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You can download this presentation now from:

http://www.doc.ic.ac.uk/~jb/pub/sfm-ds2013.pdf

or

http://tinyurl.com/sfm-ds-fluid
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How can we...
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scale
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resource
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design
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to meet
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We want to be able to engineer complex

systems

We want to be able to reason about

performance

We want to be able to optimise key cost

functions

...at the same time
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Process modelling
with Stochastic systems
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Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model Labelled transition system-
semantic rules

Based on a slide by Jane Hillston
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Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston
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PEPA: Stochastic process algebra

I Many SPAs exist and capture performance and behavioural
features in different ways. e.g. iGSMPA[1], IMC[2], sFSP[3],
EMPA[4], TIPP[5]

I PEPA[6] is useful because:
I it is a formal, algebraic description of a system
I it is compositional
I it is parsimonious (succinct)
I it is easy to learn!
I it is used in research and in industry

[1] Mario Bravetti and Roberto Gorrieri. “Interactive Generalized Semi-Markov Processes”. In: Process Algebra and Performance Modelling
Workshop. Ed. by Jane Hillston and Manuel Silva. Centro Politécnico Superior de la Universidad de Zaragoza. Prensas Universitarias de
Zaragoza, 1999, pp. 83–98.

[2] Holger Hermanns. “Interactive Markov Chains”. PhD thesis. Universität Erlangen–Nürnberg, 1998.

[3] Thomas Ayles et al. “Adding Performance Evaluation to the LTSA Tool”. In: Proceedings of 13th International Conference on Computer
Performance Evaluation: Modelling Techniques and Tools. 2003.

[4] Marco Bernardo and Roberto Gorrieri. “Extended Markovian Process Algebra”. In: CONCUR’96, Proceedings of the 7th International
Conference on Concurrency Theory. Ed. by Ugo Montanari and Vladimiro Sassone. Vol. 1119. Lecture Notes in Computer Science. Springer-
Verlag, 1996, pp. 315–330.

[5] Norbert Götz, Ulrich Herzog, and Michael Rettelbach. “TIPP—A Stochastic Process Algebra”. In: Process Algebra and Performance
Modelling. Ed. by Jane Hillston and Faron Moller. CSR Technical Report. Department of Computer Science, University of Edinburgh, 1993,
pp. 31–36.

[6] Jane Hillston. A Compositional Approach to Performance Modelling. Vol. 12. Distinguished Dissertations in Computer Science. Cambridge
University Press, 1996.
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What can you do with PEPA?
It allows you to answer key performance questions

Steady state analysis
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Steady state: X_1

What is the long-run average behaviour of my system?
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What can you do with PEPA?
It allows you to answer key performance questions

Passage time analysis

How long does it take my system to complete a key transaction?
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Tool Support

I PEPA has several methods of execution and analysis, through
comprehensive tool support:

I PEPA Eclipse plugin: Edinburgh[7]

I Möbius: Urbana-Champaign, Illinois[8]

I PRISM: Birmingham[9]

I ipc: Imperial College London[10]

I gpa: Imperial College London[11]

[7] Mirco Tribastone. “The PEPA Plug-in Project”. In: QEST’07, Proceedings of the 4th Int. Conference on the Quantitative Evaluation of
Systems. IEEE Computer Society, 2007, pp. 53–54.

[8] Graham Clark et al. “The Möbius Modeling Tool”. In: Proceedings the 9th International Workshop on Petri Nets and Performance
Models. Ed. by B Haverkort and R German. IEEE Computer Society Press, 2001, pp. 241–250.

[9] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM: Probabilistic Symbolic Model Checker”. In: TOOLS’02, Proceedings
of the 12th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation. Ed. by A J Field et al.
Vol. 2324. Lecture Notes in Computer Science. London: Springer-Verlag, 2002, pp. 200–204.

[10] Jeremy T Bradley and William J Knottenbelt. “The ipc/HYDRA Tool Chain for the Analysis of PEPA Models”. In: QEST’04, Proceedings
of the 1st IEEE Conference on the Quantitative Evaluation of Systems. Ed. by Boudewijn Haverkort et al. University of Twente, Enschede:
IEEE Computer Society, 2004, pp. 334–335.

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “A new tool for the performance analysis of massively parallel computer
systems”. In: Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL 2010), March 27-28, 2010, Paphos, Cyprus.
Electronic Proceedings in Theoretical Computer Science. Mar. 2010. url: http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/.
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PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60
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Why exponential?

Memorylessness
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X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?
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Why exponential?

1. Described by a single parameter

2. Memorylessness

3. Ability to describe other distributions using phase-type
combinations
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Prefix: (a, λ).A

I Prefix is used to describe a process that evolves from one
state to another by emitting or performing an action

I Example:

P
def
= (a, λ).Q

...means that the process P evolves with rate λ to become
process Q, by emitting an a-action

I λ is an exponential rate parameter

I As a labelled transition system, this becomes:

Prefix : P
(a,λ)

−−−→ Q
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Choice: P1 + P2

I PEPA uses a type of choice known as competitive choice

I Example:

P
def
= (a, λ).P1 + (b, µ).P2

means that P can evolve either to produce an a-action with
rate λ or to produce a b-action with rate µ

I As a labelled transition system:

Choice: P �
�
�
�3

Q
Q
Q
Qs

(a, λ)

(b, µ)

P1

P2
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Choice: P1 + P2

I P
def
= (a, λ).P1 + (b, µ).P2

I This is competitive choice since:
I P1 and P2 are in a race condition – the first one to perform an

a or a b will dictate the direction of choice for P1 + P2

I What is the probability that we see an a-action?

18/60



Cooperation: P1 BC
L
P2

I P1 BC
L

P2 defines concurrency and communication within
PEPA

I The L in P1 BC
L

P2 defines the set of actions over which two
components are to cooperate

I Any other actions that P1 and P2 can do, not mentioned in L,
can happen independently

I If a ∈ L and P1 enables an a, then P1 has to wait for P2 to
enable an a before the cooperation can proceed

I Easy source of deadlock!
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Cooperation: P1 BC
L
P2

I If P1

(a,λ)

−−−→ P ′
1 and P2

(a,>)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,λ)

−−−→ P ′
1
BC
{a}

P ′
2

I > represents a passive rate which, in the cooperation, inherits
the λ-rate of from P1

I If both rates are specified and the only a-evolutions allowed

from P1 and P2 are, P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,min(λ,µ))

−−−→ P ′
1
BC
{a}

P ′
2
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from P1 and P2 are, P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,min(λ,µ))

−−−→ P ′
1
BC
{a}

P ′
2
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Cooperation: P1 BC
L
P2

I The general cooperation case is where:
I P1 enables m a-actions
I P2 enables n a-actions

at the moment of cooperation

I ...in which case there are m × n possible transitions for
P1 BC{a} P2

I with mn a-actions having cumulative rate P1 BC{a} P2

(a,R)

−−−→
where R = min(ra(P1), ra(P2))

I ra(P) =
∑

i :P
(a, ri )−−−→

ri is the apparent rate of an action a – the

total rate at which P can do a
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Hiding: P/L

I Used to turn observable actions in P into hidden or silent
actions in P/L

I L defines the set of actions to hide

I If P
(a,λ)

−−−→ P ′:

P/{a}
(τ,λ)

−−−→ P ′/{a}

I τ is the silent action

I Used to hide complexity and create a component interface

I Cooperation on τ not allowed
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PEPA: A Transmitter-Receiver

System
def
= (Transmitter BC

∅
Receiver) BC

L
Network

Transmitter
def
= (transmit, λ1).(t recover , λ2).Transmitter

Receiver
def
= (receive,>).(r recover , µ).Receiver

Network
def
= (transmit,>).(delay , ν1).(receive, ν2).Network

where L = {transmit, receive}.

A simple model of a transmitter–receiver over a network
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TR example: Labelled transition system

with X1 → (Transmitter || Receiver) BC
L

Network

X2 → (Transmitter ′ || Receiver) BC
L

Network ′ and so on.
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Voting Example I

Voters vote and Pollers record those votes.

Pollers can break individually and recover individually. If all Pollers
break then they are all repaired in unison.

System
def
= (Voter || Voter || Voter)

BC
{vote}

((Poller BC
L

Poller) BC
L′

Poller group 0)

where

I L = {recover all}
I L′ = {recover , break , recover all}
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Voting Example II

Voter
def
= (vote, λ).(pause, µ).Voter

Poller
def
= (vote,>).(register , γ).Poller

+ (break , ν).Poller broken

Poller broken
def
= (recover , τ).Poller

+ (recover all ,>).Poller
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Voting Example III

Poller group 0
def
= (break ,>).Poller group 1

Poller group 1
def
= (break ,>).Poller group 2

+ (recover ,>).Poller group 0

Poller group 2
def
= (recover all , δ)

.Poller group 0
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Voting Example III

Poller group 0
def
= (break ,>).Poller group 1

Poller group 1
def
= (break ,>).Poller group 2

+ (recover ,>).Poller group 0

Poller group 2
def
= (recover all , δ)

.Poller group 0
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Voting Example III

Poller group 0
def
= (break ,>).Poller group 1

Poller group 1
def
= (break ,>).Poller group 2

+ (recover ,>).Poller group 0

Poller group 2
def
= (recover all , δ)

.Poller group 0
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An Overview of model-based
Fluid Analysis
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Mean field/fluid analysis

I Addresses the state-space explosion problem for discrete-state
Markov models of computer and communication systems

I Derives tractable systems of differential equations
approximating mean number of components in each local
state, for example:

I Fluid analysis of process algebra models[12]

I Mean-field analysis of systems of interacting objects[13,14]

I Can develop these techniques to capture key performance
measures of interest from large CTMCs, e.g. passage-time
measures, reward-based measures

[12] Jane Hillston. “Fluid flow approximation of PEPA models”. In: Second International Conference on the Quantitative Evaluation of
Systems (QEST). IEEE, Sept. 2005, pp. 33–42. doi: 10.1109/QEST.2005.12.

[13] Michel Benäım and Jean-Yves Le Boudec. “A class of mean field interaction models for computer and communication systems”. In:
Performance Evaluation 65.11-12 (Nov. 2008), pp. 823–838. doi: 10.1016/j.peva.2008.03.005.

[14] Marco Gribaudo. “Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents”. In: 6th European
Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218–219. doi: 10.1007/978-3-642-02924-0.
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A simple agent
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A simple agent – replicated
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A simple agent – replicated

Fluid/mean field analysis works best when you have
many replicated parallel agents or groups of replicated

parallel agents. Agent groups can synchronise.
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GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.
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GPEPA – Syntax

For parallelism and communication between sequential agents, we
need compositional agents.

A compositional agent, Q, can have the following syntax:

Q ::= Q BC
L

Q Group cooperation

| Group{P[n]} Parallel grouping

where P[n] represents a parallel group of n sequential agents P.
Group represents a group label used to identify the parts of the
model that are going to be approximated using fluid analysis.
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GPEPA Example

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}
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ODEs – Means

Ideally, we want the distribution of say C (t) for each t

This can be too expensive
Can derive ODEs approximating the means

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

These can be numerically solved, cheaper than simulation
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ODEs – Means
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ODEs – Higher moments

Can extend the ODEs

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

with ODEs for higher moments

dE[Sg (t)2]/dt = · · ·
dE[C (t)S(t)]/dt = · · ·

...

E.g. can get variance as

Var[C (t)] = E[C (t)2]− E[C (t)]2
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Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?

Servers consume energy in the Server get state
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state at t
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The total energy consumption is the process

∫ t

0
Sg (u)du
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ODEs – moments of rewards
Can extend the ODEs for moments of counts

dE[C (t)]/dt = · · · dE[S(t)2]/dt = · · ·
dE[Cw (t)Sg (t)]/dt = · · · dE[Sg (t)3]/dt = · · ·

...
...

with ODEs for the mean accumulated rewards

dE
[∫ t

0 Sg (u)du
]
/dt = E[Sg (t)]

dE
[∫ t

0 S(u)C (u)du
]
/dt = E[S(t)C (t)]

...

and ODEs for higher moments of accumulated rewards

dE
[(∫ t

0 Sg (u)du
)2
]
/dt = · · ·

...
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GPA – Grouped PEPA Analyser
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Why tool?

dE[C(t)Sg (t)]/dt+ = (−1.0) · (min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata)))

dE[C(t)Cw (t)]/dt+ = (−1.0) · (min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata)))

dE[C(t)Ct (t)]/dt+ = min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata))

dE[Sg (t)S(t)]/dt+ = min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata))

dE[Sg (t)2]/dt+ = (−2.0) · (min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata)))

dE[Sg (t)Cw (t)]/dt+ = (−1.0) · (min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata)))
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Grouped PEPA analyser

Convenient syntax

rreq = 2.0; rthink = 0.2; ...

c = 100.0; s = 50.0;

Client = (request,rreq).Client_waiting;

Client_waiting = (data,rdata).Client_think;

Client_think = (think,rthink).Client;

Server = (request,rreq).Server_get

+ (break,rbreak).Server_broken;

Server_get = (data,rdata).Server

Server_broken = (reset,rreset).Server;

Clients{Client[c]}<request,data>Servers{Server[s]}
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GPA – commands

I Analyses

odes(stopTime=5.0, stepSize=0.01, density=10){...}

simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}

comparison(odes(...){...},simulation(...){...}){...}

I Plot commands, counts specified with Group:Component

plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get^2]);
plot(Var[Clients:Client]);
plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);

plotSwitchpoints(1);
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GPA – passage times
Allows general PEPA components

NotPassed = (think,rthink).Passed;

Passed = (think,rthink).Passed;

ObservedClient = Client<think>NotPassed;

For the CDF of first passage of a client

E[C BC
t

P(t) + Cw BC
t

P(t) + Ct BC
t

P(t)]/c

Can use command

plot(E[Clients:_<*>Passed]/c);

For an upper bound on the CDF of first passage of 1/10-th of
clients

plot(Var[Clients:_<*>Passed]
/(Var[Clients:_<*>Passed]+(E[Clients:_<*>Passed]-c/10.0)^2.0));
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GPA – passage times
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GPA – completion times

bounds(acc(Servers:Server get),100.0,2);
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GPA – completion times

bounds(acc(Servers:Server get),100.0,2,4,6);
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Rapid analysis of very large scale parallel systems

ODEs
efficient imple-
mentation

moments of:
counts
rewards

passage and
completion times
error estimates

large numbers of
identical compo-
nents

described in
GPEPA
split-free
splitting models

Summary

parallel solvers
hybrid solutions

impulse rewards
time correlated
moments
optimisation
nature of error

new formalism
complex synch.
guards
functional rates
phase type

Current
work

Applied to real systems
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GPA: Download for free

GPA tool[11]:

http://code.google.com/p/gpanalyser/

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “A new tool for the performance analysis of massively parallel computer
systems”. In: Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL 2010), March 27-28, 2010, Paphos, Cyprus.
Electronic Proceedings in Theoretical Computer Science. Mar. 2010. url: http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/.
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Fluid ODE generation using
Population CTMCs
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Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of
a finite set of components {1, . . . ,N}, and a set T of transition
classes.

Each state in a PCTMC is expressed as an integer vector
~X = (X1, . . . ,XN) ∈ ZN

Xi represents the current population level of a component i .
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PCTMCs: Transition classes

A transition class c = (rc ,~ec) ∈ T describes a stochastic event

Event c: ~X (t)→ ~X (t ′) at rate rc

1. with exponentially distributed duration D at rate rc(~X (t))
where rc : ZN → R is a rate function

2. which changes the current population vector according to the
change vector ~ec

This gives us the following population dynamic formula:

Event c: ~X (t + D) = ~X (t) + ~ec D ∼ exp(rc)
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PCTMCs: Chemical reactions

Similar to chemical reaction:

s1 + · · ·+ sk → t1 + · · ·+ tl at rate r(~X )

Change vector for this reaction would involve:

~ec = {−1, . . .− 1︸ ︷︷ ︸
k

, 1 . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0}
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PCTMCs: Mean dynamics

An important aspect of PCTMC models is that we can easily
generate approximations to the evolution of the underlying
stochastic process.[15]

In particular, the equation for a mean of population Xi (t) is:

d

dt
E[Xi (t)] =

∑

(rj ,~ej )∈T

eij rj(~X (t))

[15] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/
1958746.1958767.
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ODE-based dynamics

More generally PCTMCs permit the derivation of moments of the
underlying stochastic process, i.e. moments of population levels

d

dt
E[M(~X (t))] = E[fM(~X (t))]

where M(~X ) defines the moment to be calculated.

I Mean of component 1: M(~X ) = X1

I 2nd moment of component 1: M(~X ) = X 2
1

I 2nd joint moment of components 1 and 2: M(~X ) = X1X2
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Higher moments

The higher moment function is defined as:[16]

fM(~X (t)) =
∑

c∈T
(M(~X (t) + ~ec)M(~X (t))) rc(~X (t))

Key issue: achieving a closed set of equations with each quantity
on right hand side of ODEs having a corresponding ODE.

Leads to different dynamics: mean-field, mass action, min-closure,
log-normal-closure

[16] Anton Stefanek. “Efficient Computation of Performance–Energy Trade-offs in Large Scale Markov Models”. PhD thesis. Department of
Computing, Imperial College London, 2013.
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Worked example: GPEPA

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}
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Worked example: PCTMC

In total, there are 5 transition classes:

req :

C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data :

Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think :

Ct(t)→ C (t) at rthink · Ct(t)

break :

S(t)→ Sb(t) at rbreak · S(t)

reset :

Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.
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Even more exciting fluid analysis
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Scalable passage-time analysis
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Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:[7,8]

“file should be transferred within 2 seconds, 95% of the
time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

[8] Richard A. Hayden, Jeremy T. Bradley, and Allan Clark. “Performance Specification and Evaluation with Unified Stochastic Probes and
Fluid Analysis”. In: IEEE Transactions on Software Engineering 99.PrePrints (2012). doi: 10.1109/TSE.2012.1.
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Individual passage times[7]
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Example — individual passage time
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Global passage times[7,9]
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Point-mass approximation:

T ≈ inf{t ≥ 0 : vC ′(t) + vC ′
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(t) + vC ′
p
(t) ≥ NC/2}

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

[9] Rena Bakhshi et al. “Mean-Field Analysis for the Evaluation of Gossip Protocols”. In: QEST’09, Proceedings of the 5th IEEE Conference
on the Quantitative Evaluation of Systems. IEEE Computer Society, 2009, pp. 247–256.
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Global passage times — moment bounds
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I Moment approximations to component counts contain
information about the distribution of T [7]

I Reduced moment problem — find maximum and minimum
bounding distributions subject to limited moment information

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.
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Global passage bounds — first moments[7]
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Global passage bounds — higher moments[7]
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Scalable analysis of accumulated reward measures
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Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate
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[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.
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Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA:

clients must finish in at most 7s of
the time
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Non-Markovian models
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Non-Markovian models

I Distributions more general than exponential are required to
construct realistic models, for example:

I Deterministic timeouts in protocols or hardware

I Heavy-tailed service-time distributions

I Phase-type approximation is one approach, but can lead to
significant increase in a component’s local state-space size

I A 100-phase Erlang approximation to a deterministic
distribution of duration 1 has a probability of about 32% of
lying outside of [0.9, 1.1]

I In the case of deterministic distributions, mean-field approach
can be generalised using delay differential equations
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Software update model with deterministic timeouts[12]
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Software update model with deterministic timeouts
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Summary

Fluid analysis provides a scalable analysis framework for
massively-parallel performance models, that is able to capture:

I Arbitrary moments of component counts

I Passage-time measures

I Accumulated reward measures

I Certain forms of non-Markovian timing

with implementation in the freely-available GPA tool1

1 http://code.google.com/p/gpanalyser/
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Thank you!2

2 Many thanks to Richard Hayden and Anton Stefanek for their expertise with pgf and pgfplots and their help with this presentation. They
also did a substantial portion of the research!
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