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Topics covered

I Discrete dynamical systems

I Periodic doublig route to chaos

I Iterated Function Systems and fractals

I Attractor neural networks



Continuous maps of metric spaces
I We work with metric spaces, usually a subset of Rn with

the Euclidean norm or the space of code sequences such
as ΣN with an appropriate metric.

I A map of metric spaces F : X → Y is continuous at
x ∈ X if it preserves the limits of convergent sequences,
i.e., for all sequences (xn)n≥0 in X :

xn → x ⇒ F (xn)→ F (x).

I F is continuous if it is continuous at all x ∈ X .
I Examples:

I All polynomials, sin x , cos x , ex are continuous maps.
I x 7→ 1/x : R→ R is not continuous at x = 0 however we

define 1/0. Similarly for tan x at x = (n + 1
2 )π for any

integer n.
I The step function s : R→ R : x 7→ 0 if x ≤ 0 and 1

otherwise, is not continuous at 0.
I Intuitively, a map R→ R is continuous iff its graph can be

drawn with a pen without leaving the paper.



Continuity and Computability

I Continuity of F is necessary for the computability of F .
I Here is a simple argument for F : R→ R to illustrate this.
I An irrational number like π has an infinite decimal

expansion and is computable only as the limit of an
effective sequence of rationals (xn)n≥0 with say
x0 = 3, x1 = 3.1, x2 = 3.14 · · · .

I Hence to compute F (π) our only hope is to compute F (xn)
for each rational xn and then take the limit. This requires
F (xn)→ F (π) as n→∞.



Discrete dynamical systems

I A discrete dynamical system F : X → X is the action of
a continuous map F on a metric space (X ,d), usually a
subset of Rn.

I Here are some key continuous maps giving rise to
interesting dynamical systems in Rn:

I Linear maps Rn → Rn, eg x 7→ ax : R→ R for any a ∈ R.
I The quadratic family Fc : R→ R : x 7→ cx(1− x) for any

c ∈ [1,4].



Differential equations

I Differential equations are continuous dynamical systems
which can be studied using discrete dynamical systems.

I Let ẏ = V (y) ∈ Rn be a system of differential equations in
Rn with initial condition y(0) = x0 at t = 0.

I Suppose a solution of the system at time t is
y(t) = S(x0, t).

I Let F : Rn → Rn be given by F (x) = S(x ,1).
I Then, F is the time-one map of the evolution of the

differential equation with y(0) = F 0(x0), y(1) = F (x0),
y(2) = F (F (x0)), y(3) = F (F (F (x0))) and so on.

I By choosing the unit interval of time, we can then study the
solution to the differential equation by studying the discrete
system F .



Iteration

I Given a function F : X → X and an initial value x0, what
ultimately happens to the sequence of iterates

x0,F (x0),F (F (x0)),F (F (F (x0))), . . . .

I We shall use the notation

F (2)(x) = F (F (x)),F (3)(x) = F (F (F (x))), . . .

For simplicity, when there is no ambiguity, we drop the
brackets in the exponent and write

F n(x) := F (n)(x).

I Thus our goal is to describe the asymptotic behaviour of
the iteration of the function F , i.e. the behaviour of F n(x0)
as n→∞ for various initial points x0.



Orbits

Definition
Given x0 ∈ X , we define the orbit of x0 under F to be the
sequence of points

x0 = F 0(x0), x1 = F (x0), x2 = F 2(x0), . . . , xn = F n(x0), . . . .

The point x0 is called the seed of the orbit.

Example
If F (x) = sin(x), the orbit of x0 = 123 is

x0 = 123, x1 = −0.4599..., x2 = −0.4439..., x3 = −0.4294...,



Finite Orbits

Definition
I A fixed point is a point x0 that satisfies F (x0) = x0.
I A fixed point x0 gives rise to a constant orbit:

x0, x0, x0, . . ..
I The point x0 is periodic if F n(x0) = x0 for some n > 0. The

least such n is called the period of the orbit. Such an orbit
is a repeating sequence of numbers.

I A point x0 is called eventually fixed or eventually
periodic if x0 itself is not fixed or periodic, but some point
on the orbit of x0 is fixed or periodic.



Graphical Analysis
Given the graph of a function F we plot the orbit of a point x0.

I First, superimpose the diagonal line y = x on the graph.
(The points of intersection are the fixed points of F .)

I Begin at (x0, x0) on the diagonal. Draw a vertical line to the
graph of F , meeting it at (x0,F (x0)).

I From this point draw a horizontal line to the diagonal
finishing at (F (x0),F (x0)). This gives us F (x0), the next
point on the orbit of x0.

I Draw another vertical line to graph of F , intersecting it at
F 2(x0)).

I From this point draw a horizontal line to the diagonal
meeting it at (F 2(x0),F 2(x0)).

I This gives us F 2(x0), the next point on the orbit of x0.
I Continue this procedure, known as graphical analysis.

The resulting “staircase” visualises the orbit of x0.



Graphical analysis of linear maps

f(x)=ax

a>1 a=1 0<a<1

a<−1 a=−1 −1<a<0

y=x
y=x y=x

y=x
y=x

y=x

y=−x

Figure : Graphical analysis of x 7→ ax for various ranges of a ∈ R.



A Non-linear Example: C(x) = cos x
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Graphical Analysis: F(x) =cos(x)

Figure : Graphical analysis of C(x) = cos x .



Phase portrait
I Sometimes we can use graphical analysis to describe the

behaviour of all orbits of a dynamical system.
I In this case we say that we have performed a complete

orbit analysis which gives rise to the phase portrait of
the system.

I Example: The complete orbit analysis of x 7→ x3 and its
phase portrait are shown below.
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Phase portraits of linear maps

f(x)=ax

a>1 a=1 0<a<1

a<−1 a=−1 −1<a<0

Figure : Graphical analysis of x 7→ ax for various ranges of a ∈ R.



Open and closed subsets
I Given a metric space (X ,d), the open ball with centre

x ∈ X and radius r > 0 is the subset
O(x , r) = {y ∈ X : d(x , y) < r}.

I Eg, in R, if a < b, then the interval
(a,b) = {x ∈ R : a < x < b} is an open ball; it is called an
open interval.

I An open set O is any union of open balls:
O =

⋃
i∈I O(xi , ri), where I is any indexing set.

I A closed set is the complement of an open set.
I Eg, in R, if a ≤ b, then the interval

[a,b] = {x ∈ R : a ≤ x ≤ b} is closed.
I [a,b) = {x : a ≤ x < b} is neither open nor closed.

A B

Figure : An open and a closed set



Properties of Open and closed subsets

I The following properties follow directly from the definition
of open and closed sets in any metric space (X ,d).

I X and the empty set ∅ are both open and closed.
I An arbitrary union of open sets is open while an arbitrary

intersection of closed sets is closed.
I Furthermore, any finite intersection of open sets is open

while any finite union of closed sets is closed.
I Note that even countable intersection of open sets may not

be open, eg. ⋂
n≥1

(0,1 +
1
n

) = (0,1].



Open subsets and continuity

I Suppose F : X → Y is a map of metric spaces.
I Given B ⊂ Y , the pre-image of B under F is the set

F−1(B) = {x ∈ X : F (x) ∈ B}.

I It can be shown that given a map of metric spaces
F : X → Y and x ∈ X , then the following are equivalent:

I F is continuous at x ∈ X (i.e., it preserves the limit of
convergent sequences).

I ∀ε > 0.∃δ > 0 such that F [O(x , δ)] ⊂ O(f (x), ε),
(equivalently O(x , δ) ⊂ F−1(O(f (x), ε))).

I F : X → Y is continuous (i.e., it is continuous at every point
of X ) iff the pre-image of any open set in Y is open in X .



Attracting and repelling periodic points
A set B is invariant under F if F (x) ∈ B if x ∈ B.

Suppose x0 is a periodic point for F with period n. Then x0 is an
attracting periodic point if for G = F n the orbits of points in
some invariant open neighbourhood of x0 converge to x0. The
point x0 is a repelling periodic point if for G = F n the orbits of
all points in some open neighbourhood of x0 (with the exception
of the trivial orbit of x0) eventually leave the neighbourhood.

y=x

x

y

attracting repelling

It can be shown that if F is differentiable and its derivative F ′ is
continuous at a fixed point x0 of F , then x0 is attracting
(repelling) if |F ′(x0)| < 1 (|F ′(x0)| > 1). If |F ′(x0)| 6= 1, then x0 is
called a hyperbolic fixed point.



Attractors

I We have already seen periodic attractors which are finite
sets.

I Attractors can generally be very complex sets.
I Recall that an open set in a metric space (X ,d) is any

union of open balls of the form
O(x , r) = {y ∈ X : d(x , y) < r} where x ∈ X and r > 0.

I Given F : X → X , we say a non-empty closed subset
A ⊂ X is an attractor if it satisfies:

I Closure under iteration: x ∈ A⇒ F (x) ∈ A
I There is a basin of attraction for A, i.e., there exists an

invariant open set B ⊂ X with A ⊂ B such that for any x ∈ B
and any open neighbourhood O of A, there exists N ∈ N
such that F n(x) ∈ O for all n ≥ N.

I No proper subset of A satisfies the above two properties.

I Attractors are observable by computing iterates of maps.



Periodic attractors
Attracting periodic points give rise to attractors.

I Here is a proof:
I Let x ∈ X be an attracting period point of F : X → X with

period n ≥ 1.
I Claim: A = {x ,F (x),F 2(x), · · · ,F n−1(x)} is an attractor.
I It is clearly non-empty and closed as any finite set is

closed.
I By definition there is an open neighbourhood O ⊂ X of x

that consists of points whose orbits under the map F n

remain in O, i.e., F n[O] ⊂ O, and converge to x .
I Let B = O ∪ F−1(O) ∪ F−2(O) ∪ · · · ∪ F−(n−1)(O).
I Then, B is an open subset which satisfies F [B] ⊂ B (since

F [F−i(O)] ⊂ F−(i−1)(O) for 1 ≤ i ≤ n− 1) and is a basin of
attraction for A.

I Since F n(x) = x with n minimal, A is not decomposable.



First observed “strange” attractor: Lorenz attractor

Figure : Different viewpoints of Lorenz attractor in R3

It has been recently proved that the Lorenz attractor is chaotic.



Chaos

Definition
A dynamical system f : X → X on an infinite metric space X is
sensitive to initial conditions if there exists δ > 0 such that
for any x ∈ X and any open ball O with centre x , there exists
y ∈ O and n ∈ N such that d(f n(x), f n(y)) > δ (i.e., in the
neighbourhood of any point x there is a point whose iterates
eventually separate from those of x by more than δ).
f : X → X is chaotic if it satisfies the following:

(i) f is sensitive to initial conditions.
(ii) f is topologically transitive, i.e., for any pair of open balls

U,V ⊂ X , there exists n > 0 such that f n(U)∩V 6= ∅, i.e., f
is not decomposable.

(iii) The periodic orbits of f form a dense subset of X , i.e., any
open ball contains a periodic point.

It can be shown that (i) follows from (ii) and (iii).



Space of infinite strings

I Let Σ = {0,1}.
I Consider the set (ΣN,d) or (ΣZ,d) of infinite strings

x = x0x1x2 · · · or x = · · · x−2x−1x0x1x2 · · · , where xk ∈ Σ,
with metric:

d(x , y) =

{
0 if x = y

1/2|m| |m| ∈ N least with xm 6= ym.

Here are some simple properties to check:
I d(x , y) is clearly non-negative, symmetric and vanishes iff

x = y .
I d also satisfies the triangular inequality, hence is a metric.
I The open ball with centre x ∈ ΣN and radius 1/2n for n ≥ 0

is:
O(x ,1/2n) = {y : ∀i ∈ Z. |i | ≤ n⇒ xi = yi}.



Tail map is chaotic

I The tail map σ : ΣN → ΣN is defined by

(σ(x))n = xn+1

for n ∈ N.
I The tail map is also called the shift map as it shifts all

components one place to the left.
I The tail map is continuous and satisfies the following:

I Sensitive to initial conditions (with δ = 1/2).
I Topologically transitive (∀ open balls U. ∃n. σn(U) = ΣN).
I Its periodic orbits are dense in ΣN

I It has a dense orbit.
I In particular, σ is chaotic.



Turing machines

I A Turing machine is a dynamical system (Y ,T ) as follows.
I Let Y = {0,1}Z × S where S is a finite set of states, which

contains an element 0 called the halting state.
I The set {(. . . ,0, . . .)} × S is called the empty tape.
I The infinite sequences with only finite number of 1 in
{0,1}Z are called data.

I The Turing machine is defined by three maps:

f : {0,1} × S → {0,1} defines the new letter
g : {0,1} × S → S defines the new state
h : {0,1} × S → {−1,0,1} decides to move left, right or stay

I Now we define T : {0,1}Z × S → {0,1}Z × S:

T (x , s) =
(
σh(x0,s)(. . . , x−2, x−1, f (x0, s), x1, x2, . . .),g(x0, s)

)



Angle doubling is chaotic
Let S1 be the unit circle centred at the origin, whose points are
angles 0 ≤ θ < 2π measured in radians. The distance between
any two points on the circle is the shortest arc between them.

θ

2θ

0

Figure : Angle doubling map

I Angle doubling: A2 : S1 → S1 is defined as A2(θ) = 2θ.
I It can be shown that A2 satisfies the following:

I Sensitive to initial conditions (with δ = π/4).
I Topologically transitive (∀ open balls U. ∃n. An

2(U) = S1).
I Its periodic orbits are dense in S1.

I Theorem. The angle doubling map is chaotic.



Topological Conjugacy
Suppose f : X → X and g : Y → Y are continuous maps and
h : X → Y is a surjective continuous map such that h ◦ f = g ◦h:

X

h
��

f // X

h
��

Y
g // Y

I We then say h is a topological semi-conjugacy between
(X , f ) and (Y ,g). Note: h ◦ f n = gn ◦ h for any n ∈ N, for
n = 2:

X

h
��

f // X

h
��

f // X

h
��

Y
g // Y

g // Y
I h maps orbits to orbits, periodic points to periodic points.
I If h has a continuous inverse, then it is called a

topological conjugacy between (X , f ) and (Y ,g).



Example of topological conjugacy

I Consider Qd : R→ R : x 7→ x2 + d
I For d < 1/4, the map Qd is conjugate via a linear map of

type L : x 7→ αx + β to Fc : R→ R : x 7→ cx(1− x) for a
unique c > 1.

I This can be shown by finding α, β, c in terms of d such that
the conjugacy relation holds, i.e.,:

L−1FcL = Qd



Symbolic dynamics

I Suppose g : Y → Y is a dynamical system with a
semi-conjugacy:

ΣN

h
��

σ // ΣN

h
��

Y
g // Y

I We say σ : ΣN → ΣN provides symbolic dynamics for
g : Y → Y .

I From such a semi-conjugacy we can deduce the following
results about g from the corresponding properties of σ:

I g is topologically transitive.
I Periodic orbits of g are dense.
I g has a dense orbit.



An Example

I For x ∈ R and integer n ≥ 1, define x mod n as the
remainder of division of x by n.

I Thus, x mod 1 is simply the fractional part of x .
I Consider the map M2 : [0,1)→ [0,1) : x 7→ 2x mod 1.
I Then we have the semi-conjugacy h : ΣN → [0,1) given by

h(x) = Σ∞i=0
xi

2i mod 1

I It follows immediately that
I M2 is topologically transitive.
I Periodic orbits of M2 are dense.
I M2 has a dense orbit.

I Since M2 expands any small interval by a factor 2, it is also
sensitive to initial conditions.

I Therefore, M2 is a chaotic map.



Periodic doubling bifurcation to chaos



Bifurcation
I Consider the one-parameter family of quadratic maps

x 7→ x2 + d where d ∈ R.
I For d > 1/4, no fixed points and all orbits tend to∞.
I For d = 1/4, a fixed point at x = 1/2, the double root of

x2 + 1/4 = x .
I This fixed point is locally attracting on the left x < 1/2 and

repelling on the right x > 1/2.
I For d just less than 1/4, two fixed points x1 < x2, with x1

attracting and x2 repelling.
I The family x 7→ x2 + d undergoes bifurcation at d = 1/4.

1/2 x1      x2

d > 1/4 d = 1/4 d < 1/4



A model in population dynamics
I Consider the one-parameter family Fc : [0,1]→ [0,1] with

c > 1, given by Fc(x) = cx(1− x).
I Think of x ∈ [0,1] as the fraction of predator in a

predator-prey population.
I Fc gives this fraction after one unit of time, where the

predator population increases linearly x 7→ cx but it is also
impeded because of limitation of resources, i.e., prey, by
the quadratic factor −cx2.

I The dynamical system Fc : R→ R is studied for c > 1.
I It turns out that this simple system exhibits highly

sophisticated including chaotic behaviour.

0   1

1

Fc

(c−1) / c

Figure : The quadratic family



Nature of fixed points
I There are two fixed points at 0 and pc = (c − 1)/c < 1.
I F ′(x) = c(1− 2x), so F ′c(0) = c > 1 and F ′c(pc) = 2− c.
I 0 is always a repeller and pc is an attractor for 1 < c < 3

and a repeller for c > 3.
I For 1 < c < 3 the orbit of any point in (0,1) tends to pc .
I So what happens when c passes through 3 turning pc from

an attracting fixed point to a repelling one?
I How do we find the phase portrait of Fc for c just above 3?

0   1

1

Fc

(c−1) / c

c < 3

Figure : Dynamics for c < 3



Period doubling
I We look at the behaviour of F 2

c when c passes through 3.
I For c < 3, the map F 2

c has (like Fc) two fixed points, one
repelling at 0 and one attracting at pc .

I As c passes through 3, the fixed point pc becomes
repelling for F 2

c . (We have: F ′3(p3) = −1 and (F 2
3 )′(p3) = 1)

I However, F 2
c acquires two new attracting fixed points ac ,bc

with ac < pc < bc for c just above 3.
I This gives an attracting period 2 orbit {ac ,bc} for Fc .

c<3                                 c>3

c
2F F

c

c>3

cc                                 c     c c
 p                                a     p  b a  p     b cc

Figure : An attracting period 2 orbit is born



Period doubling bifurcation diagram
I Therefore, Fc goes under a periodic doubling bifurcation as

c goes through 3.
I If we plot the attractors of Fc as c passes through c = 3 we

obtain the following diagram.
I The solid lines indicate attracting fixed or periodic points

while the dashed line indicate the repelling fixed point.

c
3

pc

0

1

bc

acA
tt
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ct

o
r 

Figure : Periodic doubling bifurcation diagram



Analysis of periodic doubling

I F 2
c has four fixed points satisfying:

x = F 2
c (x) = c(cx(1− x))(1− cx(1− x)).

I Two of them are 0 and pc , the fixed points of Fc .
I The other two namely ac and bc are given by:

I ac =
c+1−

√
c2−2c−3

2c and bc =
c+1+

√
c2−2c−3

2c .
I The periodic point ac (or bc) will be attracting as long as
|(F 2

c )′(ac)| = |F ′c(bc)F ′c(ac)| < 1.
I This gives 3 < c < 1 +

√
6.

I It follows that for c in the above range all orbits, except the
orbits that land on 0 and pc , are in the basin of attraction of
the periodic orbit {ac ,bc}.

I At c1 = 1 +
√

6, we have (F 2
c )′(ac) = (F 2

c )′(bc) = −1.



A repeat of period doubling
I The periodic doubling repeats itself as c passes through

c1 = 1 +
√

6 > c0 = 3.
I For c > c1, (F 2

c )′(ac) = (F 2
c )′(bc) > 1 and the periodic orbit

{ac ,bc} becomes repelling.
I The attracting periodic points of period 2 namely ac and bc

now become repelling.
I An attracting periodic orbit of period four is created with the

four points close to ac and bc as in the diagram.
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Figure : A second periodic doubling bifurcation



Renormalisation

I Note that Fc at c0 behaves like F 2
c at c1.

I Fixed points cease to be attracting and become repelling.
I This similarity can be understood using renormalisation.
I Let qc = 1/c be the point that is mapped to pc (c > 2).
I Put R(Fc) = Lc ◦ F 2

c ◦ L−1
c , where Lc is the linear map

x 7→ (x − pc)/(qc − pc), which maps [qc ,pc] into [0,1].
I If Fc′(1/2) = R(Fc)(1/2) then Fc′ and R(Fc) are close.

pq
c c

0 1 0 1
1/2

Figure : Left: F 2
c graph and its renormalising part in the square,

Right: F2.24 (solid curve) close to R(F3.3) (dashed curve)



A cascade of periodic doubling

I The periodic doubling bifurcation repeats itself ad infinitum
for an increasing sequence: c0 < c1 < c2 < c3 · · · .

I As c passes through cn, for n ≥ 0, the attracting periodic
orbit of period 2n becomes repelling and an attracting
periodic orbit of period 2n+1 is created nearby.

I The phase portrait of Fc for cn < c ≤ cn+1 is simple:
I The basin of attraction of the periodic orbit of period 2n+1

consists of all orbits in (0,1) with the exception of orbits
landing on repelling periodic points of period 2n.

I We have limn→∞ cn = c∞ ≈ 3.569 · · · .
I At c = c∞ is the system is at the edge of chaos. Chaotic

behaviour can be detected for many values in c∞ < c ≤ 4.
I We say that c∞ is a critical parameter. The system

undergoes phase transition from regular behaviour to
chaotic behaviour as c passes through c∞.



Figure : Bifurcation diagram of Fc : At each value of c, the attractor of
Fc is plotted on the vertical line through c. This is done e.g. by
computing a typical orbit of Fc , discarding the first 100 iterates and
plotting the next 100 iterates. As c increases from 2.5, the family
goes through a cascade of periodic doubling bifurcations with
periodic attractors of period 2n for all n ∈ N, until it reaches the edge
of chaos at the critical parameter c∞. Beyond this value, the family
has chaotic behaviour for some values of c interrupted by regular
behaviour with attractors of different periods. An attractor of period 3
is clearly visible after c = 3.8.



Feigenbaum constant and Unimodal maps
I The following remarkable property holds:

lim
n→∞

cn − cn−1

cn+1 − cn
= δ ≈ 4.66920.

I δ is the Feigenbaum universal constant.
I In fact, the periodic doubling route to chaos occurs in all

the so called unimodal families of maps (figure below).
I For example in the family Sc : [0,1]→ [0,1] with

Sc(x) = c sinπx , with 0 < c < 1, we discover the same
period doubling bifurcation to chaos as we did for the
quadratic family.

I Moreover, for all these maps we have
(cn − cn−1)/(cn+1 − cn)→ δ ≈ 4.66920.

Figure : A unimodal map



Chaotic dynamics in quadratic family
I We show that F4 is chaotic.
I The two-to-one map h1 : S1 → [−1,1] with h1(θ) = cos θ

gives a semi-conjugacy between angle doubling
A2 : S1 → S1 and the map Q : [−1,1]→ [−1,1] with
Q(x) = 2x2 − 1.

I The map h2 : [−1,1]→ [0,1] with h2(x) = (1− x)/2 gives
a conjugacy between Q and F4.

I Thus, h2 ◦ h1 : S1 → [0,1] gives a semi-conjugacy between
A2 and F4.

0

1

1/2 1

F
4

Figure : F4 map



F4 is chaotic
I We have the following diagram. Put g = h2 ◦ h1

S1

h1

��

A2 // S1

h1

��
[−1, 1]

h2

��

Q // [−1, 1]

h2

��
[0, 1]

F4 // [0, 1]

I For any open set O ⊂ [0,1], there is some n ∈ N with
An

2(g−1(O)) = S1, which implies F n
4 (O) = [0,1].

I Sensitive dependence on initial conditions and topological
transitivity of F4 both follow from the above fact.

I Furthermore, g−1(O) ⊂ S1 is an open set and thus has a
periodic point which is mapped by g to a periodic point in
O.

I Therefore, F4 is chaotic.



Iterated Function Systems and Fractals



Cantor middle-thirds set
I Start with I0 = [0,1].
I Remove the interior of its middle third to get

I1 = [0, 1
3 ] ∪ [2

3 ,1].
I Do the same with each interval in I1 to get I2 and so on.
I We have

In+1 = f1[In] ∪ f2[In]

where the affine transformations f1, f2 : I0 → I0 are given
by: f1(x) = x

3 and f2(x) = 2
3 + x

3 .
I The Cantor set C is the intersection of all In’s.

I0
I1
I2
I3
I4



Properties of the Cantor set

I C satisfies the fixed point equation: C = f1[C] ∪ f2[C].
I All the end points of the intervals in In are in C.
I C consists of all numbers in the unit interval whose base

3-expansion does not contain the digit 1:

a0

3
+

a1

32 +
a2

33 + . . . where ai = 0 or 2.

I C has fine structure and self-similarity or scaling
invariance: It is made up of two copies of itself scaled by
1
3 .

I C is closed and uncountable but has zero length.
I Complicated local structure:

I C is totally disconnected (between any two points in C
there is a point not in C) and therefore contains no intervals;

I C has no isolated point (in any neighbourhood of a point
in C there are infinitely many points of C).



Fractals

I Cantor middle-thirds set is an example of fractals,
geometric objects with fine structure, some self-similarity
and a fractional fractal dimension.

I A set which can be made up with m copies of itself scaled
by 1

n has similarity dimension log m
log n , which coincides with

its fractal dimension.
I The unit interval has dimension 1 as it is precisely the

union of n copies of itself each scaled by a factor n.
I The Cantor middle-thirds set has fractal dimension

log2/log3 < 1.
I More generally, a Cantor set is a closed and totally

disconnected set (i.e., contains no proper intervals) without
any isolated points (i.e., any neighbourhood of any of its
points contains other points of the set).

I A Cantor set may be “fat”, i.e., have non-zero “total length”.



Chaotic dynamics on fractals

I Let T : C → C be given by T (a) = 3a mod 1, where for
any real number r its fractional part is denoted by r mod 1.

I Consider the map h : {0,2}N → C into the Cantor set with

h(x) =
x0

3
+

x1

32 +
x2

33 · · · , where x = x0x1x2 · · ·

I We have the topological conjugacy

{0,2}N

h
��

σ // {0,2}N

h
��

C T // C

I Using this conjugacy, we can show that T : C → C is
chaotic.



Sierpinsky triangle

I The Sierpinsky triangle is another example of a self-similar
fractal, generated by three contracting affine maps:
f1, f2, f3 : R2 → R2.

I Each map fi is a composition of scaling by 1/2 and a
translation.

Figure : Sierpinsky triangle



Koch curve
I Start with the unit interval.
I Remove the middle third of the interval and replace it by

the other two sides of the equilateral triangle based on the
removed segment.

I The resulting set E1 has four segments; label them 1,2,3,4
from left to right.

I Apply the algorithm to each of these to get E2.
I Repeat to get En for all n ≥ 1.
I The limiting curve F is the Koch curve, Figure (a) next

page.
I Joining three such curves gives us the snowflake as in

Figure (b).
I We can map {1,2,3,4}∗ to the sides of En for n ≥ 0.
I There is a continuous map from {1,2,3,4}N to the Koch

curve.



Koch curve
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Properties of the Koch curve
I F is the limit of a sequence of simple polygons which are

recursively defined.
I Fine structure, self-similarity: It is made of four parts, each

similar to F but scaled by 1
3 .

I The fractal dimension of the Koch curve is log 4/ log 3
which is between 1 and 2.

I Complicated local structure: F is nowhere smooth (no
tangents anywhere). Think about the sequence of
segments 2,22,222, · · · . It spirals around infinitely many
times!

I F has infinite length (En has length (4
3)n and this tends to

infinity with n) but occupies zero area. The snowflake can
be painted but you cannot make a string go around it!

I Although F is defined recursively in a simple way, its
geometry is not easily described classically (cf. definition
of a circle). But {1,2,3,4}N gives a good model for F .



Affine maps

I An affine map of type Rm → Rm is a linear map followed by
a translation.

I For example, in R2, an affine map f : R2 → R2 has, in
matrix notation, the following action:(

x
y

)
7→
(

a b
c d

)(
x
y

)
+

(
k
l

)
.

I We know how the middle thirds Cantor and the Sierpinsky’s
triangle are generated by contracting affine maps.

I For the generation of the Koch curve there are four
contracting affine transformations of the plane fi , 1 ≤ i ≤ 4,
each a combination of a simple contraction, a rotation and
a translation, such that

En+1 = f1[En] ∪ f2[En] ∪ f3[En] ∪ f4[En].



Iterated Function Systems
I The examples we have studied are instances of a general

system which is a rich source of fractals and we now study.
I An Iterated Function System (IFS) in Rm consists of a finite

number of contracting maps fi : Rm → Rm, i = 1,2 . . .N,
i.e, for each i , there exists 0 ≤ si < 1 such that ∀. x , y ∈ Rm

‖fi(x)− fi(y)‖ ≤ si‖x − y‖ where ‖x‖ =

√√√√ m∑
j=1

x2
j .

I If fi is an affine map then si can be taken to be the l2 norm
of its linear part.

I P(Rm): set of non-empty, bounded, closed subsets of Rm.
I A continuous map, in particular a contracting map, takes

any bounded, closed subset to another such set.
I Let f : P(Rm)→ P(Rm) : A 7→

⋃
1≤i≤N fi [A], a well-defined

map.
I We will show that f has a unique fixed point, A∗ with

f (A∗) = A∗, which is the attractor of the IFS.



Hausdorff distance
I The Hausdorff distance, dH(A,B), between two elements

A and B in P(Rm) is the infimum of numbers r such that
every point of A is within distance r of some point of B and
every point of B is within distance r of some point of A.

I Formally, dH(A,B) = inf {r | B ⊆ Ar and A ⊆ Br}, where for
r ≥ 0, the r -neighbourhood Ar of A is:

Ar = {x ∈ Rm | ‖x − a‖ ≤ r for some a ∈ A}.
I Eg, if A and B are disks with radius 2 and 1 whose centres

are 3.5 units apart, then dH(A,B) = 4.5.

Α

Β

Β

2 3.5 1

Α
2.5

4.5



IFS attractor
I (P(Rm),dH) is a complete metric space (i.e., every Cauchy

sequence has a limit) and the map f is a contracting map
wrt dH with a contractivity s = max{si : 1 ≤ i ≤ N}.

I By the contracting mapping theorem, f has a unique fixed
point A∗ ∈ P(Rm) which is the only attractor of the IFS.

I The attractor is obtained as follows. Let Dri be the disk with
radius ri = ‖fi(0)‖/(1− si) centred at the origin.

I Dri is mapped by fi into itself. (Check this!)
I Put r = maxi ri . Then D = Dr is mapped by f into itself:

D ⊇ f [D] ⊇ f 2[D] ⊇ · · ·

and A∗ =
⋂

n≥0 f n[D].
I We can also define the notion of IFS with probabilities by

assigning a probability weight pi to each fi . Then there will
be an ergodic measure with support A∗.



IFS tree
I The nth iterate f n[D] =

⋃N
i1,i2,···in=1 fi1 [fi2 [· · · [finD] · · · ]

generates the Nn nodes of the nth level of the IFS tree.
I The Nn nodes on the nth level may have overlaps.
I For N = 2, three levels of this tree are shown below.

D
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I Each branch is a sequence of contracting subsets of Rm:

D ⊇ fi1D ⊇ fi1 fi2D ⊇ fi1 fi2 fi3D ⊇ · · ·
whose intersection contains a single point.

I A∗ is the set of these single points for all the branches.



IFS algorithm
I We use the IFS tree to obtain an algorithm to generate a

discrete approximation to the attractor A∗ up to a given
ε > 0 accuracy. In other words, we will obtain a finite set A
such that dH(A,A∗) ≤ ε.

I The diameter of each node at level n is at most 2rsn.
I We need 2rsn ≤ ε so that the diameter is at most ε.
I Let n =

⌈
log(ε/2r)

log s

⌉
. Consider the truncated tree at level n.

The diameters of the Nn leaves of the tree are at most ε.
I Pick the distinguished point

fi1 fi2 · · · fin (0) ∈ fi1 fi2 · · · finD

for each leaf. Let A be the set of these Nn points.
I Each point in A∗ is in one of the Nn leaves each of which

has diameter at most ε and contains one of the
distinguished points and hence one point of A. It follows
that dH(A,A∗) ≤ ε as required.



Complexity of the IFS algorithm

I The complexity of the algorithm is O(Nn).
I This is polynomial in N for a fixed resolution (and thus a

fixed n) but exponential in n.
I Improve the efficiency of the algorithm by taking a smaller

set of leaves as follows:
I For each branch

D ⊃ fi1D ⊃ fi1 fi2D ⊃ fi1 fi2 fi3D . . .

of the tree find an integer k such that the diameter of
fi1 · · · fik D is at most ε by taking the first integer k such that
2rsi1si2 · · · sik ≤ ε.

I Then take this node as a leaf. Do as before with this new
set of leaves.



Attractor Neural Networks



The Hopfield network I

I In 1982, John Hopfield introduced an artificial neural
network to store and retrieve memory like the human brain.

I Here, a neuron either is on (firing) or is off (not firing), a
vast simplification of the real situation.

I The state of a neuron (on: +1 or off: -1) will be renewed
depending on the input it receives from other neurons.

I A Hopfield network is initially trained to store a number of
patterns or memories.

I It is then able to recognise any of the learned patterns by
exposure to only partial or even some corrupted
information about that pattern, i.e., it eventually settles
down and returns the closest pattern or the best guess.

I Thus, like the human brain, the Hopfield model has stability
in pattern recognition.



The Hopfield network II
I A Hopfield network is single-layered and recurrent

network: the neurons are fully connected, i.e., every
neuron is connected to every other neuron.

I Given two neurons i and j there is a connectivity weight wij
between them which is symmetric wij = wji with zero
self-connectivity wii = 0.

I Below three neurons i = 1,2,3 with values ±1 have
connectivity wij ; any update has input xi and output yi .



Updating rule
I Assume N neurons i = 1, · · · ,N with values xi = ±1
I X = {−1,1}N with the Hamming distance:

H(~x , ~y) = #{i : xi 6= yi}.
I The update rule is:

If hi ≥ 0 then 1← xi otherwise − 1← xi

where hi =
∑N

j=1 wijxj + bi and bi ∈ R is a bias.
I We put bi = 0 for simplicity as it makes no difference to

training the network with random patterns but the results
we present all extend to bi 6= 0.

I We therefore assume hi =
∑N

j=1 wijxj .
I There are now two ways to update the nodes:
I Asynchronously: At each point in time, update one node

chosen randomly or according to some rule.
I Synchronously: Every time, update all nodes together.
I Asynchronous updating is more biologically realistic.



A simple example

I Suppose we only have two neurons: N = 2.
I Then there are essentially two non-trivial choices for

connectivities (i) w12 = w21 = 1 or (ii) w12 = w21 = −1.
I Asynchronous updating: In the case of (i) there are two

attracting fixed points namely [1,1] and [−1,−1]. All orbits
converge to one of these. For (ii), the attracting fixed points
are [−1,1] and [1,−1] and all orbits converge to one of
these. Therefore, in both cases, the network is sign blind:
for any attracting fixed point, swapping all the signs gives
another attracting fixed point.

I Synchronous updating: In both cases of (i) and (ii),
although there are fixed points, none attract nearby points,
i.e., they are not attracting fixed points. There are also
orbits which oscillate forever.



Energy function
I Hopfield networks have an energy function such that every

time the network is updated asynchronously the energy
level decreases (or is unchanged).

I For a given state (xi) of the network and for any set of
connection weights wij with wij = wji and wii = 0, let

E = −1
2

N∑
i,j=1

wijxixj

I We update xm to x ′m and denote the new energy by E ′.
I Exercise: Show that E ′ − E =

∑
i 6=m wmixi(xm − x ′m).

I Using the above equality, if xm = x ′m then we have E ′ = E .
I If xm = −1 and x ′m = 1, then xm − x ′m = −2 and∑

i wmixi ≥ 0. Thus, E ′ − E ≤ 0.
I Similarly if xm = 1 and x ′m = −1, then xm − x ′m = 2 and∑

i wmixi < 0. Thus, E ′ − E < 0.



Neurons pull in or push away each other
I Consider the connection weight wij = wji between two

neurons i and j .
I If wij > 0, the updating rule implies:

I when xj = 1 then the contribution of j in the weighted sum,
i.e. wijxj , is positive. Thus xi is pulled by j towards its value
xj = 1;

I when xj = −1 then wijxj , is negative, and xi is again pulled
by j towards its value xj = −1.

I Thus, if wij > 0, then i is pulled by j towards its value. By
symmetry j is also pulled by i towards its value.

I If wij < 0 however, then i is pushed away by j from its value
and vice versa.

I It follows that for a given set of values xi ∈ {−1,1} for
1 ≤ i ≤ N, the choice of weights taken as wij = xixj for
1 ≤ i ≤ N corresponds to the Hebbian rule: “Neurons that
fire together, wire together. Neurons that fire out of sync,
fail to link.”



Training the network: one pattern (bi = 0)
I Suppose the vector ~x = (x1, . . . , xi , . . . , xN) ∈ {−1,1}N is a

pattern we like to store in the memory of a Hopfield
network.

I To construct a Hopfield network that remembers ~x , we
need to choose the connection weights wij appropriately.

I If we choose wij = ηxixj for 1 ≤ i , j ≤ N (i 6= j), where η > 0
is the learning rate, then the values xi will not change
under updating as we show below.

I We have
N∑

j=1

wijxj = η
∑
j 6=i

xixjxj = η
∑
j 6=i

xi = η(N − 1)xi

I This implies that the value of xi , whether 1 or −1 will not
change, so that ~x is a fixed point.

I Note that −~x also becomes a fixed point when we train the
network with ~x confirming that Hopfield networks are sign
blind.



Training the network: Many patterns
I More generally, if we have p patterns ~xk , k = 1, . . . ,p, we

choose wij = 1
N
∑p

k=1 xk
i xk

j .
I This is called the generalized Hebbian rule.
I We will have a fixed point ~xk for each k iff sgn(hk

i ) = xk
i for

all 1 ≤ i ≤ N, where

hk
i =

N∑
j=1

wijxk
j =

1
N

N∑
j=1

p∑
`=1

x`i x`j xk
j

I Split the above sum to the case ` = k and the rest:

hk
i = xk

i +
1
N

N∑
j=1

∑
6̀=k

x`i x`j xk
j

I If the second term, called the crosstalk term, is less than
one in absolute value for all i , then hk

i will not change and
pattern k will become a fixed point.

I In this situation every pattern ~xk becomes a fixed point and
we have an associative or content-addressable memory.



Pattern Recognition



Stability of the stored patterns
I How many random patterns can we store in a Hopfield

network with N nodes?
I In other words, given N, what is an upper bound for p, the

number of stored patterns, such that the crosstalk term
remains less than one with high probability?

I Multiply the crosstalk term by −xk
i to define:

Ck
i := −xk

i
1
N

N∑
j=1

∑
` 6=k

x`i x`j xk
j

I If Ck
i is negative, then the crosstalk term has the same

sign as the desired xk
i and thus this value will not change.

I If, however, Ck
i is positive and greater than 1, then the sign

of hi will change, i.e., xk
i will change, which means that

node i would become unstable.
I We will estimate the probability that Ck

i > 1.



Distribution of Ck
i

I For 1 ≤ i ≤ N, 1 ≤ ` ≤ p with both N and p large, consider
x`i as purely random with equal probabilities 1 and −1.

I Thus, Ck
i is 1/N times the sum of (roughly) Np

independent and identically distributed (i.i.d.) random
variables, say ym for 1 ≤ m ≤ Np, with equal probabilities
of 1 and −1.

I Note that 〈ym〉 = 0 with variance 〈y2
m − 〈ym〉2〉 = 1 for all m.

I Central Limit Theorem: If zm is a sequence of i.i.d.
random variables each with mean µ and variance σ2 then
for large n

Xn =
1
n

n∑
m=1

zm

has approximately a normal distribution with mean
〈Xn〉 = µ and variance 〈X 2

n − 〈Xn〉2〉 = σ2/n.
I Thus for large N, the random variable p( 1

Np
∑Np

m=1 ym), i.e.,
Ck

i , has approximately a normal distribution N (0, σ2) with
mean 0 and variance σ2 = p2(1/(Np)) = p/N.



Storage capacity

I Therefore if we store p patterns in a Hopfield network with
a large number of N nodes, then the probability of error,
i.e., the probability that Ck

i > 1, is:

Perror = P(Ck
i > 1) ≈ 1√

2πσ

∫ ∞
1

exp(−x2/2σ2) dx

=
1
2

(1− erf(1/
√

2σ2)) =
1
2

(1− erf(
√

N/2p))

where the error function erf is given by:

erf(x) =
2√
π

∫ x

0
exp(−s2) ds.

I Therefore, given N and p we can find out what the
probability Perror of error is.



Storage capacity
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The table shows the probability of error for some values of p/N.

Perror p/N
0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61



Spurious states

I Therefore, for small enough p, the stored patterns become
attractors of the dynamical system given by the
synchronous updating rule.

I However, we also have other, so-called spurious states.
I Firstly, for each stored pattern ~xk , its negation −~xk is also

an attractor.
I Secondly, any linear combination of an odd number of

stored patterns give rise to the so-called mixture states,
such as

~xmix = ±sgn(±~xk1 ± ~xk2 ± ~xk3)

I Thirdly, for large p, we get local minima that are not
correlated to any linear combination of stored patterns.

I If we start at a state close to any of these spurious
attractors then we will converge to them. However, they will
have a small basin of attraction.



Energy landscape
Energy

States

. . .
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stored patterns

spurious states

I Using a stochastic version of the Hopfield model one can
eliminate or reduce the spurious states.



Strong patterns

I Suppose a pattern ~x has been stored d ≥ 1 times in the
network, we then call ~x a strong pattern if d > 1 and a
simple pattern if d = 1.

I The notion of strong patterns has been recently introduced
in Hopfield networks to model behavioural and cognitive
prototypes, including attachment types and addictive types
of behaviour, in human beings as patterns that are deeply
or repeatedly learned.

I A number of mathematical properties of strong patterns
and experiments with simulations indicate that they provide
a suitable model for patterns that are deeply sculpted in
the neural network in the brain.

I Their impact on simple patterns is overriding.
I

Perror =
1
2

(1− erf(d
√

N/2p))



Experiment

I Consider a network of 48× 48 pixels.
I We train the network with 50 copies of a happy smiley

I 30 copies of a sad smiley

I and single copies of 200 random faces.
I We then expose it to a random pattern to see what pattern

is retrieved.



The strongest learned pattern wins!



References
I Devaney, R. L. An Introduction to Chaotic Dynamical

Systems. Westview Press, 2003.
I Barnsley, M. F. Fractals Everywhere. Morgan Kaufmann

Pub; 2 Sub edition, 1993.
I Flake, G. W. The Computational Beauty of Nature:

Computer Explorations of Fractals, Chaos, Complex
Systems, and Adaptation. The MIT Press, 1998.

I Hertz, J. A. and Krogh, A. S and Palmer, R. G. Introduction
To The Theory Of Neural Computation, Westview Press,
1991.

I Edalat, A. and Mancinelli, F. Strong Attractors of Hopfield
Neural Networks to Model Attachment Types and
Behavioural Patterns, Proceedings of International Joint
Conference on Neural Networks (IJCNN) 2013.

I Note that some of the pictures in the notes have been
taken from the above.


	Dynamical systems
	Definitions

	Orbits
	Definitions

	Graphical Analysis
	Graphical Analysis
	Orbit Analysis

	Fixed and Periodic Points
	A Fixed Point Theorem
	Attractors and Repellers

	Attractors
	Lorenz attractor

	Chaotic dynamics
	Tail map

	Topological conjugacy
	Symbolic dynamics

	Logistic family
	Periodic points
	Iterated Function Systems
	Cantor set
	Properties of the Cantor set
	Fractals
	Approximation of the Attractor


