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1. GENERALITIES 

June 20, 2013 Bertinoro, Italy 2 



The blind men and the elephant  

John Godfrey Saxe’s (1816-
1887) version of the legend: 
 
•First man (feeling the side): like 
a wall 
•Second (the tusk): like a spear 
•Third (the trunk): like a snake 
•Fourth (the knee): like a tree 
•Fifth (the ear): like a fan 
•Sixth (the tail): like a rope 

Source: Phra That Phanom chedi, Amphoe That Phanom, 
Nakhon Phanom Province, northeastern Thailand. 
 
Picture downloaded from Wikipedia 
Author: Pawyi Lee 
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Modeling 

• What is a model? 
o A (partial) view of the reality 
o An abstraction of the reality 
o A representation of the (supposedly) main features of the reality, including the 

connections among them 
 

o For a given object of study, many models may be given, possibly focusing on 
different features of the object 

 
• What a model is not 

o A model is not the reality 
o A model is not certain! 

 
• Many types of models exist! 

 
 
“All models are wrong, some are useful” 
 Box, G.E.P., Robustness in the strategy of scientific model building, in 

 Robustness in Statistics, R.L. Launer and G.N. Wilkinson, Editors. 1979, 
 Academic Press: New York. 
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An example: choose your hypothesis 

• From S.Mahajan: Street-fighting mathematics, MIT Press, 2010 
• Problem: how many babies (0-2 year olds) are in the US? 

o Exact solution: look at the plot with the birth dates of every person in 
the US 

– Huge effort; collected every 10 year by the US Census Bureau 
 
 
 
 
 

o Approximation 
– US population: 300 million in 2008 
– Assume a life expectancy of 75 (a model where everybody still alive at 75 

dies abruptly on their 75th birthday) 
– Lump the curve into a rectangle: width of 75, height to be calculated 
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Choose your hypothesis (continued) 

• Height of the rectangle: 
o Total population of US: 300 million (2008) 
o Height: 300.000.000/75=4.000.000 

• Result: calculate the area of a rectangle with height 4.000.000 
and width 2 

o Result: 8.000.000 babies 0-2 year of age 
o Compare with the Census Bureau’s figure: 7.980.000 !! 
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Model: Life inside a cell 

 Simplifications often made by 
biomodelers 
• Cell is “like a bag of chemicals 

floating in water” 
• Metabolites flow around 

chaotically 
• Metabolites are uniformly 

distributed 
• Proteins are just like balls (or 

cubes), DNA is just like a rope 
• In a DNA sequence, A is 

always matched with T, C 
always with G 

• Processes are isolated from 
each other and from the 
environment 

• …  

 The reality is surprisingly 
complex 
• The cell has a skeleton, gives it 

flexibility 
• Many intracellular boundaries, 

many specialized organelles 
• Highly specific metabolites 
• Very precise recognition of 

one’s target 
• Energy efficiency optimized 
• Exquisite regulation, 

synchronization, signal 
propagation, cooperation 

• Some particles do move 
chaotically, but some others 
are transported 

• Some aspects are discrete 
(on/off), some others are 
continuous-like (always on, 
variable speed) 

• Huge pressure, crowded 

A view on “The Inner Life of a Cell” (Harvard University, 2006):  
  
 Artistic representation of metabolite transportation, protein-protein binding, DNA 
 replication, DNA ligase, microtubule formation/dissipation, protein synthesis, …  
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Mathematical modeling 

• We focus in this lecture on mathematical models 
o As we saw, (many) other types of models exist 
o “Model” is indeed a very overloaded word 
o In this lecture a model is a mathematical representation of the reality 
o Models that mimic the reality by using the language of mathematics 

 
• Goal of the lecture 

o An introduction to the process of mathematical modeling 
o Give a number of techniques used for: 

– Building a model 
– Analyzing a model 

o Main tools: (systems of) ODEs 
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Mathematical models 

• Starting point for modeling: divide the world into 3 parts 
o Things whose effects are neglected 

– Ignore them in the model 
o Things that affect the model but whose behavior the models is not 

designed to study 
– External variables, considered as parameters, input, or independent 

variables 
o Things the model is designed to study the behavior of 

– Internal (or dependent) variables of the model 

• Deciding what to model and what not is difficult 
o Wrong things neglected: the model is no good 
o Too much included: hopelessly complex model 
o Choose the internal variables wrongly: the model will not capture its 

target 
o How general should the model be: model a table (any table?) or the 

specific table in front of the modeler 
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Modeling cycle 

Real-world 
data Model 

Predictions / 
explanations 

Mathematical 
conclusions 

Analysis Verification 

Simplification 

Interpretation 
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Model validation 

• Any model must always be subjected to experimental validation 
against the reality 

 
• A model may be invalidated by experimental data 

 
• No set of experimental data can confirm the “truthfulness” of a 
model 
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2. FORMULATING AN ODE 
MODEL 
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Modeling with differential equations 

• Modeling strategy 
o We model the change in the values of all variables:  
o Future value = present value + change 
o We describe the change as a function of the current values of all 

variables 
o If the process takes place continuously in time, it leads to differential 

equations 
• Each species s modeled as a function s:R+R+ 

o Concentrations  
• Dependencies expressed as systems of ODEs 

 
• Bad news: the equations are often non-linear and in general they 
cannot be solved analytically 
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Example: population growth 

• Example: population growth (the Malthus model, 18th century) 
 

o Problem: Given a population’s size P0 at time t=t0, predict the 
population level at some later time t1 

o We consider two factors: birthrate and death rate. We ignore 
immigration and emigration, living space restrictions, food avail, etc. 

o Birthrate: influences by many factors, including infant mortality rate, 
availability of contraceptives, abortion, health care, etc. 

o Death rate: influences by sanitation, public health, wars, pollution, 
medicine, etc. 

o Assume that in a small interval of time, a percentage b of the 
population is newly born and a percentage c of the population dies 

o We write an equation for the change in the population: dP/dt = bP(t)–
cP(t), i.e., dP/dt=(b-c)P(t) 

o The solution is: P(t)=P0exp((b-c)(t-t0)) 
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Example: population growth 

• Verifying the model: numerical fit and validation 
 

o Population of US in 1990: 248.710.000 and in 1970: 203.211.926 
o Plugging in these numbers, we obtain that b-c=0.01 
o Predict the population in 2000: 303.775.080 
o The real population level in 2000: 281.400.000.  
o The model prediction is about 8% off the mark. Not too bad! 
o Predict the population level in 2300: 55.209.000.000.000!!! 

 
o Conclusion: the model is unreasonable over long periods of time 
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A refined model for population growth 

• In the basic model we have assumed that the change in the 
population is proportional to the current population level: dP/dt = kP(t) 

 
• Assume that k is not constant 

o Assume that it depends on the population level 
o For example: as the population increases and gets closer to a maximum 

level M, k decreases 
o One possible (simple, linear) model for this: k=r(M-P(t)) 
o Our equation: dP/dt=r(M-P(t))P(t) 

 
o Such a population model for US was proposed in 1920, with 

M=197.273.522, determined based on census figures for 1790, 1850, 
1910 
 

o Verifying the model: very good predictions up to 1950, too small 
predictions for 1970, 1980, 1990, 2000 

o Not surprising: immigration, wars, advances in medicine not considered 
 

o Note: Verifying the model on the growth of yeast in culture gives 
excellent predictions 
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Giordano et al. A first course in 
mathematical modeling. (3rd edition), 
Page 375 

June 20, 2013 Bertinoro, Italy 17 



Stable and unstable equilibria / steady 
states 
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• Equilibrium point / steady state: one where all ODEs 
in the model are zero 

 
• Types of equilibrium points (informal definitions) 

 
o Stable: starting from a nearby initial point will give an 

orbit that remains nearby the original orbit 
 

– Asymptotically stable (attractor): starting from a nearby 
initial point will give an orbit that converges towards the 
original orbit 

– Example: a pendulum in the lowest position 
 

o Unstable: starting from a nearby initial point may give 
an orbit that goes away from the original orbit 

– Example: a pendulum in the highest position 

 

Stable-unstable 
equilibrium 
Source for picture: 
Wikipedia 



Graphical solutions 

• Consider autonomous systems of first-order ODEs dxi/dt=fi (x1,x2,…xn)  
o not time dependent 

 
o consider its solution as describing a trajectory in the n-dimensional plane, 

with coordinates (x1(t),x2(t),…,xn(t)) 
– convenient to think about it as the movement of a particle 

 
o Having an autonomous system implies that the direction of movement 

from a given point on the trajectory only depends on that point, not on 
the time when the particle arrived in that point 

– Consequence: only one trajectory going through any given point 
– Equivalently: two different trajectories cannot intersect 
– Consequence: no trajectory can cross itself unless it is a closed curve (periodic) 

 
o the n-dimensional plane (x1,x2,…xn) is called a phase plane 
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Graphical solutions 

• Consider autonomous systems of first-order ODEs dxi/dt=fi 
(x1,x2,…xn)  

o if (e1,e2,…en) is an equilibrium point, then the only trajectory going 
through that point is the constant one 

– Consequence: a trajectory that starts outside an equilibrium point can only 
reach the equilibrium asymptotically, not in a finite amount of time 

 
• The resulting motion of a particle can have one of the following 3 
behaviors: 

o approaches an equilibrium point 
o moves along or approaches asymptotically a closed path 
o at least one of the trajectory components becomes arbitrarily large as 

t tends to infinity 
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Example: a competitive hunter model 

• Assume we have a small pond that we desire to stock with game 
fish, say trout and bass. The problem we want to solve is whether it 
is possible for the two species to coexist 

 
• Model formulation 

o The change in the level of trout X(t):  
– Assuming food is available at an infinite rate: increase of trout population 

at a rate proportional to its current level: aX(t) 
– Assume that the space is a limitation for the co-existance of the two 

species in terms of the living space. The effect of the bass population is to 
decrease the growth rate of the trout population. The decrease is 
approximately proportional to the number of possible interactions between 
trout and bass: -bX(t)Y(t) 

– Equation: dX/dt = aX(t) – bX(t)Y(t) 
o Similar reasoning for the level of bass Y(t): 

– dY/dt=mY(t) – nX(t)Y(t) 
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Example: a competitive hunter model 

• Model: dX/dt = aX(t) – bX(t)Y(t), dY/dt=mY(t) – nX(t)Y(t) 
 

• Question: can the two populations reach an equilibrium where 
both are non-zero 

o Answer: ax-bxy=0, my-nxy=0 
o Solution: either x=y=0, or x=m/n, y=a/b 

 
• Difficulty: impossible to start with exactly the equilibrium values 
(they might not even be integers) 

o so, we cannot expect to start in an equilibrium point 
o study the property of the equilibrium, hoping it is a stable one 
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Giordano et al. A first course in 
mathematical modeling. (3rd edition), 
Page 421 

Example: a competitive hunter 
model (continued) 

 Equilibrium points: (0,0), 
(m/n, a/b) 
 Additional question: what is 
the behavior if we start close to 
the equilibrium point? 

 
• Solution: we study the 

tendency of X(t), Y(t) to 
increase/decrease around 
the equilibrium point. For 
this, we study the sign of 
the derivatives of X(t), Y(t) 
 

• dX/dt≥0 ⇔ aX-bXY≥0 ⇔ 
a/b≥Y 
 

• dY/dt≥0 ⇔ mY-nXY≥0 ⇔ 
m/n ≥ X 
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Graphical analysis of the trajectory 
directions 

B
as

s 

Y 

X 

m/n 

a/b 

Trout 
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Graphical analysis of the trajectory 
directions around the equilibria 
B
as

s 

Y 

X 

m/n 

a/b 

Trout 
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Graphical analysis of the trajectory 
directions 

B
as

s 

Y 

X 

m/n 

a/b 
Bass win 

Trout win 

Conclusion: the co-existance of the two species is highly improbable 
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Limits of graphical analysis 

• Not always possible to determine the nature of the motion near an 
equilibrium based on graphical analysis 

o Example: the behavior in Fig 11.9 through graphical analysis is 
satisfied by all 3 trajectories in Fig 11.10 

o Example: The trajectory in Fig 11.10c could be either growing 
unboundedly or approach a closed curve 
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3. KINETIC MODELING OF 
REACTION NETWORKS 
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Modeling: from “art” to automatization 

• The type of modeling shown so far required a great deal of 
creativity from the modeler in formulating the model 

 
• For the remaining of this lecture: 

o models as reaction networks 
 

o separate the formulation of the model in two different stages 
 

– first identify the variables and describe their interactions using a simple 
syntax: chemical reaction networks (or sometimes rules) 
 

– second, build the associated mathematical model 
 this is uniquely determined by the first part and by the choice of a modeling 

principle (such as mass-action, Michaelis-Menten, etc.) 
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Chemical reaction networks 

• Chemical reaction network: 
o finite set of species 
o finite set of reactions represented as rewriting rules 
o input on the left hand side, output on the right hand side 
o multiplicities indicated in the rewriting rule 

 
• Example: 

 
 
 
 
 
 

o The inputs (the reactants) are consumed in the number of copies 
indicated by the reaction and the output (the products) are created 
with the indicated multiplicity 

June 20, 2013 Bertinoro, Italy 31 



Stoichiometry 

• The stoichiometric coefficients denote the quantitative 
proportion in which substrate and product molecules are involved in 
a reaction. 
• In the case of a reversible reaction the stoichiometric coefficient 
values depend on the chosen direction. Usually, the direction is 
chosen to be ‘left-to-right’. 

 
For a reversible reaction 
 
 
 
the stoichiometric coefficients are: 
 

32 
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Stoichiometric matrix 

• Stoichiometric matrix N=(nij)sxr: nij denotes the stoichiometric 
coefficient of species Si in reaction Rj. 

 
 

• Example: 
 
Reaction network 

 
 

 r1: A ⇄ 2B 
r2: A+C ⇄ D 
r3: D → B+E 
r4: A+B ⇄ D+B 

33 



























−

−

−−−

0100

1110

0010

0102

1011

E

D

C

B

A

Stoichiometric matrix 
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Stoichiometric matrix 

• The stoichiometric matrix contains valuable information about the 
structure of the network 

o calculate the mass conservation relations 
o calculate the steady states 
o which combinations of individual fluxes are possible in steady state 
o calculate sensitivity coefficients 

 
• Discuss some of them in the rest of this lecture 
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Chemical reaction networks 

• A chemical reaction network gives rise to a dynamical system 
o describe how the state of the network changes over time 
o State of the system: the concentration of all species at time t 
o Question: how do we express the change in the concentrations in 

time? 
– General kinetics: associate to each reaction a function specifying how fast 

its reactants/products are consumed/produced – reaction rate 
– Simultaneous update (e.g., as a system of ODEs) of all species 

 
• In this lecture we discuss a few kinetic laws 

o Law of mass-action 
o Enzyme kinetics 

– Michaelis-Menten 
– Inhibition 
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Mass-action kinetics 
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Mass-action models for biochemical 
reaction networks 

• The mass action kinetics model is derived based on the 
Boltzmann’s kinetic theory of gases and is justified under the 
assumption of 
 

o constant temperature and 
o fast enough diffusion in the cell, 

  
 which ensures that the mixture of substances is “well-stirred”, i.e. 

homogenously distributed in a fixed volume V. 
 
 

June 20, 2013 37 Bertinoro, Italy 



38 

The law of mass action 

• Waage, Guldberg 1864, Guldberg, Waage 1867, 1879 
o The reaction rate is proportional to the probability of a collision of the 

reactants 
o The probability of the collision is proportional to the concentration of 

reactants to the power of the molecularity 
 

o For a reaction n1A1+n2A2+…+nmAm  products, the reaction rate is  
 

 
 

o For a reversible reaction n1A1+n2A2+…+nmAm <-> r1B1+r2B2+…+rsBs, 
the reaction rate is v=v1-v2, where v1 is the rate of the “left-to-right” 
reaction and v2 is the rate of the “right-to-left” reaction 
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Writing the mass-action ODE model 

• The reaction rate gives the amount with which the concentration 
of every metabolite involved in the reaction changes per unit of time 

o For a consumed metabolite, the change will be –v(t) 
o For a produced metabolite, the change will be v(t) 

 
• Example 

 
o For a reaction A->, the reaction rate is v(t)=kA(t) 

 dA/dt=-kA(T) 

 
o For a reaction A+BC, the reactions rate is v(t)=kA(t)B(t), for some 

constant k 
 dA/dt=-kA(t)B(t),  dB/dt=-kA(t)B(t),   dC/dt=kA(t)B(t) 
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Coupled reactions 

• Assume we have a set of reactions 
o A+B->C 
o A+2C<->B 
o C->2A 

 
• Write the rates of all reactions 

o v1=k1AB 
o v2=k2

+AC2-k2
-B 

o v3=k3C 
 

• Write the differentials: for each metabolite, consider all reactions 
where it participates 

o dA/dt=-v1-v2+2v3=-k1AB-k2
+AC2+k2

-B+2k3C 
o dB/dt=-v1+v2=-k1AB+k2

+AC2-k2
-B 

o dC/dt=v1-2v2-v3=k1AB-2k2
+AC2+2k2

-B-k3C 



A predator-prey model 

• A model where we have two species, one being the primary food 
source for the other 

 
• Problem 

o Whales, krill 
o Whales eat the krill; the krill live on the plankton in the sea 
o If whales eat too much krill, then the krill ceases to be abundant, and 

the whales will starve or leave the area 
o As the population of whales declines, the population of krill increases 
o This makes the population of whales grow again, etc. 
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A predator-prey model 

• Assumptions and model formulation (the Lotka-Volterra model) 
o The krill population x(t), the whale population y(t) 
o The model as a reaction network 

– Krill multiplies (assume infinite plankton as a food source for krill): X2X   (a) 
– Whales eat krill: X+YY  (b) 
– Whales die: Y   (m) 
– Whales multiply only if there is krill: X+YX+2Y   (n) 

o The asociated mass-action ODE model: 
– dx/dt= ax(t)-bx(t)y(t) 
– dy/dt=-my(t)+nx(t)y(t) 

o We have the model formulated as the system of the 2 ODEs 
 

• Equilibrium points (or steady states) (xs,ys) 
o dx/dt=dy/dt=0 
o (xs,ys)=(m/n,a/b) or (xs,ys)=(0,0) 
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A predator-prey model:  
numerical integration 
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A predator-prey model: phase portrait 
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Comments 

• Mass-action kinetics leads to non-linear ODE models 
 

• Even though non-linear, there is clear regularity in the structure 
of a mass-action ODE model 

o Reactants consumed with the same rate as products are coming 
– The model is in fact linear in terms of reaction rates 

 
o Well-specified form of the ODEs 

– No longer have the option of obtaining a perfect fit by changing the form of 
the math model 

– Can only fit the model through the kinetic rate constants 
– Fitting such models is a difficult problem 

 
o Very different (easier!) to analyze an ODE system coming from a 

mass-action reaction network than to analyze an arbitrary system of 
ODEs 
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Kinetics of enzymatic reactions 
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Enzymatic reactions 

• Enzymes play a catalytic role in biology 
o Highly specific 
o Remain unchanged by the reaction 
o One enzyme molecule catalyzes about a thousand reactions per 

second 
o Rate acceleration of about 106 to 1012-fold compared to uncatalyzed, 

spontaneous reactions 
 

• Enzymatic reactions usually described using more complicated 
models than mass-action 

 
• Example: A is transformed into B through the help of enzyme E 

o A+EB+E 
o Mass-action: dB/dt=kA(t)E(t) 
o Usual model for this reaction: dB/dt=vmaxA(t)/(KM+A(t)) 

 
• Discuss in the following the modeling of enzymatic reactions 
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Enzymatic reactions 

• Brown (1902) proposed the following reaction model for irreversible 
enzymatic reactions: E+S <-> E:S -> E+P 
 

• The associated mass-action ODE model: 
 

1. dS/dt=-k1ES+k-1(E:S) 
2. d(E:S)/dt=k1ES-(k-1+k2)(E:S) 
3. dE/dt=-k1ES+(k-1+k2)(E:S) 
4. dP/dt=k2(E:S) 

 
• Michaelis, Menten (1913): assume that the first part of the reaction 

is much faster than the second one: k1,k-1 >> k2 
 

• Briggs, Haldane (1925): in some conditions, it may be assumed that 
E:S reaches quickly a steady state 
o This is the case if S(0)>>E (the enzyme is saturated by the substrate) 

 
• Both assumptions lead to assuming that d(E:S)/dt=0, i.e., E:S is 
constant 

o investigate what consequences this assumption has 



Enzymatic reactions 

 E+S <-> E:S -> E+P 
 

1. dS/dt=-k1ES+k-1(E:S) 
2. d(E:S)/dt=k1ES-(k-1+k2)(E:S) 
3. dE/dt=-k1ES+(k-1+k2)(E:S) 
4. dP/dt=k2(E:S) 
 

 If d(E:S)/dt=0 (i.e., E:S is constant): 
 5. k1ES-(k-1+k2)(E:S)=0 

 
 Rewrite equation 1 into:  
  
 1’. dS/dt=-k2(E:S) 

 
 Clearly, E+E:S is constant in the 

model, say E+E:S=Etot ,i.e.,  
 
 6. E=Etot-E:S 

 Then equation 5 can be rewritten:  
  k1(Etot-E:S)S-(k-1+k2)(E:S)=0 

 
 Then E:S=EtotS/(S+(k-1+k2)/k1) 

 
 Define vmax =k2Etot, Km=(k-1+k2)/k1 

 
 In other words: 
  dS/dt =-vmaxS/(S+Km),  
  dP/dt=vmaxS/(S+Km) 

 
• Where vmax is the maximal rate 

(velocity) that can be obtained 
when the enzyme is completely 
saturated with substrate, 
vmax=k2Etot 

• Km is the Michaelis constant, 
Km=(k-1+k2)/k1, equal to the 
substrate concentration that yields 
the half-maximal reaction rate 
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Michaelis-Menten kinetics 

 Low substrate concentration 
S: reaction rate increases almost 
linearly with S 

 
 High substrate concentration 
S: reaction rate is almost 
independent of S 

 
 vmax is the maximal reaction 
rate that can be achieved for 
large substrate concentration 

 
 The Michaelis-Menten constant 
is the substrate concentration 
that gives 1/2vmax 
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Regulation of enzyme activity 

• Enzymes catalyze reactions 
 

• Other reactions may influence (regulate) the activity of the 
enzyme 

o Inhibitors 
o Activators 
o Widely found in metabolic pathways 
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General scheme of inhibition in Michaelis-
Menten kinetics 

E + S  E:S   E + P 
+  + 
I  I 
 
 
 
E:I+S  E:S:I  E + P + I 
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1 2 

3 4 

5 6 

• Reactions 1,2: Michaelis-Menten 
• Reactions 1,2,3: competititve inhibition 
• Reactions 1,2,4: uncompetitive inhibition 
 

• Reactions 1,2,3,4,5: non-competitive inhibition 
• Reactions 1,2,3,4,5,6: partial inhibition 



4. ANALYSIS OF ODE MODELS 

June 20, 2013 Bertinoro, Italy 53 



Mass-conservation relations 
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Mass conservation relations 

• Frequently, the concentrations of several substances involved in 
biochemical reaction networks are included in so-called conservation 
sums. 

 
• A characteristic feature of such substances is that they are neither 
produced nor degraded, however they can form complexes with 
other species or be part of other species. 
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Mass conservation relations 

• Example 
reactions: 
 2A ⇄ A2 

 A2 + B ⇄ A2:B 
 A2:B → C + A2:B 
 C →  
 
species: 
 A, A2, B, A2:B, C 
 
- The total amounts of A and B are conserved in time. Neither of them 

is produced nor degraded.  
1×#A + 2×#A2 +2×#A2:B = const. 
1×#B + 1×#A2:B = const. 
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Mass conservation relations 

• To identify the conservation relations we solve the following 
equation in matrix G: 

 
o Indeed, for such G: 

 
 
 

• Example (continued): 
 
 

57 

0=GN

.0== GNv
dt
dSG

0GNGNS =







=























−

−
−

−

=























=
01100
02021

1100
0010
0010
0011
0002

C
B:A

B
A
A

2

2

June 20, 2013 Bertinoro, Italy 



Mass conservation relations 

• The number of independent rows of G, i.e. the number of 
conservation relations, is equal to s-Rank(N).  

 
o In the example s=5 and Rank(N)=3. It follows that G contains 2 

independent rows, i.e., there are two mass conservation relations. 
 
o Observation:  if the stoichiometric matrix has full rank, it follows that 

the system has no conservation relations. 
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Mass conservation relations 

• Conservation relations can be used to reduce the system of 
differential equations dS/dt=Nv describing the dynamics of a 
reaction network. 

 
• Each conservation relation leads to one more dependent variable, 
that can be expressed in terms of the independent variables and 
eliminated from the system of ODEs 

 
• Always check the biological meaning of each mass conservation 
relation 
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Steady states 
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Steady state 

• Steady state – one of the basic concepts of dynamical systems 
theory, extensively utilized in modelling. 
• Steady states (stationary  states, fixed points, equilibrium points) 
are determined by the fact that the values of all state variables 
remain constant in time.  
• In steady state it holds for a reaction network that 

 
 

• Solve the resulting algebraic equation in the unknowns S1,…,Ss 
(the s components of the steady state) 
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𝑑𝑆
𝑑𝑡 = 𝑁𝑁 = 0 



Steady state 

• Example (mass action kinetics) 
 
 2A → B (k1) 
 A+B ⇄ C (k+

2,k-
2) 

 
Steady state algebraic equations ([A]0, [B]0, and [C]0 are unknowns) 
 
 
                                                      or 
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Elementary fluxes 
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Elementary flux modes 

• Concept of elementary flux mode 
o a minimal set of enzymes (or, in other words, reactions) that can 

operate at steady state 
o the smallest sub-networks that allow a bionetwork to function at 

steady state 
o a minimal combination of reactions whose combined effect maintains 

the network in steady state 
– any subset of it does not maintain the steady state 

o they offer a key insight into the objectives of the network 
o each elementary flux mode should have a clear biological 

interpretation in terms of the objectives of the network 
o determines whether a given set of enzymes/reactions are feasible at 

steady states 
• Larger flux modes can be obtained by composing several flux 
modes: steady-state flux distributions 
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Calculating the elementary flux modes 

• We are interested in combinations of reactions whose combined 
effect is to preserve the steady state 

o denote wi the weight of reaction i in the flux mode 

o Recall: 𝑑𝑆
𝑑𝑡

= 𝑁𝑁, where N is the stoichiometric matrix and v is the 
vector of fluxes 

o We are interested in combinations of fluxes (w1,…,wr) that ensure 
𝑑𝑑
𝑑𝑑

= 0 

o In other words, solve the equation Nw=0 in the unknown w 
o The solution is the kernel (or the null space) of matrix N 
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Example 

• Stoichiometric matrix: 
1 −1 0 −1
0 2 −1 0
0 0 0 1

 

 
• NK=0 yields solution 𝐾 = 1 1 2 0  

 
• In other words, in any steady state:  

o The rates of production and degradation of S3 must be equal: v4=0 
o v1+v2+2v3=0 
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S1 2S2 
 
 
S3 

v1 v2 v3 

v4 



5. MODELS AND DATA 
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Sources of error in modeling 

• Formulation errors 
o Result from errors in the model formulation  
o Significant variables were ignored  
o Interrelationships between variables were ignored or simplified 
o Relating the data to the model in the wrong way: see for example 

reporter systems 
• Truncation errors 

o Come from the math techniques used in building the model 
o For example, an infinite series expansion may be truncated to a 

polynomial 
• Round-off errors 

o Numerical errors coming from representing real numbers with finite 
precision 

• Measurement errors 
o Imprecision in the collection of data 
o Physical limitations of the instruments 
o Human errors 
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Model fitting 

• Problem: given the model and the data, is there a set of 
numerical values for all unknown kinetic parameters such that the 
numerical prediction of the model is ”close” to the data? 

 
• Several components 

o Search for parameter values – an optimization /  machine learning 
problem 

o Compare two sets of parameter values – introduce a suitable score 
function 

o Judge quality of the final model fit – introduce a measure of fit quality 
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Comparing two sets of parameter values 

• Methods for judging the fitness of a model / comparing two sets of 
parameter values 

 
o Chebyshev criterion: minimize the largest absolute deviation 

– Intuition: more weight given to the worst point 
 

o Minimize the sum of absolute deviations 
– Intuition: tends to treat each data point equally and to average the 

deviations 
 

o Least-squares 
– Intuition: somewhat in-between 
– Widely used in practice 

 
o ...  
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Fit quality 

• Various methods for defining the a quantitative measure for the 
quality of a model fit 

o Here present just one, from Kuhnel et al, BMC Systems Biology 
(2008) 

o Only one data set at a time 
o Gives a measure of the average deviation of the model prediction 

from the experimental data, normalized by (the average of) the 
absolute values of the model prediction 

o This measure of fit quality does not discriminate against models 
aiming to explain experimental data with large absolute values 

o Let exp be the experimental data; m the number of experimental 
points 
 
 
 
 

o Rule of thumb (Kuhnel et al): lower than 20% value for qual(exp) can 
be considered as a good fit 
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6. HEAT SHOCK RESPONSE 
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The modeling of the heat shock 
response 

• Intense research on modeling the HSR in the last years 
o HSR is an ancient, very well-conserved regulatory network across 

all eukaryotes; bacteria have a similar mechanism 
– Good candidate for deciphering the engineering principles of regulatory 

networks 
 

o Heat shock proteins are very potent chaperones (sometimes called 
the “master proteins” of the cell) 

– Involved in a large number of regulatory processes 
 

o Tempting for a biomodeling, SysBio project because it involves 
relatively few main actors (at least in a first, simplified 
presentation) 

• A number of models have been proposed 
o Some of them do not model the 3 components above 
o Some of them include modeling artifacts 

• Discuss here a new, simple molecular model and its 
mathematical analysis 
o Standard, text-book-like molecular reactions only 
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Heat shock response: main actors 

• Heat shock proteins (HSP) 
o Very potent chaperones 
o Main task: assist the refolding of misfolded proteins 
o Several types of them, we treat them all uniformly in our model with hsp70 as 

base denominator 
• Heat shock elements (HSE) 

o Several copies found upstream of the HSP-encoding gene, used for the 
transactivation of the HSP-encoding genes 

o Treat uniformly all HSEs of all HSP-encoding genes 
• Heat shock factors (HSF) 

o Proteins acting as transcription factors for the HSP-encoding gene 
o Trimerize, then bind to HSE to promote gene transcription 
o Treat uniformly all HSFs with HSF1 as base denominator 

• Generic proteins 
o Consider them in two states: correctly folded and misfolded 
o Under elevated temperatures, proteins tend to misfold, exhibit their 

hydrophobic cores, form aggregates, lead eventually to cell death (see 
Alzheimer, vCJ, and other diseases) 

• Various bonds between these species 
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A new molecular model for HSR 

Heat shock gene HSE 

Heat shock gene HSE 

HSP HSP 

HSP HSP 

HSF 

RNA pol 

HSP:HSF 

MFP 

MFP 

MFP 
MFP 

MFP 

37°C 

42°C 
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Our new molecular model 

 Transcription 
 

1. HSF+HSF <-> HSF2 
2. HSF+HSF2 <-> HSF3 
3. HSF3+HSE <-> HSF3:HSE 
4. HSF3:HSE -> HSF3:HSE+HSP 

 
 Backregulation 

 
5. HSP+HSF <-> HSP:HSF 
6. HSP+HSF2 -> HSP:HSF+HSF 
7. HSP+HSF3 -> HSP:HSF+2HSF 
8. HSP+HSF3:HSE -> HSP:HSF+2HSF+HSE 

 Response to stress 
 

9. PROT -> MFP 
10.HSP+MFP <-> HSP:MFP 
11.HSP:MFP -> HSP+PROT 

 
 Protein degradation 

 
12.HSP  0 
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The mass-action ODE model 
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Modeling of the heat-induced misfolding 

 Question: how do we model 
the heat-induced misfolding? 

• What is the temperature-
dependant protein misfolding 
rate per second? 

 Adapted from Pepper et al 
(1997), based on studies of 
Lepock (1989, 1992) on 
differential calorimetry 

 

ϕT=(1-0.4/eT-37) x 1.4T-37 x 1.45 x 
10-5 s-1 

 
 Formula valid for temperatures 

between 37 and 45, gives a 
generic protein misfolding rate 
per second 
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Parameter estimation 

• Data readily available for the goal: Kline, Morimoto (1997) – heat 
shock of HeLa cells at 42C for up to 4 hours, data on DNA binding 
(HSF3:HSE) 
 

• Requirements for the model: 
o 17 independent parameters, 10 initial values to estimate 
o 3 conservation relations available 
o The model must be in steady state at 37C, which gives 7 more algebraic 

equations (each of them quadratic) 
o Altogether: 17 independent values 

 
o Other conditions: total HSF somewhat low, refolding a fast reaction, HSPs long-

lived proteins 
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The modeling/simulation 
environment  

• Our choice: COPASI (www.copasi.org) 
 

o Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., 
Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006). COPASI — a 
COmplex PAthway SImulator. Bioinformatics 22, 3067-74.  

o User-friendly 
o Stochastic and deterministic time course simulation 
o Steady state analysis 
o Metabolic control analysis 
o Mass conservation analysis 
o Optimization of arbitrary objective functions 
o SBML-based 

 
o Excellent for parameter estimation 
o FREE! 
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Parameter estimation 

• Standard estimation procedure in COPASI (and not only) 
o Give the data and the target function 
o Give the list of parameters 
o The software scans the range of parameters and makes choices; for 

each choice it evaluates the target function against the experimental 
data (least mean squares) 

– The way it scans the space of parameter values depends on the chosen 
method 

– Many sophisticated methods currently available 
– All are local-optimization methods 

o It reports the best set of values 
 

• Estimation repeated over and over again, with various methods 
for scanning the parameter space, to improve on the score of the 
fit 
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Parameter estimation 

• Model fit is anecdotically easy: “with a few free 
parameters, an elephant can always be fit”! 

o Seems to come from a well known fact that for any given n points in 
the bi-dimensional space, a polynomial of suitable degree may be 
found to go through those points 

o In practice, the polynomial cannot be chosen freely 

• Our problem: 
o Find suitable parameter values and suitable initial values for all 

variables so that the numerical prediction for [HSF3:HSE] is close to 
the experimental data of Kline-Morimoto (1997) 

– Outcome: sure enough, “relatively easy” to find! 
o Additional requirement: the model must be in steady state at 37C 

– This is a condition on the initial numerical values of the model 
– Difficulty: the values found as a good fit at 42C may not satisfy the 

steady state condition! 
– Difficulty: to give this condition as a constrain to the model fit, one has 

to solve analytically an algebraic system of large degree: impossible! 
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Parameter estimation 

• Solution: rather than solving the algebraic system, we look for an 
approximation of its solution: translate this condition into a more 
extensive model fit 

o Problem: After obtaining the fit, the model is still not in the steady 
state! 

o Solution: replace the estimated initial values with (the numerical 
estimations of) the steady state at 37C. Then the resulting system 
remains in the steady state at 37C 

o Problem: The numerical fit (in absolute values) at 42C is ruined 
o Solution: recall that the Kline-Morimoto data is relative! In relative 

terms, the fit is excellent! 
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Parameter fit 

84 
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Predictions and validation 
1. HSF dimers are only a 

transient state between 
monomers and trimers 
 The model however does not 

ignore them because of kinetic 
considerations 

 Numerical simulations predict 
low levels of HSF dimers 

 
2. Higher the temperature, 

higher the response 
 

3. Prolonged transcription at 
43C confirmed  
 Unlike previous models 
 

4. Heat shock removed at the 
peak of the response 
confirms a more rapid 
attenuation phase 

All data is in relative terms with respect 
to the highest value in the graph so that 
it can be easily compared 
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Predictions and validation 
 Experiment: two waves of heat 

shock, the second applied after 
the level of HSP has peaked 

 Observation:  the second heat 
shock response much milder than 
the first 

• The reason is that the cell is 
better prepared to deal with the 
second heat shock 

• Therapeutic consequences have 
been suggested: “train” the cell 
for heat shock by an initial milder 
heat shock 

 
 The model prediction is in line 

with the experimental observation 
• Dotted line: heat shock at 42C for 

two hours, behavior followed up 
to 20 hours 

• Continuous line: heat shock at 
42C for two hours, followed by a 
second wave of heat shock after 
the level of HSP has peaked 
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Model identifiability 

• Problem: is there a unique set of parameter values that gives a 
“good” fit to the experimental data and validates all the additional 
tests? 
• Re-run the parameter estimation procedure 

o use different initial values 
o use different (types of) machine learning methods 

• Results 
o We obtained 10 more sets of parameter values that fit the 

experimental data of Kline-Morimoto and keep the model in steady 
state at 37C 

o All sets failed the model validation tests 
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Model identifiability – systematic 
sampling of the parameter space 

• Different approach: systematic sampling of the parameter space 
 

o partition the domain of each parameter into a large number of 
subintervals (say 100.000); sample values for that parameter from 
each subinterval 
 

o check the behavior of the model for all combinations of parameter 
values to get a sampling of the model behavior throughout the multi-
dimensional parameter space 
 

o Major problem: combinatorial explosion of the number of model 
variants 
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Model identifiability – Latin Hypercube sampling 

• Problem: huge number of samples to consider – (105)17=1085 

 
• Fast, practical solution: the Latin Hypercube Sampling method 
(McKay, 1979) 

– it provides samples which are uniformly distributed over each parameter 
– the number of samples is independent of the number of parameters 
– choose the size N of the sample; let p be the number of parameters 
– divide the domain of each parameter into N subintervals; randomly select 

N numerical values for each parameter i, one from each of its subintervals; 
place the values on column i of a matrix Nxp 
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Latin Hypercube sampling 
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Insert here the 
sampled values 
for parameter i 

Shuffle the 
values on 
each column 

Read from here 
the sample 
values of the 
parameter set 



Model identifiability – Latin 
Hypercube sampling 
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Model identifiability – Latin Hypercube 
sampling 
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Model identifiability 

• Conclusion 
o likely that a model of this size is not uniquely identifiable 
o finding an optimal (or at least a “good”) model setup is very difficult 
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7. DISCUSSION 
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Biomodeling with differential equations:  
some physical difficulties 

•Assumes that the time evolution of a chemically reacting system is 
both continuous and deterministic 
•Difficulties with this assumption 

o the time evolution is NOT continuous: molecular population levels 
increase and discrete only with discrete amounts 

o the time evolution is NOT deterministic (even when ignoring the 
quantum effects and assuming classical mechanics for the molecular 
kinetics) 

– it is only deterministic in the full position-momentum phase space 
(knowing the positions and velocities of all molecules) 

– it is not deterministic in the N-dimensional space of the species population 
numbers 

•However: 
o in many cases the time evolution of a chemical system can be treated 

as continuous and deterministic 
o the difficulties come when some species populations are small, or in 

conditions of chemical instability 
o Solution in these cases: stochastic models! 
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Deterministic and stochastic modeling 

Stochastic model 
• Given the current state of 

the system, many possible 
future behavior are possible 

• Probability distributions 
dictate the behavior of the 
system 

• Well-suited to model 
individual, rather than 
average behavior 

• Typical 
– Number of molecules are 

modeled 
– Reactions are taking place 

following “collisions” among 
the reactants 

– Markov processes 

Deterministic model 
• Given the current state of 

the system, all future 
behavior of the system is 
uniquely defined 

• Usually the model reflects 
the average behavior of 
the observed system 

• Typical methods used: 
differential or difference 
equations 

• Typical: 
– Concentrations of 

molecules are modeled 
– Reactions are taking place 

diffusion-like (gradient-
like) 

– Differential equations 
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Deterministic and stochastic modeling 

Stochastic modeling 
• The objects  

– the number of copies of all 
species of interest  

– the rates of all reactions 
• Main assumptions 

– The system is well-stirred 
– The system is at 

thermodynamical equilibrium 
• Methods 

– Those of probability theory 

ODE modeling 
• The objects  

– the concentrations of all 
species of interest  

– the rates of all reactions 
• Main assumptions 

– The system is well-stirred 
– The system is at 

thermodynamical 
equilibrium 

• Methods 
– Those of mathematical 

analysis (continuous 
mathematics) 
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Deterministic and stochastic modeling 

Stochastic model 
• It is the description of a 

continuous time, discrete state 
Markov process 

• Grand probability function: 
P(X1,X2,…,Xn,t) is the probability 
that at time t there are X1 
molecules of species S1, …, Xn 
molecules of species Sn 

• The grand probability function 
may be obtained through a 
differential equation: the 
chemical master equation 

– Reason what is the probability of 
being in a certain state after one 
step 

ODE modeling 
• The reaction rate gives the 

amount with which the 
concentration of every 
metabolite involved in the 
reaction changes per unit 
of time 

– For a consumed 
metabolite, the change will 
be –v(t) 

– For a produced metabolite, 
the change will be v(t) 
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Deterministic and stochastic modeling 

 Deterministic approach 
1. based on the concept of 

diffusion-like reactions 
2. the time evolution of the 

system is a continuous, entirely 
predictable process 

3. governed by a set of ODEs 
4. The system of ODEs is often 

impossible to solve 
5. it models the average behavior 

of the system 
6. assumes that the system is 

well-stirred and at 
thermodynamical equilibrium 

7. conceptual difficulties when 
small populations are involved 

8. numerical simulations are 
straightforward and fast 

9. impossible to reason about 
individual runs rather than the 
average 

 Stochastic approach 
1. based on the concept of 

reactive molecular collisions 
2. the time evolution of the 

system is a random-walk 
process through the possible 
states 

3. governed by a single 
differential equation: the 
chemical master equation 

4. the CME is often impossible to 
solve 

5. it models individual runs of the 
system 

6. assumes that the system is 
well-stirred and at 
thermodynamical equilibrium 

7. no difficulties with small 
populations 

8. numerical simulations via 
Gillespie’s SSA are slow 

9. only gives individual runs; 
estimate the average through 
many runs 
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