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Do quantum computers exist?

Geordie Rose and his D-Wave quantum computer
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Quantum cryptography device by id Quantique, in operation at the FIFA World Cup
competition in Durban
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|s the world deterministic?

,,Jedenfalls bin ich tiberzeugt, dafs der nicht
wiirfelt.

Albert Einstein, in a letter to Max Born

It took several decades until the inherent non-deterministic
nature of quantum theory was accepted as a “physical” fact.

,,Mein Ziel war zu beweisen,
dass niemand, nicht mal Gott,

den Verlauf der Welt
voraussagen kann.

Ernst Specker (mathematician, ETH Zurich)



Research in quantum information

Nobel prize
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Research in quantum information
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Research in quantum information
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Quantum
Information Theory



What is "quantum™?
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Quantum physics deviates from our day-to-
day experience about the world around us

Example 1: Entanglement
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Quantum physics deviates from our day-to-
day experience about the world around us

o
v

Example 2: No-cloning principle
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Quantum physics deviates from our day-to-
day experience about the world around us
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Example 2: No-cloning principle
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No-cloning theorem [Wootters und Zurek, 1982]

No physical device can copy the state of a quantum system
(for arbitrary states y).




The no-cloning principle does not seem
to be valid for macroscopic objects




Quantum
Information Theory



What is “information”?
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Two different approaches

Kolmogorov’s notion: Shannon’s notion:
based on the theory of based on probability
computation theory



Common feature of both approaches

The mathematical theory should be independent
of how information is represented.
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Common feature of both approaches

The mathematical theory should be independent
of how information is represented.

l'l '.|‘ ;
/\M

As we shall see, this idea is doomed to fail ...



Kolmogorov’'s notion of information




What is information?

For each pixel (x0,y0) on the screen do:
{x=0 y=0
iteration = 0 max_iteration = 1000
while ( x*x + y*y <= (2*2) AND iteration < max_iteration )
{ xtemp = x*x - y*y + x0
y = 2*x*y + y0
X = xtemp
iteration = iteration+1 }
if ( iteration == max_iteration )
then color = black
else color = iteration
plot(x0,y0,color) }

The algorithm reproduces this picture.




What is information?

For each pixel on the screen do:
{x=0 y=0
iteration =0 max_iteration = 1000
while ( x*x + y*y <= (2*2) AND
iteration < max_iteration )
{ xtemp = x*x - y*y + x0
y =2*x*y +y0
X = xtemp
iteration = iteration+1  }
if ( iteration == max_iteration )
then color = black
else color = iteration
plot(x0,y0,color) }

0

Information can be represented in various equivalent ways.



Kolmogorov’'s notion of information

Definition [Kolmogorov]:
The “information content” of a “message” m is the

length (in number of bits) of the shortest program that
outputs m.
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Definition [Kolmogorov]:
The “information content” of a “message” m is the

length (in number of bits) of the shortest program that
outputs m.

Examples
(1) m = 0000000000000000000000000000000000000

(2) m = 0000000000000100000000000010000000001
(3) m =1592653589793238462643383279502884197



Kolmogorov’'s notion of information

Definition [Kolmogorov]:
The “information content” of a “message” m is the

length (in number of bits) of the shortest program that
outputs m.

Examples

(1) m = 0000000000000000000000000000000000000
(2) m = 0000000000000100000000000010000000001
(3) m = 1592653589793238462643383279502884197
(4) m = 3845879501648135484764749358418500147
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additive constant).



Kolmogorov’'s notion of information

Kolmogorov’s definition of “information content”
has some remarkable properties:

* Model-independent: it is independent of the
underlying “programming language” (up to an
additive constant).

* Incomputable: There is no algorithm that takes as
input a message m and outputs its information

content.
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Definition [Shannon]:
The “information content” S(m) of a “message” m is

equal to the negative logarithm of its probability
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Examples
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(3)m ==



Shannon’s notion of information

Definition [Shannon]:
The “information content” S(m) of a “message” m is

equal to the negative logarithm of its probability
Pr|m], i.e., S(m) = — log, Pr|m].

Examples

(1) m: the lottery numbers

(2) m: message whether you have won the lottery
(3)m ==

(4) m: random bitstring of length n
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Shannon’s notion of information

Some remarks on Shannon’s definition of
“information content”:

* Probabilistic definition: Requires an underlying
probability distribution P,, on the set of

messages M.

* Easily computable.

* Widely used in modern information theory (in
theory and practice).



The idea of information compression

Suppose that we want to transmit the picture over a
communication channel with limited capacity.

Sender Receiver




The idea of information compression

Sender Receiver

For each pixel on the screen do: For each pixel on the screen do:
{x=0 y=0 {x=0 y=0
iteration =0 max_iteration = 1000 iteration =0 max_iteration = 1000
while ( x*x + y*y <= (2*2) AND iteration while ( x*x + y*y <= (2*2) AND iteration
< max_iteration ) < max_iteration )
{ xtemp = x*x - y*y + x0 { xtemp = x*x - y*y + x0
y = 2*x*y +y0 y =2*x*y +y0
x = xtemp x = xtemp
iteration = iteration+1 } iteration = iteration+1 }
if ( iteration == max_iteration ) if ( iteration == max_iteration )
then color = black then color = black
else color = iteration else color = iteration

plot(x0,y0,color) } plot(x0,y0,color) }



e idea of information compression
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For each pixel on the screen do:
{x=0 y=0
iteration =0 max_iteration = 1000
while ( x*x + y*y <= (2*2) AND iteration <
max_iteration )
{ xtemp = x*x - y*y + x0
y =2*x*y +y0
X = xtemp
iteration = iteration +1  }
if (iteration == max_iteration )
then color = black
else color = iteration
plot(x0,y0,color) }

For abcdef
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For abcdef
Hijklmnop
Qrstuvw
Xzy xyz

For each pixel on the screen do:
{x=0 y=0
iteration = 0 max_iteration = 1000
while ( x*x + y*y <= (2*2) AND iteration <
max_iteration )
{ xtemp = x*x - y*y + x0
y = 2*x*y +y0
X = xtemp
iteration = iteration +1  }
if (iteration == max_iteration )
then color = black
else color = iteration
plot(x0,y0,color) }

For abcdef

Hijkimnop
Qrstuvw
Xzy xyz

For abcdef
Hijkimnop
Qrstuvw
Xzy xyz

N

Quantify information content of a message M by the size

(in # bits) of the minimal compression.



Shannon entropy and compression

M

H(M) == pmlogypm

Theorem [Shannon 1948]

The Shannon entropy H(M) corresponds to the minimum
(average) compression length of M.




Compression according to Shannon

Integer M
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Operational relevance

* Given a physical object, how much information is
required to describe it?

* Given a physical device, what is the maximum amount
of information that can be stored reliably?




Why are such questions interesting?

=

* Technological applications
(information processing and
transmission)

* Simulatability of physical
systems




Why are such questions interesting?
(cont’d)

* Development of physical
theories

* Used in other areas of
science (biology, finances,
linguistics, ...)




| inking Quantum Physics
and
Information Theory



Information is physical

* Rolf Landauer:
“information is always
represented by the state of
a physical system”.

e |f information is
represented by a quantum
system then it is by
definition “guantum
information”.




Independence of information carriers

According to Shannon’s theory, information is independent
of the “physical information carriers”.

Representation of a message M

Each value M=m is represented by a different physical state of
the system.




Independence of information carriers

According to Shannon’s theory, information is independent
of the “physical information carriers”.

Representation of a bit

Each value of a bit (“0” or “1”) is represented by two different
(perfectly distinguishable) states of the information carrier.




Independence of information carriers?

According to Shannon’s theory, information is independent
of the “physical information carriers”.




Independence of information carriers?

According to Shannon’s theory, information is independent
of the “physical information carriers”.

But does this paradigm also apply to information stored in
guantum devices?

[Photos: QSIT]



Classical information

Classically, information may always be represented
as a sequence of binary numbers (the bits).

0-1



Quantum information

Quantum information is represented as the state of a
quantum system, such as the polarization degree of
freedom of a photon.



Qubit

Although the smallest possible unit of quantum
information is a that represented on a two-level system (a
qubit), there is a continuum of states.

¥

The state of a qubit is generally represented as a vector in
C2.



Qubits

The state of a single system is specified by a 2-dimensional

vector y& C?

The state of n qubits is specified by a
2"-dimensional vector y& C*

& & &



Comparison: bits vs qubits
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Independence of information carriers?

According to Shannon’s theory, information is independent
of the “physical information carriers”.

But does this paradigm also apply to information stored in
guantum devices?
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Toy example

N collaborating players sitting in a room
2 of them selected at random and put in separated rooms
N-2 remaining players announce a bit C of their choice

> w e

separated players output bits B: and B;

Game is won if B; # B».



Maximum winning probability

Strategies

B

0

B

B

C

B

|-C




Maximum winning probability

e Each player may choose one of the following four
strategies (in case he is selected).

Strategies B=0 B=1 B=C | B=I-C

(The strategy defines how the output B is derived from the input C.)
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Maximum winning probability

Each player may choose one of the following four
strategies (in case he is selected).

Strategies B=0 B=1 B=C | B=I-C

(The strategy defines how the output B is derived from the input C.)

The game cannot be won if the two selected
players follow identical strategies.

This happens with probability =1/4 (for N large).

Hence, the game is lost with probability
(at least) 1/4.



What did we prove?

Claim

For any possible strategy, the game is lost with
probability at least =1/4.



What did we prove?

Claim

For any possible strategy, the game is lost with
probability at least =1/4.

Additional implicit assumption

All information is encoded and processed
classically.



Quantum strategies are stronger
The game can be won with probability 1 if the
players can use an internal guantum device.

Note: all communication during the game is
still purely classical.



Quantum strategies are stronger

The game can be won with probability 1 if the
players can use an internal guantum device.

Note: all communication during the game is
still purely classical.



Quantum strategy
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C as the xor of their measurement results



Quantum strategy

|. N players start with correlated state ¥ = [0) ®N + | 1) ©N

2. keep state stored
3. all remaining players measure in diagonal basis and choose
C as the xor of their measurement results

4. separated players determine B1 and B2 by measuring in
either the diagonal or the circular basis, depending on C.
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out quantum strategies.



What can we learn from this example?

® Quantum mechanics allows us to win games that
cannot be won in a classical world
(examples known as “pseudo telepathy games”).

(Telepathy is obviously dangerous from a
cryptographic point of view. )

® There is no physical principle that allows us to rule
out quantum strategies.

It is, in general, unavoidable to take into account
quantum effects.



Independence of information carriers?

According to Shannon’s theory, information is independent
of the “physical information carriers”.

But does this paradigm also apply to information stored in
guantum devices? No!

[Photos: QSIT]



Shannon’s “impossibility result”

S - v
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C = enc(M,S) M = dec(C,S)

Theorem

For information-theoretically secure encryption, the
key S needs to be at least as long as the message M.

In particular, One-Time-Pad encryption is optimal.



Proof of Shannon’s theorem

Let M be a uniformly distributed n-bit message,
S a secret key, and C the ciphertext.

Requirements

® H(M|SC) =0, since M is determined by S,
® H(M|C) =H(M) =n, since M is indep. of
Hence

H(S) 2 I(M : S|C) = H(M|C) - H(M|SC) = n.



Shannon’s impossibility result

Theorem [Shannon, 1949]

Two parties connected via an insecure channel cannot
exchange any messages secretly

(even if they have methods for authentication).

P 0

M




Bennett and Brassard’s possibility result

If information cannot
be cloned, then it
can also not be
stolen (without
leaving traces).
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C.H. Bennett G. Brassard
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Bennett and Brassard’s possibility result

If information cannot
be cloned, then it
can also not be
stolen (without
leaving traces).
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C.H. Bennett G. Brassard
[Photo: ETH Zurich] [Photo: ETH Zurich]

This was the invention of quantum cryptography.



Quantum cryptography
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ldea: Use no-cloning principle to verify secrecy.



One-time-pad encryption

Let ME {0,1} be a message bit and S& {0,1} a “key bit”.
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One-time-pad encryption

Let ME {0,1} be a message bit and S& {0,1} a “key bit”.

S C=M+S(mod?2) Ry

lE M 'I | C ' (E M 'l
AR ' ’ X B

Theorem

If S is uniformly distributed then C is uncorrelated to M.




No-cloning principle provides security

H(X|B) + HZ|C)>1 Q
Idea

Check statistically that H(X | ~2) is small. The generalized
uncertainty principle then implies that H(Z| () is large.

[Tomamichel et al., Nature Communications, 2012]



Quantum cryptography

i
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Protocol

1. Use quantum communication to generate a key
(the no-cloning principle guarantees that it is secure)

2. Use one-time-pad encryption to send message M.



An apparent contradiction

Theorem [Bennett and Brassard, 1984]

Two parties connected via an insecure channel can
exchange messages secretly

(provided they have a method for authentication).
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An apparent contradiction

Theorem [Bennett and Brassard, 1984]

Two parties connected via an insecure channel can
exchange messages secretly

(provided they have a method for authentication).

Theorem‘ [Shannon‘,‘_1949]

Two parties connected via an insecure channel cannot
exchange any messages secretly

(even if they have methods for authentication).




Proof of Shannon’s theorem

Let M be a uniformly distributed n-bit message, S a
secret key, and C the ciphertext..
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Let M be a uniformly distributed n-bit message, S a
secret key, and C the ciphertext..

Requiremer{ H(M|SC:.)

® H(M|SC) =0, sinceM determined by S, C.
® H(M|C) =H(M) =n, since M indep. of C.
Hence

H(S) 2 I(M : S| C) = H(M|C) - H(M|SC) = n.



Proof of Shannon’s theorem

Let M be a uniformly distributed n-bit message, S a
secret key, and C the ciphertext..

Requireme H(M |SCzob)
® H(M|SC) =0, sinceM determined by S, C.

® HM|C) =% ince M indep. of C.



Proof of Shannon’s theorem

No cloning:
Let M be a uniformly distribut  Cs., #2C:.- in general
secret key, and C the ciphertext..

H(M | SCzob)

Requireme
® H(M|SC) =0, sinceM determined by S, C.
® HM|C) =% ince M indep. of C.



Properties of entangled qubits
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Properties of entangled qubits
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Note: If the left particle is measured with angle & and gives
output O (or 1) then the right particle behaves as if it was

prepared along « (or ).
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Conclusions

° The joint state
space of object A and object B is not simply the
cartesian product of the two individual state spaces.

. Since information is physical,
the physical properties of the underlying information
carriers have to be taken into account when describing
the laws of information.

. The resulting laws of information are
fundamentally ditterent from the corresponding
classical laws. Examples include the no-cloning
principle, which has applications, e.g., in cryptography.




Many thanks for your attention



