right.$ (rowert $)$
$d \mathbb{E}\left[S(t) S_{b}(t)\right] / d t+-(-1.0) \cdot\left(\left(\mathbb{E}\left[S_{b}(t)\right]\right) \cdot(\right.$ tane $\left.)\right)$
$d \mathbb{E}\left[S_{b}(t)^{2}\right] / d t+-\left[\mathbb{E}\left[S_{b}(t)\right]\right) \cdot\left(r_{\text {raeet }}\right)$

$d \mathbb{A}\left[(t) S_{b}(t)\right] / d t+-(-1.0) \cdot\left(\left[\underline{[}\left[(t) S_{b}(t)\right]\right) \cdot(\right.$ frant $\left.)\right)$

 $d \mathbb{E}\left[c_{t}(t) S_{b}(t)\right] / d t+-(-1.0) \cdot\left(\left(\mathbb{E}\left[C_{t}(t) S_{b}(t)\right]\right) \cdot\left(r_{\text {reat }}\right)\right.$

$d \mathbb{E}\left[S(t)^{2}\right] / d t+=(2.0) \cdot\left(\min \left(\left[\mathbb{E}\left[C_{n}(t) S(t)\right]\right) \cdot\left(\sigma_{\operatorname{tatat}}\right) \cdot\left(\mathbb{E}\left[S_{g}(t) S(t)\right]\right) \cdot\left(V_{\text {tata }}\right)\right)\right)$ $d \in\left[S_{g}(t) S(t)\right] / d t+=\langle-1.0) \cdot\left(\min \left(\left[\mathbb{E}\left[C_{w}(t) S(t)\right]\right) \cdot\left(f_{\text {data }}\right),\left(\mathbb{E}\left[S_{8}(t) S(t)\right]\right) \cdot\left(\left(_{\text {data }}\right)\right)\right)\right.$ $\left.\mathrm{d}\left[\underline{[} C_{w}(\mathrm{t}) S(t)\right] / \mathrm{dt}+-=-1.0\right) \cdot\left(\min \left(\left[\mathbb{E}\left[C_{w}(t) S(t)\right]\right) \cdot\left(r_{\text {duta }}\right) \cdot\left(\mathbb{E}\left[S_{k}(t) S(t)\right]\right) \cdot\left(r_{\text {data }}\right)\right)\right\}$ $d \mathbb{E}\left[S(t) C_{(t)}(t) / d t+=\min \left(\left(\mathbb{E}\left[C_{w}(t) S(t)\right]\right) \cdot(\right.\right.$ frata $),\left(\mathbb{E}\left[S_{g}(t) S(t)\right]\right) \cdot($ tatat $\left.)\right)$

 $d \mathbb{E}\left[C_{w}(t) S_{b}(t)\right] / d t+-\langle-1.0)-\left(\min \left(\left[\underline{Q}\left[C_{w}(t) S_{b}(t)\right]\right) \cdot\left(S_{\text {dat }}\right),\left(\mathbb{E}\left[S_{g}(t) S_{b}(t)\right]\right) \cdot\left(f_{\text {data }}\right)\right]\right)$

$\left.d \mathbb{E}\left[S_{g}(t)\right] / d t+-\langle-1.0)-\left(\min \left(\left[\mathrm{P} \mid C_{w}(t)\right]\right) \cdot\left(S_{\text {data }}\right),\left(\mathbb{E}\left[S_{g}(t)\right]\right) \cdot\left(t_{s t a t}\right)\right)\right)$

 $\left.d \mathbb{E}\left[S(t) C_{t}(t)\right] / d t+-\min \left(\mathbb{E}\left[C_{W}(t)\right]\right) \cdot\left(S_{\text {data }}\right),\left(\mathbb{E}\left[S_{g}(t)\right]\right) \cdot\left(\int_{\text {data }}\right)\right)$

$\mathrm{d}\left[\mathrm{C}_{\mathrm{t}}(t)^{2}\right] / \mathrm{dt+}=\min \left(\left[\mathrm{E}\left[C_{n}(t)\right]\right) \cdot\left(r_{\text {data }}\right),\left(\mathbb{E}\left[S_{s}(t)\right]\right) \cdot\left(\ell_{\text {tatat }}\right)\right)$

$\left.\left.d \mathrm{E}\left[\mathrm{C}_{\mathrm{t}}(t)^{2}\right] / \mathrm{dt}+-(-2.0)-\left(\langle\mathrm{E}| \mathrm{C}_{t}(t)^{2}\right]\right) \cdot\left(f_{\text {fink }}\right)\right]$
 $\left.\mathrm{dE}\left[C_{W}(t) C_{(}(\mathrm{t})\right] / \mathrm{dt}+-(-1.0) \cdot\left(\mathbb{\mathrm { E }}\left[\mathrm{C}_{W}(t) \mathrm{C}_{t}(t]\right)\right) \cdot\left(T_{\text {think }}\right)\right]$

 $\left.\mathbb{d}\left[S(t) S_{b}(t)\right] / d t+-(-1.0) \cdot\left(\min \left(\left[\mathbb{E} \mid C(t) S_{b}(t)\right]\right) \cdot\left(S_{\text {req }}\right),\left(\mathbb{E}\left[S(t) S_{b}(t)\right]\right) \cdot\left(f_{\text {req }}\right)\right)\right)$

$d \in[S(t)] / d t+=(-1.0)-\left(\min \left(\left[\Leftrightarrow[\mid[(t)]] \cdot\left(r_{\text {rat }}\right),\left\langle(E[S(t)]) \cdot\left(r_{\text {meq }}\right)\right)\right)\right.\right.$

 $d E\left[C_{w}(t)\right] / d t+=\min ([\mathrm{E}[\mathrm{C}(t)]) \cdot(\operatorname{tov}),(\mathrm{E}[S(t)]) \cdot(\mathrm{rma}))$

$d E\left[S_{g}(t)^{2}\right] / d t+=\min \left([\mathbb{E}[C(t)]) \cdot\left(S_{\text {rap }}\right),(\mathbb{E}[S(t)]) \cdot\left(r_{\text {mad }}\right)\right)$
 $d E\left[S_{\varepsilon}(t) C_{w}(t)\right] / d t+=\min \left([E[C(t)]) \cdot\left(t_{\text {raq }}\right),(\mathbb{E}[S(t)]) \cdot\left(T_{\text {rap }}\right)\right)$
$d \mathrm{E}\left[C(t)^{2}\right] / d t+=\min \left([E[C(t)]) \cdot\left(t_{r q}\right),(E[s(t)]) \cdot\left(r_{\mathrm{raq}}\right)\right)$

 $d \mathbb{E}\left[C(t) C_{w}(t)\right] / d \mathrm{~d}+-\min \left(\left[\mathbb{E}\left[C(t)^{2}\right]\right) \cdot\left(S_{\text {req }}\right),(\mathbb{E}[(t) S(t)]) \cdot\left(r_{\text {raq }}\right)\right)$ $\left.\mathrm{dE}\left[S_{g}(t) S(t)\right] / d t+-(-1.0) \cdot\left(\min \left(\left[\mathrm{E} \mid S_{g}(t) C(t)\right]\right) \cdot\left(f_{\text {raq }}\right) \cdot\left(\mathbb{E}\left[S_{g}(t) S(t)\right]\right) \cdot\left(f_{\text {mata }}\right)\right)\right)$

GPA

GPEPA model

GPA

GPEPA model
generates

ODEs

GPA

Grouped PEPA analyser

Convenient syntax

```
rreq = 2.0; rthink = 0.2; ...
c = 100.0; s = 50.0;
Client = (request,rreq).Client_waiting;
Client_waiting = (data,rdata).Client_think;
Client_think = (think,rthink).Client;
Server = (request,rreq).Server_get
    + (break,rbreak).Server_broken;
Server_get = (data,rdata).Server
Server_broken = (reset,rreset).Server;
```

Clients\{Client [c] $\}<$ request, data>Servers $\{$ Server [s] $\}$

GPA - commands

- Analyses

$$
\text { odes(stopTime=5.0, stepSize=0.01, density=10) }\{\ldots\}
$$

```
simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}
```

comparison(odes(...)\{...\},simulation(...)\{...\})\{...\}

GPA - commands

- Analyses

$$
\text { odes(stopTime=5.0, stepSize=0.01, density=10) }\{\ldots\}
$$

```
simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}
```

comparison(odes(...)\{...\},simulation(...)\{...\})\{...\}

- Plot commands, counts specified with Group:Component
plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get^2]); plot(Var[Clients:Client]);

GPA - commands

- Analyses

$$
\text { odes(stopTime=5.0, stepSize=0.01, density=10) }\{\ldots\}
$$

```
simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}
```

comparison(odes(...)\{...\}, simulation(...)\{...\})\{...\}

- Plot commands, counts specified with Group:Component

```
plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get`2]);
plot(Var[Clients:Client]);
plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);
```


GPA - commands

- Analyses

$$
\text { odes(stopTime=5.0, stepSize=0.01, density=10) }\{\ldots\}
$$

```
simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}
```

comparison(odes(...)\{...\},simulation(...)\{...\})\{...\}

- Plot commands, counts specified with Group: Component

```
plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get`2]);
plot(Var[Clients:Client]);
plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);
```

plotSwitchpoints(1);

GPA - passage times

Allows general PEPA components

```
NotPassed = (think,rthink).Passed;
Passed = (think,rthink).Passed;
ObservedClient = Client<think>NotPassed;
```


GPA - passage times

Allows general PEPA components

$$
\begin{array}{ll}
\hline \text { NotPassed } & =(\text { think,rthink).Passed; } \\
\text { Passed } & =(\text { think,rthink). Passed; }
\end{array}
$$

ObservedClient = Client<think>NotPassed;
For the CDF of first passage of a client

$$
\mathbb{E}\left[C \not \otimes_{t} P(t)+C_{w} \bowtie_{t}^{\bowtie} P(t)+C_{t} \not \bowtie_{t} P(t)\right] / c
$$

GPA - passage times

Allows general PEPA components

$$
\begin{array}{ll}
\hline \text { NotPassed } & =(\text { think,rthink). Passed; } \\
\text { Passed } & =(\text { think,rthink).Passed; }
\end{array}
$$

ObservedClient = Client<think>NotPassed;
For the CDF of first passage of a client

$$
\mathbb{E}\left[C \underset{t}{\otimes} P(t)+C_{w} \underset{t}{\otimes} P(t)+C_{t}{\underset{t}{ }}^{\otimes} P(t)\right] / c
$$

Can use command

```
plot(E[Clients:_<*>Passed]/c);
```

For an upper bound on the CDF of first passage of $1 / 10$-th of clients

```
plot(Var[Clients:_<*>Passed]
/(Var[Clients:_<*>Passed]+(E[Clients:_<*>Passed]-c/10.0)^2.0));
```


GPA - passage times

(a) Individual passage time for a client first passage

(b) Global passage time until c/10 first passages

GPA - completion times

bounds(acc(Servers:Server_get), 100.0,2);

completion time of $\int_{0}^{t} S_{g}(u) \mathrm{d} u$ reaching 100

GPA - completion times

bounds(acc(Servers:Server_get), 100.0, 2, 4);

completion time of $\int_{0}^{t} S_{g}(u) \mathrm{d} u$ reaching 100

GPA - completion times

bounds(acc(Servers:Server_get), 100.0,2,4,6);

completion time of $\int_{0}^{t} S_{g}(u) \mathrm{d} u$ reaching 100

GPA: Download for free

GPA tool ${ }^{[11]}$:

http://code.google.com/p/gpanalyser/

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "A new tool for the performance analysis of massively parallel computer systems". In: Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL 2010), March 27-28, 2010, Paphos, Cyprus. Electronic Proceedings in Theoretical Computer Science. Mar. 2010. URL: http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/.

Fluid ODE generation using Population CTMCs

Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of a finite set of components $\{1, \ldots, N\}$, and a set T of transition classes.

Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of a finite set of components $\{1, \ldots, N\}$, and a set T of transition classes.

Each state in a PCTMC is expressed as an integer vector $\vec{X}=\left(X_{1}, \ldots, X_{N}\right) \in Z_{N}$

Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of a finite set of components $\{1, \ldots, N\}$, and a set T of transition classes.

Each state in a PCTMC is expressed as an integer vector $\vec{X}=\left(X_{1}, \ldots, X_{N}\right) \in Z_{N}$
X_{i} represents the current population level of a component i.

PCTMCs: Transition classes

A transition class $c=\left(r_{c}, \vec{e}_{c}\right) \in T$ describes a stochastic event Event c: $\quad \vec{X}(t) \rightarrow \vec{X}\left(t^{\prime}\right) \quad$ at rate r_{c}

PCTMCs: Transition classes

A transition class $c=\left(r_{c}, \vec{e}_{c}\right) \in T$ describes a stochastic event

$$
\text { Event c: } \quad \vec{X}(t) \rightarrow \vec{X}\left(t^{\prime}\right) \quad \text { at rate } r_{c}
$$

1. with exponentially distributed duration D at rate $r_{c}(\vec{X}(t))$ where $r_{c}: Z_{N} \rightarrow \mathbb{R}$ is a rate function

PCTMCs: Transition classes

A transition class $c=\left(r_{c}, \vec{e}_{c}\right) \in T$ describes a stochastic event

$$
\text { Event c: } \quad \vec{X}(t) \rightarrow \vec{X}\left(t^{\prime}\right) \quad \text { at rate } r_{c}
$$

1. with exponentially distributed duration D at rate $r_{c}(\vec{X}(t))$ where $r_{c}: Z_{N} \rightarrow \mathbb{R}$ is a rate function
2. which changes the current population vector according to the change vector \vec{e}_{c}

PCTMCs: Transition classes

A transition class $c=\left(r_{c}, \vec{e}_{c}\right) \in T$ describes a stochastic event

$$
\text { Event c: } \quad \vec{X}(t) \rightarrow \vec{X}\left(t^{\prime}\right) \quad \text { at rate } r_{c}
$$

1. with exponentially distributed duration D at rate $r_{c}(\vec{X}(t))$ where $r_{c}: Z_{N} \rightarrow \mathbb{R}$ is a rate function
2. which changes the current population vector according to the change vector \vec{e}_{c}

This gives us the following population dynamic formula:

$$
\text { Event c: } \quad \vec{X}(t+D)=\vec{X}(t)+\vec{e}_{c} \quad D \sim \exp \left(r_{c}\right)
$$

PCTMCs: Chemical reactions

Similar to chemical reaction:

$$
s_{1}+\cdots+s_{k} \rightarrow t_{1}+\cdots+t_{l} \quad \text { at rate } r(\vec{X})
$$

PCTMCs: Chemical reactions

Similar to chemical reaction:

$$
s_{1}+\cdots+s_{k} \rightarrow t_{1}+\cdots+t_{l} \quad \text { at rate } r(\vec{X})
$$

Change vector for this reaction would involve:

$$
\vec{e}_{c}=\{\underbrace{-1, \ldots-1}_{k}, \underbrace{1 \ldots, 1}_{l}, 0, \ldots, 0\}
$$

PCTMCs: Mean dynamics

An important aspect of PCTMC models is that we can easily generate approximations to the evolution of the underlying stochastic process. ${ }^{[15]}$

PCTMCs: Mean dynamics

An important aspect of PCTMC models is that we can easily generate approximations to the evolution of the underlying stochastic process. ${ }^{[15]}$

In particular, the equation for a mean of population $X_{i}(t)$ is:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[X_{i}(t)\right]=\sum_{\left(r_{j}, \vec{e}_{j}\right) \in T} e_{i j} r_{j}(\vec{X}(t))
$$

ODE-based dynamics

More generally PCTMCs permit the derivation of moments of the underlying stochastic process, i.e. moments of population levels

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}[M(\vec{X}(t))]=\mathbb{E}\left[f_{M}(\vec{X}(t))\right]
$$

where $M(\vec{X})$ defines the moment to be calculated.

ODE-based dynamics

More generally PCTMCs permit the derivation of moments of the underlying stochastic process, i.e. moments of population levels

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}[M(\vec{X}(t))]=\mathbb{E}\left[f_{M}(\vec{X}(t))\right]
$$

where $M(\vec{X})$ defines the moment to be calculated.

- Mean of component 1: $M(\vec{X})=X_{1}$
- 2nd moment of component 1: $M(\vec{X})=X_{1}^{2}$
- 2nd joint moment of components 1 and 2: $M(\vec{X})=X_{1} X_{2}$

Higher moments

The higher moment function is defined as: ${ }^{[16]}$

$$
f_{M}(\vec{X}(t))=\sum_{c \in T}\left(M\left(\vec{X}(t)+\vec{e}_{c}\right) M(\vec{X}(t))\right) r_{c}(\vec{X}(t))
$$

Higher moments

The higher moment function is defined as: ${ }^{[16]}$

$$
f_{M}(\vec{X}(t))=\sum_{c \in T}\left(M\left(\vec{X}(t)+\vec{e}_{c}\right) M(\vec{X}(t))\right) r_{c}(\vec{X}(t))
$$

Key issue: achieving a closed set of equations with each quantity on right hand side of ODEs having a corresponding ODE.

Higher moments

The higher moment function is defined as: ${ }^{[16]}$

$$
f_{M}(\vec{X}(t))=\sum_{c \in T}\left(M\left(\vec{X}(t)+\vec{e}_{c}\right) M(\vec{X}(t))\right) r_{c}(\vec{X}(t))
$$

Key issue: achieving a closed set of equations with each quantity on right hand side of ODEs having a corresponding ODE.

Leads to different dynamics: mean-field, mass action, min-closure, log-normal-closure

Worked example: GPEPA

Client $\stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right)$. Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$. Client

Worked example: GPEPA

$$
\text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right) . \text { Client_waiting }
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$.Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server

Worked example: GPEPA

$$
\text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right) . \text { Client_waiting }
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$.Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server
$C S(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { reeq,data }\}}{\infty}$ Servers $\{\operatorname{Server}[s]\}$

Worked example: GPEPA

$$
\begin{equation*}
\text { Client } \stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right) . C l i e n t _w a i t i n g ~ \tag{t}
\end{equation*}
$$

Client_waiting $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think, $\left.r_{\text {think }}\right)$.Client

$$
\begin{aligned}
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \cdot \text { Server_get } \\
&+\left(\text { break, } r_{\text {break }}\right) \cdot \text { Server_broken }
\end{aligned}
$$

Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$.Server
Server_broken $\stackrel{\text { def }}{=}\left(\right.$ reset,$\left.r_{\text {reset }}\right)$.Server
$C S(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { reeq,data }\}}{\infty}$ Servers $\{\operatorname{Server}[s]\}$

Worked example: GPEPA

Client $\stackrel{\text { def }}{=}\left(r e q, r_{\text {req }}\right)$. Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
\[\begin{aligned} \& Server \stackrel{def}{=}\left(r e q, r_{req}\right) Server_get
\&+\left(break, r_{break}\right) Server_broken \end{aligned} \]
Server_get $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {reseet }}\right)$.Server
$\operatorname{CS}(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { freq,data }\}}{\bowtie}$ Servers $\{$ Server $[s]\}$

Worked example: GPEPA

Client $\xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right)$.Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
\[\begin{aligned} \& Server \stackrel{def}{=}\left(req, r_{req}\right) Server_get
\&+\left(break, r_{break}\right) Server_broken \end{aligned} \]
Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {reset }}\right)$.Server

$C S(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { ree, }, \text { data }\}}{\infty}$ Servers $\{$ Server $[s]\}$

Worked example: GPEPA

Client $\xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right)$. Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
\[\begin{aligned} \& Server \stackrel{def}{=}\left(req, r_{req}\right) . Server_get
\&+\left(break, r_{break}\right) Server_broken \end{aligned} \]
Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {reset }}\right)$.Server

Worked example: GPEPA

Client $\xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right)$.Client_waiting
Client_waiting $\stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right)$. Client_think
Client_think $\stackrel{\text { def }}{=}\left(\right.$ think,$\left.r_{\text {think }}\right)$.Client
\[\begin{align*} \& Server \stackrel{def}{=}\left(req, r_{req}\right) Server_get \tag{t}
\&+\left(break, r_{break}\right) Server_broken \end{align*} \]
$$
S(t)
$$
Server_get $\stackrel{\text { def }}{=}\left(\right.$ data, $\left.r_{\text {data }}\right)$. Server
Server_broken $\stackrel{\text { def }}{=}\left(r e s e t, r_{\text {resete }}\right)$.Server

$\operatorname{CS}(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { freq,data }\}}{\bowtie}$ Servers $\{$ Server $[s]\}$

Worked example: GPEPA

$$
\begin{align*}
& \text { Client } \xlongequal{\text { def }}\left(r e q, r_{\text {req }}\right) \text {.Client_waiting } \tag{t}\\
& \text { Client_waiting } \stackrel{\text { def }}{=}\left(d a t a, r_{\text {data }}\right) \text {. Client_think } \\
& \text { Client_think } \stackrel{\text { def }}{=}\left(\text { think }, r_{\text {think }}\right) \text {.Client } \\
& \text { Server } \stackrel{\text { def }}{=}\left(\text { req, } r_{\text {req }}\right) \text {.Server_get } \\
& S(t) \\
& +\left(\text { break }, r_{\text {break }}\right) \text {.Server_broken } \\
& \text { Server_get } \stackrel{\text { def }}{=}\left(\text { data, } r_{\text {data }}\right) . \text { Server } \\
& \text { Server_broken } \stackrel{\text { def }}{=}\left(r e s e t, r_{\text {resete }}\right) \text {.Server } \\
& S_{b}(t)
\end{align*}
$$

$\operatorname{CS}(c, s)=$ Clients $\{$ Client $[c]\} \underset{\{\text { freq,data }\}}{\bowtie}$ Servers $\{$ Server $[s]\}$

Worked example: PCTMC

In total, there are 5 transition classes:

```
        req:
    data:
think:
break:
reset:
```


Worked example: PCTMC

In total, there are 5 transition classes:

```
    req: }C(t)+S(t)->\mp@subsup{C}{w}{}(t)+\mp@subsup{S}{g}{}(t)\quad\mathrm{ at }\mp@subsup{r}{req}{}\cdot\operatorname{min}(C(t),S(t)
    data:
think:
break :
    reset :
```


Worked example: PCTMC

In total, there are 5 transition classes:

```
            req: }C(t)+S(t)->\mp@subsup{C}{w}{}(t)+\mp@subsup{S}{g}{}(t)\mathrm{ at }\mp@subsup{r}{\mathrm{ req }}{}\cdot\operatorname{min}(C(t),S(t)
    data: }\mp@subsup{C}{w}{}(t)+\mp@subsup{S}{g}{}(t)->\mp@subsup{C}{t}{}(t)+S(t) at \mp@subsup{r}{\mathrm{ data }}{}\cdot\operatorname{min}(\mp@subsup{C}{w}{}(t),\mp@subsup{S}{g}{}(t)
think:
break :
reset :
```


Worked example: PCTMC

In total, there are 5 transition classes:

$$
\begin{aligned}
\text { req }: & C(t)+S(t) \rightarrow C_{w}(t)+S_{g}(t) \quad \text { at } r_{\text {req }} \cdot \min (C(t), S(t)) \\
\text { data }: & C_{w}(t)+S_{g}(t) \rightarrow C_{t}(t)+S(t) \quad \text { at } r_{\text {data }} \cdot \min \left(C_{w}(t), S_{g}(t)\right) \\
\text { think }: & C_{t}(t) \rightarrow C(t) \text { at } r_{\text {think }} \cdot C_{t}(t) \\
\text { break }: & \\
\text { reset } &
\end{aligned}
$$

Worked example: PCTMC

In total, there are 5 transition classes:

$$
\begin{aligned}
\text { req }: & C(t)+S(t) \rightarrow C_{w}(t)+S_{g}(t) \quad \text { at } r_{\text {req }} \cdot \min (C(t), S(t)) \\
\text { data }: & C_{w}(t)+S_{g}(t) \rightarrow C_{t}(t)+S(t) \quad \text { at } r_{\text {data }} \cdot \min \left(C_{w}(t), S_{g}(t)\right) \\
\text { think }: & C_{t}(t) \rightarrow C(t) \text { at } r_{\text {think }} \cdot C_{t}(t) \\
\text { break: } & S(t) \rightarrow S_{b}(t) \text { at } r_{\text {break }} \cdot S(t) \\
\text { reset } &
\end{aligned}
$$

Worked example: PCTMC

In total, there are 5 transition classes:

$$
\begin{aligned}
\text { req }: & C(t)+S(t) \rightarrow C_{w}(t)+S_{g}(t) \quad \text { at } r_{\text {req }} \cdot \min (C(t), S(t)) \\
\text { data }: & C_{w}(t)+S_{g}(t) \rightarrow C_{t}(t)+S(t) \quad \text { at } r_{\text {data }} \cdot \min \left(C_{w}(t), S_{g}(t)\right) \\
\text { think }: & C_{t}(t) \rightarrow C(t) \text { at } r_{\text {think }} \cdot C_{t}(t) \\
\text { break }: & S(t) \rightarrow S_{b}(t) \text { at } r_{\text {break }} \cdot S(t) \\
\text { reset }: & S_{b}(t) \rightarrow S(t) \text { at } r_{\text {reset }} \cdot S_{b}(t)
\end{aligned}
$$

Worked example: PCTMC

In total, there are 5 transition classes:

$$
\begin{aligned}
\text { req }: & C(t)+S(t) \rightarrow C_{w}(t)+S_{g}(t) \quad \text { at } r_{\text {req }} \cdot \min (C(t), S(t)) \\
\text { data }: & C_{w}(t)+S_{g}(t) \rightarrow C_{t}(t)+S(t) \quad \text { at } r_{\text {data }} \cdot \min \left(C_{w}(t), S_{g}(t)\right) \\
\text { think: } & C_{t}(t) \rightarrow C(t) \text { at } r_{\text {think }} \cdot C_{t}(t) \\
\text { break }: & S(t) \rightarrow S_{b}(t) \text { at } r_{\text {break }} \cdot S(t) \\
\text { reset }: & S_{b}(t) \rightarrow S(t) \text { at } r_{\text {reset }} \cdot S_{b}(t)
\end{aligned}
$$

Then apply PCTMC ODE generation rules to get a fluid GPEPA model.

Even more exciting fluid analysis

Scalable passage-time analysis

Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:

"file should be transferred within 2 seconds, 95% of the time"

[^2]
Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:
"connection should be established within 0.25 seconds, 99% of the time"

Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:
"connection should be established within 0.25 seconds, 99% of the time"
- We consider two classes of passage-time query:

Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:
"connection should be established within 0.25 seconds, 99% of the time"
- We consider two classes of passage-time query:
- Individual passage times: track the time taken for an individual to complete a task

Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:
"connection should be established within 0.25 seconds, 99% of the time"
- We consider two classes of passage-time query:
- Individual passage times: track the time taken for an individual to complete a task
- Global passage times: track the time taken for all of a large number of individuals to complete a task

Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:
"connection should be established within 0.25 seconds, 99% of the time"
- We consider two classes of passage-time query:
- Individual passage times: track the time taken for an individual to complete a task
- Direct approximation to the entire CDF
- Global passage times: track the time taken for all of a large number of individuals to complete a task

Scalable passage-time analysis

- Passage-time distributions are key for specifying service level agreements (SLAs), e.g.:
"connection should be established within 0.25 seconds, 99% of the time"
- We consider two classes of passage-time query:
- Individual passage times: track the time taken for an individual to complete a task
- Direct approximation to the entire CDF
- Global passage times: track the time taken for all of a large number of individuals to complete a task
- Moment-derived bounds on CDF

Individual passage times

How long does it take a single client to make a request, receive a response and process it?

Individual passage times

How long does it take a single client to make a request, receive a response and process it?

Individual passage times

How long does it take a single client to make a request, receive a response and process it?

Individual passage times

$T:=\inf \left\{t \geq 0: C(t)=\right.$ Client $\left.^{\prime}\right\}$, given that $C(0)=$ Client

Individual passage times

$T:=\inf \left\{t \geq 0: C(t)=\right.$ Client $\left.^{\prime}\right\}$, given that $C(0)=$ Client

$$
\mathbb{P}\{T \leq t\}=\mathbb{P}\left\{C(t) \in\left\{\text { Client }^{\prime}, \text { Client }^{\prime}{ }_{\text {wait }}, \text { Client }{ }^{\prime}{ }_{\text {proc }}\right\}\right\}
$$

Individual passage times

$T:=\inf \left\{t \geq 0: C(t)=\right.$ Client $\left.^{\prime}\right\}$, given that $C(0)=$ Client

$$
\begin{aligned}
\mathbb{P}\{T \leq t\} & =\mathbb{P}\left\{C(t) \in\left\{\text { Client }^{\prime}, \text { Client }^{\prime}{ }_{\text {wait }}, \text { Client }^{\prime} \text { proc }\right\}\right\} \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client' }^{\prime}\right]}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client' }_{\text {wait }}\right\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client' }_{\text {proc }}\right\}}\right]
\end{aligned}
$$

Individual passage times

$T:=\inf \left\{t \geq 0: C(t)=\right.$ Client $\left.^{\prime}\right\}$, given that $C(0)=$ Client

$$
\begin{aligned}
& \mathbb{P}\{T \leq t\}=\mathbb{P}\left\{C(t) \in\left\{\text { Client }^{\prime}, \text { Client }^{\prime}{ }_{\text {wait }}, \text { Client }{ }^{\prime}{ }_{\text {proc }}\right\}\right\} \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client }^{\prime}\right\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client }^{\prime}{ }_{\text {wait }}\right\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client }^{\prime}{ }_{\text {proc }}\right\}}\right] \\
& =\mathbb{E}\left[N_{\text {Client }}(t)\right]+\mathbb{E}\left[N_{\text {Client }^{\prime}{ }_{\text {wait }}}(t)\right]+\mathbb{E}\left[N_{\text {Client }_{\text {proc }}}(t)\right]
\end{aligned}
$$

Individual passage times

$T:=\inf \left\{t \geq 0: C(t)=\right.$ Client $\left.^{\prime}\right\}$, given that $C(0)=$ Client

$$
\begin{aligned}
\mathbb{P}\{T \leq t\} & =\mathbb{P}\left\{C(t) \in\left\{\text { Client }^{\prime}, \text { Client }^{\prime}{ }_{\text {wait }}, \text { Client }^{\prime}{ }_{\text {proc }}\right\}\right\} \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client }^{\prime}\right\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client }^{\prime}{ }_{\text {wait }}\right\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{C(t)=\text { Client }^{\prime}{ }_{\text {proc }}\right\}}\right] \\
& =\mathbb{E}\left[N_{\text {Client }}(t)\right]+\mathbb{E}\left[N_{\text {Client }}{ }_{\text {wait }}(t)\right]+\mathbb{E}\left[N_{\text {Client }{ }_{\text {proc }}}(t)\right]
\end{aligned}
$$

$\mathbb{P}\{T \leq t\} \approx v_{\text {Client }^{\prime}}(t)+v_{\text {Client }^{\prime}{ }_{\text {wait }}}(t)+v_{\text {Client }^{\prime} \text { proc }}(t)$

Example - individual passage time

Global passage times

How long does it take for half of the clients to make a request, receive a response and process it?

[^3]
Global passage times

How long does it take for half of the clients to make a request, receive a response and process it?

Global passage times

Global passage times

Point-mass approximation:

$$
T \approx \inf \left\{t \geq 0: v_{C^{\prime}}(t)+v_{C_{w}^{\prime}}(t)+v_{C_{p}^{\prime}}(t) \geq N_{C} / 2\right\}
$$

Global passage times

Global passage times

Point-mass approximation:

$$
T \approx \inf \left\{t \geq 0: v_{C^{\prime}}(t)+v_{C_{w}^{\prime}}(t)+v_{C_{p}^{\prime}}(t) \geq N_{C} / 2\right\}
$$

- Approximation is very coarse
- Cannot be applied directly to the same question for all clients

Global passage times - moment bounds

- Moment approximations to component counts contain information about the distribution of $T^{[7]}$

[^4]
Global passage times - moment bounds

- Moment approximations to component counts contain information about the distribution of T
- Reduced moment problem - find maximum and minimum bounding distributions subject to limited moment information ${ }^{[10]}$

[^5]
Global passage bounds - first moments

Three quarters of the clients:

All of the clients:

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. "Fluid computation of passage time distributions in large Markov models". In: Theoretical Computer Science 413.1 (2012), pp. 106-141. DoI: 10.1016/j.tcs.2011.07.017.

Global passage bounds - higher moments

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. "Fluid computation of passage time distributions in large Markov models". In: Theoretical Computer Science 413.1 (2012), pp. 106-141. DOI: 10.1016/j.tcs.2011.07.017.

Scalable analysis of accumulated reward measures

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate
[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, . .
- Constant rate

Accumulated reward measures

- Cost, energy, heat, . .
- Constant rate

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Accumulated reward measures

- Cost, energy, heat, ...
- Constant rate

$$
\text { total energy }(t)=r_{S} \int_{0}^{t} N_{S}(u) \mathrm{d} u+r_{S p} \int_{0}^{t} N_{S_{p}}(u) \mathrm{d} u
$$

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DoI: 10.1145/195 8746.1958767.

Moment approximations of accumulated rewards

- Simulation also very costly for rewards

Moment approximations of accumulated rewards

- Simulation also very costly for rewards

Moment approximations of accumulated rewards

- Simulation also very costly for rewards

Moment approximations of accumulated rewards

- Simulation also very costly for rewards
- Can extend the ODE system for count moments with ODEs for moments of accumulated counts:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S_{p}}(u) \mathrm{d} u\right]=\cdots
$$

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DOI: 10.1145/195 8746.1958767.

Moment approximations of accumulated rewards

- Simulation also very costly for rewards
- Can extend the ODE system for count moments with ODEs for moments of accumulated counts:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S_{p}}(u) \mathrm{d} u \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\cdots
$$

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DOI: 10.1145/195 8746.1958767.

Moment approximations of accumulated rewards

- Simulation also very costly for rewards
- Can extend the ODE system for count moments with ODEs for moments of accumulated counts:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S_{p}}(u) \mathrm{d} u \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\cdots
$$

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DOI: 10.1145/195 8746.1958767.

Moment approximations of accumulated rewards

- Simulation also very costly for rewards
- Can extend the ODE system for count moments with ODEs for moments of accumulated counts:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S_{p}}(u) \mathrm{d} u \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\cdots
$$

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DOI: 10.1145/195 8746.1958767.

Moment approximations of accumulated rewards

- Simulation also very costly for rewards
- Can extend the ODE system for count moments with ODEs for moments of accumulated counts:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S_{p}}(u) \mathrm{d} u \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\cdots
$$

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "Fluid analysis of energy consumption using rewards in massively parallel Markov models". In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121-132. DOI: 10.1145/195 8746.1958767.

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

Moment approximations of accumulated rewards

First-order moments
First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\left(\int_{0}^{t} N_{S}(u) \mathrm{d} u\right)^{2}\right]=
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\left(\int_{0}^{t} N_{S}(u) \mathrm{d} u\right)^{2}\right]=2 \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\left(\int_{0}^{t} N_{S}(u) \mathrm{d} u\right)^{2}\right]=2 \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]
$$

Combined moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\left(\int_{0}^{t} N_{S}(u) \mathrm{d} u\right)^{2}\right]=2 \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]
$$

Combined moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]+\cdots+\mathbb{E}\left[N_{S}^{2}(t)\right]
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Second-order moments

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\left(\int_{0}^{t} N_{S}(u) \mathrm{d} u\right)^{2}\right]=2 \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]
$$

Combined moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]+\cdots+\mathbb{E}\left[N_{S}^{2}(t)\right]
$$

Moment approximations of accumulated rewards

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t)\right]
$$

First-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t)\right]=\cdots
$$

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t) N_{S_{p}}(t)\right]=\cdots
$$

Second-order moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[\left(\int_{0}^{t} N_{S}(u) \mathrm{d} u\right)^{2}\right]=2 \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]
$$

Combined moments

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]=\mathbb{E}\left[N_{S}(t) \int_{0}^{t} N_{S}(u) \mathrm{d} u\right]+\cdots+\mathbb{E}\left[N_{S}^{2}(t)\right]
$$

Trade-off between energy and performance

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA:

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA: clients must finish in at most 7s
$\geq 99 \%$ of the time

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA: clients must finish in at most 7s
$\geq 99 \%$ of the time

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA: clients must finish in at most 7s
$\geq 99 \%$ of the time

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA: clients must finish in at most 7s
$\geq 99.5 \%$ of the time

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (N_{S}, sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA: clients must finish in at most 7s
$\geq 99.5 \%$ of the time

Non-Markovian models

Non-Markovian models

- Distributions more general than exponential are required to construct realistic models, for example:
- Deterministic timeouts in protocols or hardware
- Heavy-tailed service-time distributions

Non-Markovian models

- Distributions more general than exponential are required to construct realistic models, for example:
- Deterministic timeouts in protocols or hardware
- Heavy-tailed service-time distributions
- Phase-type approximation is one approach, but can lead to significant increase in a component's local state-space size
- A 100-phase Erlang approximation to a deterministic distribution of duration 1 has a probability of about 32% of lying outside of $[0.9,1.1]$

Non-Markovian models

- Distributions more general than exponential are required to construct realistic models, for example:
- Deterministic timeouts in protocols or hardware
- Heavy-tailed service-time distributions
- Phase-type approximation is one approach, but can lead to significant increase in a component's local state-space size
- A 100 -phase Erlang approximation to a deterministic distribution of duration 1 has a probability of about 32% of lying outside of $[0.9,1.1]$
- In the case of deterministic distributions, mean-field approach can be generalised using delay differential equations

Software update model with deterministic timeouts

Software update model with deterministic timeouts

$$
\begin{aligned}
\dot{\mathbb{E}}\left[N_{\mathrm{c}}(t)\right]= & -\rho \mathbb{E}\left[N_{\mathrm{c}}(t)\right]-\frac{\beta}{N} \mathbb{E}\left[N_{\mathrm{c}}(t) N_{\mathrm{a}}(t)\right]+\lambda \mathbb{E}\left[N_{\mathrm{e}}(t)\right] \\
& -\mathbb{E}[\underbrace{\mathbf{1}_{\{t \geq \gamma\}} \lambda N_{\mathrm{e}}(t-\gamma)}_{\begin{array}{c}
\text { Rate of determ. } \\
\text { clocks starting at } \dot{t}-\gamma
\end{array}} \exp \left(-\int_{t-\gamma}^{t} \frac{\beta N_{\mathrm{a}}(s)}{N} \mathrm{~d} s\right) \exp (-\rho \gamma)]
\end{aligned}
$$

Software update model with deterministic timeouts

$$
\begin{aligned}
\dot{\mathbb{E}}\left[N_{\mathrm{c}}(t)\right]= & -\rho \mathbb{E}\left[N_{\mathrm{c}}(t)\right]-\frac{\beta}{N} \mathbb{E}\left[N_{\mathrm{c}}(t) N_{\mathrm{a}}(t)\right]+\lambda \mathbb{E}\left[N_{\mathrm{e}}(t)\right] \\
& -\mathbb{E}[\mathbf{1}_{\{t \geq \gamma\}} \lambda N_{\mathrm{e}}(t-\gamma) \underbrace{\exp \left(-\int_{t-\gamma}^{t} \frac{\beta N_{\mathrm{a}}(s)}{N} \mathrm{~d} s\right) \exp (-\rho \gamma)}_{\begin{array}{c}
\text { Prob. that timeout occurs } \\
\text { before node updated or went off }
\end{array}}]
\end{aligned}
$$

Software update model with deterministic timeouts

$$
\begin{aligned}
\dot{\mathbb{E}}\left[N_{\mathrm{c}}(t)\right] \approx & -\rho \mathbb{E}\left[N_{\mathrm{c}}(t)\right]-\frac{\beta}{N} \mathbb{E}\left[N_{\mathrm{c}}(t)\right] \mathbb{E}\left[N_{\mathrm{a}}(t)\right]+\lambda \mathbb{E}\left[N_{\mathrm{e}}(t)\right] \\
& -\mathbf{1}_{\{t \geq \gamma\}} \lambda \mathbb{E}\left[N_{\mathrm{e}}(t-\gamma)\right] \exp \left(-\int_{t-\gamma}^{t} \frac{\beta \mathbb{E}\left[N_{\mathrm{a}}(s)\right]}{N} \mathrm{~d} s\right) \exp (-\rho \gamma)
\end{aligned}
$$

Software update model with deterministic timeouts

$$
\begin{aligned}
\dot{v}_{\mathrm{c}}(t)= & -\rho v_{\mathrm{c}}(t)-\frac{\beta}{N} v_{\mathrm{c}}(t) v_{\mathrm{a}}(t)+\lambda v_{\mathrm{e}}(t) \\
& -\mathbf{1}_{t \geq \gamma} \lambda v_{\mathrm{e}}(t-\gamma) \exp \left(-\int_{t-\gamma}^{t} \frac{\beta v_{\mathrm{a}}(s)}{N} \mathrm{~d} s\right) \exp (-\rho \gamma)
\end{aligned}
$$

Software update model with deterministic timeouts

Summary

Fluid analysis provides a scalable analysis framework for massively-parallel performance models, that is able to capture:

- Arbitrary moments of component counts
- Passage-time measures
- Accumulated reward measures
- Certain forms of non-Markovian timing
with implementation in the freely-available GPA tool ${ }^{1}$

Thank you! ${ }^{2}$

2 Many thanks to Richard Hayden and Anton Stefanek for their expertise with pgf and pgfplots and their help with this presentation. They also did a substantial portion of the research!

[^0]: [1] Mario Bravetti and Roberto Gorrieri. "Interactive Generalized Semi-Markov Processes". In: Process Algebra and Performance Modelling Workshop. Ed. by Jane Hillston and Manuel Silva. Centro Politécnico Superior de la Universidad de Zaragoza. Prensas Universitarias de Zaragoza, 1999, pp. 83-98.
 [2] Holger Hermanns. "Interactive Markov Chains". PhD thesis. Universität Erlangen-Nürnberg, 1998.
 [3] Thomas Ayles et al. "Adding Performance Evaluation to the LTSA Tool". In: Proceedings of 13th International Conference on Computer Performance Evaluation: Modelling Techniques and Tools. 2003.
 [4] Marco Bernardo and Roberto Gorrieri. "Extended Markovian Process Algebra". In: CONCUR'96, Proceedings of the 7th International Conference on Concurrency Theory. Ed. by Ugo Montanari and Vladimiro Sassone. Vol. 1119. Lecture Notes in Computer Science. SpringerVerlag, 1996, pp. 315-330.
 [5] Norbert Götz, Ulrich Herzog, and Michael Rettelbach. "TIPP—A Stochastic Process Algebra". In: Process Algebra and Performance Modelling. Ed. by Jane Hillston and Faron Moller. CSR Technical Report. Department of Computer Science, University of Edinburgh, 1993, pp. 31-36.
 [6] Jane Hillston. A Compositional Approach to Performance Modelling. Vol. 12. Distinguished Dissertations in Computer Science. Cambridge University Press, 1996.

[^1]: [7] Mirco Tribastone. "The PEPA Plug-in Project". In: QEST'07, Proceedings of the 4th Int. Conference on the Quantitative Evaluation of Systems. IEEE Computer Society, 2007, pp. 53-54.
 [8] Graham Clark et al. "The Möbius Modeling Tool". In: Proceedings the 9th International Workshop on Petri Nets and Performance Models. Ed. by B Haverkort and R German. IEEE Computer Society Press, 2001, pp. 241-250.
 [9] Marta Kwiatkowska, Gethin Norman, and David Parker. "PRISM: Probabilistic Symbolic Model Checker". In: TOOLS'02, Proceedings of the 12th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation. Ed. by A J Field et al. Vol. 2324. Lecture Notes in Computer Science. London: Springer-Verlag, 2002, pp. 200-204.
 [10] Jeremy T Bradley and William J Knottenbelt. "The ipc/HYDRA Tool Chain for the Analysis of PEPA Models". In: QEST'04, Proceedings of the 1st IEEE Conference on the Quantitative Evaluation of Systems. Ed. by Boudewijn Haverkort et al. University of Twente, Enschede: IEEE Computer Society, 2004, pp. 334-335.
 [11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. "A new tool for the performance analysis of massively parallel computer systems". In: Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL 2010), March 27-28, 2010, Paphos, Cyprus. Electronic Proceedings in Theoretical Computer Science. Mar. 2010. URL: http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/.

[^2]: [7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. "Fluid computation of passage time distributions in large Markov models".
 In: Theoretical Computer Science 413.1 (2012), pp. 106-141. DoI: 10.1016/j.tcs.2011.07.017.
 [8] Richard A. Hayden, Jeremy T. Bradley, and Allan Clark. "Performance Specification and Evaluation with Unified Stochastic Probes and Fluid Analysis". In: IEEE Transactions on Software Engineering 99.PrePrints (2012). DOI: 10.1109/TSE. 2012.1.

[^3]: [7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. "Fluid computation of passage time distributions in large Markov models". In: Theoretical Computer Science 413.1 (2012), pp. 106-141. DOI: 10.1016/j.tcs.2011.07.017.
 [9] Rena Bakhshi et al. "Mean-Field Analysis for the Evaluation of Gossip Protocols". In: QEST'09, Proceedings of the 5th IEEE Conference on the Quantitative Evaluation of Systems. IEEE Computer Society, 2009, pp. 247-256.

[^4]: [7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. "Fluid computation of passage time distributions in large Markov models". In: Theoretical Computer Science 413.1 (2012), pp. 106-141. DOI: 10.1016/j.tcs.2011.07.017.

[^5]: [10] Arpád Tari, Miklós Telek, and Peter Buchholz. "A Unified Approach to the Moments-based Distribution Estimation-Unbounded Support". In: EPEW'05, European Performance Engineering Workshop. Vol. 3670. Lecture Notes in Computer Science. Versailles: Springer, 2005, pp. 79-93.

