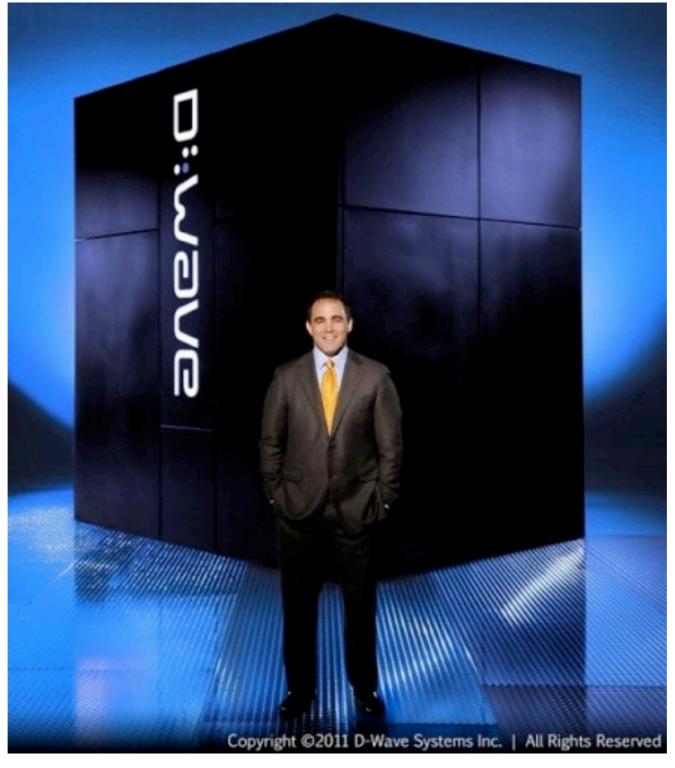
Quantum Information Theory

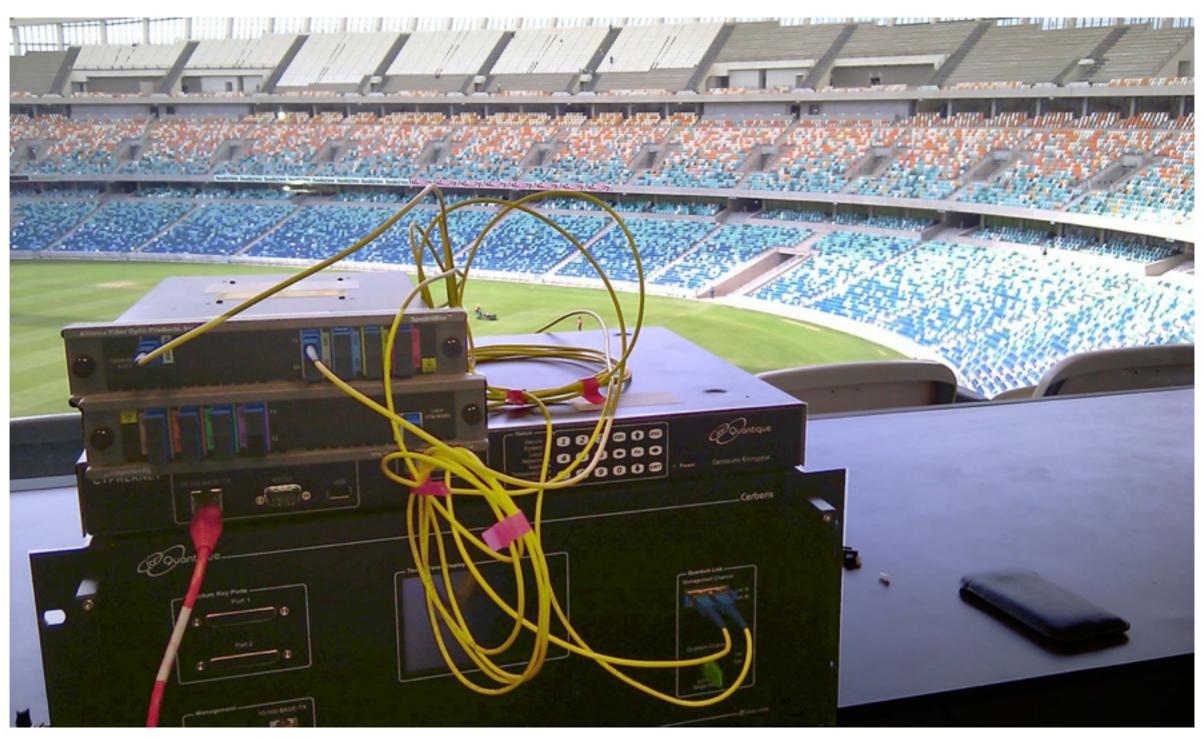
Renato Renner ETH Zurich

Do quantum computers exist?



Geordie Rose and his D-Wave quantum computer

Commercial devices



Quantum cryptography device by *id Quantique*, in operation at the FIFA World Cup competition in Durban

Commercial devices

Quantis Random Number Generator (4 Mbits/s)

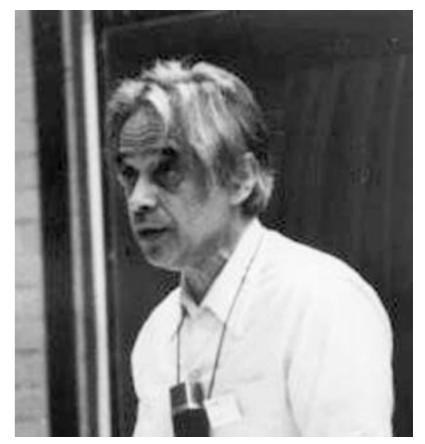
Is the world deterministic?

"Jedenfalls bin ich überzeugt, daß der nicht würfelt."

Albert Einstein, in a letter to Max Born

It took several decades until the inherent non-deterministic nature of quantum theory was accepted as a "physical" fact.

"Mein Ziel war zu beweisen, dass niemand, nicht mal Gott, den Verlauf der Welt voraussagen kann."



Ernst Specker (mathematician, ETH Zurich)

Research in quantum information

Nobel prize 2012

Serge Haroche

David Wineland

Research in quantum information

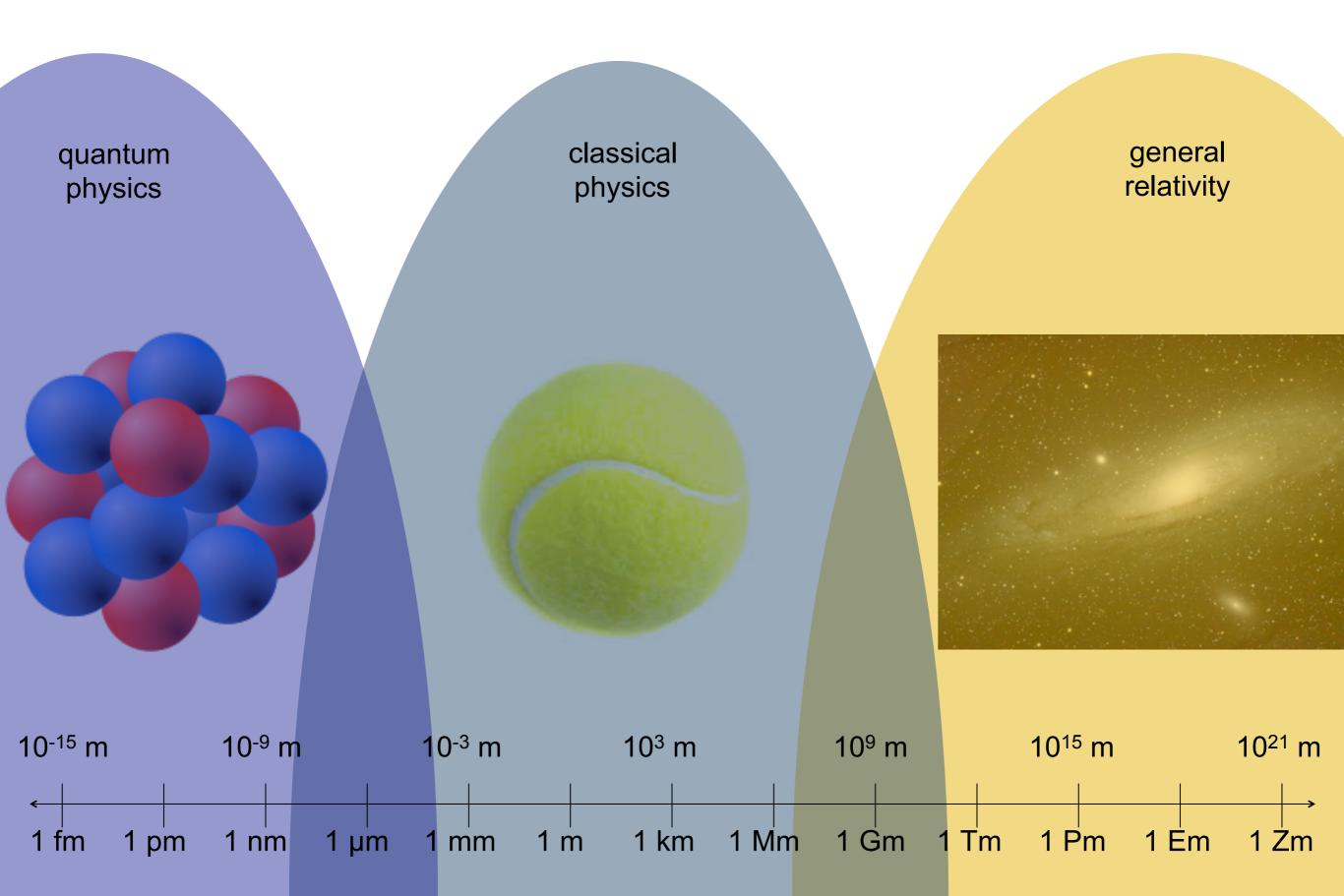
Research groups in quantum information science (from http://www.quantiki.org)

Research in quantum information

Swiss network consisting of more than 300 scientists

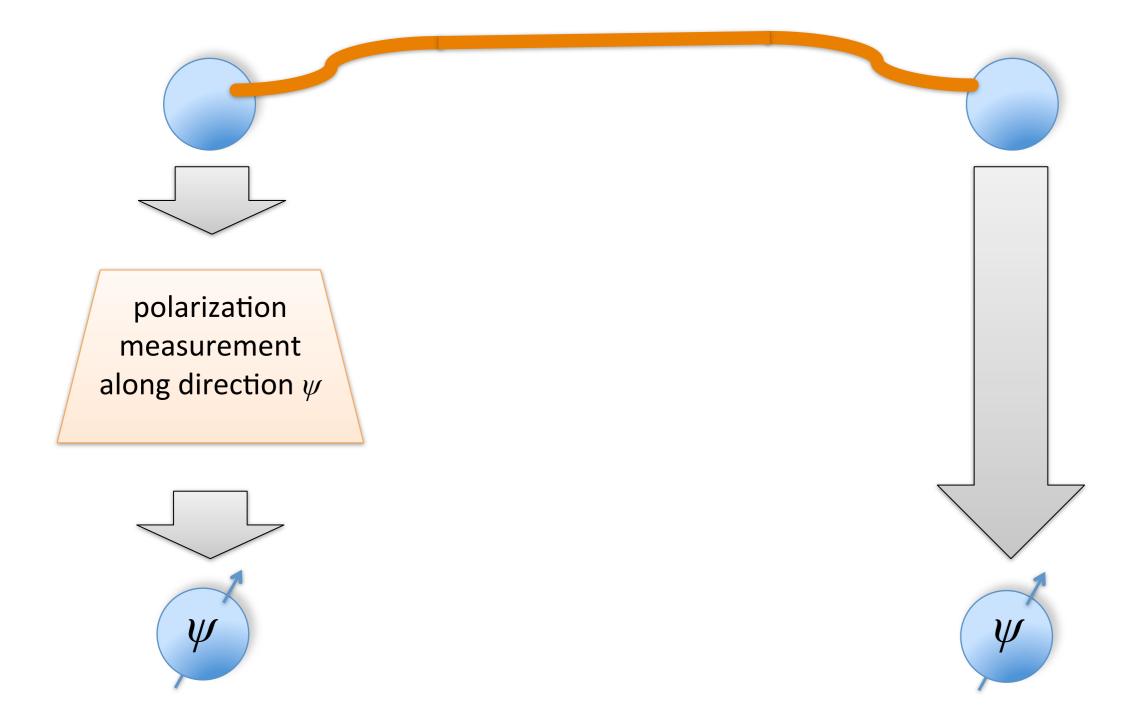
Quantum Information Theory

What is "quantum"?



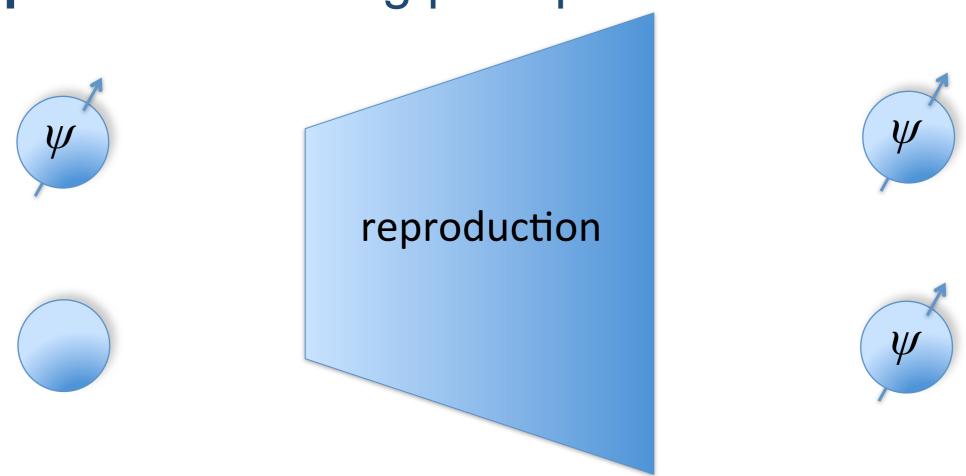
Quantum physics deviates from our day-today experience about the world around us

Example 1: Entanglement



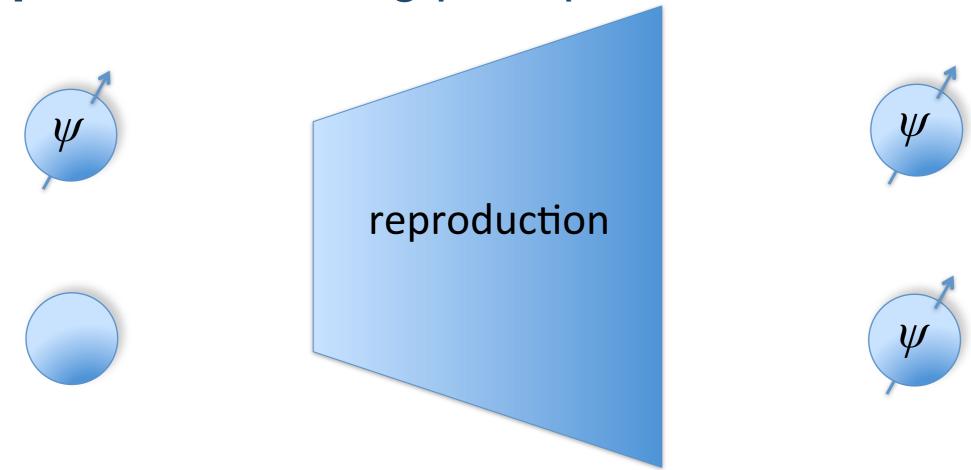
Quantum physics deviates from our day-today experience about the world around us

Example 2: No-cloning principle



Quantum physics deviates from our day-today experience about the world around us

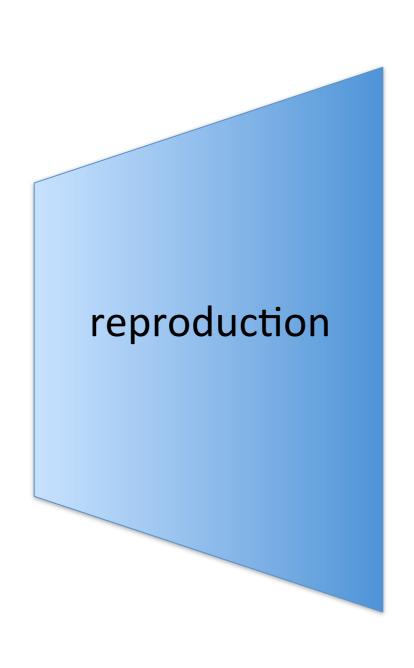
Example 2: No-cloning principle



No-cloning theorem [Wootters und Zurek, 1982]

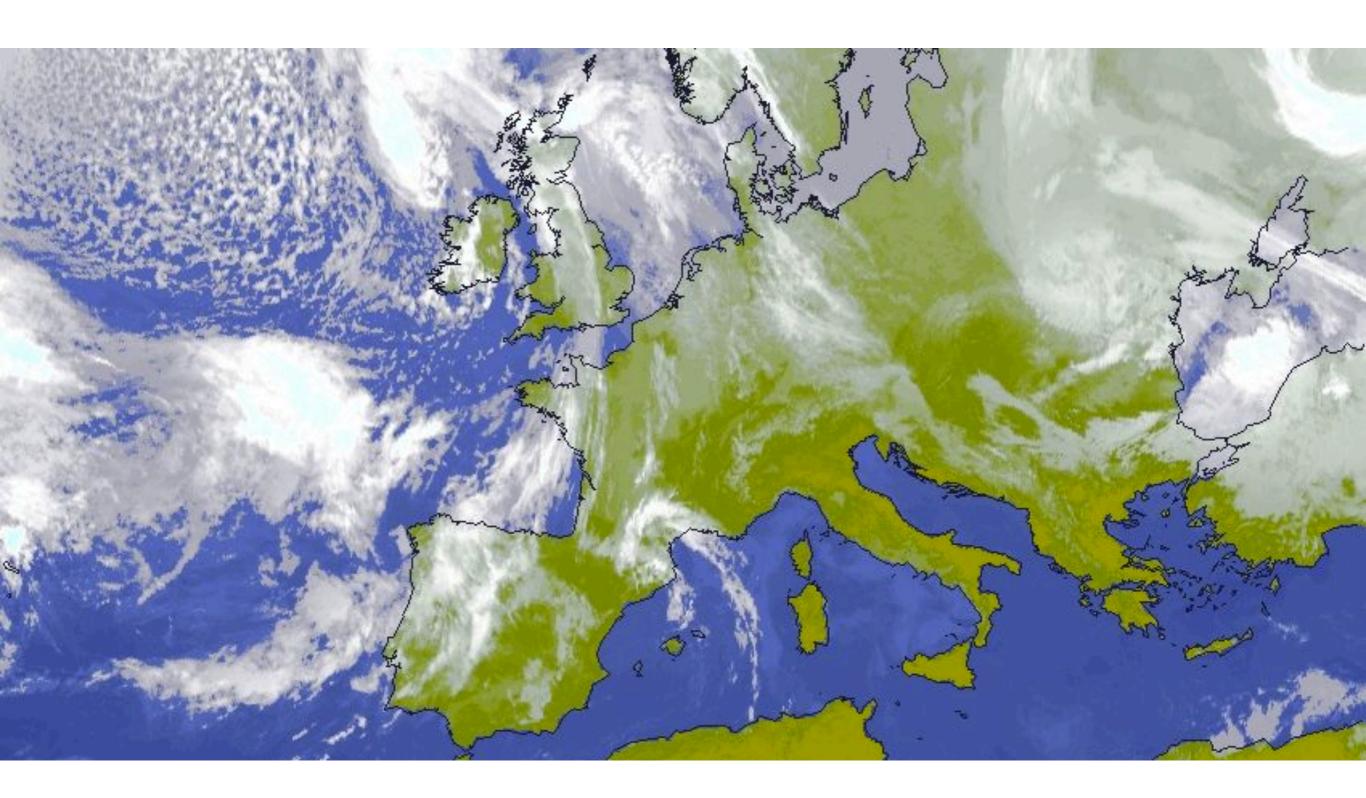
No physical device can copy the state of a quantum system (for arbitrary states ψ).

The no-cloning principle does not seem to be valid for macroscopic objects



Quantum Information Theory

What is "information"?



Two different approaches

Kolmogorov's notion: based on the theory of computation

Shannon's notion: based on probability theory

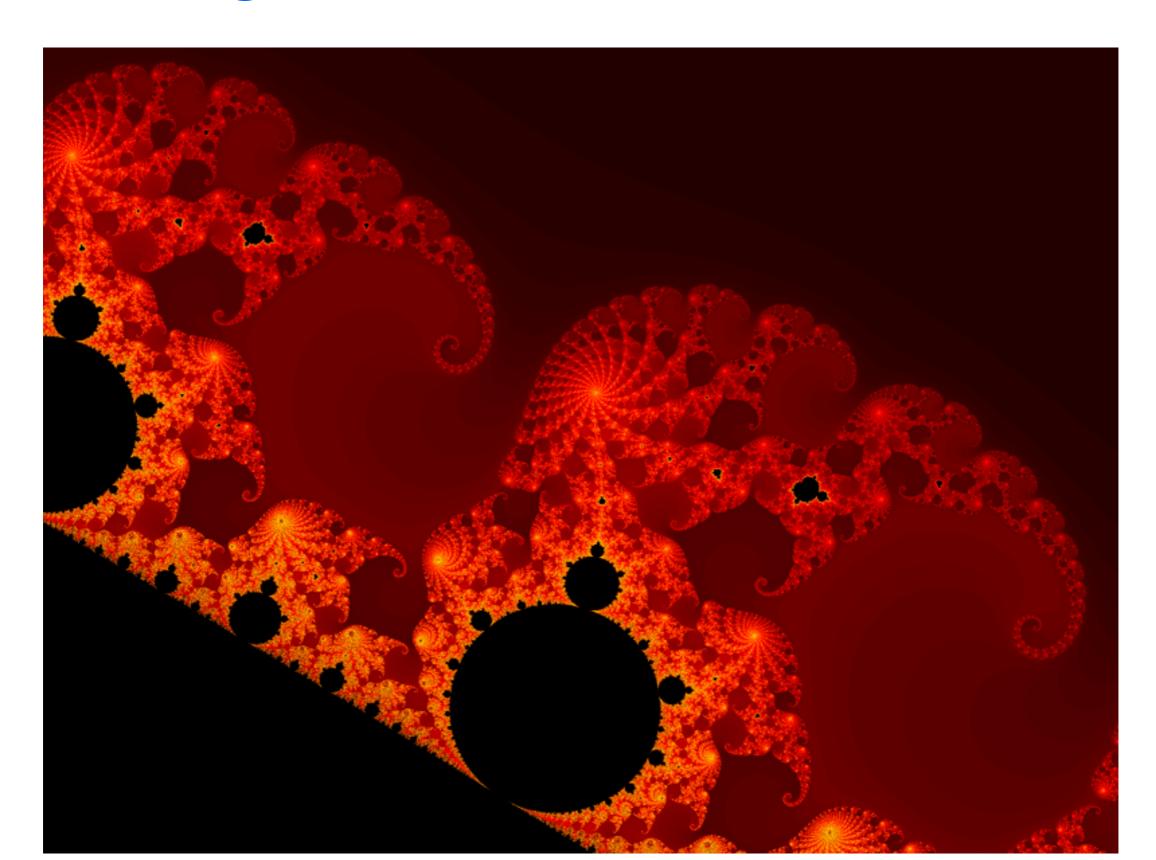
Common feature of both approaches

The mathematical theory should be independent of how information is represented.

Common feature of both approaches

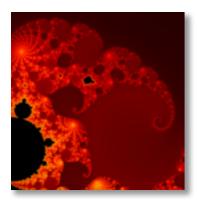
The mathematical theory should be independent of how information is represented.

As we shall see, this idea is doomed to fail ...



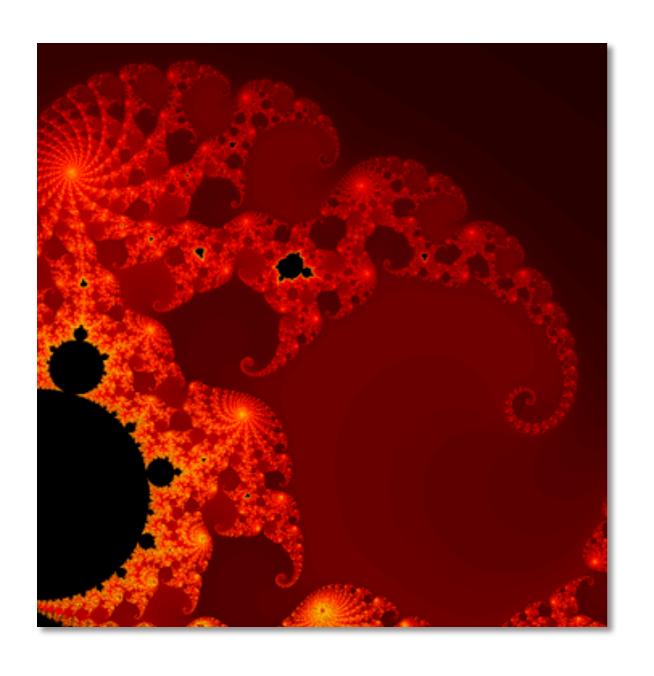
What is information?

```
For each pixel (x0,y0) on the screen do:
                          \{ x = 0 \ y = 0 \}
             iteration = 0 max_iteration = 1000
while (x*x + y*y \le (2*2)) AND iteration (x*x + y*y \le (2*2)) AND iteration (x*x + y*y \le (2*2))
                    \{ xtemp = x*x - y*y + x0 \}
                           y = 2*x*y + y0
                             x = xtemp
                   iteration = iteration + 1
                if (iteration == max_iteration)
                       then color = black
                      else color = iteration
                       plot(x0,y0,color) }
```



The algorithm reproduces this picture.

What is information?




```
For each pixel on the screen do:
           \{ x = 0 \ y = 0 \}
iteration = 0 max_iteration = 1000
 while (x*x + y*y \le (2*2)) AND
   iteration < max_iteration )</pre>
     \{ xtemp = x*x - y*y + x0 \}
            y = 2*x*y + y0
              x = xtemp
     iteration = iteration + 1
 if ( iteration == max_iteration )
        then color = black
       else color = iteration
        plot(x0,y0,color) }
```

Information can be represented in various equivalent ways.

Definition [Kolmogorov]:

The "information content" of a "message" m is the length (in number of bits) of the shortest program that outputs m.

Definition [Kolmogorov]:

The "information content" of a "message" m is the length (in number of bits) of the shortest program that outputs m.

Definition [Kolmogorov]:

The "information content" of a "message" m is the length (in number of bits) of the shortest program that outputs m.

Examples

Definition [Kolmogorov]:

The "information content" of a "message" m is the length (in number of bits) of the shortest program that outputs m.

Definition [Kolmogorov]:

The "information content" of a "message" m is the length (in number of bits) of the shortest program that outputs m.

- (3) m = 1592653589793238462643383279502884197

Definition [Kolmogorov]:

The "information content" of a "message" m is the length (in number of bits) of the shortest program that outputs m.

- (3) m = 1592653589793238462643383279502884197
- (4) m = 3845879501648135484764749358418500147

Kolmogorov's definition of "information content" has some remarkable properties:

Kolmogorov's definition of "information content" has some remarkable properties:

 Model-independent: it is independent of the underlying "programming language" (up to an additive constant).

Kolmogorov's definition of "information content" has some remarkable properties:

- Model-independent: it is independent of the underlying "programming language" (up to an additive constant).
- Incomputable: There is no algorithm that takes as input a message m and outputs its information content.

Definition [Shannon]:

The "information content" S(m) of a "message" m is equal to the negative logarithm of its probability Pr[m], i.e., $S(m) = -\log_2 Pr[m]$.

Definition [Shannon]:

The "information content" S(m) of a "message" m is equal to the negative logarithm of its probability Pr[m], i.e., $S(m) = -\log_2 Pr[m]$.

Definition [Shannon]:

The "information content" S(m) of a "message" m is equal to the negative logarithm of its probability Pr[m], i.e., $S(m) = -\log_2 Pr[m]$.

Examples

(1) m: the lottery numbers

Definition [Shannon]:

The "information content" S(m) of a "message" m is equal to the negative logarithm of its probability Pr[m], i.e., $S(m) = -\log_2 Pr[m]$.

Examples

- (1) m: the lottery numbers
- (2) m: message whether you have won the lottery

Definition [Shannon]:

The "information content" S(m) of a "message" m is equal to the negative logarithm of its probability Pr[m], i.e., $S(m) = -\log_2 Pr[m]$.

Examples

- (1) m: the lottery numbers
- (2) m: message whether you have won the lottery
- (3) $m = \pi$

Definition [Shannon]:

The "information content" S(m) of a "message" m is equal to the negative logarithm of its probability Pr[m], i.e., $S(m) = -\log_2 Pr[m]$.

Examples

- (1) m: the lottery numbers
- (2) m: message whether you have won the lottery
- (3) $m = \pi$
- (4) m: random bitstring of length n

Some remarks on Shannon's definition of "information content":

Some remarks on Shannon's definition of "information content":

• Probabilistic definition: Requires an underlying probability distribution P_M on the set of messages M.

Some remarks on Shannon's definition of "information content":

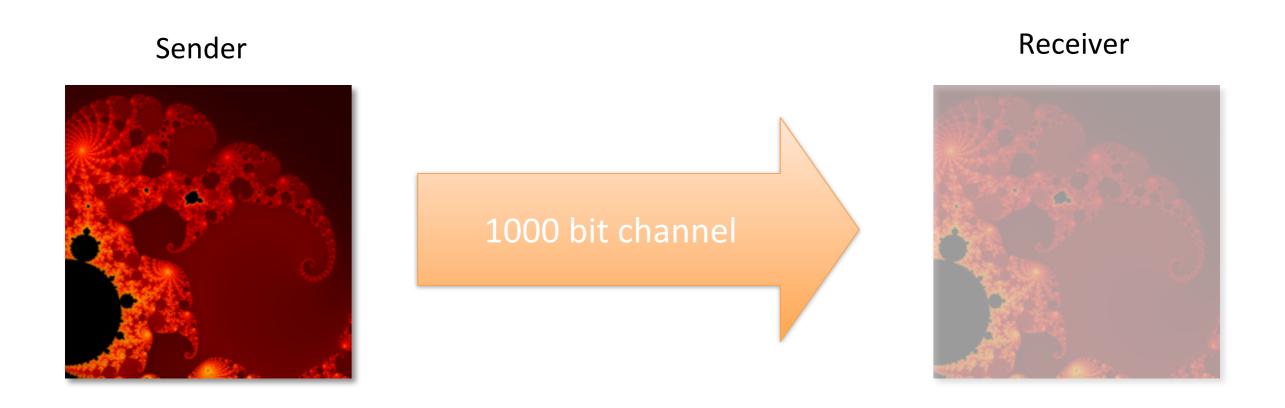
- Probabilistic definition: Requires an underlying probability distribution P_M on the set of messages M.
- Easily computable.

Some remarks on Shannon's definition of "information content":

- Probabilistic definition: Requires an underlying probability distribution P_M on the set of messages M.
- Easily computable.
- Widely used in modern information theory (in theory and practice).

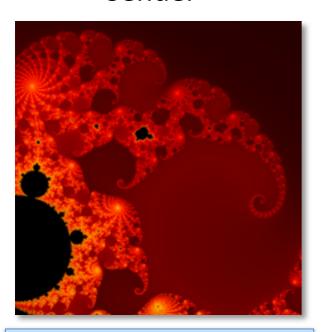
The idea of information compression

Suppose that we want to transmit the picture over a communication channel with limited capacity.

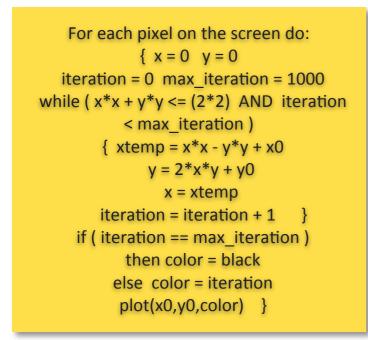


The idea of information compression

Sender

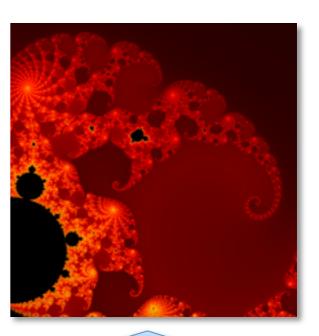


Compression



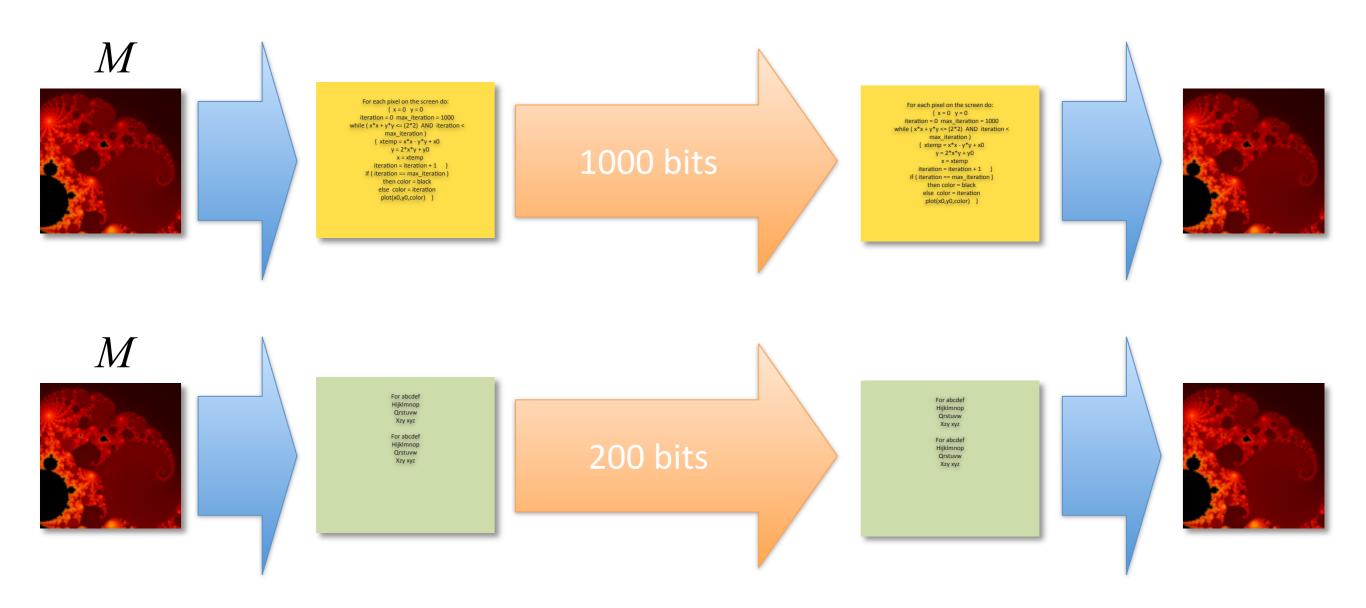
1000 bit channel

Receiver



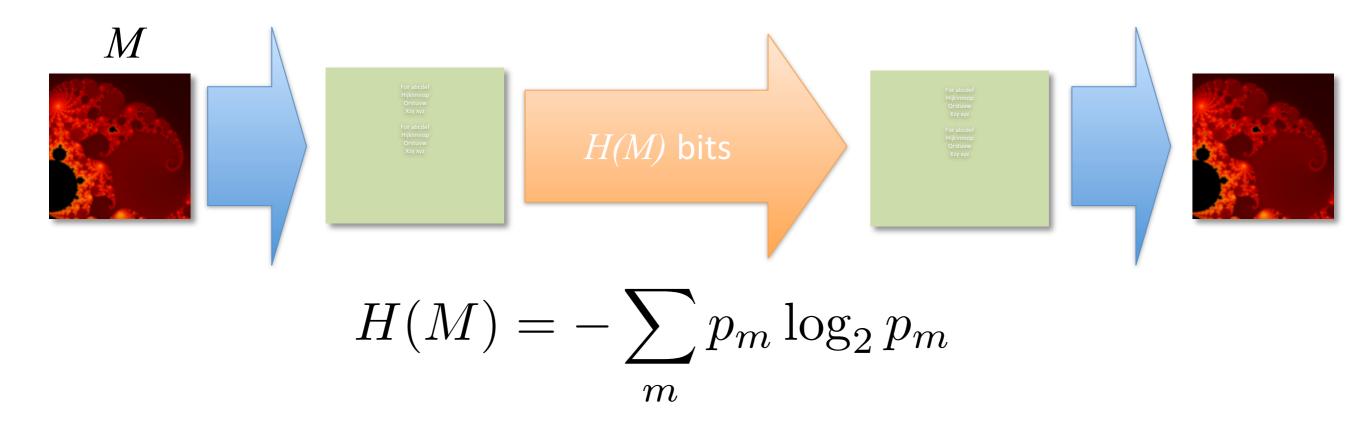
Decoding

The idea of information compression



Quantify information content of a message M by the size (in # bits) of the minimal compression.

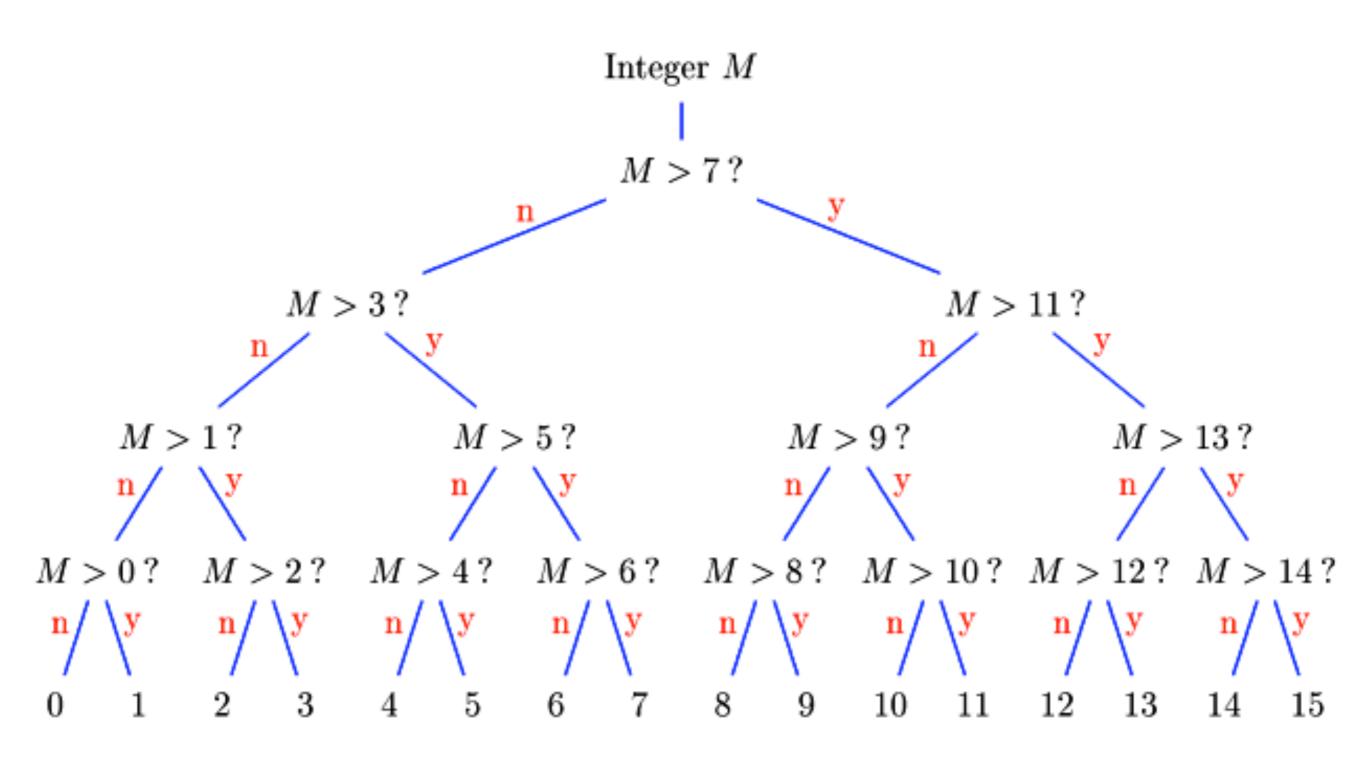
Shannon entropy and compression



Theorem [Shannon 1948]

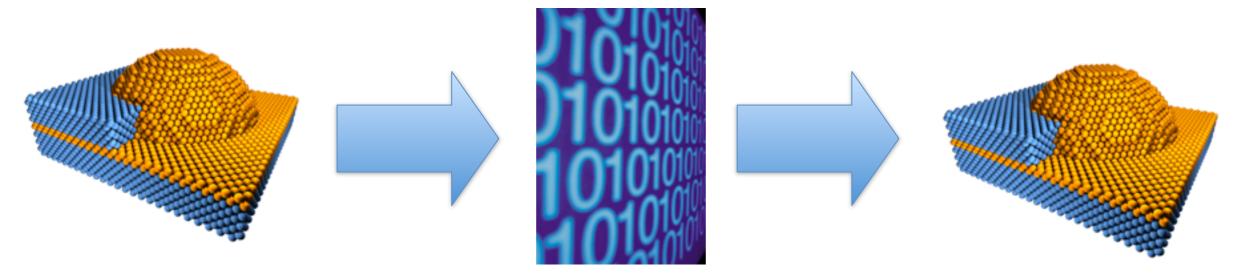
The Shannon entropy H(M) corresponds to the minimum (average) compression length of M.

Compression according to Shannon

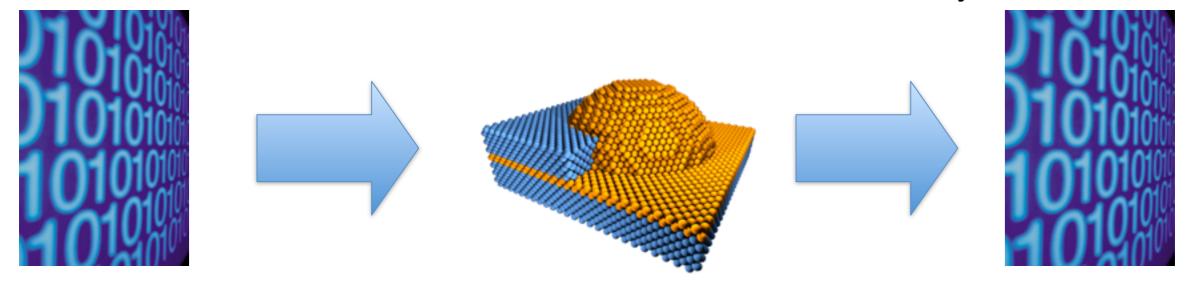


Operational relevance

 Given a physical object, how much information is required to describe it?



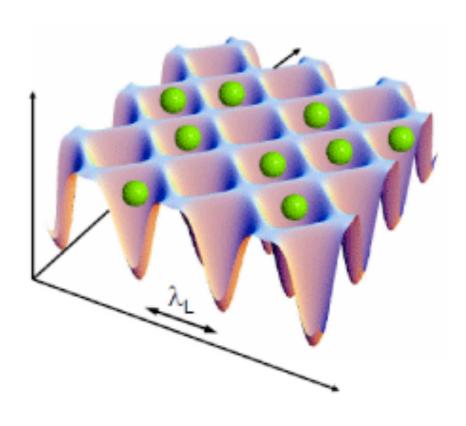
 Given a physical device, what is the maximum amount of information that can be stored reliably?



Why are such questions interesting?

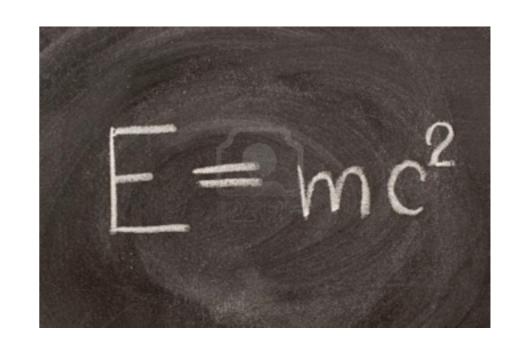
 Technological applications (information processing and transmission)

 Simulatability of physical systems



Why are such questions interesting? (cont'd)

 Development of physical theories



 Used in other areas of science (biology, finances, linguistics, ...)

Linking Quantum Physics and Information Theory

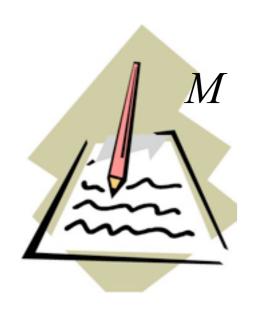
Information is physical

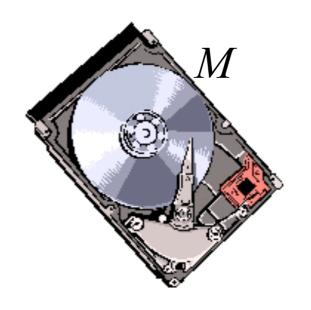
Rolf Landauer:
 "information is always
 represented by the state of
 a physical system".

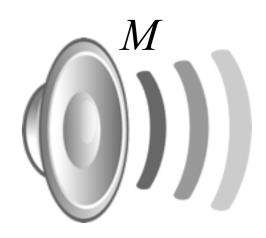
 If information is represented by a quantum system then it is by definition "quantum information".

Independence of information carriers

According to Shannon's theory, information is independent of the "physical information carriers".





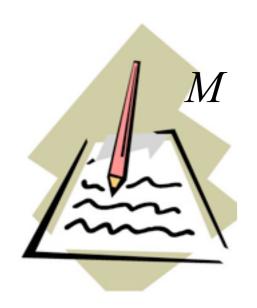


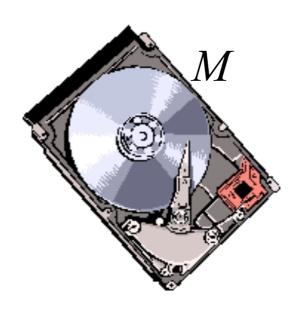
Representation of a message M

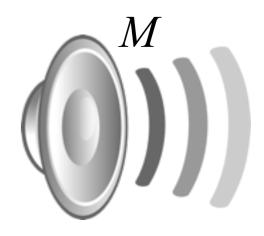
Each value M=m is represented by a different physical state of the system.

Independence of information carriers

According to Shannon's theory, information is independent of the "physical information carriers".





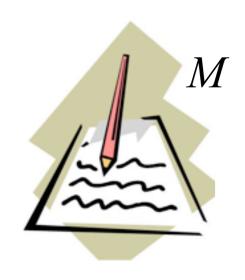


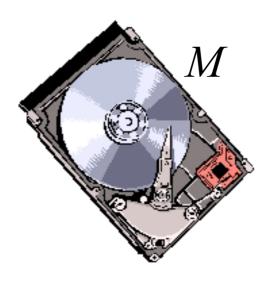
Representation of a bit

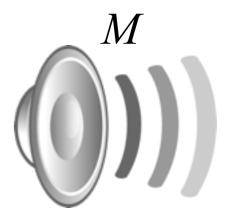
Each value of a bit ("0" or "1") is represented by two different (perfectly distinguishable) states of the information carrier.

Independence of information carriers?

According to Shannon's theory, information is independent of the "physical information carriers".

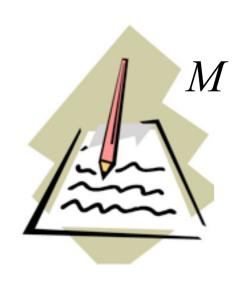


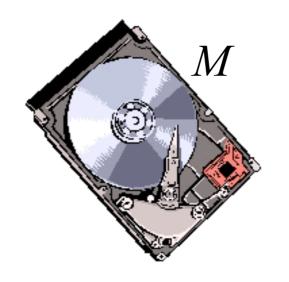


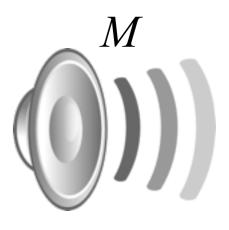


Independence of information carriers?

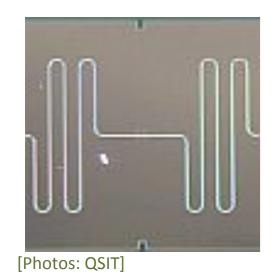
According to Shannon's theory, information is independent of the "physical information carriers".

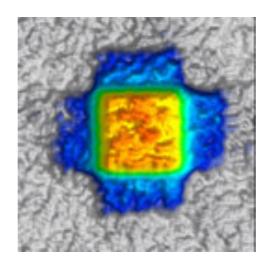






But does this paradigm also apply to information stored in quantum devices?



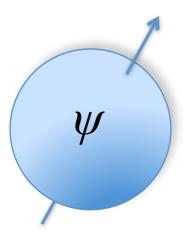


Classical information

Classically, information may always be represented as a sequence of binary numbers (the bits).

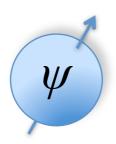
Quantum information

Quantum information is represented as the state of a quantum system, such as the polarization degree of freedom of a photon.



Qubit

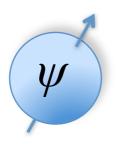
Although the smallest possible unit of quantum information is a that represented on a two-level system (a qubit), there is a continuum of states.



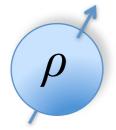
The state of a qubit is generally represented as a vector in C^2 .

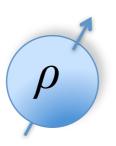
Qubits

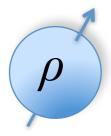
The state of a *single* system is specified by a 2-dimensional vector $\psi \in C^2$



The state of n qubits is specified by a 2^n -dimensional vector $\psi \in C^{2^n}$

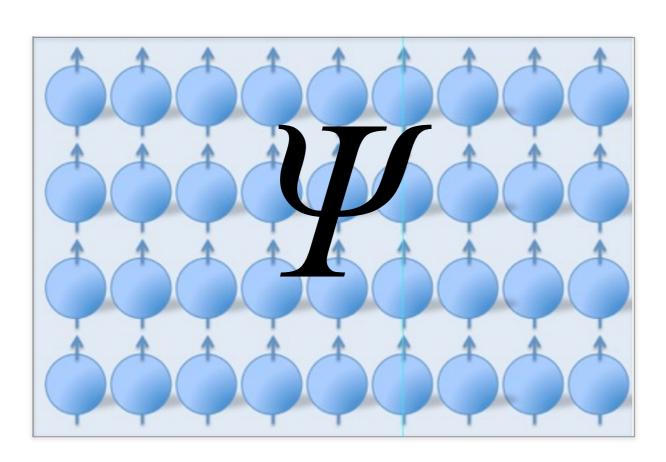






Comparison: bits vs qubits

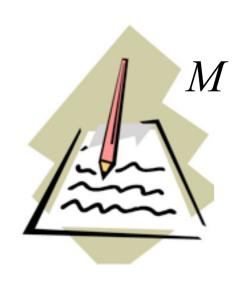
36 qubits

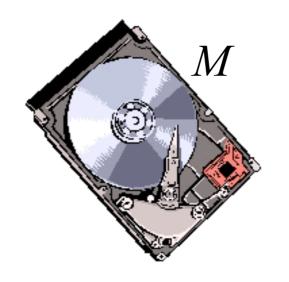


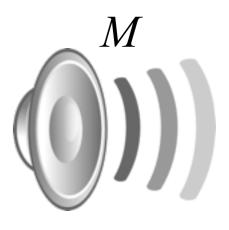
 2^{36} coordinates > 100 GByte

Independence of information carriers?

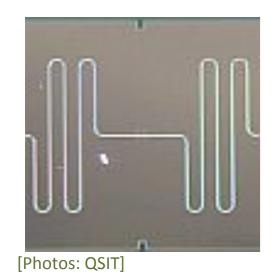
According to Shannon's theory, information is independent of the "physical information carriers".

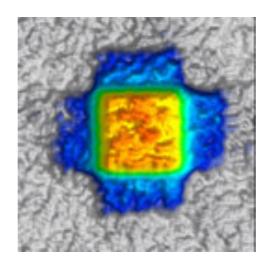


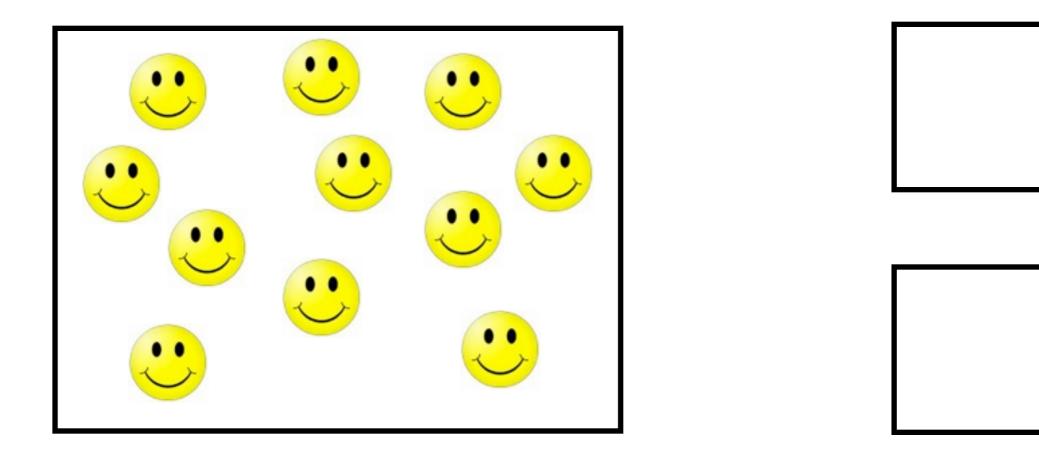


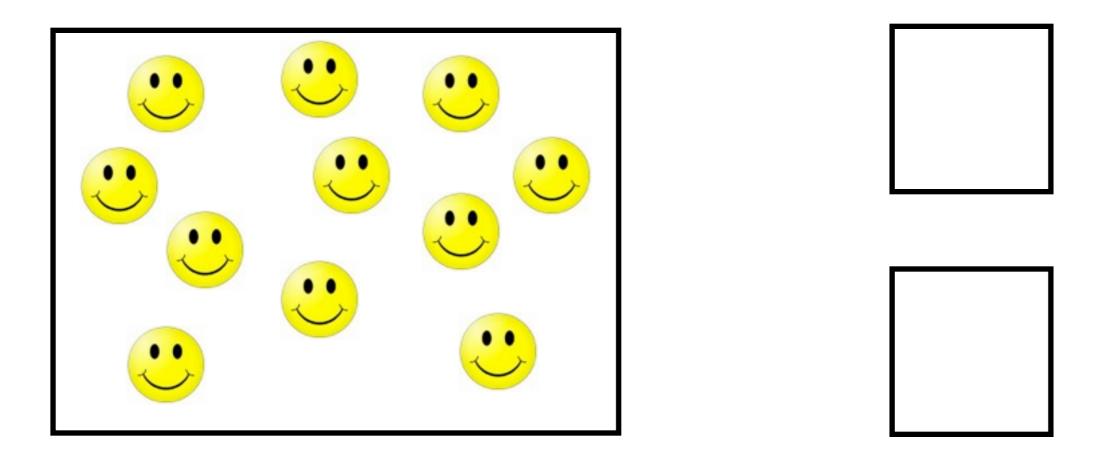


But does this paradigm also apply to information stored in quantum devices?

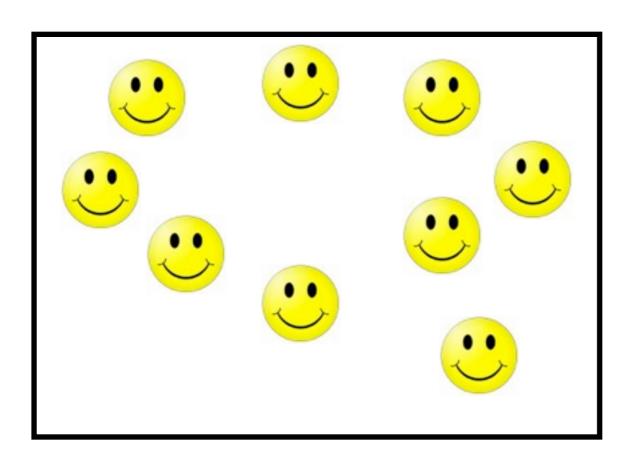




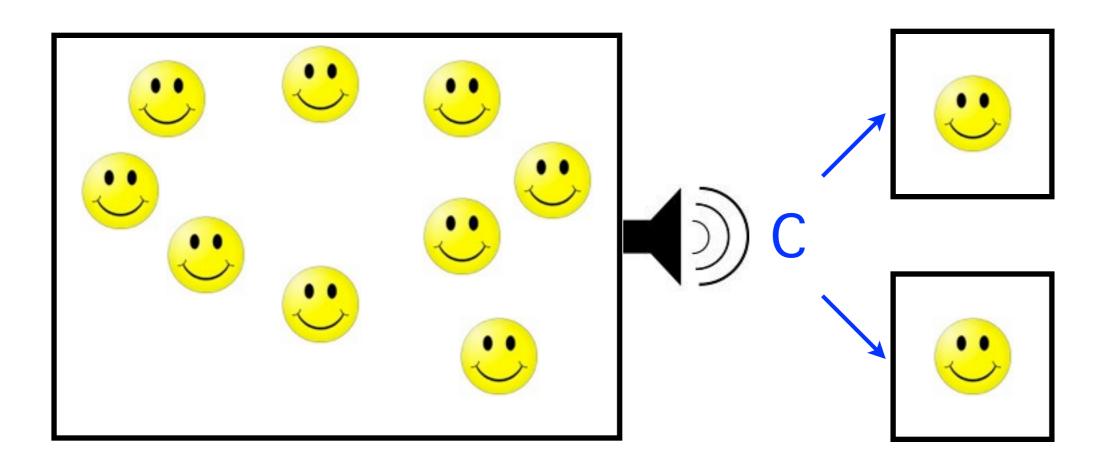




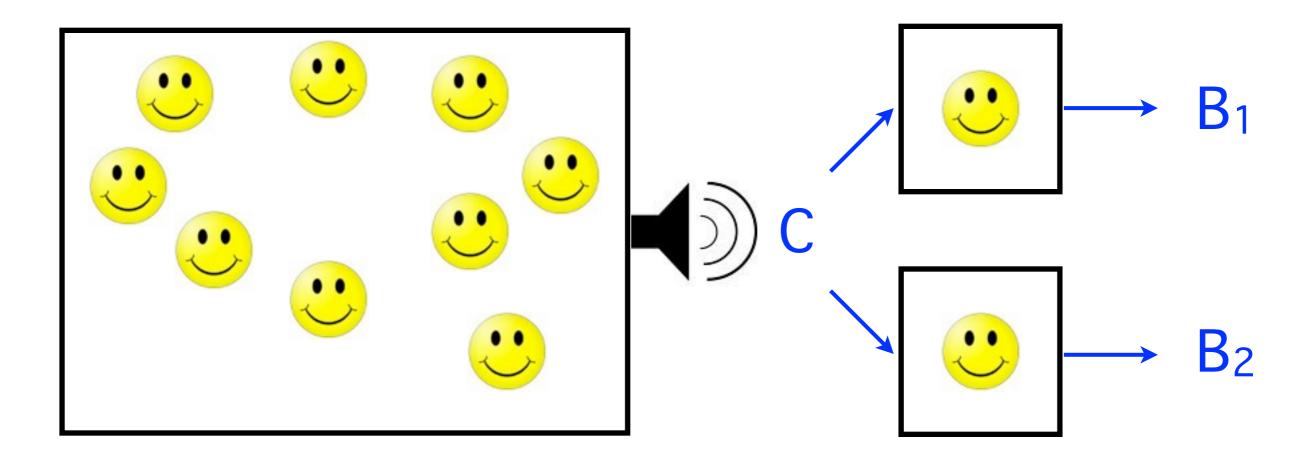
1. N collaborating players sitting in a room



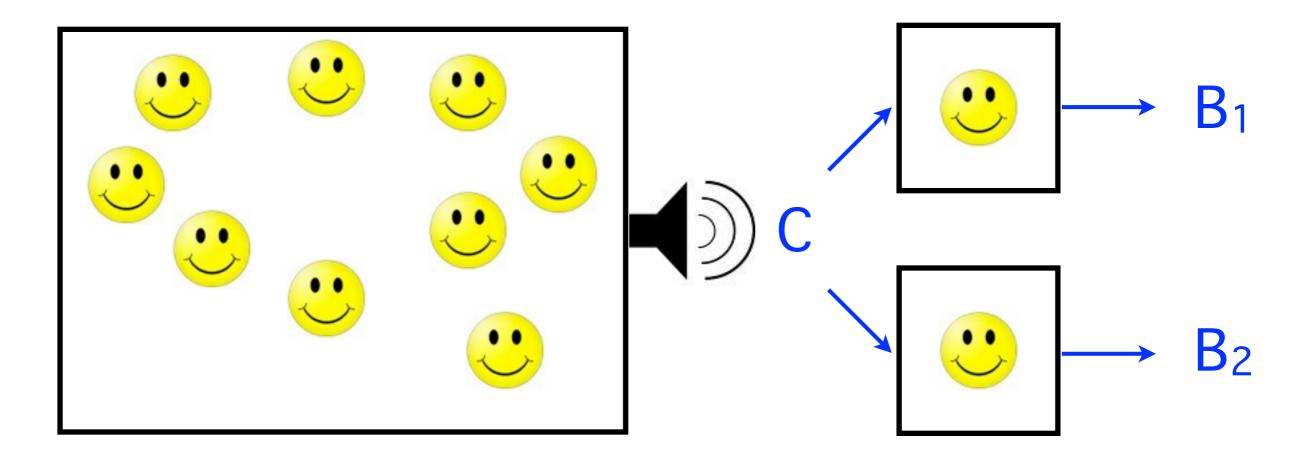
- 1. N collaborating players sitting in a room
- 2. 2 of them selected at random and put in separated rooms



- 1. N collaborating players sitting in a room
- 2. 2 of them selected at random and put in separated rooms
- 3. N-2 remaining players announce a bit C of their choice



- 1. N collaborating players sitting in a room
- 2. 2 of them selected at random and put in separated rooms
- 3. N-2 remaining players announce a bit C of their choice
- 4. separated players output bits B₁ and B₂



- 1. N collaborating players sitting in a room
- 2. 2 of them selected at random and put in separated rooms
- 3. N-2 remaining players announce a bit C of their choice
- 4. separated players output bits B_1 and B_2 Game is won if $B_1 \neq B_2$.

Maximum winning probability

Strategies B=0	B=I	B=C	B=I-C
----------------	-----	-----	-------

Maximum winning probability

 Each player may choose one of the following four strategies (in case he is selected).

Strategies B=	=0 B=1	B=C	B=I-C
---------------	--------	-----	-------

(The strategy defines how the output B is derived from the input C.)

Maximum winning probability

 Each player may choose one of the following four strategies (in case he is selected).

(The strategy defines how the output B is derived from the input C.)

 The game cannot be won if the two selected players follow identical strategies.

Maximum winning probability

 Each player may choose one of the following four strategies (in case he is selected).

(The strategy defines how the output B is derived from the input C.)

- The game cannot be won if the two selected players follow identical strategies.
- This happens with probability ≈1/4 (for N large).

Maximum winning probability

 Each player may choose one of the following four strategies (in case he is selected).

(The strategy defines how the output B is derived from the input C.)

- The game cannot be won if the two selected players follow identical strategies.
- This happens with probability ≈1/4 (for N large).
- Hence, the game is lost with probability (at least) 1/4.

What did we prove?

Claim

For any possible strategy, the game is lost with probability at least ≈1/4.

What did we prove?

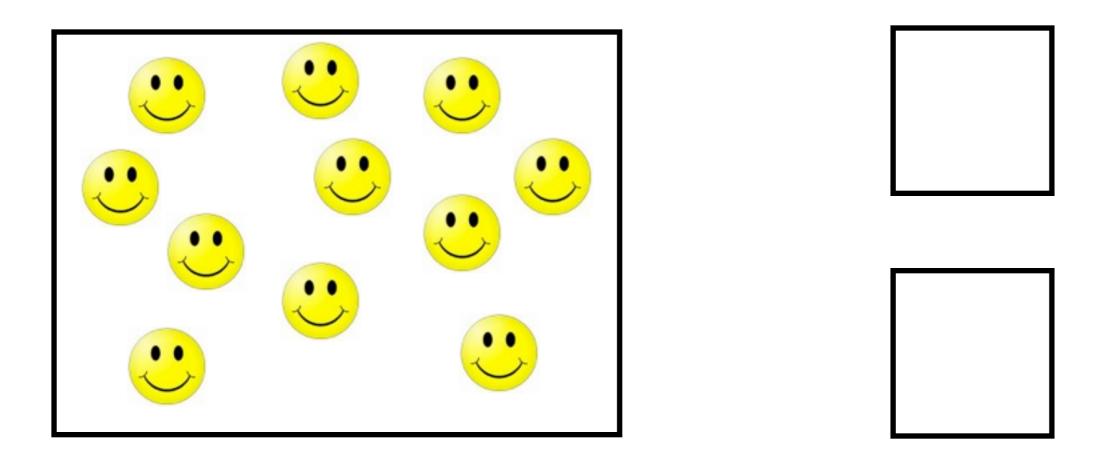
Claim

For any possible strategy, the game is lost with probability at least ≈1/4.

Additional implicit assumption

All information is encoded and processed classically.

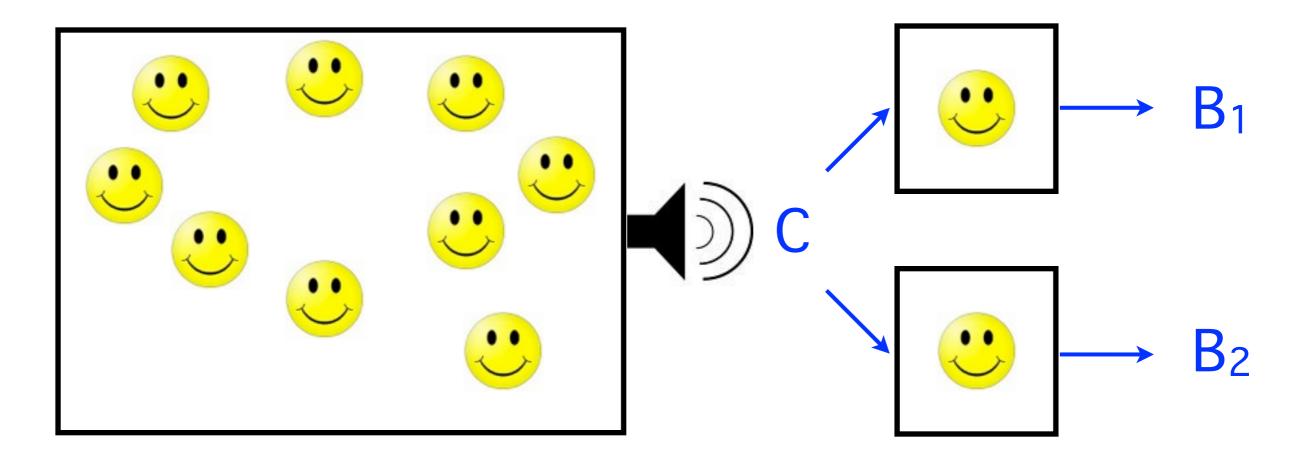
Quantum strategies are stronger



The game can be won with probability 1 if the players can use an internal quantum device.

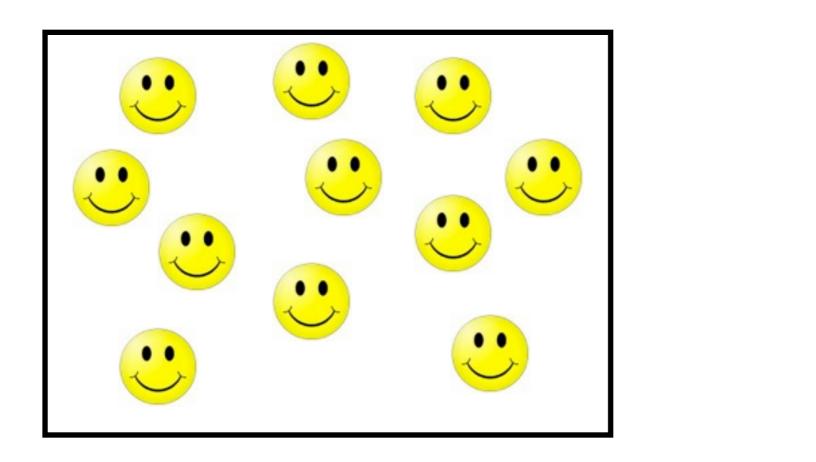
Note: all communication during the game is still purely classical.

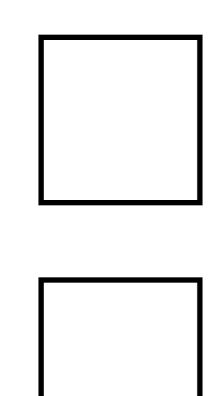
Quantum strategies are stronger

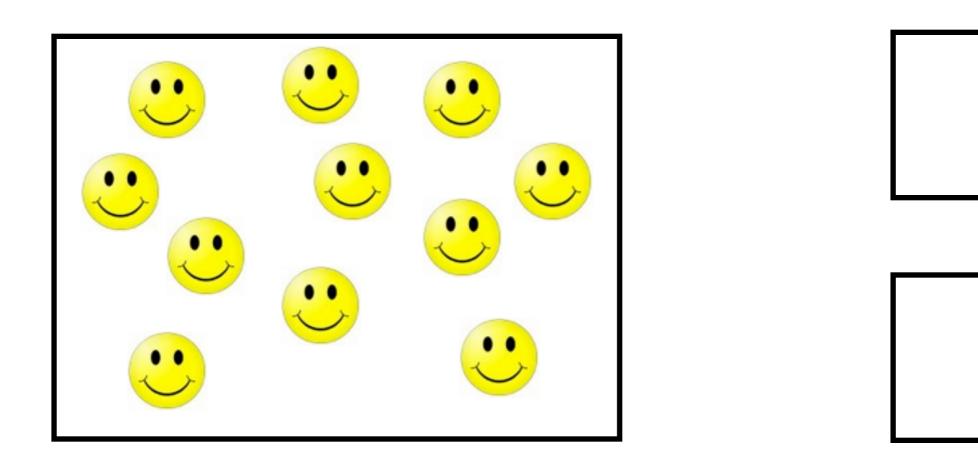


The game can be won with probability 1 if the players can use an internal quantum device.

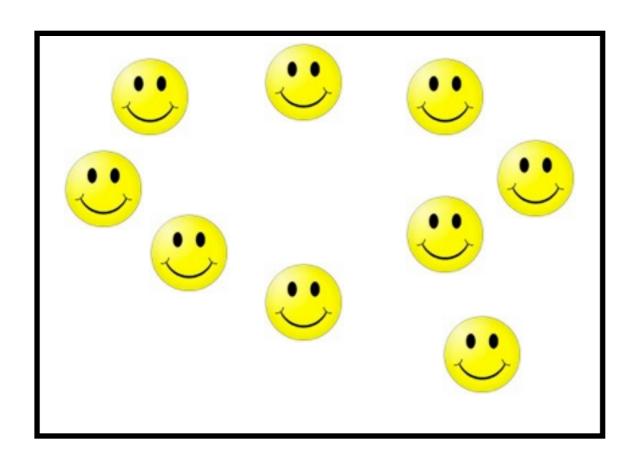
Note: all communication during the game is still purely classical.



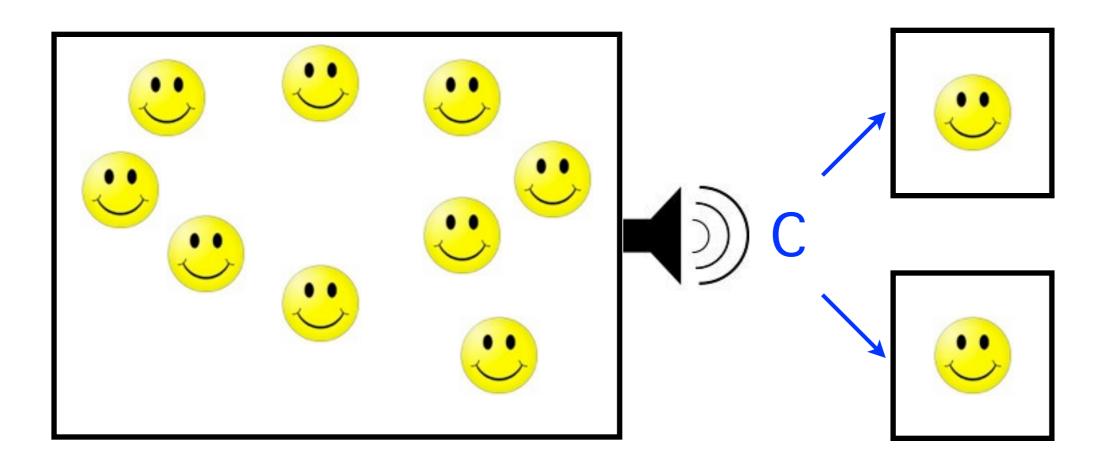




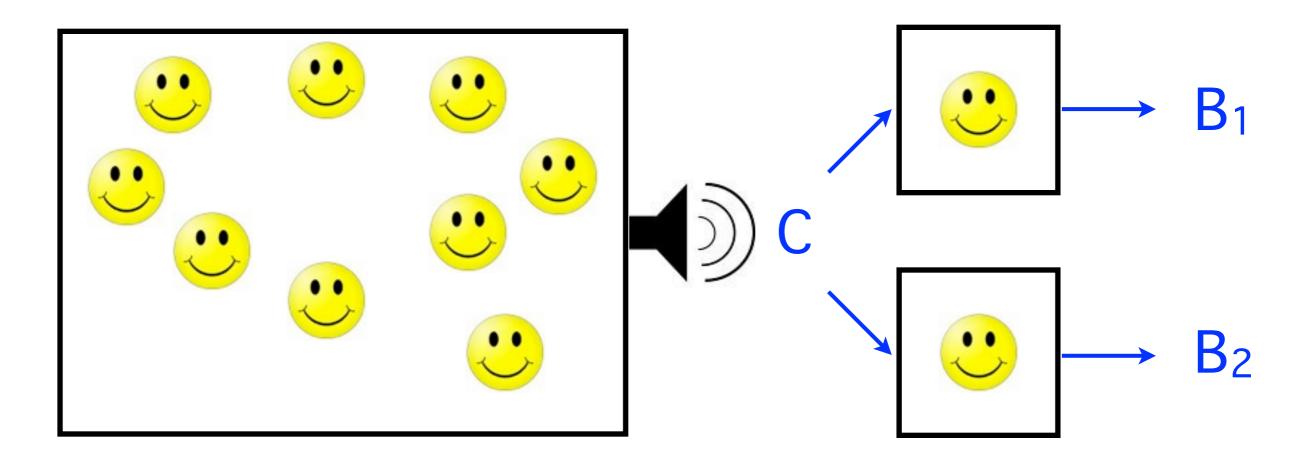
I. N players start with correlated state $\Psi = |0\rangle^{\otimes N} + |1\rangle^{\otimes N}$



- I. N players start with correlated state $\Psi = |0\rangle^{\otimes N} + |1\rangle^{\otimes N}$
- 2. keep state stored



- I. N players start with correlated state $\Psi = |0\rangle^{\otimes N} + |1\rangle^{\otimes N}$
- 2. keep state stored
- 3. all remaining players measure in diagonal basis and choose C as the **xor** of their measurement results



- I. N players start with correlated state $\Psi = |0\rangle^{\otimes N} + |1\rangle^{\otimes N}$
- 2. keep state stored
- all remaining players measure in diagonal basis and choose
 as the xor of their measurement results
- 4. separated players determine B_1 and B_2 by measuring in either the diagonal or the circular basis, depending on C.

 Quantum mechanics allows us to win games that cannot be won in a classical world (examples known as "pseudo telepathy games").
 (Telepathy is obviously dangerous from a cryptographic point of view.)

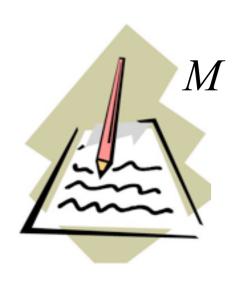
- Quantum mechanics allows us to win games that cannot be won in a classical world (examples known as "pseudo telepathy games").
 (Telepathy is obviously dangerous from a cryptographic point of view.)
- There is no physical principle that allows us to rule out quantum strategies.

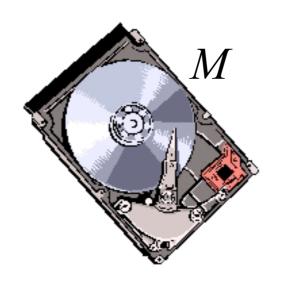
- Quantum mechanics allows us to win games that cannot be won in a classical world (examples known as "pseudo telepathy games").
 (Telepathy is obviously dangerous from a cryptographic point of view.)
- There is no physical principle that allows us to rule out quantum strategies.

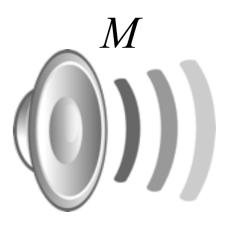
It is, in general, unavoidable to take into account quantum effects.

Independence of information carriers?

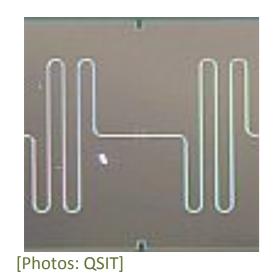
According to Shannon's theory, information is independent of the "physical information carriers".

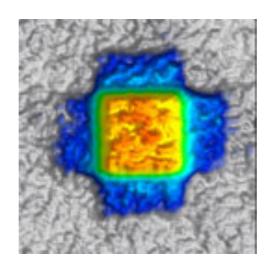


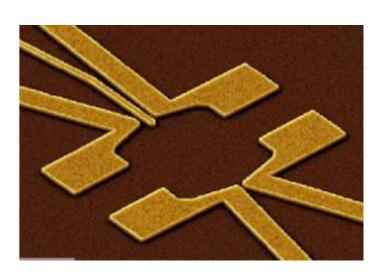




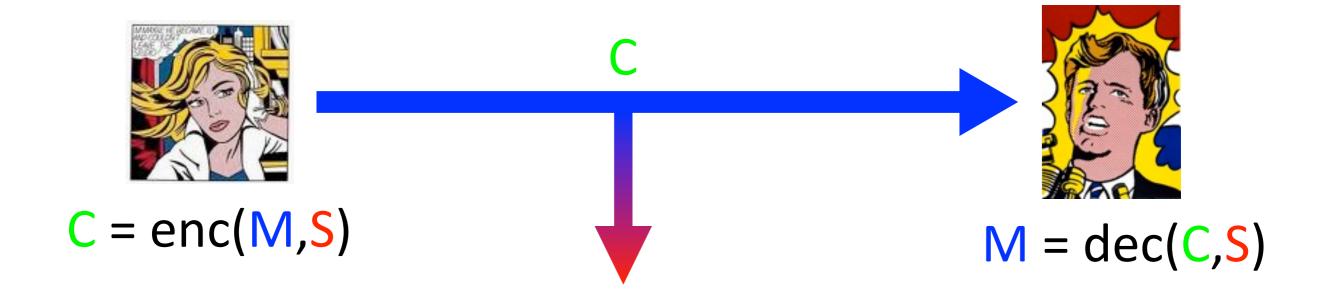
But does this paradigm also apply to information stored in quantum devices? No!







Shannon's "impossibility result"



Theorem

For information-theoretically secure encryption, the key S needs to be at least as long as the message M.

In particular, One-Time-Pad encryption is optimal.

Let M be a uniformly distributed n-bit message, S a secret key, and C the ciphertext.

Requirements

- H(M|SC) = 0, since M is determined by S, C.
- H(M|C) = H(M) = n, since M is indep. of C.

Hence

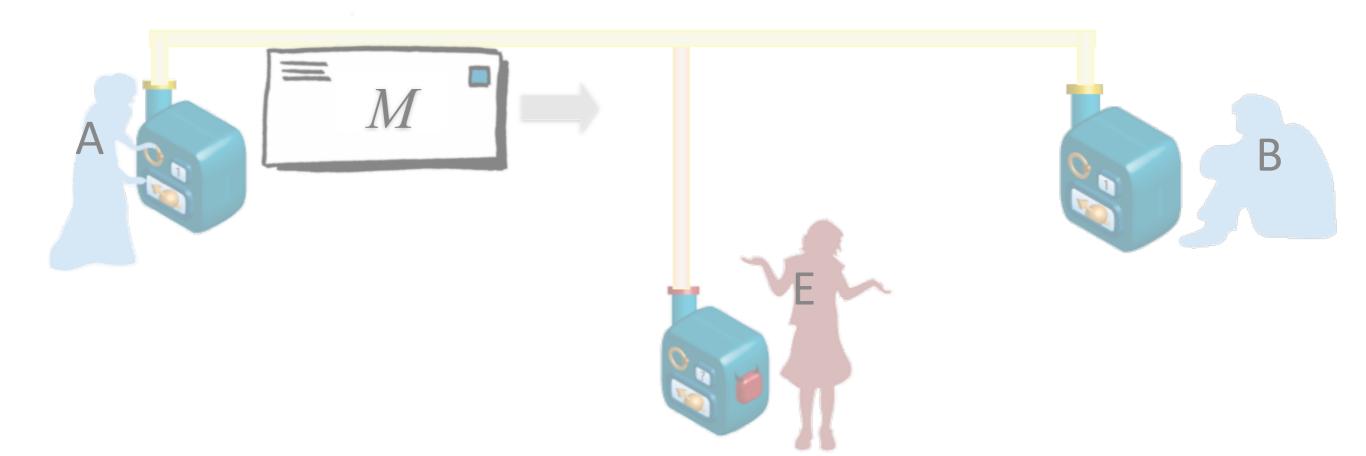
 $H(S) \ge I(M:S|C) = H(M|C) - H(M|SC) = n.$

Shannon's impossibility result

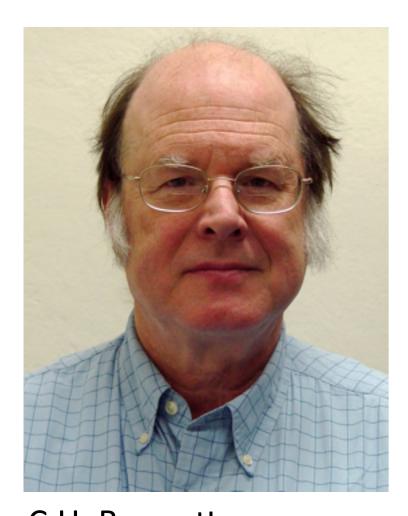
Theorem [Shannon, 1949]

Two parties connected via an insecure channel cannot exchange any messages secretly

(even if they have methods for authentication).



Bennett and Brassard's possibility result

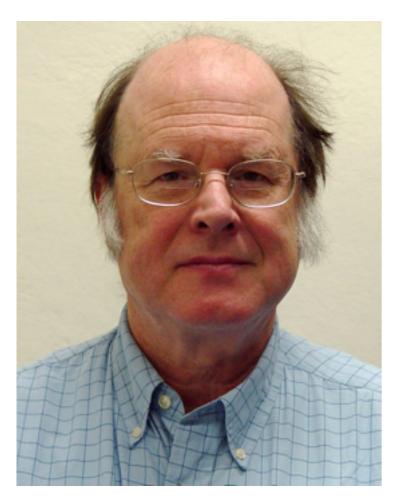


C.H. Bennett
[Photo: ETH Zurich]

G. Brassard
[Photo: ETH Zurich]

If information cannot be cloned, then it can also not be stolen (without leaving traces).

Bennett and Brassard's possibility result



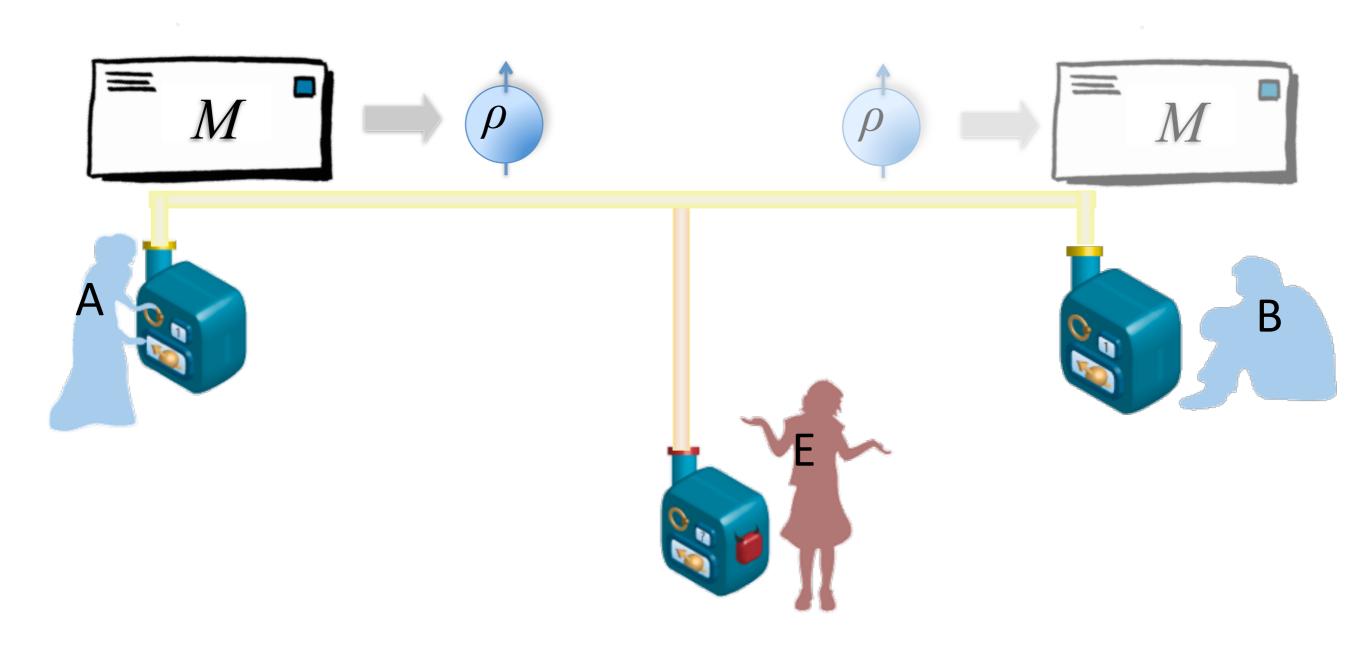
C.H. Bennett
[Photo: ETH Zurich]

G. Brassard
[Photo: ETH Zurich]

If information cannot be cloned, then it can also not be stolen (without leaving traces).

This was the invention of quantum cryptography.

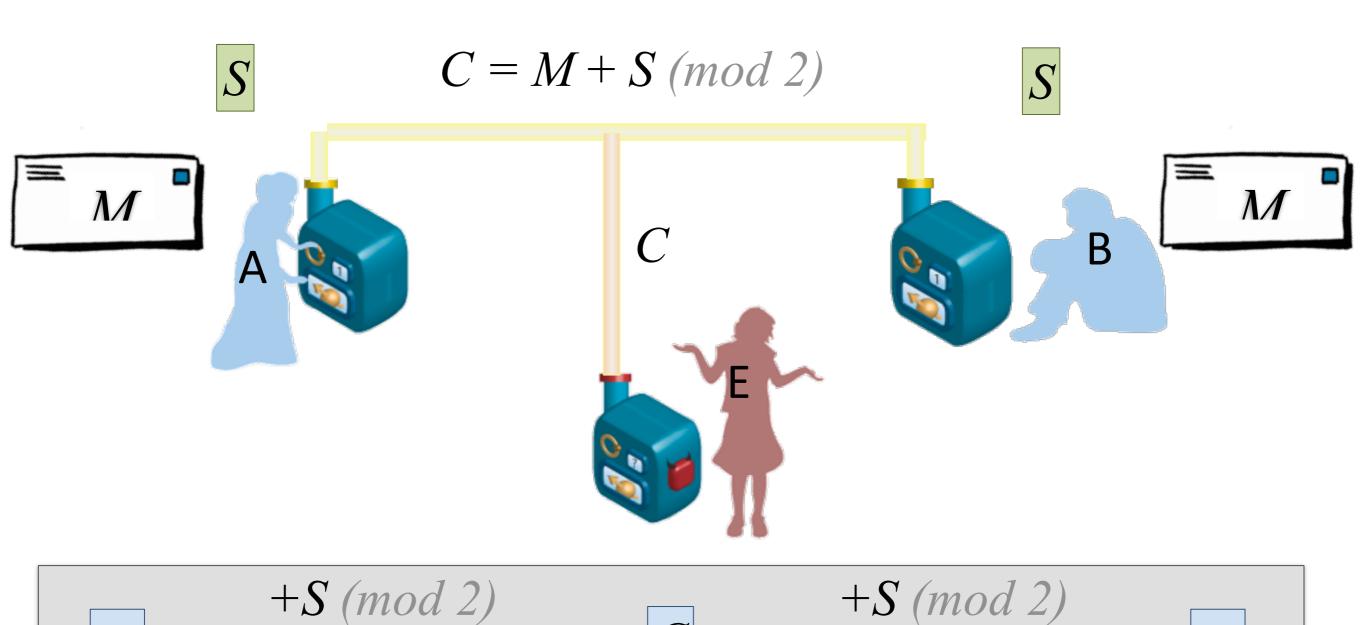
Quantum cryptography



Idea: Use no-cloning principle to verify secrecy.

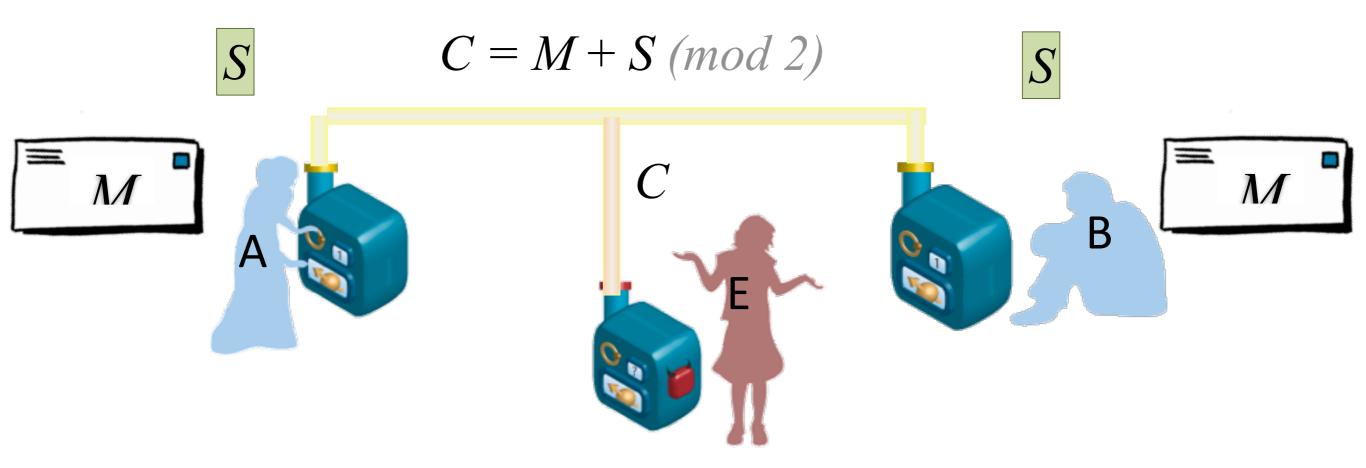
One-time-pad encryption

Let $M \in \{0,1\}$ be a message bit and $S \in \{0,1\}$ a "key bit".



One-time-pad encryption

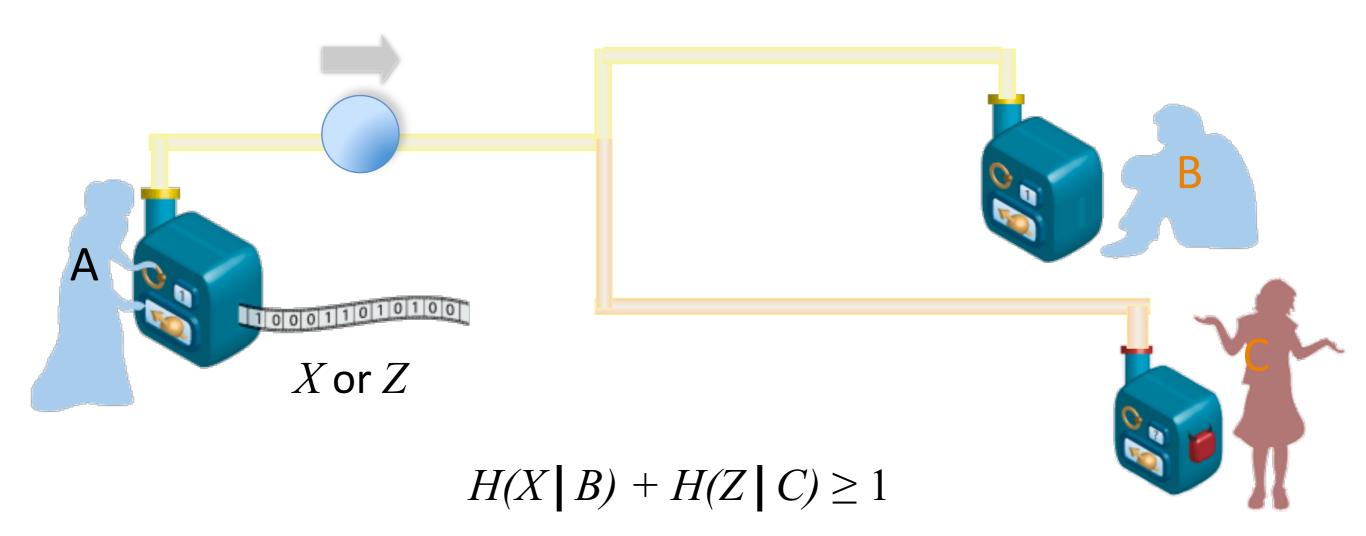
Let $M \in \{0,1\}$ be a message bit and $S \in \{0,1\}$ a "key bit".



Theorem

If S is uniformly distributed then C is uncorrelated to M.

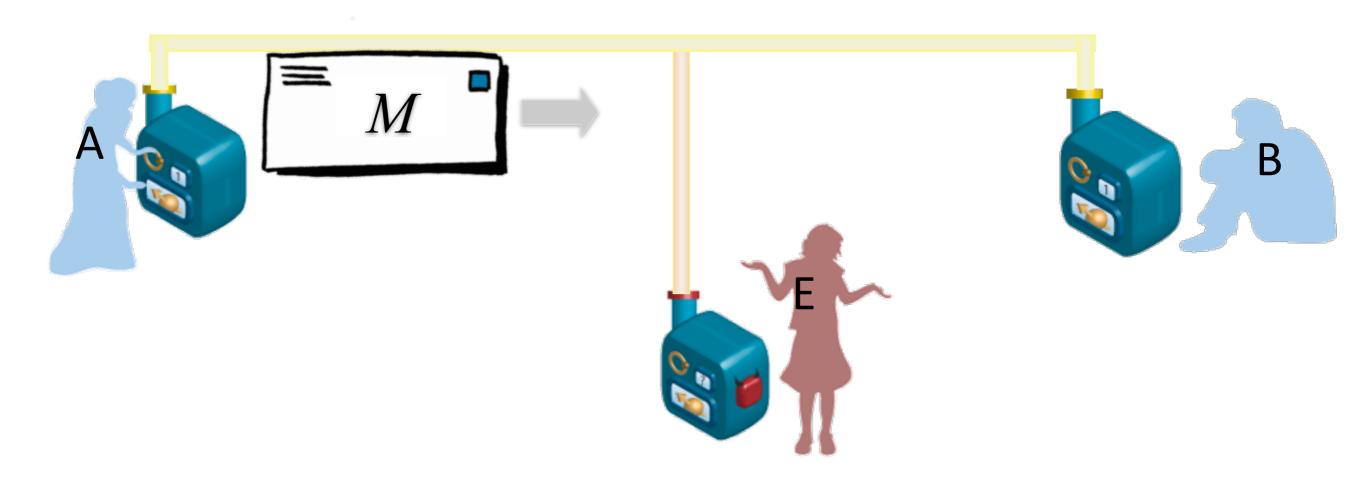
No-cloning principle provides security



Idea

Check statistically that $H(X \mid B)$ is small. The generalized uncertainty principle then implies that $H(Z \mid C)$ is large.

Quantum cryptography



Protocol

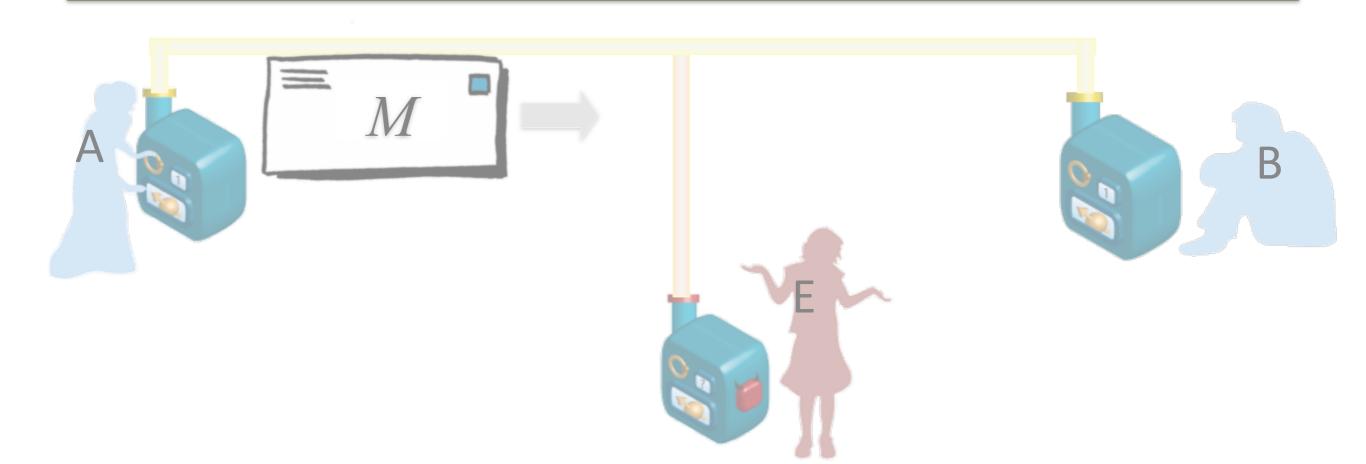
- 1. Use quantum communication to generate a key (the no-cloning principle guarantees that it is secure)
- 2. Use one-time-pad encryption to send message M.

An apparent contradiction

Theorem [Bennett and Brassard, 1984]

Two parties connected via an insecure channel can exchange messages secretly

(provided they have a method for authentication).



An apparent contradiction

Theorem [Bennett and Brassard, 1984]

Two parties connected via an insecure channel can exchange messages secretly

(provided they have a method for authentication).

Theorem [Shannon, 1949]

Two parties connected via an insecure channel cannot exchange any messages secretly

(even if they have methods for authentication).

Let M be a uniformly distributed n-bit message, S a secret key, and C the ciphertext..

Requirements

- H(M|SC) = 0, since M determined by S, C.
- H(M|C) = H(M) = n, since M indep. of C.

Hence

$$H(S) \ge I(M : S | C) = H(M | C) - H(M | SC) = n.$$

Let M be a uniformly distributed n-bit message, S a secret key, and C the ciphertext...

- Requirements H(M|SC_{Bob})

 H(M|SC) = 0, since M determined by S, C.
- \bullet H(M|C) = H(M) = n, since M indep. of C.

Hence

 $H(S) \ge I(M : S | C) = H(M | C) - H(M | SC) = n.$

Let M be a uniformly distributed n-bit message, S a secret key, and C the ciphertext..

Requirements H(M|SC_{Bob})

- H(M|SC) = 0, since M determined by S, C.
- H(M|C) = H(M) = n since M indep. of C.

Hence

H(M | C_{Eve})

 $H(S) \ge I(M : S \mid C) = H(M \mid C) - H(M \mid SC) = n.$

No cloning:

C_{Bob} ≠ C_{Eve} in general

secret key, and C the ciphertext...

Let M be a uniformly distribut

Requiremer(ts H(M|SC_{Bob})

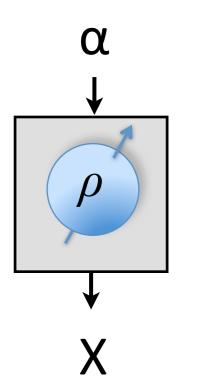
- H(M|SC) = 0, since M determined by S, C.
- H(M|C) = H(M) = n since M indep. of C.

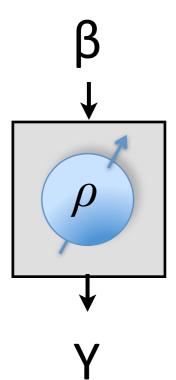
Hence

H(M | C_{Eve})

 $H(S) \ge I(M:S|C) = H(M|C) - H(M|SC) = n.$

Properties of entangled qubits





$$Pr[X = Y] = Cos^{2}(\alpha - \beta)$$

$$Pr[X \neq Y] = Sin^2(\alpha-\beta) \approx (\alpha-\beta)^2$$
 (for small angle differences)

Properties of entangled qubits



$$Pr[X = Y] = Cos^{2}(\alpha - \beta)$$

$$Pr[X \neq Y] = Sin^2(\alpha-\beta) \approx (\alpha-\beta)^2$$
 (for small angle differences)

Note: If the left particle is measured with angle α and gives output 0 (or 1) then the right particle behaves as if it was prepared along α (or $\alpha+\pi/2$).

 Quantum vs. classical physical objects: The joint state space of object A and object B is not simply the cartesian product of the two individual state spaces.

- Quantum vs. classical physical objects: The joint state space of object A and object B is not simply the cartesian product of the two individual state spaces.
- Information is physical: Since information is physical, the physical properties of the underlying information carriers have to be taken into account when describing the laws of information.

- Quantum vs. classical physical objects: The joint state space of object A and object B is not simply the cartesian product of the two individual state spaces.
- Information is physical: Since information is physical, the physical properties of the underlying information carriers have to be taken into account when describing the laws of information.
- Implications: The resulting laws of information are fundamentally different from the corresponding classical laws. Examples include the no-cloning principle, which has applications, e.g., in cryptography.

Many thanks for your attention