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Introduction 



Antikythera mechanism 

Computers 

Analogue computer Digital computer: 0 & 1 

Robotron Z 9001 



•  Quantum binary states            (spin,...) 

     If you measure      then   
              This is the quantum bit or “qubit” 

•  Many qubits (two): 

     product state (classical) 

Quantum computers 

Ψ = a 0 + b 1

€ 

0 , 1

| i = a|0i ⌦ |0i+ b|1i ⌦ |1i

|a|2 + |b|2 = 1

| i = |0i ⌦ |0i

entangled state 

(quantum superposition) 

| i P0 = |a|2, P1 = |b|2



•  Quantum binary gates-> Unitary matrices 

 
•  Universality: Any       and a           any q. algorithm. 
•  Quantum circuit model: 

Quantum computers 

U2q|0i ⌦ |0i = a|0i ⌦ |0i+ b|1i ⌦ |1i

U1q|0i = a|0i+ b|1i
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An example of circuit model, where time evolves from left to right. Qubits are initially prepared in
state | 0i and one and two qubit gates, such as U, V and W, are acted on them in succession.
Boxes attached on a single line correspond to single qubit gates while boxes attached on two
lines correspond to two qubit gates.

which a gate acts. A measurement of all the qubits at the end of the computation reveals
the outcome. Expressing an algorithm in terms of basic quantum gates makes it easy to
evaluate its resources and complexity.

3.2.1 Quantum algorithm and universality

A specific quantum algorithm U applied on n qubits is an element of the unitary group
U(2n). It acts on an initially prepared quantum state | 0i that encodes the input of the
problem. Its output state | i = U | 0i encodes the solution of the problem. The algorithm
needs to be designed such that the information encoded in | i can be read by projective
measurements. Usually, we take | 00...0i as the initial state and the encoding of input step
| 0i = U0 | 00...0i is considered part of the algorithm. The unitary matrix U0 depends on
the information we want to encode, while the algorithm U is independent of the input of
the computation. It depends only on the number, n, of employed qubits.

To realise a given algorithm we would like to break it down into smaller elements that
are physically easier to implement. Commonly, these smaller elements are one and two
qubit gates that can be applied to any desired qubit at any time. Composed together in a
temporal fashion they give rise to the circuit model of quantum computation.

A natural question arises: which types of quantum gates are needed to be able to per-
form any given algorithm? For example one could try to employ as few di↵erent types of
quantum gates as possible acting only on a small number of qubits at the time, e.g. one
or two. A finite set of quantum gates that can e�ciently generate any given unitary matrix
is called universal. Universality is an important property that needs to be satisfied from
any implementation scheme of a quantum computer. Several universal sets of quantum
gates are known. The simplest one comprises of arbitrary one qubit gates and a maximally
entangling two qubit gate like the CNOT gate.

An alternative way to formulate the above universality condition, without resorting to
qubits, is the following. We want to find a small set of unitary matrices that can reproduce
an arbitrary given element of U(N). This can be achieved by taking two unitary matrices
of U(N) and calculating their product. By multiplying them, a third, independent unitary
matrix is produced. This processes can be iterated several times, where each time we al-
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•  Quantum Algorithm: 

Quantum computers 

|input> |output> 
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A specific quantum algorithm U applied on n qubits is an element of the unitary group
U(2n). It acts on an initially prepared quantum state | 0i that encodes the input of the
problem. Its output state | i = U | 0i encodes the solution of the problem. The algorithm
needs to be designed such that the information encoded in | i can be read by projective
measurements. Usually, we take | 00...0i as the initial state and the encoding of input step
| 0i = U0 | 00...0i is considered part of the algorithm. The unitary matrix U0 depends on
the information we want to encode, while the algorithm U is independent of the input of
the computation. It depends only on the number, n, of employed qubits.

To realise a given algorithm we would like to break it down into smaller elements that
are physically easier to implement. Commonly, these smaller elements are one and two
qubit gates that can be applied to any desired qubit at any time. Composed together in a
temporal fashion they give rise to the circuit model of quantum computation.

A natural question arises: which types of quantum gates are needed to be able to per-
form any given algorithm? For example one could try to employ as few di↵erent types of
quantum gates as possible acting only on a small number of qubits at the time, e.g. one
or two. A finite set of quantum gates that can e�ciently generate any given unitary matrix
is called universal. Universality is an important property that needs to be satisfied from
any implementation scheme of a quantum computer. Several universal sets of quantum
gates are known. The simplest one comprises of arbitrary one qubit gates and a maximally
entangling two qubit gate like the CNOT gate.

An alternative way to formulate the above universality condition, without resorting to
qubits, is the following. We want to find a small set of unitary matrices that can reproduce
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•  Computational complexity 
Problems that can be solved in: 

-polynomial time    (easy) 
-exponential time  (hard) 

as a function of input size. 

•  Classical computers: 
 P:      polynomially easy to solve 
 NP:   polynomially easy to verify solution 

 
•   BQP: polynomially easy to solve with QC 
 
 

Quantum computers: Why? 



•  Factoring (Shor) 

 
 quantum hackers exponentially better than 
classical hackers! 

 
•  Searching objects (Grover): where is ❥? 

 ¢®¶¤ê♬ΙΠÃ≥⅙⏎✜ì?»Ψ~!$^✪❥⅖ű 

Quantum computers: Why? 



•  Factoring algorithm (Shor): 
–  Exponentially faster than known classical algorithm, 

but we do not know if there is a better classical one… 

•  Searching algorithm (Grover):  
–  Quadratic speed up (optimal),  
    does not change complexity class... 

•  Still important enough: worth investigating… 

•  Errors during QC are too catastrophic. 

Quantum computers: Why? 



Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 



•  Geometry 
–  Local properties of object 

•  Topology 
–  Global properties of object 

Geometry – Topology 

€ 

⇔

€ 

⇔
geom. 

topo. 



Are two knots equivalent? 
Topology of knots and links 

€ 

⇔
topo. 

• Algorithms exist from the ‘60s 
• Extremely time consuming… 
• Common problem (speech recognition, …) 
• Mathematically Jones polynomials can recognise 
if two knots are inequivalent. 



Particle statistics 

Exchange two identical particles: 

€ 

2 ×

€ 

=

Ψ(x1, x2 ) = ??? Ψ(x2, x1)
€ 

x1

€ 

x2

Statistical symmetry:  
Physics stays the same, but     could change! Ψ



Anyons and statistics 

Ψ→Ψ

Ψ→Ψ π2ie

Bosons 

Fermions 

Ψ → ei2φ Ψ

Ψ → B Ψ

Anyons 

3D 

2D 

Like a  
quantum gate 



Anyons, statistics and knots 
ti
m
e



Initiate: Pair creation of anyons 

Measure: do they fuse to the vacuum? 

| 
output

i = Bn...B2
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1

| 
input
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Anyons, statistics and knots 

| 
output

i = Bn...B2
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1

| 
input

i



Anyons and knots 
Assume I can generate anyons in the laboratory. 

•  The state of anyons is efficiently 
    described by their world lines. 
 
•  Creation, braiding, fusion. 
 
•  The final quantum state of 

anyons  is invariant under 
continuous deformations of 
strands. 

€ 

⇔



The Reidemeister moves 

Theorem:  
  
 Two knots can be 
deformed continuously 
one into the other iff 
one knot can be 
transformed into the 
other by local moves: 

€ 

(I)

€ 

(II)

€ 

(III)



Skein relations 

A
A
1

A
A
1

d
A

A =−− 2
2 1



Skein and Reidemeister  

A
1

A+

2

1
A

+ 2A+ +

2
2 1
A

A

d

−−

Reidemeister move (II) is satisfied. Similarly (III). 

A
A
1

A
A
1



Kauffman bracket 
The Skein relations give rise to  
the Kauffman bracket:                
                   
                  Skein(      )= 

€ 

L (A)172 The Jones polynomial algorithmt
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+A"1

! 

= A + dA"1 = ("A)"3tFig. 8.16 The state sum for the “eight figure” link, L1. As it is a single twist of a simple loop it gives
hL1i = (�A)�3.

! 

= A

! 

+A"1

! 

= Ad + A"1 = ("A)3tFig. 8.17 The state sum for the inverted twisting, L2 is hL2i = (�A)3.

Measuring the work qubit in the x and y directions of the Bloch sphere finally gives the real
and imaginary parts of the normalised trace tr(⇢A(B))/2n, respectively (see Exercise 8.2).

8.4 Example I: Kauffman bracket of simple links

To familiarise ourselves with the Kau↵man bracket or state sum we now evaluate it for
some simple links. Our first example, L1, is the “eight figure” in Figure 8.16. Its state sum
is given by

hL1i = (�A)�3 (8.32)

as it involves a single twist. Similarly for the inverted twisting, L2, of Figure 8.17 we have
the value

hL2i = (�A)3. (8.33)

We now consider the link with two components, L3, shown in Figure 8.18. By employing
the state sums of the previous examples we easily obtain

hL3i = �A4 � A�4. (8.34)

Finally, we evaluate the link, L4, in Figure 8.19. Its state sum is given by

hL4i = A8 � A4 + 1 � A�4 + A�8. (8.35)

To evaluate the Jones polynomials of these links we need to apply relation (8.7) that states
VL(A) = (�A)3w(L)hLi. The first two links, L1 and L2 have w = 1 and w = �1 respectively,
so VL1 (A) = 1 and VL2 (A) = 1. Hence they have the same Jones polynomials for any A.
This is to be expected as they are both isomorphically equivalent to a simple loop. On the
other hand, w(L3) = 2 and w(L4) = 0.

173 8.5 Example II: Jones polynomials from Chern-Simons theoriest
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= "A4 " A"4tFig. 8.18 The simple non-trivial link, L3, with two components has hL3i = �A4 � A�4.
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+A8 " A4 " A"4

! 

= A8 " A4 +1" A"4 + A"8tFig. 8.19 A non-trivial single component link, L4 with hL4i = A8 � A4 + 1 � A�4 + A�8.

8.5 Example II: Jones polynomials from Chern-Simons
theories

Here we investigate how the Jones polynomials can be derived from the SU(2) Chern-
Simons theories that we studied in Chapter 7. The specific form of the Jones polynomials
was determined by introducing the Skein relations, in Figure 8.7. Here, we demonstrate
that the expectation values of Wilson loops hW(L)i in the SU(2) Chern-Simons theories
can be decomposed in the same way as the state sums do under Skein relations. This
decomposition is compatible with the Reidemeister moves II and III. The invariance of
this expectation value under continuous deformations of the loop L means that hW(L)i is
invariant under twists of the loop as well. This property is the Reidemeister move I that
finally identifies hW(L)i with the Jones polynomials.

Let us see in detail how the SU(2) Chern-Simons theory is compatible with the Skein
relations. Consider the expectation value hW(L)i of a link L in space M = S 3. We take
all link components to be in the two-dimensional fundamental representation of SU(2). A
useful bipartition of the link L is given in Figure 8.20(a). There, one part, LR, includes
a single crossing of two strands and the other part, LL, includes the rest of the link. The
corresponding spaces are denoted MR and ML, respectively. Substituting the crossing in
MR with any of the two shapes in M0R or M00R undoes the braiding between the two relevant
strands and gives a simpler link. In terms of the expectation value hW(L)i this substitution
is motivated in the following way. Consider the individual parts ML and MR. Each one
supports a two-dimensional Hilbert spaceHR, as they correspond to the fusion of the four
points that are given by the intersections of the link and the dotted sphere, shown in Figure
8.20(a). As these points are all described by the fundamental representation of SU(2), as
in (7.56), they have only two possible fusion outcomes. So the Hilbert space HR is two-
dimensional. Let us denote the vectors that correspond to MR, M0R and M00R as  ,  0 and  00,
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The Skein relations give rise to  
the Kauffman bracket:                
 
                  Skein(      )= 
 
     

€ 

VL (A) = (−A)3w(L ) L (A)

)(Lw         is the writhe of link. Easily computable. 

To satisfy move (I) one needs to define  
Jones polynomial: 

Jones polynomial 

€ 

L (A)



• If two links have different Jones polynomials 
then they are inequivalent  

 => use it to distinguish links  
 
• Jones polynomials keep: 

  only topological information, no geometrical 

Jones polynomials 



Jones polynomial from anyons 
Braiding evolutions of anyonic states: 

| finali = Bn...B2B1| initiali

h initial| finali = h initial|Bn...B2B1| initiali

• Simulate the knot with braiding 
anyons 
• Translate it to circuit model:  
    <=>   find trace of matrices 

=
1

dn/2�1
hL(B)i



Jones polynomial from QC 

[Freedman, Kitaev, Larsen, Wang (2002);  
Aharonov, Jones, Landau (2005); 

et al. Glaser (2009); 
Kuperberg (2009)] 

Evaluating Jones polynomials is a #P-hard 
problem.  
 
Belongs to BQP class. 
 
With quantum computers it is polynomially easy 
to approximate with additive error. 



Conclusions 

Jones polynomials are used 
for quantum applications: 
• encrypt quantum information  
• quantum money 
• … 

Topological systems that can 
support anyons are currently 
engineered...  
 
http://quantum.leeds.ac.uk/~jiannis 


