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Computers
Antikythera mechanism Robotron Z 9001
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Analogue computer Digital computer: 0 & 1



Quantum computers

1) (spin,...)
'W)=al0)+b|l) (quantum superposition)
a]® + [bf° = 1
If you measure |¥) then P, = |a|?, P, = |b|?
This is the quantum bit or "qubit”

- Quantum binary states |0),

* Many qubits (two):
W) =1]0) ® |0)  product state (classical)
U) =al0) ®|0) +b|]1) ® |1) entangled state



Quantum computers

* Quantum binary gates-> Unitary matrices
U1q|0> — a|0> -+ b|1>
Usz,|0) ® |0) = a|0) ® |0) 4+ b|1) ® |1)

* Universality: Any {7, and a [J,,= any q. algorithm.
+ Quantum circuit model:
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Quantum computers

* Quantum Algorithm:
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Quantum computers: Why?

Computational complexity
Problems that can be solved in:
-polynomial time (easy)
-exponential time (hard)
as a function of input size.

Classical computers:
P.  polynomially easy to solve

NP: polynomially easy to verify solution

BQP: polynomially easy to solve with QC



Quantum computers: Why?
*  Factoring (Shor)
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quantum hackers exponentially better than
classical hackers!

+ Searching objects (6rover). where is #?
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Quantum computers: Why?

Factoring algorithm (Shor):

- Exponentially faster than known classical algorithm,
but we do not know if there is a better classical one...

Searching algorithm (Grover):
- Quadratic speed up (optimal),

does not change complexity class...

Still important enough: worth investigating...

Errors during QC are too catastrophic.



Topological quantum computers: Why?

Topology promises to solve the
problem of errors that inhibit
the experimental realisation of
quantum computers...

..and it is a lot of fun :-)



Geometry - Topology
Geometry
- Local properties of object
Topology
- Global properties of object




Topology of knots and links

Are two knots equivalent?

*Algorithms exist from the '60s
‘Extremely ftime consuming...
«Common problem (speech recognition, ...)

*Mathematically Jones polynomials can recognise
if two knots are inequivalent.



Particle statistics

Exchange two identical particles:

X1©x2

Statistical symmetry:
Physics stays the same, but |¥) could change!

‘II’()cl,x2 )> = ???“P(x2,x1 )>
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Anyons and statistics
Bosons V) —| W)
3D |
@ Fermions |W)—¢™"|W)
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, Anyons
Like a
quantum gate




Anyons, statistics and knots

N Initiate: Pair creation of anyons

.

Measure: do they fuse to the vacuum?

time

’\Ijoutput> _ BnBZBl ’\Ijinput>

<




Anyons, statistics and knots
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Anyons and knots

Assume I can generate anyons in the laboratory.

+ The state of anyons is efficiently /\
described by their world lines.

» Creation, braiding, fusion. \
VA

» The final quantum state of
anyons is invariant under JQ < § /J
continuous deformations of K\/ é

strands.




The Reidemeister moves

Theorem: /Q—» /_\ (I)

Two knots can be

deformed continuously N

one into the other iff /<_’ > < (1D)
one knot can be

transformed into the

other by local moves: 7 p /-\\
\ i (111)
N\ v
N~~— \



Skein relations




Skein and Reidemeister

Reidemeister move (II) is satisfied. Similarly (III).



Kauffman bracket

The Skein relations give rise to \/ Vv 1‘ ‘

the Kauffman bracket: AL
) 1V+ .......
Ske'"@ﬁ LIA) \_"\H

(-0 OO)aesr
(@)(Q)+(O-sew--cn

o ece x>



Jones polynomial

The Skein relations give rise to
the Kauffman bracket:

Skein( @):(L}(A)

To satisfy move (I) one needs to define
Jones polynomial:

V.(4) = (A" (L)(A)
w(L) is the writhe of link. Easily computable.



Jones polynomials

If two links have different Jones polynomials
then they are inequivalent

=> use it to distinguish links
Jones polynomials keep:

only topological information, no geometrical



Jones polynomial from anyons
Braiding evolutions of anyonic states:
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(Winitial| Y anal) = (Yinitial|Bn---B2B1|Vinitial) \
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\
«Simulate the knot with braiding
anyons

*Translate it to circuit model:
<=> find trace of matrices




Jones polynomial from QC

Evaluating Jones polynomials is a #P-hard
problem.

Belongs to BQP class.

With quantum computers it is polynomially easy
to approximate with additive error.

[Freedman, Kitaev, Larsen, Wang (2002);
Aharonov, Jones, Landau (2005);
et al. Glaser (2009);
Kuperberg (2009)]



Conclusions
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