
Fluid analysis of Markov Models

Jeremy Bradley, Richard Hayden, Anton Stefanek

Imperial College London

Tutorial, SFM:DS 2013

20 June 2013

You can download this presentation now from:

http://www.doc.ic.ac.uk/~jb/pub/sfm-ds2013.pdf

or

http://tinyurl.com/sfm-ds-fluid

2/60

http://www.doc.ic.ac.uk/~jb/pub/sfm-ds2013.pdf
http://tinyurl.com/sfm-ds-fluid

3/60

How can we...

4/60

scale

4/60

resource

4/60

provision

4/60

design

4/60

5/60

or

5/60

5/60

to meet

5/60

5/60

while minimising

5/60

5/60

?

5/60

We want to be able to engineer complex

systems

We want to be able to reason about

performance

We want to be able to optimise key cost

functions

...at the same time

6/60

We want to be able to engineer complex

systems

We want to be able to reason about

performance

We want to be able to optimise key cost

functions

...at the same time

6/60

We want to be able to engineer complex

systems

We want to be able to reason about

performance

We want to be able to optimise key cost

functions

...at the same time

6/60

We want to be able to engineer complex

systems

We want to be able to reason about

performance

We want to be able to optimise key cost

functions

...at the same time

6/60

We want to be able to engineer complex

systems

We want to be able to reason about

performance

We want to be able to optimise key cost

functions

...at the same time

6/60

Process modelling
with Stochastic systems

7/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model Labelled transition system-
semantic rules

Based on a slide by Jane Hillston

8/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model Labelled transition system-
semantic rules

Based on a slide by Jane Hillston

8/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model Labelled transition system-
semantic rules

Based on a slide by Jane Hillston

8/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model Labelled transition system-
semantic rules

Based on a slide by Jane Hillston

8/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model

Labelled transition system-
semantic rules

Based on a slide by Jane Hillston

8/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model

Labelled transition system

-
semantic rules

Based on a slide by Jane Hillston

8/60

Process Algebra

A process algebra model consists of agents which engage in actions.

α.P
�
��*

H
HHY

action label agent or component

The semantics of the language define an underlying state space by
way of a labelled transition system.

A process algebra model Labelled transition system-
semantic rules

Based on a slide by Jane Hillston

8/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model

LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model

LTS CTMC

-

-

semantics

filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS

CTMC

-

-

semantics

filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS

CTMC

- -
semantics filter

Based on a slide by Jane Hillston

9/60

Stochastic Process Algebra
A stochastic process algebra model also consists of agents
which engage in actions, but with the actions having a random
duration associated with them.

(α, λ).P
�
��*

6 H
HHY

action label

action rate

agent or component

where the action duration is exponentially distributed with rate λ.

The semantics of the language define an underlying state space
and also a performance model in terms of a CTMC.

SPA model LTS CTMC- -
semantics filter

Based on a slide by Jane Hillston

9/60

PEPA: Stochastic process algebra

I Many SPAs exist and capture performance and behavioural
features in different ways. e.g. iGSMPA[1], IMC[2], sFSP[3],
EMPA[4], TIPP[5]

I PEPA[6] is useful because:
I it is a formal, algebraic description of a system
I it is compositional
I it is parsimonious (succinct)
I it is easy to learn!
I it is used in research and in industry

[1] Mario Bravetti and Roberto Gorrieri. “Interactive Generalized Semi-Markov Processes”. In: Process Algebra and Performance Modelling
Workshop. Ed. by Jane Hillston and Manuel Silva. Centro Politécnico Superior de la Universidad de Zaragoza. Prensas Universitarias de
Zaragoza, 1999, pp. 83–98.

[2] Holger Hermanns. “Interactive Markov Chains”. PhD thesis. Universität Erlangen–Nürnberg, 1998.

[3] Thomas Ayles et al. “Adding Performance Evaluation to the LTSA Tool”. In: Proceedings of 13th International Conference on Computer
Performance Evaluation: Modelling Techniques and Tools. 2003.

[4] Marco Bernardo and Roberto Gorrieri. “Extended Markovian Process Algebra”. In: CONCUR’96, Proceedings of the 7th International
Conference on Concurrency Theory. Ed. by Ugo Montanari and Vladimiro Sassone. Vol. 1119. Lecture Notes in Computer Science. Springer-
Verlag, 1996, pp. 315–330.

[5] Norbert Götz, Ulrich Herzog, and Michael Rettelbach. “TIPP—A Stochastic Process Algebra”. In: Process Algebra and Performance
Modelling. Ed. by Jane Hillston and Faron Moller. CSR Technical Report. Department of Computer Science, University of Edinburgh, 1993,
pp. 31–36.

[6] Jane Hillston. A Compositional Approach to Performance Modelling. Vol. 12. Distinguished Dissertations in Computer Science. Cambridge
University Press, 1996.

10/60

What can you do with PEPA?
It allows you to answer key performance questions

Steady state analysis

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

Steady state: X_1

What is the long-run average behaviour of my system?

11/60

What can you do with PEPA?
It allows you to answer key performance questions

Transient analysis

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

What is the behaviour of my system at time, t?

11/60

What can you do with PEPA?
It allows you to answer key performance questions

Transient analysis

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

What is the behaviour of my system at time, t?

11/60

What can you do with PEPA?
It allows you to answer key performance questions

Transient analysis

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

What is the behaviour of my system at time, t?

11/60

What can you do with PEPA?
It allows you to answer key performance questions

Passage time analysis

How long does it take my system to complete a key transaction?

11/60

Tool Support

I PEPA has several methods of execution and analysis, through
comprehensive tool support:

I PEPA Eclipse plugin: Edinburgh[7]

I Möbius: Urbana-Champaign, Illinois[8]

I PRISM: Birmingham[9]

I ipc: Imperial College London[10]

I gpa: Imperial College London[11]

[7] Mirco Tribastone. “The PEPA Plug-in Project”. In: QEST’07, Proceedings of the 4th Int. Conference on the Quantitative Evaluation of
Systems. IEEE Computer Society, 2007, pp. 53–54.

[8] Graham Clark et al. “The Möbius Modeling Tool”. In: Proceedings the 9th International Workshop on Petri Nets and Performance
Models. Ed. by B Haverkort and R German. IEEE Computer Society Press, 2001, pp. 241–250.

[9] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM: Probabilistic Symbolic Model Checker”. In: TOOLS’02, Proceedings
of the 12th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation. Ed. by A J Field et al.
Vol. 2324. Lecture Notes in Computer Science. London: Springer-Verlag, 2002, pp. 200–204.

[10] Jeremy T Bradley and William J Knottenbelt. “The ipc/HYDRA Tool Chain for the Analysis of PEPA Models”. In: QEST’04, Proceedings
of the 1st IEEE Conference on the Quantitative Evaluation of Systems. Ed. by Boudewijn Haverkort et al. University of Twente, Enschede:
IEEE Computer Society, 2004, pp. 334–335.

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “A new tool for the performance analysis of massively parallel computer
systems”. In: Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL 2010), March 27-28, 2010, Paphos, Cyprus.
Electronic Proceedings in Theoretical Computer Science. Mar. 2010. url: http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/.

12/60

http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60

PEPA Syntax

Syntax:

P ::= (a, λ).P P + P P BC
L

P P/L A
def
= P

I Action prefix: (a, λ).P

I Competitive choice: P1 + P2

I Cooperation: P1 BC
L

P2

I Action hiding: P/L

I Constant label: A
def
= P

13/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

Memorylessness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

X~exp(1.25)

What is P(X ≤ t | X > u) if X ∼ exp(λ)?

14/60

Why exponential?

1. Described by a single parameter

2. Memorylessness

3. Ability to describe other distributions using phase-type
combinations

15/60

Why exponential?

1. Described by a single parameter

2. Memorylessness

3. Ability to describe other distributions using phase-type
combinations

15/60

Why exponential?

1. Described by a single parameter

2. Memorylessness

3. Ability to describe other distributions using phase-type
combinations

15/60

Prefix: (a, λ).A

I Prefix is used to describe a process that evolves from one
state to another by emitting or performing an action

I Example:

P
def
= (a, λ).Q

...means that the process P evolves with rate λ to become
process Q, by emitting an a-action

I λ is an exponential rate parameter

I As a labelled transition system, this becomes:

Prefix : P
(a,λ)

−−−→ Q

16/60

Prefix: (a, λ).A

I Prefix is used to describe a process that evolves from one
state to another by emitting or performing an action

I Example:

P
def
= (a, λ).Q

...means that the process P evolves with rate λ to become
process Q, by emitting an a-action

I λ is an exponential rate parameter

I As a labelled transition system, this becomes:

Prefix : P
(a,λ)

−−−→ Q

16/60

Prefix: (a, λ).A

I Prefix is used to describe a process that evolves from one
state to another by emitting or performing an action

I Example:

P
def
= (a, λ).Q

...means that the process P evolves with rate λ to become
process Q, by emitting an a-action

I λ is an exponential rate parameter

I As a labelled transition system, this becomes:

Prefix : P
(a,λ)

−−−→ Q

16/60

Prefix: (a, λ).A

I Prefix is used to describe a process that evolves from one
state to another by emitting or performing an action

I Example:

P
def
= (a, λ).Q

...means that the process P evolves with rate λ to become
process Q, by emitting an a-action

I λ is an exponential rate parameter

I As a labelled transition system, this becomes:

Prefix : P
(a,λ)

−−−→ Q

16/60

Choice: P1 + P2

I PEPA uses a type of choice known as competitive choice

I Example:

P
def
= (a, λ).P1 + (b, µ).P2

means that P can evolve either to produce an a-action with
rate λ or to produce a b-action with rate µ

I As a labelled transition system:

Choice: P �
�
�
�3

Q
Q
Q
Qs

(a, λ)

(b, µ)

P1

P2

17/60

Choice: P1 + P2

I PEPA uses a type of choice known as competitive choice

I Example:

P
def
= (a, λ).P1 + (b, µ).P2

means that P can evolve either to produce an a-action with
rate λ or to produce a b-action with rate µ

I As a labelled transition system:

Choice: P �
�
�
�3

Q
Q
Q
Qs

(a, λ)

(b, µ)

P1

P2

17/60

Choice: P1 + P2

I PEPA uses a type of choice known as competitive choice

I Example:

P
def
= (a, λ).P1 + (b, µ).P2

means that P can evolve either to produce an a-action with
rate λ or to produce a b-action with rate µ

I As a labelled transition system:

Choice: P �
�
�
�3

Q
Q
Q
Qs

(a, λ)

(b, µ)

P1

P2

17/60

Choice: P1 + P2

I P
def
= (a, λ).P1 + (b, µ).P2

I This is competitive choice since:
I P1 and P2 are in a race condition – the first one to perform an

a or a b will dictate the direction of choice for P1 + P2

I What is the probability that we see an a-action?

18/60

Cooperation: P1 BC
L
P2

I P1 BC
L

P2 defines concurrency and communication within
PEPA

I The L in P1 BC
L

P2 defines the set of actions over which two
components are to cooperate

I Any other actions that P1 and P2 can do, not mentioned in L,
can happen independently

I If a ∈ L and P1 enables an a, then P1 has to wait for P2 to
enable an a before the cooperation can proceed

I Easy source of deadlock!

19/60

Cooperation: P1 BC
L
P2

I P1 BC
L

P2 defines concurrency and communication within
PEPA

I The L in P1 BC
L

P2 defines the set of actions over which two
components are to cooperate

I Any other actions that P1 and P2 can do, not mentioned in L,
can happen independently

I If a ∈ L and P1 enables an a, then P1 has to wait for P2 to
enable an a before the cooperation can proceed

I Easy source of deadlock!

19/60

Cooperation: P1 BC
L
P2

I P1 BC
L

P2 defines concurrency and communication within
PEPA

I The L in P1 BC
L

P2 defines the set of actions over which two
components are to cooperate

I Any other actions that P1 and P2 can do, not mentioned in L,
can happen independently

I If a ∈ L and P1 enables an a, then P1 has to wait for P2 to
enable an a before the cooperation can proceed

I Easy source of deadlock!

19/60

Cooperation: P1 BC
L
P2

I P1 BC
L

P2 defines concurrency and communication within
PEPA

I The L in P1 BC
L

P2 defines the set of actions over which two
components are to cooperate

I Any other actions that P1 and P2 can do, not mentioned in L,
can happen independently

I If a ∈ L and P1 enables an a, then P1 has to wait for P2 to
enable an a before the cooperation can proceed

I Easy source of deadlock!

19/60

Cooperation: P1 BC
L
P2

I P1 BC
L

P2 defines concurrency and communication within
PEPA

I The L in P1 BC
L

P2 defines the set of actions over which two
components are to cooperate

I Any other actions that P1 and P2 can do, not mentioned in L,
can happen independently

I If a ∈ L and P1 enables an a, then P1 has to wait for P2 to
enable an a before the cooperation can proceed

I Easy source of deadlock!

19/60

Cooperation: P1 BC
L
P2

I If P1

(a,λ)

−−−→ P ′
1 and P2

(a,>)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,λ)

−−−→ P ′
1
BC
{a}

P ′
2

I > represents a passive rate which, in the cooperation, inherits
the λ-rate of from P1

I If both rates are specified and the only a-evolutions allowed

from P1 and P2 are, P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,min(λ,µ))

−−−→ P ′
1
BC
{a}

P ′
2

20/60

Cooperation: P1 BC
L
P2

I If P1

(a,λ)

−−−→ P ′
1 and P2

(a,>)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,λ)

−−−→ P ′
1
BC
{a}

P ′
2

I > represents a passive rate which, in the cooperation, inherits
the λ-rate of from P1

I If both rates are specified and the only a-evolutions allowed

from P1 and P2 are, P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,min(λ,µ))

−−−→ P ′
1
BC
{a}

P ′
2

20/60

Cooperation: P1 BC
L
P2

I If P1

(a,λ)

−−−→ P ′
1 and P2

(a,>)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,λ)

−−−→ P ′
1
BC
{a}

P ′
2

I > represents a passive rate which, in the cooperation, inherits
the λ-rate of from P1

I If both rates are specified and the only a-evolutions allowed

from P1 and P2 are, P1

(a,λ)

−−−→ P ′
1 and P2

(a,µ)

−−−→ P ′
2 then:

P1 BC{a} P2

(a,min(λ,µ))

−−−→ P ′
1
BC
{a}

P ′
2

20/60

Cooperation: P1 BC
L
P2

I The general cooperation case is where:
I P1 enables m a-actions
I P2 enables n a-actions

at the moment of cooperation

I ...in which case there are m × n possible transitions for
P1 BC{a} P2

I with mn a-actions having cumulative rate P1 BC{a} P2

(a,R)

−−−→
where R = min(ra(P1), ra(P2))

I ra(P) =
∑

i :P
(a, ri)−−−→

ri is the apparent rate of an action a – the

total rate at which P can do a

21/60

Cooperation: P1 BC
L
P2

I The general cooperation case is where:
I P1 enables m a-actions
I P2 enables n a-actions

at the moment of cooperation

I ...in which case there are m × n possible transitions for
P1 BC{a} P2

I with mn a-actions having cumulative rate P1 BC{a} P2

(a,R)

−−−→
where R = min(ra(P1), ra(P2))

I ra(P) =
∑

i :P
(a, ri)−−−→

ri is the apparent rate of an action a – the

total rate at which P can do a

21/60

Cooperation: P1 BC
L
P2

I The general cooperation case is where:
I P1 enables m a-actions
I P2 enables n a-actions

at the moment of cooperation

I ...in which case there are m × n possible transitions for
P1 BC{a} P2

I with mn a-actions having cumulative rate P1 BC{a} P2

(a,R)

−−−→
where R = min(ra(P1), ra(P2))

I ra(P) =
∑

i :P
(a, ri)−−−→

ri is the apparent rate of an action a – the

total rate at which P can do a

21/60

Hiding: P/L

I Used to turn observable actions in P into hidden or silent
actions in P/L

I L defines the set of actions to hide

I If P
(a,λ)

−−−→ P ′:

P/{a}
(τ,λ)

−−−→ P ′/{a}

I τ is the silent action

I Used to hide complexity and create a component interface

I Cooperation on τ not allowed

22/60

PEPA: A Transmitter-Receiver

System
def
= (Transmitter BC

∅
Receiver) BC

L
Network

Transmitter
def
= (transmit, λ1).(t recover , λ2).Transmitter

Receiver
def
= (receive,>).(r recover , µ).Receiver

Network
def
= (transmit,>).(delay , ν1).(receive, ν2).Network

where L = {transmit, receive}.

A simple model of a transmitter–receiver over a network

23/60

PEPA: A Transmitter-Receiver

System
def
= (Transmitter || Receiver) BC

L
Network

Transmitter
def
= (transmit, λ1).(t recover , λ2).Transmitter

Receiver
def
= (receive,>).(r recover , µ).Receiver

Network
def
= (transmit,>).(delay , ν1).(receive, ν2).Network

where L = {transmit, receive}.

A simple model of a transmitter–receiver over a network

23/60

PEPA: A Transmitter-Receiver

System
def
= (Transmitter || Receiver) BC

L
Network

Transmitter
def
= (transmit, λ1).(t recover , λ2).Transmitter

Receiver
def
= (receive,>).(r recover , µ).Receiver

Network
def
= (transmit,>).(delay , ν1).(receive, ν2).Network

where L = {transmit, receive}.

A simple model of a transmitter–receiver over a network

23/60

PEPA: A Transmitter-Receiver

System
def
= (Transmitter || Receiver) BC

L
Network

Transmitter
def
= (transmit, λ1).(t recover , λ2).Transmitter

Receiver
def
= (receive,>).(r recover , µ).Receiver

Network
def
= (transmit,>).(delay , ν1).(receive, ν2).Network

where L = {transmit, receive}.

A simple model of a transmitter–receiver over a network

23/60

TR example: Labelled transition system

with X1 → (Transmitter || Receiver) BC
L

Network

X2 → (Transmitter ′ || Receiver) BC
L

Network ′ and so on.

24/60

Voting Example I

Voters vote and Pollers record those votes.

Pollers can break individually and recover individually. If all Pollers
break then they are all repaired in unison.

System
def
= (Voter || Voter || Voter)

BC
{vote}

((Poller BC
L

Poller) BC
L′

Poller group 0)

where

I L = {recover all}
I L′ = {recover , break , recover all}

25/60

Voting Example II

Voter
def
= (vote, λ).(pause, µ).Voter

Poller
def
= (vote,>).(register , γ).Poller

+ (break , ν).Poller broken

Poller broken
def
= (recover , τ).Poller

+ (recover all ,>).Poller

26/60

Voting Example II

Voter
def
= (vote, λ).(pause, µ).Voter

Poller
def
= (vote,>).(register , γ).Poller

+ (break , ν).Poller broken

Poller broken
def
= (recover , τ).Poller

+ (recover all ,>).Poller

26/60

Voting Example II

Voter
def
= (vote, λ).(pause, µ).Voter

Poller
def
= (vote,>).(register , γ).Poller

+ (break , ν).Poller broken

Poller broken
def
= (recover , τ).Poller

+ (recover all ,>).Poller

26/60

Voting Example III

Poller group 0
def
= (break ,>).Poller group 1

Poller group 1
def
= (break ,>).Poller group 2

+ (recover ,>).Poller group 0

Poller group 2
def
= (recover all , δ)

.Poller group 0

27/60

Voting Example III

Poller group 0
def
= (break ,>).Poller group 1

Poller group 1
def
= (break ,>).Poller group 2

+ (recover ,>).Poller group 0

Poller group 2
def
= (recover all , δ)

.Poller group 0

27/60

Voting Example III

Poller group 0
def
= (break ,>).Poller group 1

Poller group 1
def
= (break ,>).Poller group 2

+ (recover ,>).Poller group 0

Poller group 2
def
= (recover all , δ)

.Poller group 0

27/60

An Overview of model-based
Fluid Analysis

28/60

Mean field/fluid analysis

I Addresses the state-space explosion problem for discrete-state
Markov models of computer and communication systems

I Derives tractable systems of differential equations
approximating mean number of components in each local
state, for example:

I Fluid analysis of process algebra models[12]

I Mean-field analysis of systems of interacting objects[13,14]

I Can develop these techniques to capture key performance
measures of interest from large CTMCs, e.g. passage-time
measures, reward-based measures

[12] Jane Hillston. “Fluid flow approximation of PEPA models”. In: Second International Conference on the Quantitative Evaluation of
Systems (QEST). IEEE, Sept. 2005, pp. 33–42. doi: 10.1109/QEST.2005.12.

[13] Michel Benäım and Jean-Yves Le Boudec. “A class of mean field interaction models for computer and communication systems”. In:
Performance Evaluation 65.11-12 (Nov. 2008), pp. 823–838. doi: 10.1016/j.peva.2008.03.005.

[14] Marco Gribaudo. “Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents”. In: 6th European
Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218–219. doi: 10.1007/978-3-642-02924-0.

29/60

http://dx.doi.org/10.1109/QEST.2005.12
http://dx.doi.org/10.1016/j.peva.2008.03.005
http://dx.doi.org/10.1007/978-3-642-02924-0

Mean field/fluid analysis

I Addresses the state-space explosion problem for discrete-state
Markov models of computer and communication systems

I Derives tractable systems of differential equations
approximating mean number of components in each local
state, for example:

I Fluid analysis of process algebra models[12]

I Mean-field analysis of systems of interacting objects[13,14]

I Can develop these techniques to capture key performance
measures of interest from large CTMCs, e.g. passage-time
measures, reward-based measures

[12] Jane Hillston. “Fluid flow approximation of PEPA models”. In: Second International Conference on the Quantitative Evaluation of
Systems (QEST). IEEE, Sept. 2005, pp. 33–42. doi: 10.1109/QEST.2005.12.

[13] Michel Benäım and Jean-Yves Le Boudec. “A class of mean field interaction models for computer and communication systems”. In:
Performance Evaluation 65.11-12 (Nov. 2008), pp. 823–838. doi: 10.1016/j.peva.2008.03.005.

[14] Marco Gribaudo. “Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents”. In: 6th European
Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218–219. doi: 10.1007/978-3-642-02924-0.

29/60

http://dx.doi.org/10.1109/QEST.2005.12
http://dx.doi.org/10.1016/j.peva.2008.03.005
http://dx.doi.org/10.1007/978-3-642-02924-0

Mean field/fluid analysis

I Addresses the state-space explosion problem for discrete-state
Markov models of computer and communication systems

I Derives tractable systems of differential equations
approximating mean number of components in each local
state, for example:

I Fluid analysis of process algebra models[12]

I Mean-field analysis of systems of interacting objects[13,14]

I Can develop these techniques to capture key performance
measures of interest from large CTMCs, e.g. passage-time
measures, reward-based measures

[12] Jane Hillston. “Fluid flow approximation of PEPA models”. In: Second International Conference on the Quantitative Evaluation of
Systems (QEST). IEEE, Sept. 2005, pp. 33–42. doi: 10.1109/QEST.2005.12.

[13] Michel Benäım and Jean-Yves Le Boudec. “A class of mean field interaction models for computer and communication systems”. In:
Performance Evaluation 65.11-12 (Nov. 2008), pp. 823–838. doi: 10.1016/j.peva.2008.03.005.

[14] Marco Gribaudo. “Analysis of Large Populations of Interacting Objects with Mean Field and Markovian Agents”. In: 6th European
Performance Engineering Workshop (EPEW). Vol. 5652. 2009, pp. 218–219. doi: 10.1007/978-3-642-02924-0.

29/60

http://dx.doi.org/10.1109/QEST.2005.12
http://dx.doi.org/10.1016/j.peva.2008.03.005
http://dx.doi.org/10.1007/978-3-642-02924-0

A simple agent

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

30/60

A simple agent – replicated

Fluid/mean field analysis works best when you have
many replicated parallel agents or groups of replicated

parallel agents. Agent groups can synchronise.

30/60

GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.

31/60

GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.

31/60

GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.

31/60

GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.

31/60

GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.

31/60

GPEPA – Syntax

GPEPA or Grouped PEPA as a syntax that is suspiciously similar
to that of PEPA.

An sequential agent, P, can have the following syntax:

P ::= (a, λ).P SPA Markovian prefix

| P + P SPA competitive choice

| C
def
= P Agent name

Sequential agents allow a modeller to define behaviour with
associated exponential delays.

31/60

GPEPA – Syntax

For parallelism and communication between sequential agents, we
need compositional agents.

A compositional agent, Q, can have the following syntax:

Q ::= Q BC
L

Q Group cooperation

| Group{P[n]} Parallel grouping

where P[n] represents a parallel group of n sequential agents P.
Group represents a group label used to identify the parts of the
model that are going to be approximated using fluid analysis.

32/60

GPEPA – Syntax

For parallelism and communication between sequential agents, we
need compositional agents.

A compositional agent, Q, can have the following syntax:

Q ::= Q BC
L

Q Group cooperation

| Group{P[n]} Parallel grouping

where P[n] represents a parallel group of n sequential agents P.
Group represents a group label used to identify the parts of the
model that are going to be approximated using fluid analysis.

32/60

GPEPA – Syntax

For parallelism and communication between sequential agents, we
need compositional agents.

A compositional agent, Q, can have the following syntax:

Q ::= Q BC
L

Q Group cooperation

| Group{P[n]} Parallel grouping

where P[n] represents a parallel group of n sequential agents P.
Group represents a group label used to identify the parts of the
model that are going to be approximated using fluid analysis.

32/60

GPEPA Example

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

GPEPA Example

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server Sg (t)

Server broken
def
= (reset, rreset).Server Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

33/60

ODEs – Means

Ideally, we want the distribution of say C (t) for each t

This can be too expensive
Can derive ODEs approximating the means

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

These can be numerically solved, cheaper than simulation

34/60

ODEs – Means

Ideally, we want the distribution of say C (t) for each t
This can be too expensive

Can derive ODEs approximating the means

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

These can be numerically solved, cheaper than simulation

34/60

ODEs – Means

Ideally, we want the distribution of say C (t) for each t
This can be too expensive
Can derive ODEs approximating the means

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

These can be numerically solved, cheaper than simulation

34/60

ODEs – Means

Ideally, we want the distribution of say C (t) for each t
This can be too expensive
Can derive ODEs approximating the means

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

These can be numerically solved, cheaper than simulation

34/60

ODEs – Means

0 1 2 3 4 5 6
0

50

100

Time, t

C
ou

n
t

eE[C(t)]eE[Cw (t)]eE[Ct(t)]

0 1 2 3 4 5 6
0

20

40

60

Time, t

eE[S(t)]eE[Sg (t)]eE[Sb(t)]

35/60

ODEs – Higher moments

Can extend the ODEs

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

with ODEs for higher moments

dE[Sg (t)2]/dt = · · ·
dE[C (t)S(t)]/dt = · · ·

...

E.g. can get variance as

Var[C (t)] = E[C (t)2]− E[C (t)]2

36/60

ODEs – Higher moments

Can extend the ODEs

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

with ODEs for higher moments

dE[Sg (t)2]/dt = · · ·
dE[C (t)S(t)]/dt = · · ·

...

E.g. can get variance as

Var[C (t)] = E[C (t)2]− E[C (t)]2

36/60

ODEs – Higher moments

Can extend the ODEs

dE[C (t)]/dt = · · · dE[S(t)]/dt = · · ·
dE[Cw (t)]/dt = · · · dE[Sg (t)]/dt = · · ·
dE[Ct(t)]/dt = · · · dE[Sb(t)]/dt = · · ·

with ODEs for higher moments

dE[Sg (t)2]/dt = · · ·
dE[C (t)S(t)]/dt = · · ·

...

E.g. can get variance as

Var[C (t)] = E[C (t)2]− E[C (t)]2

36/60

ODEs – Higher moments

0 1 2 3 4 5 6
0

50

100

Time, t

C
ou

n
t

eE[C(t)]eE[Cw (t)]eE[Ct(t)]

0 1 2 3 4 5 6
0

20

40

60

Time, t

eE[S(t)]eE[Sg (t)]eE[Sb(t)]

37/60

ODEs – Higher moments

0 1 2 3 4 5 6
0

50

100

Time, t

C
ou

n
t

eE[C(t)]eE[Cw (t)]eE[Ct(t)]

0 1 2 3 4 5 6
0

20

40

60

Time, t

eE[S(t)]eE[Sg (t)]eE[Sb(t)]

37/60

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?

Servers consume energy in the Server get state

0 0.1 0.2 0.3 0.4 0.5

Server

Server get

Server broken

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

Time, t

C
o
u
n
t

Sg (t)

The total energy consumption is the process

∫ t

0
Sg (u)du

38/60

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?
Servers consume energy in the Server get state

0 0.1 0.2 0.3 0.4 0.5

Server

Server get

Server broken

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

Time, t

C
o
u
n
t

Sg (t)

The total energy consumption is the process

∫ t

0
Sg (u)du

38/60

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?
Servers consume energy in the Server get state

0 0.1 0.2 0.3 0.4 0.5

Server

Server get

Server broken

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

Time, t

C
o
u
n
t

Sg (t)

The total energy consumption is the process

∫ t

0
Sg (u)du

38/60

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?
Servers consume energy in the Server get state

0 0.1 0.2 0.3 0.4 0.5

Server

Server get

Server broken

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

Time, t

C
o
u
n
t

Sg (t)

The total energy consumption is the process

∫ t

0
Sg (u)du

38/60

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?
Servers consume energy in the Server get state

0 0.1 0.2 0.3 0.4 0.5

Server

Server get

Server broken

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

Time, t

C
o
u
n
t

Sg (t)

The total energy consumption is the process

∫ t

0
Sg (u)du

38/60

Accumulated rewards

How to analyse quantities accumulated over time, e.g. energy
consumption?
Servers consume energy in the Server get state

0 0.1 0.2 0.3 0.4 0.5

Server

Server get

Server broken

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

Time, t

C
o
u
n
t

Sg (t)

The total energy consumption is the process

∫ t

0
Sg (u)du

38/60

ODEs – moments of rewards
Can extend the ODEs for moments of counts

dE[C (t)]/dt = · · · dE[S(t)2]/dt = · · ·
dE[Cw (t)Sg (t)]/dt = · · · dE[Sg (t)3]/dt = · · ·

...
...

with ODEs for the mean accumulated rewards

dE
[∫ t

0 Sg (u)du
]
/dt = E[Sg (t)]

dE
[∫ t

0 S(u)C (u)du
]
/dt = E[S(t)C (t)]

...

and ODEs for higher moments of accumulated rewards

dE
[(∫ t

0 Sg (u)du
)2
]
/dt = · · ·

...

39/60

ODEs – moments of rewards
Can extend the ODEs for moments of counts

dE[C (t)]/dt = · · · dE[S(t)2]/dt = · · ·
dE[Cw (t)Sg (t)]/dt = · · · dE[Sg (t)3]/dt = · · ·

...
...

with ODEs for the mean accumulated rewards

dE
[∫ t

0 Sg (u)du
]
/dt = E[Sg (t)]

dE
[∫ t

0 S(u)C (u)du
]
/dt = E[S(t)C (t)]

...

and ODEs for higher moments of accumulated rewards

dE
[(∫ t

0 Sg (u)du
)2
]
/dt = · · ·

...

39/60

ODEs – moments of rewards
Can extend the ODEs for moments of counts

dE[C (t)]/dt = · · · dE[S(t)2]/dt = · · ·
dE[Cw (t)Sg (t)]/dt = · · · dE[Sg (t)3]/dt = · · ·

...
...

with ODEs for the mean accumulated rewards

dE
[∫ t

0 Sg (u)du
]
/dt = E[Sg (t)]

dE
[∫ t

0 S(u)C (u)du
]
/dt = E[S(t)C (t)]

...

and ODEs for higher moments of accumulated rewards

dE
[(∫ t

0 Sg (u)du
)2
]
/dt = · · ·

...

39/60

ODEs – moments of rewards

0 1 2 3 4 5 6
0

50

100

150

Time, t

M
ea
n
re
w
ar
d

eE[C(t)]

40/60

ODEs – moments of rewards

0 1 2 3 4 5 6
0

50

100

150

Time, t

M
ea
n
re
w
ar
d

eE[C(t)]

40/60

GPA – Grouped PEPA Analyser

41/60

Why tool?

dE[C(t)Sg (t)]/dt+ = (−1.0) · (min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata)))

dE[C(t)Cw (t)]/dt+ = (−1.0) · (min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata)))

dE[C(t)Ct (t)]/dt+ = min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata))

dE[Sg (t)S(t)]/dt+ = min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata))

dE[Sg (t)2]/dt+ = (−2.0) · (min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata)))

dE[Sg (t)Cw (t)]/dt+ = (−1.0) · (min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata)))

dE[Sg (t)Ct (t)]/dt+ = min((E[Sg (t)Cw (t)]) · (rdata), (E[Sg (t)2]) · (rdata))

dE[S(t)Ct (t)]/dt+ = min((E[Cw (t)Ct (t)]) · (rdata), (E[Sg (t)Ct (t)]) · (rdata))

dE[Sg (t)Ct (t)]/dt+ = (−1.0) · (min((E[Cw (t)Ct (t)]) · (rdata), (E[Sg (t)Ct (t)]) · (rdata)))

dE[Cw (t)Ct (t)]/dt+ = (−1.0) · (min((E[Cw (t)Ct (t)]) · (rdata), (E[Sg (t)Ct (t)]) · (rdata)))

dE[Ct (t)2]/dt+ = (2.0) · (min((E[Cw (t)Ct (t)]) · (rdata), (E[Sg (t)Ct (t)]) · (rdata)))

dE[Cw (t)S(t)]/dt+ = min((E[Cw (t)2]) · (rdata), (E[Sg (t)Cw (t)]) · (rdata))

dE[Sg (t)Cw (t)]/dt+ = (−1.0) · (min((E[Cw (t)2]) · (rdata), (E[Sg (t)Cw (t)]) · (rdata)))

dE[Cw (t)2]/dt+ = (−2.0) · (min((E[Cw (t)2]) · (rdata), (E[Sg (t)Cw (t)]) · (rdata)))

dE[Cw (t)Ct (t)]/dt+ = min((E[Cw (t)2]) · (rdata), (E[Sg (t)Cw (t)]) · (rdata))

dE[S(t)2]/dt+ = (2.0) · ((E[S(t)Sb(t)]) · (rreset))

dE[S(t)Sb(t)]/dt+ = (−1.0) · ((E[S(t)Sb(t)]) · (rreset))

dE[S(t)Sb(t)]/dt+ = (E[Sb(t)2]) · (rreset)

dE[Sb(t)2]/dt+ = (−2.0) · ((E[Sb(t)2]) · (rreset))

dE[S(t)]/dt+ = (E[Sb(t)]) · (rreset)

dE[Sb(t)]/dt+ = (−1.0) · ((E[Sb(t)]) · (rreset))

dE[S(t)2]/dt+ = (E[Sb(t)]) · (rreset)

dE[S(t)Sb(t)]/dt+ = (−1.0) · ((E[Sb(t)]) · (rreset))

dE[Sb(t)2]/dt+ = (E[Sb(t)]) · (rreset)

dE[C(t)S(t)]/dt+ = (E[C(t)Sb(t)]) · (rreset)

dE[C(t)Sb(t)]/dt+ = (−1.0) · ((E[C(t)Sb(t)]) · (rreset))

dE[Sg (t)S(t)]/dt+ = (E[Sg (t)Sb(t)]) · (rreset)

dE[Sg (t)Sb(t)]/dt+ = (−1.0) · ((E[Sg (t)Sb(t)]) · (rreset))

dE[S(t)Ct (t)]/dt+ = (E[Ct (t)Sb(t)]) · (rreset)

dE[Ct (t)Sb(t)]/dt+ = (−1.0) · ((E[Ct (t)Sb(t)]) · (rreset))

dE[Cw (t)S(t)]/dt+ = (E[Cw (t)Sb(t)]) · (rreset)

dE[Cw (t)Sb(t)]/dt+ = (−1.0) · ((E[Cw (t)Sb(t)]) · (rreset))

dE[S(t)Ct (t)]/dt+ = (−1.0) · (min((E[C(t)Ct (t)]) · (rreq), (E[S(t)Ct (t)]) · (rreq)))

dE[Sg (t)Ct (t)]/dt+ = min((E[C(t)Ct (t)]) · (rreq), (E[S(t)Ct (t)]) · (rreq))

dE[C(t)Ct (t)]/dt+ = (−1.0) · (min((E[C(t)Ct (t)]) · (rreq), (E[S(t)Ct (t)]) · (rreq)))

dE[Cw (t)Ct (t)]/dt+ = min((E[C(t)Ct (t)]) · (rreq), (E[S(t)Ct (t)]) · (rreq))

dE[Cw (t)S(t)]/dt+ = (−1.0) · (min((E[C(t)Cw (t)]) · (rreq), (E[Cw (t)S(t)]) · (rreq)))

dE[Sg (t)Cw (t)]/dt+ = min((E[C(t)Cw (t)]) · (rreq), (E[Cw (t)S(t)]) · (rreq))

dE[C(t)Cw (t)]/dt+ = (−1.0) · (min((E[C(t)Cw (t)]) · (rreq), (E[Cw (t)S(t)]) · (rreq)))

dE[Cw (t)2]/dt+ = (2.0) · (min((E[C(t)Cw (t)]) · (rreq), (E[Cw (t)S(t)]) · (rreq)))

dE[S(t)2]/dt+ = (2.0) · (min((E[Cw (t)S(t)]) · (rdata), (E[Sg (t)S(t)]) · (rdata)))

dE[Sg (t)S(t)]/dt+ = (−1.0) · (min((E[Cw (t)S(t)]) · (rdata), (E[Sg (t)S(t)]) · (rdata)))

dE[Cw (t)S(t)]/dt+ = (−1.0) · (min((E[Cw (t)S(t)]) · (rdata), (E[Sg (t)S(t)]) · (rdata)))

dE[S(t)Ct (t)]/dt+ = min((E[Cw (t)S(t)]) · (rdata), (E[Sg (t)S(t)]) · (rdata))

dE[S(t)Sb(t)]/dt+ = min((E[Cw (t)Sb(t)]) · (rdata), (E[Sg (t)Sb(t)]) · (rdata))

dE[Sg (t)Sb(t)]/dt+ = (−1.0) · (min((E[Cw (t)Sb(t)]) · (rdata), (E[Sg (t)Sb(t)]) · (rdata)))

dE[Cw (t)Sb(t)]/dt+ = (−1.0) · (min((E[Cw (t)Sb(t)]) · (rdata), (E[Sg (t)Sb(t)]) · (rdata)))

dE[Ct (t)Sb(t)]/dt+ = min((E[Cw (t)Sb(t)]) · (rdata), (E[Sg (t)Sb(t)]) · (rdata))

dE[S(t)]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[Sg (t)]/dt+ = (−1.0) · (min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata)))

dE[Cw (t)]/dt+ = (−1.0) · (min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata)))

dE[Ct (t)]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[S(t)2]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[Sg (t)S(t)]/dt+ = (−1.0) · (min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata)))

dE[Cw (t)S(t)]/dt+ = (−1.0) · (min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata)))

dE[S(t)Ct (t)]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[Sg (t)2]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[Sg (t)Cw (t)]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[Sg (t)Ct (t)]/dt+ = (−1.0) · (min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata)))

dE[Cw (t)2]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[Cw (t)Ct (t)]/dt+ = (−1.0) · (min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata)))

dE[Ct (t)2]/dt+ = min((E[Cw (t)]) · (rdata), (E[Sg (t)]) · (rdata))

dE[C(t)S(t)]/dt+ = min((E[C(t)Cw (t)]) · (rdata), (E[C(t)Sg (t)]) · (rdata))

dE[Ct (t)2]/dt+ = (−2.0) · ((E[Ct (t)2]) · (rthink))

dE[C(t)Cw (t)]/dt+ = (E[Cw (t)Ct (t)]) · (rthink)

dE[Cw (t)Ct (t)]/dt+ = (−1.0) · ((E[Cw (t)Ct (t)]) · (rthink))

dE[S(t)2]/dt+ = (−2.0) · (min((E[C(t)S(t)]) · (rreq), (E[S(t)2]) · (rreq)))

dE[Sg (t)S(t)]/dt+ = min((E[C(t)S(t)]) · (rreq), (E[S(t)2]) · (rreq))

dE[C(t)S(t)]/dt+ = (−1.0) · (min((E[C(t)S(t)]) · (rreq), (E[S(t)2]) · (rreq)))

dE[Cw (t)S(t)]/dt+ = min((E[C(t)S(t)]) · (rreq), (E[S(t)2]) · (rreq))

dE[S(t)Sb(t)]/dt+ = (−1.0) · (min((E[C(t)Sb(t)]) · (rreq), (E[S(t)Sb(t)]) · (rreq)))

dE[Sg (t)Sb(t)]/dt+ = min((E[C(t)Sb(t)]) · (rreq), (E[S(t)Sb(t)]) · (rreq))

dE[C(t)Sb(t)]/dt+ = (−1.0) · (min((E[C(t)Sb(t)]) · (rreq), (E[S(t)Sb(t)]) · (rreq)))

dE[Cw (t)Sb(t)]/dt+ = min((E[C(t)Sb(t)]) · (rreq), (E[S(t)Sb(t)]) · (rreq))

dE[S(t)]/dt+ = (−1.0) · (min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq)))

dE[Sg (t)]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[C(t)]/dt+ = (−1.0) · (min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq)))

dE[Cw (t)]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[S(t)2]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[Sg (t)S(t)]/dt+ = (−1.0) · (min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq)))

dE[C(t)S(t)]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[Cw (t)S(t)]/dt+ = (−1.0) · (min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq)))

dE[Sg (t)2]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[C(t)Sg (t)]/dt+ = (−1.0) · (min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq)))

dE[Sg (t)Cw (t)]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[C(t)2]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[C(t)Cw (t)]/dt+ = (−1.0) · (min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq)))

dE[Cw (t)2]/dt+ = min((E[C(t)]) · (rreq), (E[S(t)]) · (rreq))

dE[C(t)S(t)]/dt+ = (−1.0) · (min((E[C(t)2]) · (rreq), (E[C(t)S(t)]) · (rreq)))

dE[C(t)Sg (t)]/dt+ = min((E[C(t)2]) · (rreq), (E[C(t)S(t)]) · (rreq))

dE[C(t)2]/dt+ = (−2.0) · (min((E[C(t)2]) · (rreq), (E[C(t)S(t)]) · (rreq)))

dE[C(t)Cw (t)]/dt+ = min((E[C(t)2]) · (rreq), (E[C(t)S(t)]) · (rreq))

dE[Sg (t)S(t)]/dt+ = (−1.0) · (min((E[Sg (t)C(t)]) · (rreq), (E[Sg (t)S(t)]) · (rreq)))

dE[Sg (t)2]/dt+ = (2.0) · (min((E[Sg (t)C(t)]) · (rreq), (E[Sg (t)S(t)]) · (rreq)))

dE[C(t)Sg (t)]/dt+ = (−1.0) · (min((E[Sg (t)C(t)]) · (rreq), (E[Sg (t)S(t)]) · (rreq)))

dE[Sg (t)Cw (t)]/dt+ = min((E[Sg (t)C(t)]) · (rreq), (E[Sg (t)S(t)]) · (rreq))

42/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

GPA

GPEPA model

ODEs

Moments
(approximate)

Measures,passage times,etc.

generates

num. solves

Simulation

Moments

Measures,passage times,etc.

generates

simulates

Error estimates

43/60

Grouped PEPA analyser

Convenient syntax

rreq = 2.0; rthink = 0.2; ...

c = 100.0; s = 50.0;

Client = (request,rreq).Client_waiting;

Client_waiting = (data,rdata).Client_think;

Client_think = (think,rthink).Client;

Server = (request,rreq).Server_get

+ (break,rbreak).Server_broken;

Server_get = (data,rdata).Server

Server_broken = (reset,rreset).Server;

Clients{Client[c]}<request,data>Servers{Server[s]}

44/60

GPA – commands

I Analyses

odes(stopTime=5.0, stepSize=0.01, density=10){...}

simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}

comparison(odes(...){...},simulation(...){...}){...}

I Plot commands, counts specified with Group:Component

plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get^2]);
plot(Var[Clients:Client]);
plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);

plotSwitchpoints(1);

45/60

GPA – commands

I Analyses

odes(stopTime=5.0, stepSize=0.01, density=10){...}

simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}

comparison(odes(...){...},simulation(...){...}){...}

I Plot commands, counts specified with Group:Component

plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get^2]);
plot(Var[Clients:Client]);

plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);

plotSwitchpoints(1);

45/60

GPA – commands

I Analyses

odes(stopTime=5.0, stepSize=0.01, density=10){...}

simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}

comparison(odes(...){...},simulation(...){...}){...}

I Plot commands, counts specified with Group:Component

plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get^2]);
plot(Var[Clients:Client]);
plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);

plotSwitchpoints(1);

45/60

GPA – commands

I Analyses

odes(stopTime=5.0, stepSize=0.01, density=10){...}

simulation(stopTime=5.0,stepSize=0.01,repl.=1000){...}

comparison(odes(...){...},simulation(...){...}){...}

I Plot commands, counts specified with Group:Component

plot(E[Clients:Client],E[acc(Clients:Client)]);
plot(E[acc(Clients:Client) Servers:Server_get^2]);
plot(Var[Clients:Client]);
plot(E[Clients:Client]^2.0 + Var[Servers:Server]/s);

plotSwitchpoints(1);

45/60

GPA – passage times
Allows general PEPA components

NotPassed = (think,rthink).Passed;

Passed = (think,rthink).Passed;

ObservedClient = Client<think>NotPassed;

For the CDF of first passage of a client

E[C BC
t

P(t) + Cw BC
t

P(t) + Ct BC
t

P(t)]/c

Can use command

plot(E[Clients:_<*>Passed]/c);

For an upper bound on the CDF of first passage of 1/10-th of
clients

plot(Var[Clients:_<*>Passed]
/(Var[Clients:_<*>Passed]+(E[Clients:_<*>Passed]-c/10.0)^2.0));

46/60

GPA – passage times
Allows general PEPA components

NotPassed = (think,rthink).Passed;

Passed = (think,rthink).Passed;

ObservedClient = Client<think>NotPassed;

For the CDF of first passage of a client

E[C BC
t

P(t) + Cw BC
t

P(t) + Ct BC
t

P(t)]/c

Can use command

plot(E[Clients:_<*>Passed]/c);

For an upper bound on the CDF of first passage of 1/10-th of
clients

plot(Var[Clients:_<*>Passed]
/(Var[Clients:_<*>Passed]+(E[Clients:_<*>Passed]-c/10.0)^2.0));

46/60

GPA – passage times
Allows general PEPA components

NotPassed = (think,rthink).Passed;

Passed = (think,rthink).Passed;

ObservedClient = Client<think>NotPassed;

For the CDF of first passage of a client

E[C BC
t

P(t) + Cw BC
t

P(t) + Ct BC
t

P(t)]/c

Can use command

plot(E[Clients:_<*>Passed]/c);

For an upper bound on the CDF of first passage of 1/10-th of
clients

plot(Var[Clients:_<*>Passed]
/(Var[Clients:_<*>Passed]+(E[Clients:_<*>Passed]-c/10.0)^2.0));

46/60

GPA – passage times

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time t

P
ro
b
a
b
il
it
y

CDF

0 1 2 3 4 5

Time t

upper bound

exact CDF

lower bound

(a) Individual passage time
for a client first passage

(b) Global passage time
until c/10 first passages

47/60

GPA – completion times

bounds(acc(Servers:Server get),100.0,2);

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time t

P
ro
b
a
b
il
it
y

2 moments

completion time of
∫ t
0 Sg (u)du reaching 100

48/60

GPA – completion times

bounds(acc(Servers:Server get),100.0,2,4);

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time t

P
ro
b
a
b
il
it
y

2 moments

completion time of
∫ t
0 Sg (u)du reaching 100

48/60

GPA – completion times

bounds(acc(Servers:Server get),100.0,2,4,6);

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time t

P
ro
b
a
b
il
it
y

2 moments

completion time of
∫ t
0 Sg (u)du reaching 100

48/60

Rapid analysis of very large scale parallel systems

ODEs
efficient imple-
mentation

moments of:
counts
rewards

passage and
completion times
error estimates

large numbers of
identical compo-
nents

described in
GPEPA
split-free
splitting models

Summary

parallel solvers
hybrid solutions

impulse rewards
time correlated
moments
optimisation
nature of error

new formalism
complex synch.
guards
functional rates
phase type

Current
work

Applied to real systems

49/60

Rapid analysis of very large scale parallel systems

ODEs
efficient imple-
mentation

moments of:
counts
rewards

passage and
completion times
error estimates

large numbers of
identical compo-
nents

described in
GPEPA
split-free
splitting models

Summary

parallel solvers
hybrid solutions

impulse rewards
time correlated
moments
optimisation
nature of error

new formalism
complex synch.
guards
functional rates
phase type

Current
work

Applied to real systems

49/60

Rapid analysis of very large scale parallel systems

ODEs
efficient imple-
mentation

moments of:
counts
rewards

passage and
completion times
error estimates

large numbers of
identical compo-
nents

described in
GPEPA
split-free
splitting models

Summary

parallel solvers
hybrid solutions

impulse rewards
time correlated
moments
optimisation
nature of error

new formalism
complex synch.
guards
functional rates
phase type

Current
work

Applied to real systems

49/60

Rapid analysis of very large scale parallel systems

ODEs
efficient imple-
mentation

moments of:
counts
rewards

passage and
completion times
error estimates

large numbers of
identical compo-
nents

described in
GPEPA
split-free
splitting models

Summary

parallel solvers
hybrid solutions

impulse rewards
time correlated
moments
optimisation
nature of error

new formalism
complex synch.
guards
functional rates
phase type

Current
work

Applied to real systems

49/60

GPA: Download for free

GPA tool[11]:

http://code.google.com/p/gpanalyser/

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “A new tool for the performance analysis of massively parallel computer
systems”. In: Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL 2010), March 27-28, 2010, Paphos, Cyprus.
Electronic Proceedings in Theoretical Computer Science. Mar. 2010. url: http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/.

50/60

http://code.google.com/p/gpanalyser/
http://pubs.doc.ic.ac.uk/pepa-ode-moments-tool/

Fluid ODE generation using
Population CTMCs

51/60

Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of
a finite set of components {1, . . . ,N}, and a set T of transition
classes.

Each state in a PCTMC is expressed as an integer vector
~X = (X1, . . . ,XN) ∈ ZN

Xi represents the current population level of a component i .

52/60

Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of
a finite set of components {1, . . . ,N}, and a set T of transition
classes.

Each state in a PCTMC is expressed as an integer vector
~X = (X1, . . . ,XN) ∈ ZN

Xi represents the current population level of a component i .

52/60

Populations CTMCs

A Population continuous time Markov chain (PCTMC) consists of
a finite set of components {1, . . . ,N}, and a set T of transition
classes.

Each state in a PCTMC is expressed as an integer vector
~X = (X1, . . . ,XN) ∈ ZN

Xi represents the current population level of a component i .

52/60

PCTMCs: Transition classes

A transition class c = (rc ,~ec) ∈ T describes a stochastic event

Event c: ~X (t)→ ~X (t ′) at rate rc

1. with exponentially distributed duration D at rate rc(~X (t))
where rc : ZN → R is a rate function

2. which changes the current population vector according to the
change vector ~ec

This gives us the following population dynamic formula:

Event c: ~X (t + D) = ~X (t) + ~ec D ∼ exp(rc)

53/60

PCTMCs: Transition classes

A transition class c = (rc ,~ec) ∈ T describes a stochastic event

Event c: ~X (t)→ ~X (t ′) at rate rc

1. with exponentially distributed duration D at rate rc(~X (t))
where rc : ZN → R is a rate function

2. which changes the current population vector according to the
change vector ~ec

This gives us the following population dynamic formula:

Event c: ~X (t + D) = ~X (t) + ~ec D ∼ exp(rc)

53/60

PCTMCs: Transition classes

A transition class c = (rc ,~ec) ∈ T describes a stochastic event

Event c: ~X (t)→ ~X (t ′) at rate rc

1. with exponentially distributed duration D at rate rc(~X (t))
where rc : ZN → R is a rate function

2. which changes the current population vector according to the
change vector ~ec

This gives us the following population dynamic formula:

Event c: ~X (t + D) = ~X (t) + ~ec D ∼ exp(rc)

53/60

PCTMCs: Transition classes

A transition class c = (rc ,~ec) ∈ T describes a stochastic event

Event c: ~X (t)→ ~X (t ′) at rate rc

1. with exponentially distributed duration D at rate rc(~X (t))
where rc : ZN → R is a rate function

2. which changes the current population vector according to the
change vector ~ec

This gives us the following population dynamic formula:

Event c: ~X (t + D) = ~X (t) + ~ec D ∼ exp(rc)

53/60

PCTMCs: Chemical reactions

Similar to chemical reaction:

s1 + · · ·+ sk → t1 + · · ·+ tl at rate r(~X)

Change vector for this reaction would involve:

~ec = {−1, . . .− 1︸ ︷︷ ︸
k

, 1 . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0}

54/60

PCTMCs: Chemical reactions

Similar to chemical reaction:

s1 + · · ·+ sk → t1 + · · ·+ tl at rate r(~X)

Change vector for this reaction would involve:

~ec = {−1, . . .− 1︸ ︷︷ ︸
k

, 1 . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0}

54/60

PCTMCs: Mean dynamics

An important aspect of PCTMC models is that we can easily
generate approximations to the evolution of the underlying
stochastic process.[15]

In particular, the equation for a mean of population Xi (t) is:

d

dt
E[Xi (t)] =

∑

(rj ,~ej)∈T

eij rj(~X (t))

[15] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/
1958746.1958767.

55/60

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

PCTMCs: Mean dynamics

An important aspect of PCTMC models is that we can easily
generate approximations to the evolution of the underlying
stochastic process.[15]

In particular, the equation for a mean of population Xi (t) is:

d

dt
E[Xi (t)] =

∑

(rj ,~ej)∈T

eij rj(~X (t))

[15] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/
1958746.1958767.

55/60

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

ODE-based dynamics

More generally PCTMCs permit the derivation of moments of the
underlying stochastic process, i.e. moments of population levels

d

dt
E[M(~X (t))] = E[fM(~X (t))]

where M(~X) defines the moment to be calculated.

I Mean of component 1: M(~X) = X1

I 2nd moment of component 1: M(~X) = X 2
1

I 2nd joint moment of components 1 and 2: M(~X) = X1X2

56/60

ODE-based dynamics

More generally PCTMCs permit the derivation of moments of the
underlying stochastic process, i.e. moments of population levels

d

dt
E[M(~X (t))] = E[fM(~X (t))]

where M(~X) defines the moment to be calculated.

I Mean of component 1: M(~X) = X1

I 2nd moment of component 1: M(~X) = X 2
1

I 2nd joint moment of components 1 and 2: M(~X) = X1X2

56/60

Higher moments

The higher moment function is defined as:[16]

fM(~X (t)) =
∑

c∈T
(M(~X (t) + ~ec)M(~X (t))) rc(~X (t))

Key issue: achieving a closed set of equations with each quantity
on right hand side of ODEs having a corresponding ODE.

Leads to different dynamics: mean-field, mass action, min-closure,
log-normal-closure

[16] Anton Stefanek. “Efficient Computation of Performance–Energy Trade-offs in Large Scale Markov Models”. PhD thesis. Department of
Computing, Imperial College London, 2013.

57/60

Higher moments

The higher moment function is defined as:[16]

fM(~X (t)) =
∑

c∈T
(M(~X (t) + ~ec)M(~X (t))) rc(~X (t))

Key issue: achieving a closed set of equations with each quantity
on right hand side of ODEs having a corresponding ODE.

Leads to different dynamics: mean-field, mass action, min-closure,
log-normal-closure

[16] Anton Stefanek. “Efficient Computation of Performance–Energy Trade-offs in Large Scale Markov Models”. PhD thesis. Department of
Computing, Imperial College London, 2013.

57/60

Higher moments

The higher moment function is defined as:[16]

fM(~X (t)) =
∑

c∈T
(M(~X (t) + ~ec)M(~X (t))) rc(~X (t))

Key issue: achieving a closed set of equations with each quantity
on right hand side of ODEs having a corresponding ODE.

Leads to different dynamics: mean-field, mass action, min-closure,
log-normal-closure

[16] Anton Stefanek. “Efficient Computation of Performance–Energy Trade-offs in Large Scale Markov Models”. PhD thesis. Department of
Computing, Imperial College London, 2013.

57/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting

C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think

Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client

Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get

S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server

Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server Sg (t)

Server broken
def
= (reset, rreset).Server

Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: GPEPA

Client
def
= (req, rreq).Client waiting C (t)

Client waiting
def
= (data, rdata).Client think Cw (t)

Client think
def
= (think, rthink).Client Ct(t)

Server
def
= (req, rreq).Server get S(t)

+ (break , rbreak).Server broken

Server get
def
= (data, rdata).Server Sg (t)

Server broken
def
= (reset, rreset).Server Sb(t)

CS(c, s) = Clients{Client[c]} BC
{req,data}

Servers{Server [s]}

58/60

Worked example: PCTMC

In total, there are 5 transition classes:

req :

C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data :

Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think :

Ct(t)→ C (t) at rthink · Ct(t)

break :

S(t)→ Sb(t) at rbreak · S(t)

reset :

Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Worked example: PCTMC

In total, there are 5 transition classes:

req : C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data :

Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think :

Ct(t)→ C (t) at rthink · Ct(t)

break :

S(t)→ Sb(t) at rbreak · S(t)

reset :

Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Worked example: PCTMC

In total, there are 5 transition classes:

req : C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data : Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think :

Ct(t)→ C (t) at rthink · Ct(t)

break :

S(t)→ Sb(t) at rbreak · S(t)

reset :

Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Worked example: PCTMC

In total, there are 5 transition classes:

req : C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data : Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think : Ct(t)→ C (t) at rthink · Ct(t)

break :

S(t)→ Sb(t) at rbreak · S(t)

reset :

Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Worked example: PCTMC

In total, there are 5 transition classes:

req : C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data : Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think : Ct(t)→ C (t) at rthink · Ct(t)

break : S(t)→ Sb(t) at rbreak · S(t)

reset :

Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Worked example: PCTMC

In total, there are 5 transition classes:

req : C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data : Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think : Ct(t)→ C (t) at rthink · Ct(t)

break : S(t)→ Sb(t) at rbreak · S(t)

reset : Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Worked example: PCTMC

In total, there are 5 transition classes:

req : C (t) + S(t)→ Cw (t) + Sg (t) at rreq ·min(C (t),S(t))

data : Cw (t) + Sg (t)→ Ct(t) + S(t) at rdata ·min(Cw (t),Sg (t))

think : Ct(t)→ C (t) at rthink · Ct(t)

break : S(t)→ Sb(t) at rbreak · S(t)

reset : Sb(t)→ S(t) at rreset · Sb(t)

Then apply PCTMC ODE generation rules to get a fluid GPEPA
model.

59/60

Even more exciting fluid analysis

60/60

Scalable passage-time analysis

12/30

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:[7,8]

“file should be transferred within 2 seconds, 95% of the
time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

[8] Richard A. Hayden, Jeremy T. Bradley, and Allan Clark. “Performance Specification and Evaluation with Unified Stochastic Probes and
Fluid Analysis”. In: IEEE Transactions on Software Engineering 99.PrePrints (2012). doi: 10.1109/TSE.2012.1.

13/30

http://dx.doi.org/10.1016/j.tcs.2011.07.017
http://dx.doi.org/10.1109/TSE.2012.1

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:

“connection should be established within 0.25 seconds,
99% of the time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

13/30

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:

“connection should be established within 0.25 seconds,
99% of the time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

13/30

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:

“connection should be established within 0.25 seconds,
99% of the time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

13/30

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:

“connection should be established within 0.25 seconds,
99% of the time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

13/30

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:

“connection should be established within 0.25 seconds,
99% of the time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

13/30

Scalable passage-time analysis

I Passage-time distributions are key for specifying service level
agreements (SLAs), e.g.:

“connection should be established within 0.25 seconds,
99% of the time”

I We consider two classes of passage-time query:

I Individual passage times: track the time taken for an individual
to complete a task

I Direct approximation to the entire CDF

I Global passage times: track the time taken for all of a large
number of individuals to complete a task

I Moment-derived bounds on CDF

13/30

Individual passage times[7]

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

How long does it take a single client to make a request,
receive a response and process it?

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

14/30

http://dx.doi.org/10.1016/j.tcs.2011.07.017

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

proc

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

How long does it take a single client to make a request,
receive a response and process it?

14/30

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

C (t)

How long does it take a single client to make a request,
receive a response and process it?

14/30

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

C (t)

T := inf{t ≥ 0 : C (t) = Client ′}, given that C (0) = Client

14/30

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

C (t)

T := inf{t ≥ 0 : C (t) = Client ′}, given that C (0) = Client

P{T ≤ t} = P{C (t) ∈ {Client ′,Client ′wait ,Client ′proc}}

14/30

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

C (t)

T := inf{t ≥ 0 : C (t) = Client ′}, given that C (0) = Client

P{T ≤ t} = P{C (t) ∈ {Client ′,Client ′wait ,Client ′proc}}
= E[1{C(t)=Client′}] + E[1{C(t)=Client′wait}] + E[1{C(t)=Client′proc}]

14/30

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

C (t)

T := inf{t ≥ 0 : C (t) = Client ′}, given that C (0) = Client

P{T ≤ t} = P{C (t) ∈ {Client ′,Client ′wait ,Client ′proc}}
= E[1{C(t)=Client′}] + E[1{C(t)=Client′wait}] + E[1{C(t)=Client′proc}]

= E[NClient′(t)] + E[NClient′wait (t)] + E[NClient′proc (t)]

14/30

Individual passage times

Client

Clientwait

req

Clientproc

res

proc

Client

Clientwait

Clientproc

req

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC − 11

C (t)

T := inf{t ≥ 0 : C (t) = Client ′}, given that C (0) = Client

P{T ≤ t} = P{C (t) ∈ {Client ′,Client ′wait ,Client ′proc}}
= E[1{C(t)=Client′}] + E[1{C(t)=Client′wait}] + E[1{C(t)=Client′proc}]

= E[NClient′(t)] + E[NClient′wait (t)] + E[NClient′proc (t)]

P{T ≤ t} ≈ vClient′(t) + vClient′wait (t) + vClient′proc (t)

14/30

Example — individual passage time

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

NC = 10, NS = 6

NC = 20, NS = 12

NC = 50, NS = 30

NC = 100, NS = 60

NC = 200, NS = 120

ODE approximation

15/30

Global passage times[7,9]

Client

Clientwait

req

Clientproc

res

proc

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

How long does it take for half of the clients to make a
request, receive a response and process it?

Point-mass approximation:

T ≈ inf{t ≥ 0 : vC ′(t) + vC ′
w

(t) + vC ′
p
(t) ≥ NC/2}

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

[9] Rena Bakhshi et al. “Mean-Field Analysis for the Evaluation of Gossip Protocols”. In: QEST’09, Proceedings of the 5th IEEE Conference
on the Quantitative Evaluation of Systems. IEEE Computer Society, 2009, pp. 247–256.

16/30

http://dx.doi.org/10.1016/j.tcs.2011.07.017

Global passage times

Client

Clientwait

req

Clientproc

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

How long does it take for half of the clients to make a
request, receive a response and process it?

Point-mass approximation:

T ≈ inf{t ≥ 0 : vC ′(t) + vC ′
w

(t) + vC ′
p
(t) ≥ NC/2}

16/30

Global passage times

Client

Clientwait

req

Clientproc

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

T := inf{t ≥ 0 : NC ′(t) + NC ′
w

(t) + NC ′
p
(t) ≥ NC/2}

Point-mass approximation:

T ≈ inf{t ≥ 0 : vC ′(t) + vC ′
w

(t) + vC ′
p
(t) ≥ NC/2}

16/30

Global passage times

Client

Clientwait

req

Clientproc

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

T := inf{t ≥ 0 : NC ′(t) + NC ′
w

(t) + NC ′
p
(t) ≥ NC/2}

Point-mass approximation:

T ≈ inf{t ≥ 0 : vC ′(t) + vC ′
w

(t) + vC ′
p
(t) ≥ NC/2}

16/30

Global passage times

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

NC = 10, NS = 6

NC = 20, NS = 12

NC = 50, NS = 30

NC = 300, NS = 180

NC = 500, NS = 300

16/30

Global passage times

Client

Clientwait

req

Clientproc

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

Point-mass approximation:

T ≈ inf{t ≥ 0 : vC ′(t) + vC ′
w

(t) + vC ′
p
(t) ≥ NC/2}

I Approximation is very coarse

I Cannot be applied directly to the same question for all clients

16/30

Global passage times — moment bounds

Client

Clientwait

req

Clientproc

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

I Moment approximations to component counts contain
information about the distribution of T [7]

I Reduced moment problem — find maximum and minimum
bounding distributions subject to limited moment information

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

17/30

http://dx.doi.org/10.1016/j.tcs.2011.07.017

Global passage times — moment bounds

Client

Clientwait

req

Clientproc

res

Client ′

Client ′wait

Client ′proc

proc

proc

req

res

Server fail

Server

Serverproc

reqres

failreset

NSNC

I Moment approximations to component counts contain
information about the distribution of T

I Reduced moment problem — find maximum and minimum
bounding distributions subject to limited moment
information[10]

[10] Arpád Tari, Miklós Telek, and Peter Buchholz. “A Unified Approach to the Moments-based Distribution Estimation–Unbounded Sup-
port”. In: EPEW’05, European Performance Engineering Workshop. Vol. 3670. Lecture Notes in Computer Science. Versailles: Springer,
2005, pp. 79–93.

17/30

Global passage bounds — first moments[7]

Half of the clients:

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

CDF

Upper

Lower

Three quarters of the clients:

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

CDF

Upper

Lower

All of the clients:

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

CDF

Upper

Lower

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

18/30

http://dx.doi.org/10.1016/j.tcs.2011.07.017

Global passage bounds — higher moments[7]

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

1st order

2nd order

4th order

CDF

[7] Richard A. Hayden, Anton Stefanek, and Jeremy T. Bradley. “Fluid computation of passage time distributions in large Markov models”.
In: Theoretical Computer Science 413.1 (2012), pp. 106–141. doi: 10.1016/j.tcs.2011.07.017.

19/30

http://dx.doi.org/10.1016/j.tcs.2011.07.017

Scalable analysis of accumulated reward measures

20/30

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate

Server
t

e

Serverproc

t

e

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20

Time, t

C
o
u
n
t

NS (t)

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20
×rS

Time, t

C
o
u
n
t

NS (t)

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20
×rS

Time, t

C
o
u
n
t

NS (t)

NSp (t)

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20
×rS

×rSp

Time, t

C
o
u
n
t

NS (t)

NSp (t)

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Accumulated reward measures[11]

I Cost, energy, heat, . . .

I Constant rate Server
t

e

Serverproc

t

e

0 0.1 0.2 0.3 0.4 0.5
Server fail 0

Server rS

Serverproc rSp

Time, t

state at t

0 0.1 0.2 0.3 0.4 0.5
0

10

20
×rS

×rSp

Time, t

C
o
u
n
t

NS (t)

NSp (t)

total energy(t) = rS

∫ t

0
NS(u) du + rSp

∫ t

0
NSp(u) du

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

21/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

∫ t
0 Sp(u) du

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

∫ t
0 Sp(u) du

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

∫ t
0 Sp(u) du

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

E
[∫ t

0 Sp(u) du
]

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

E
[∫ t

0 Sp(u) du
]

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

∫ t

0

NS(u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

E
[∫ t

0 Sp(u) du
]

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

∫ t

0

NS(u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

E
[∫ t

0 Sp(u) du
]

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

∫ t

0

NS(u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

0 2 4 6
0

50

100

150

Time, t

A
cc
u
m
u
la
te
d
q
u
a
n
ti
ty

E
[∫ t

0 Sp(u) du
]

I Simulation also very costly for rewards

I Can extend the ODE system for count moments with ODEs
for moments of accumulated counts:

d

dt
E
[∫ t

0

NSp (u) du

∫ t

0

NS(u) du

]
= · · ·

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

22/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
=

E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

=

2E
[

NS(t)

∫ t

0
NS(u) du

]

Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
=

E
[

NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

=

2E
[

NS(t)

∫ t

0
NS(u) du

]

Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
=

E
[

NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

=

2E
[

NS(t)

∫ t

0
NS(u) du

]

Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
=

E
[

NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

=

2E
[

NS(t)

∫ t

0
NS(u) du

]
Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
=

E
[

NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

= 2E
[

NS(t)

∫ t

0
NS(u) du

]

Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
=

E
[

NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

= 2E
[

NS(t)

∫ t

0
NS(u) du

]
Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
=

E
[

NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

= 2E
[

NS(t)

∫ t

0
NS(u) du

]
Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
= E

[
NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

= 2E
[

NS(t)

∫ t

0
NS(u) du

]
Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
= E

[
NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Moment approximations of accumulated rewards[11]

First-order moments

d

dt
E[NS(t)] = · · ·

Second-order moments

d

dt
E[NS(t)NSp(t)] = · · ·

First-order moments

d

dt
E
[∫ t

0
NS(u) du

]
= E[NS(t)]

Second-order moments

d

dt
E

[(∫ t

0
NS(u) du

)2
]

= 2E
[

NS(t)

∫ t

0
NS(u) du

]
Combined moments

d

dt
E
[

NS(t)

∫ t

0
NS(u) du

]
= E

[
NS(t)

∫ t

0
NS(u) du

]
+ · · ·+ E[N2

S(t)]

[11] Anton Stefanek, Richard A. Hayden, and Jeremy T. Bradley. “Fluid analysis of energy consumption using rewards in massively parallel
Markov models”. In: 2nd ACM/SPEC International Conference on Performance Engineering (ICPE). 2011, pp. 121–132. doi: 10.1145/195
8746.1958767.

23/30

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/1958746.1958767

Trade-off between energy and performance

Client

Clientwait

req

Clientproc

res

proc
Server

Serverproc

req

res

Server fail

failreset

Server sleep
sleep/wakeup

NSNC

24/30

Trade-off between energy and performance

Client

Clientwait

req

Clientproc

res

proc
Server

Serverproc

req

res

Server fail

failreset

Server sleep
sleep/wakeup

NSNC

0 2 4 6 8 10

0.6

0.8

1

Time, t

P
ro
b
a
b
il
it
y

Client serviced before t

0 2 4 6
0

50

100

150

Time, t

E
n
er
g
y

E[total energy(t)]

24/30

Trade-off between energy and performance

Client

Clientwait

req

Clientproc

res

proc
Server

Serverproc

req

res

Server fail

failreset

Server sleep
sleep/wakeup

NSNC

0 2 4 6 8 10

0.6

0.8

1

SLA

7s
≥ 0.99

Time, t

P
ro
b
a
b
il
it
y

Client serviced before t

0 2 4 6
0

50

100

150

Time, t

E
n
er
g
y

E[total energy(t)]

24/30

Trade-off between energy and performance

Client

Clientwait

req

Clientproc

res

proc
Server

Serverproc

req

res

Server fail

failreset

Server sleep
sleep/wakeup

NSNC

0 2 4 6 8 10

0.6

0.8

1

SLA

7s
≥ 0.99

Time, t

P
ro
b
a
b
il
it
y

Client serviced before t

0 2 4 6
0

50

100

150

Time, t

E
n
er
g
y

E[total energy(t)]

24/30

Trade-off between energy and performance

Client

Clientwait

req

Clientproc

res

proc
Server

Serverproc

req

res

Server fail

failreset

Server sleep
sleep/wakeup

NSNC

0 2 4 6 8 10

0.6

0.8

1

SLA

7s
≥ 0.99

Time, t

P
ro
b
a
b
il
it
y

Client serviced before t

0 2 4 6
0

50

100

150

Time, t

E
n
er
g
y

E[total energy(t)]

24/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA:

clients must finish in at most 7s of
the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

Individual passage-time SLA:

clients must finish in at most 7s
≥ 99% of the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

0 0.2 0.4 0.6 0.8 60
70

80
90800

1,000

1,200

rsleep
NS

E
n
er
gy

co
n
su
m
p
ti
on

Individual passage-time SLA:

clients must finish in at most 7s
≥ 99% of the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

0 0.2 0.4 0.6 0.8 60
70

80
90800

1,000

1,200

rsleep
NS

E
n
er
gy

co
n
su
m
p
ti
on

SLA met

Individual passage-time SLA: clients must finish in at most 7s
≥ 99% of the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

0 0.2 0.4 0.6 0.8 60
70

80
90800

1,000

1,200

rsleep
NS

E
n
er
gy

co
n
su
m
p
ti
on

SLA met

Individual passage-time SLA: clients must finish in at most 7s
≥ 99% of the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

0 0.2 0.4 0.6 0.8 60
70

80
90800

1,000

1,200
841.48

rsleep
NS

E
n
er
gy

co
n
su
m
p
ti
on

SLA met

Individual passage-time SLA: clients must finish in at most 7s
≥ 99% of the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

0 0.2 0.4 0.6 0.8 60
70

80
90800

1,000

1,200
841.48

rsleep
NS

E
n
er
gy

co
n
su
m
p
ti
on

SLA met

Individual passage-time SLA: clients must finish in at most 7s
≥ 99.5% of the time

25/30

Trade-off between energy and performance

Scalable analysis allows exploration of many configurations (NS ,
sleep rate)

Minimise energy consumption while satisfying SLAs

0 0.2 0.4 0.6 0.8 60
70

80
90800

1,000

1,200
841.48

921.96

rsleep
NS

E
n
er
gy

co
n
su
m
p
ti
on

SLA met

Individual passage-time SLA: clients must finish in at most 7s
≥ 99.5% of the time

25/30

Non-Markovian models

26/30

Non-Markovian models

I Distributions more general than exponential are required to
construct realistic models, for example:

I Deterministic timeouts in protocols or hardware

I Heavy-tailed service-time distributions

I Phase-type approximation is one approach, but can lead to
significant increase in a component’s local state-space size

I A 100-phase Erlang approximation to a deterministic
distribution of duration 1 has a probability of about 32% of
lying outside of [0.9, 1.1]

I In the case of deterministic distributions, mean-field approach
can be generalised using delay differential equations

27/30

Non-Markovian models

I Distributions more general than exponential are required to
construct realistic models, for example:

I Deterministic timeouts in protocols or hardware

I Heavy-tailed service-time distributions

I Phase-type approximation is one approach, but can lead to
significant increase in a component’s local state-space size

I A 100-phase Erlang approximation to a deterministic
distribution of duration 1 has a probability of about 32% of
lying outside of [0.9, 1.1]

I In the case of deterministic distributions, mean-field approach
can be generalised using delay differential equations

27/30

Non-Markovian models

I Distributions more general than exponential are required to
construct realistic models, for example:

I Deterministic timeouts in protocols or hardware

I Heavy-tailed service-time distributions

I Phase-type approximation is one approach, but can lead to
significant increase in a component’s local state-space size

I A 100-phase Erlang approximation to a deterministic
distribution of duration 1 has a probability of about 32% of
lying outside of [0.9, 1.1]

I In the case of deterministic distributions, mean-field approach
can be generalised using delay differential equations

27/30

Software update model with deterministic timeouts[12]

Old node Updated node

c

ed

a

b

λ

ρ

γ
ρλ

βNa(t)
N

ρ

[12] Richard A. Hayden. “Mean-field approximations for performance models with generally-timed transitions”. In: ACM SIGMETRICS
Performance Evaluation Review 39.3 (2011), pp. 119–121. doi: 10.1145/2160803.2160877.

28/30

http://dx.doi.org/10.1145/2160803.2160877

Software update model with deterministic timeouts[12]

Old node Updated node

c

ed

a

b

λ

ρ

γ
ρλ

βNa(t)
N

ρ

Ė[Nc(t)] = − ρE[Nc(t)]− β

N
E[Nc(t)Na(t)] + λE[Ne(t)]

− E
[

1{t≥γ}λNe(t − γ)︸ ︷︷ ︸
Rate of determ.

clocks starting at t−γ

exp

(
−
∫ t

t−γ

βNa(s)

N
ds

)
exp(−ργ)

]

[12] Richard A. Hayden. “Mean-field approximations for performance models with generally-timed transitions”. In: ACM SIGMETRICS
Performance Evaluation Review 39.3 (2011), pp. 119–121. doi: 10.1145/2160803.2160877.

28/30

http://dx.doi.org/10.1145/2160803.2160877

Software update model with deterministic timeouts[12]

Old node Updated node

c

ed

a

b

λ

ρ

γ
ρλ

βNa(t)
N

ρ

Ė[Nc(t)] = − ρE[Nc(t)]− β

N
E[Nc(t)Na(t)] + λE[Ne(t)]

− E
[

1{t≥γ}λNe(t − γ) exp

(
−
∫ t

t−γ

βNa(s)

N
ds

)
exp(−ργ)︸ ︷︷ ︸

Prob. that timeout occurs
before node updated or went off

]

[12] Richard A. Hayden. “Mean-field approximations for performance models with generally-timed transitions”. In: ACM SIGMETRICS
Performance Evaluation Review 39.3 (2011), pp. 119–121. doi: 10.1145/2160803.2160877.

28/30

http://dx.doi.org/10.1145/2160803.2160877

Software update model with deterministic timeouts[12]

Old node Updated node

c

ed

a

b

λ

ρ

γ
ρλ

βNa(t)
N

ρ

Ė[Nc(t)] ≈ − ρE[Nc(t)]− β

N
E[Nc(t)]E[Na(t)] + λE[Ne(t)]

− 1{t≥γ}λE[Ne(t − γ)] exp

(
−
∫ t

t−γ

βE[Na(s)]

N
ds

)
exp(−ργ)

[12] Richard A. Hayden. “Mean-field approximations for performance models with generally-timed transitions”. In: ACM SIGMETRICS
Performance Evaluation Review 39.3 (2011), pp. 119–121. doi: 10.1145/2160803.2160877.

28/30

http://dx.doi.org/10.1145/2160803.2160877

Software update model with deterministic timeouts[12]

Old node Updated node

c

ed

a

b

λ

ρ

γ
ρλ

βNa(t)
N

ρ

v̇c(t) = − ρvc(t)− β

N
vc(t)va(t) + λve(t)

− 1t≥γλve(t − γ) exp

(
−
∫ t

t−γ

βva(s)

N
ds

)
exp(−ργ)

[12] Richard A. Hayden. “Mean-field approximations for performance models with generally-timed transitions”. In: ACM SIGMETRICS
Performance Evaluation Review 39.3 (2011), pp. 119–121. doi: 10.1145/2160803.2160877.

28/30

http://dx.doi.org/10.1145/2160803.2160877

Software update model with deterministic timeouts

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time, t

R
es
ca
le
d
co
m
p
on
en
t
co
un

t

Nodes in state c

Nodes in state d

Nodes in state e

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time, t

R
es
ca
le
d
co
m
p
on
en
t
co
un

t

Nodes in state a

Nodes in state b

29/30

Summary

Fluid analysis provides a scalable analysis framework for
massively-parallel performance models, that is able to capture:

I Arbitrary moments of component counts

I Passage-time measures

I Accumulated reward measures

I Certain forms of non-Markovian timing

with implementation in the freely-available GPA tool1

1 http://code.google.com/p/gpanalyser/

30/30

http://code.google.com/p/gpanalyser/

Thank you!2

2 Many thanks to Richard Hayden and Anton Stefanek for their expertise with pgf and pgfplots and their help with this presentation. They
also did a substantial portion of the research!

31/30

