To particular from the a constraint of the market of the m

Topological Quantum Computation



שיבו ביות ביותר הווים מבונים וויותר שונים וויותר ביותר ביו

Jiannis K. Pachos

Properties of anyons





# Use anyon for QC

- · Assume we can:
  - Create identifiable anyons
     vacuum pair creation
  - Braid anyons
     Statistical evolution:
     braid representation B
- Fuse anyons e.g.  $\sigma \times \sigma = 1 + \psi$  Fusion Hilbert space:

$$|\sigma,\sigma\rightarrow 1\rangle, |\sigma,\sigma\rightarrow\psi\rangle$$



# time

# Use anyon for QC

- · Assume we can:
  - Create identifiable anyons
     vacuum pair creation
  - Braid anyons
     Statistical evolution:
     braid representation B
- Fuse anyons e.g.  $\sigma \times \sigma = 1 + \psi$  Fusion Hilbert space:

$$|\sigma,\sigma\rightarrow 1\rangle, |\sigma,\sigma\rightarrow\psi\rangle$$



# The braid group Bn

The braid group Bn has elements b1, b2, ..., bn-1

$$b_i b_j = b_j b_i$$
, for  $|i - j| \ge 2$ 

$$b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$$
 for  $1 \le i < n$ 

#### Pictorially:



$$\begin{vmatrix} b_{i}b_{i+1}b_{i} = b_{i+1}b_{i}b_{i+1} \end{vmatrix}$$

## Braiding and Fusion properties

 The action of braiding of two anyons depends on their fusion outcome:

Rcab is a phase factor



· Changing the order of fusion is non-trivial:

$$a \qquad b \qquad c \qquad a \qquad b \qquad c$$

$$= \sum_{j} (F_{abc}^{d})_{j}^{j} \qquad d$$

## Inception of Anyonic Models

- 1. Take a certain number of different anyons 1, a, b, ...
  the vacuum (1) and one or more non-trivial particles
- 2. Define fusion rules between them

  1×a=a, a×b=c+d+..., a×a=1+...

  The vacuum acts trivially. Each particle has an anti-particle (might be itself or not).
  - Abelian anyons axb=c
  - Non-Abelian anyons axb=c+d+...

#### Inception of Anyonic Models

3. The F and B matrices are determined from the **Pentagon** and Hexagon identities



## Inception of Anyonic Models

3. The F and B matrices are determined from the Pentagon and Hexagon identities



Consider the particles: 1,  $\sigma$  and  $\psi$ 



d<sub>n</sub>=2<sup>n/2</sup> increase in dim of Hilbert space

. . .

Consider the particles: 1,  $\sigma$  and  $\psi$ 

Fusion rules:  $\sigma \times \sigma = 1 + \psi$ ,  $\psi \times \psi = 1$ ,  $\sigma \times \psi = \sigma$ 



$$|\Psi\rangle = |1,1,...\rangle$$

$$|\Psi\rangle = |1,\psi,...\rangle$$

All these states span the fusion Hilbert space.

Braiding neighboring anyons transforms states

Consider the particles: 1,  $\sigma$  and  $\psi$ 

Fusion rules:  $\sigma \times \sigma = 1 + \psi$ ,  $\psi \times \psi = 1$ ,  $\sigma \times \psi = \sigma$ 

Qubit:



Consider the particles: 1,  $\sigma$  and  $\psi$ 

Fusion rules:  $\sigma \times \sigma = 1 + \psi$ ,  $\psi \times \psi = 1$ ,  $\sigma \times \psi = \sigma$ 

From 5-gon and 6-gon identities we have:

$$F_{\sigma\sigma\sigma}^{\sigma} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = H$$

Rotation of basis states

Braiding 
$$R_{\sigma\sigma}^1 = e^{-i\pi/8}$$
 and  $R_{\sigma\sigma}^{\psi} = ie^{-i\pi/8} \Rightarrow R_{\sigma\sigma} = e^{-i\pi/8} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ 

$$(R_{\sigma_{1}\sigma_{2}})^{2} \Big|_{\sigma_{4}}^{\sigma_{1}\sigma_{2}\sigma_{3}} = (R_{\sigma_{1}\sigma_{2}}^{1})^{2} \Big|_{\sigma_{4}}^{\sigma_{1}\sigma_{2}} + (R_{\sigma_{1}\sigma_{2}}^{\psi})^{2} \Big|_{\sigma_{4}}^{\sigma_{1}\sigma_{2}} + (R_{\sigma_{1}\sigma_{2}}^{\psi})^{2} \Big|_{\sigma_{4}}^{\sigma_{1}\sigma_{2}\sigma_{3}}$$

$$= e^{-i\pi/4} \bigvee_{0_{1}}^{\sigma_{1}} \bigvee_{0_{4}}^{\sigma_{2}} - e^{-i\pi/4} \bigvee_{0_{4}}^{\sigma_{1}} \bigvee_{0_{4}}^{\sigma_{2}} \bigvee_{0_{4}}^{\sigma_{3}}$$

$$= e^{-i\pi/4} \int_{\Psi}^{\sigma_1 \sigma_2 \sigma_3}$$

$$H\sigma^z H = \sigma^x$$

Clifford group: non-universal!



Measurement: Outcome of pairwise fusion, 1 or  $\psi$  $H\sigma^z H = \sigma^x$ 

Gates: Clifford group. Non-universal! One needs a phase gate: employ interactions between anyons.

Can be employed as a quantum memory.

## Fibonacci Anyons

Consider anyons with labels 1 or  $\tau$  with the fusion properties:  $1 \times 1 = 1$ ,  $1 \times \tau = \tau$ ,  $\tau \times \tau = 1 + \tau$ 



# Fibonacci Anyons and QC



Unitaries B and F are dense in SU(2). [Freedman, Larsen, Wang, CMP 228, 177 (2002)]

#### Fibonacci Anyons and QC

Qubit encoding:





Unitaries B and F are dense in SU(2). Extends to  $SU(d_n)$  when n anyons are employed.

#### Fibonacci Anyons and QC

Qubit encoding:





CNOT

Unitaries B and F are dense in SU(2). Extends to  $SU(d_n)$  when n anyons are employed.

#### Conclusions

- Topological Quantum Computation promises to overcome the problem of decoherence and errors in the most direct way.
- There is lots of work to be done to make anyons work for us.

• Is it worth it?

Aesthetics says YES!

