
Introduction to
Dynamical Systems

Herbert Wiklicky
herbert@imperial.ac.uk

Imperial College London

Bertinoro, June 2013

Herbert Wiklicky Dynamical Systems



The Land of Oz

The Land of Oz is blessed with many things, but not by good
weather. They never have two nice days in a row. If they have a
nice day, the chance of rain or snow the next day are the same.
If there is rain or snow the chances are even that the weather
stays the same for the next day. If there is a change from snow
or rain, only half of the time is this a change to a nice day.
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The Land of Oz

From this we obtain the transition probabilities between nice
(N), rainy (R) and snowy (S) days:
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The Land of Oz

We can then define the following transition matrix:
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

From Grinstead & Snell: Introduction to Probability, p406;
available as GNU book on http://www.dartmouth.edu/∼chance
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Discrete Time Markov Chain

Given a finite set of states S = {s1, . . . , sr}.

A discrete time Markov chain (DTMC) on S is defined via a
stochastic matrix P as a above, i.e. an r × r (square) matrix
with entries 0 ≤ pij ≤ 1 and such that all row sums are equal to
one, i.e. ∑

j

pij = 1.
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Discrete Time Markov Processes

Let P be the transition matrix of a DTMC. The entry in p(n)
ij in

the n-th matrix power Pn gives the probability that the Markov
chain, starting in state si , will be in state sj after exactly n steps.

At any time step we can describe the probabilities of being in a
certain state si by a probability ui . These probabilities define a
probability distribution, i.e. a row vector

u = (u1,u2, · · · ,ur )

such that 0 ≤ ui ≤ 1 and
∑

i

ui = 1.

For any stochastic matrix P and probability distribution u the
multiplication uP is again a probability distribution.
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The Land of Oz

Consider the initial probability distributions u = (0,1,0) and
v = (1

3 ,
1
3 ,

1
3) in the Oz Example. The vector u describes a

situation where we are certain that we start with a nice day (N),
while v corresponds to one where we assume the same
chances of having a rainy (R), nice (N) or snowy (S) day.
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The Land of Oz

Consider the initial probability distributions u = (0,1,0) and
v = (1

3 ,
1
3 ,

1
3) in the Oz Example.

uP =
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The Land of Oz

Consider the initial probability distributions u = (0,1,0) and
v = (1

3 ,
1
3 ,

1
3) in the Oz Example.

vP =

 0.41667
0.16667
0.41667

T

vP2 =

 0.39583
0.20833
0.39583

T

vP3 =

 0.40104
0.19792
0.40104

T

vP4 =

 0.39974
0.20052
0.39974

T

· · · vP100 =

 0.40000
0.20000
0.40000

T
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Convention

Note that in the theory of Markov chains one usually is
concerned with probability distributions as row vectors.
Therefore, probability vectors are post-multiplied by the
stochastic matrix P defining a Markov chain.

The usual pre-multiplication could be realised via:

Pu = (uT PT )T
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Dynamical Systems
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Dynamical Systems (Birkhoff 1927)

Introductory remarks. In dynamics we deal with physical
systems whoes state at time t is completely specified by the
values of n real variables

x1, x2, . . . , xn.

Accordingly the system is such that the rates of change of
these variables, namely

dx1/dt ,dx2/dt , . . . ,dxn/dt ,

merely depend upon the values of the variables themselves, so
that the laws of motion can be expresses by means of n
differential equations of the first order

dxi/dt = Xi(x1, x2, . . . , xn) (i = 1, . . . ,n).

George D. Birkhoff. Dynamical Systems, volume 9 of
Colloquium Publications. AMS, 1927.
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Dynamical Systems (Bhatia/Szegö 1970)

. . . the symbol X denotes a metric space [. . . ] and R stands for
the set of real numbers.

1.1 Definition. A dynamical system on X is a triplet (X ,R, π),
where π is a map from the product space X × R into the space
X satisfying the following axioms:

1.1.1 π(x ,0) = x for every x ∈ X (identity axiom),
1.1.2 π(π(x , t1), t2) = π(x , t1 + t2) for every x ∈ X and

t1, t2 ∈ R (group axiom),
1.1.3 π is continuous (continuity axiom).

Nam Parshad Bhatia and Giorgio P. Szegö. Stability Theory of
Dynamical Systems, volume 161 of Grundlehren der
mathematischen Wissenschaften.
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Dynamical Systems

Definition
A general dynamical system is a triple (G, π,X ) with (G, ·) a
group, X any set and π : G × X → X with:
Identity Axiom

π(e, x) = x

for all x ∈ X and e ∈ G unit.
Homomorphism Axiom

π(g, π(h, x)) = π(gh, x)

for all x ∈ X and g,h ∈ G.
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Elements of a General Dynamical System

A general dynamical systems is made up of three ingredients:

Phase Space: a set X where “things happen”. This can have
additional structure (topology, norm, etc.)

Phase Group: the group G which allows us to “combine” the
partial dynamics to obtain a global picture.

Group Action: the way in which the dynamics of the group G is
implement on the phase space X .
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Variations of Dynamical System

Typical phase groups are Z (integers) or R (reals) for so called
discrete time or continuous time models.

To investigate, for example, symmetries of the phase space it is
also often the case that one considers so-called Lie Groups as
transformation groups.

Typically we will request that the group action preserves the
structure of the phase space, i.e. π(g, .) is a structure
preserving morphism on X for all g ∈ G.

An option is to drop invertability to get one-sided dynamical
systems by taking G to be a semi-group (e.g. the naturals N).
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(Phase) Groups

Definition
A group G is a set with two maps (product and inverse)

. · . : G ×G→ G and .−1 : G→ G

fulfilling:

(i) (xy)z = x(yz) for all x , y , z ∈ G associativity
axiom.

(ii) ∃e ∈ G such that ex = xe = x f or all x ∈ G
identity axiom.

(iii) x−1x = xx−1 = e for all x ∈ G inverse axiom.

Here the group is presented multiplicatively, some groups are
represented additively, e.g. (Z,+) and (R,+).
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G-Spaces

Definition
Let G be a group. A G-Space is a set S and a map
τ : G × S → S so that

τ(e, s) = s all s ∈ S

and
τ(g, τ(h, s)) = τ(gh, s)

for all g,h ∈ G and s ∈ S. τ is also called an action of G on S.

We write τg(s) = τ(g, s) so τg : S → S and we have τgτh = τgh
as well as τgτg−1 = τg−1τg = τe = id, see e.g. [3, I.2]
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Phase Spaces

There are many choices for the phase space of a dynamical
system, among them we could mention:

Topological Spaces and require that π(g, .) a homeomorphism.
Measurable Spaces with π(g, .) to be measure preserving.
Vector Spaces like Rn with π a linear map or operator.
Strings of Symbols in an alphabet Σ as in Symbolic Dynamics.
Differentiable Manifolds as, e.g., in Classical Mechanics.
Topological Vector Spaces, Toplogical Groups, Lie Groups, . . .
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Group Action

Definition
Let (G, π,X ) be a dynamical system. The orbit of a point x ∈ X
is given by

OG(x) = {π(g, x) | g ∈ G}.

Definition
Let (G, π,X ) be a dynamical system. The group action π is

transitive iff
∀x , x ′ ∈ X : OG(x) = OG(x ′).

faithful iff
g 7→ π(g, x) is injective.

free iff
∀x ∈ X : g 7→ π(g, x) is injective.
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Elements of Ergodic Theory
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Topological Dynamical System

Definition
A topological dynamical system is a dynamical system (G, π,X )
with the elements:

G is a topological group, i.e. . · . is continuous,
X is a topological space,

and π fulfills the
Continuity Axiom:

π : G × X → X is continuous.
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Toplological Spaces

Definition
A topological space is a set X together with a family of sub-sets
τ ⊆ P(X ), the topology (of open sets), iff

1 ∅ ∈ τ and X ∈ τ .

2

n⋂
i=0

Oi ∈ τ for Oi ∈ τ (finite).

3
⋃
i∈I

Oi ∈ τ for Oi ∈ τ (arbritrary).

The sets O ∈ τ are called open sets. The complements
A = X \O of open sets are closed sets.
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Metric Spaces

Definition
A metric space is a set X and a real-valued function d(., .), a
metric, on X × X which satisfies:

1 d(x , y) ≥ 0
2 d(x , y) = 0 ⇐⇒ x = y
3 d(x , y) = d(y , x)

4 d(x , z) ≤ d(x , y) + d(y , z)
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Complete Metric Spaces

In a metric space we can define a basis for the topology open
sets via open balls, i.e. sets B(x , ε) = {x ′ | d(x , x ′) < ε}, i.e.
open sets are those which are unions of open balls.

Given a sequence (xi)i∈N of points in a topological space. We
say that it converges if there exists x = lim xi such that for all
neighbourhoods U(x) of x there ∃N s.t. for n > N : xn ∈ U(x).

A sequence of elements (xi)i∈N in a metric space (X ,d) is
called a Cauchy sequence if

∀ε > 0 ∃N : n,m ≥ N ⇒ d(xn, xm) < ε.

A metric space (X ,d) in which all Cauchy sequences converge
is called complete (metric) space.
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Continuous Functions

Definition
A function T : X → X ′ between two topological spaces (X , τ)
and (X ′, τ ′) is called
continuous iff

∀O ∈ τ ′ : T−1(O) ∈ τ.

homeomorph iff

T is a bijection, and T and T−1 are continuous.

Continuous functions preserve limits, i.e. lim T(xi) = T(lim(xi)).
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Measure Theoretical Dynamical System

Definition
A measure theoretic dynamical system is a dynamical system
(G, π,X ) with

G is a measur(abl)e space,
X is a measur(abl)e space,

and π fulfills the
Measurability Axiom:

π : G × X → X is measurable.
π(g, .) : X → X is measure preserving ∀g ∈ G.

One can define a product measure on G × X in order to make
sense of the first condition.
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Measureable Spaces

Definition
Given any set X . A family σ of sub-sets σ ⊆ P(X ) is called a
σ-algebra iff

1 ∅ ∈ σ and X ∈ σ.

2

∞⋂
i=0

Si ∈ σ for Si ∈ σ (countable).

3 X \ S ∈ σ for S ∈ σ.
We say that (X , σ) is a measurable space, and S ∈ σ are
measurable sets.

By de Morgan we have also:
∞⋃

i=0

Si ∈ σ for Si ∈ σ (countable).
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Measures and Measurable Functions

Definition
Given a measurable space (X , σ) then µ : σ → R+ is a (finite)
measure if

1 µ(∅) = 0 (for µ(X ) = 1 we have a probability measure).

2 µ(
∞⋃

i=0

Si) =
∞∑

i=0

µ(Si) for Si ∈ σ with Si ∩ Sj = ∅ for i 6= j .

Definition
A function T : X → X ′ between two measure spaces spaces
(X , σ, µ) and (X ′, τ ′, µ′) is called
measurable iff

∀S ∈ σ′ : T−1(S) ∈ σ.

measure preserving iff ∀S ∈ σ′ also µ′(S′) = µ(T−1(S)).
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Topological Mixing Notions

Definition
Given a topological dynamical system (G, π,X ).
We say that (G, π,X ) is topologically transitive if

∃x ∈ X : OG(x) is dense in X .

We say that (G, π,X ) is (topologically) minimal if

∀x ∈ X : OG(x) is dense in X .

Definition
A discrete topological dynamical system (T,X ) is called
topologically (strong) mixing if

∀U,V ⊆ X open and non-empty ∃N : ∀n > N : Tn(U) ∩ V 6= ∅.
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Topologically Transitive

Theorem
Given a discrete topological dynamical system (T,X ) on a
compact metric space X then the following conditions are
equivalent:

1 ∀x ∈ X : OT(x) is dense in X (topologically transitive).
2 ∀C ⊆ X closed with T(C) = C ⇒ C = X or C = ∅.
3 ∀O ⊆ X open with T(O) = O ⇒ O = X or O = ∅.

4 ∀O ⊆ X open and non-empty, then
∞⋃

n=−∞
Tn(O) = X.

Herbert Wiklicky Dynamical Systems



Measure Theoretic Mixing Notions

Definition
Given a discrete measure theoretic dynamical system (T,X ).
We say (T,X ) is measure theoretic transitive or ergodic if

∀S ⊆ X measurable with T(S) = S ⇒ µ(S) = 0 or µ(S) = 1.

Definition
A discrete measure theoretic dynamical system (T,X ) is called
strong mixing if

∀S1,S2 ⊆ X measurable lim
n→∞

µ(T−n(S1) ∩ S2) = µ(S1)µ(S2).
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Ergodicity

Theorem
Given a discrete measure theoretic dynamical system (T,X )
with T measure preserving. Then the following conditions are
equivalent (with ergodic):

1 ∀S ⊆ X measurable T(S) = S ⇒ µ(S) = 0 or µ(S) = 1.
2 ∀S ⊆ X measurable and µ(T−1(S)

a
S) = 0

⇒ µ(S) = 0 or µ(S) = 1.

3 ∀S ⊆ X measurable and µ(S) > 0⇒ µ(
∞⋃

n=−∞
T−n(S)) = 1.

4 ∀S1,S2 ⊆ X measurable and µ(S1) > 0 < µ(S2)
⇒ ∃n ∈ N such that µ(T−n(S1) ∩ S2) = 0.
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Ergodic Theorem

Given a discrete measure theoretic dynamical system (T,X )
and a function (i.e. a random variable) f : X → R.

The phase average of f is defined as µ(f ) =
∫

X f (x)dx . The

time average of f is defined as f ∗(x) = lim
T→∞

1
T

∫ T

0
f (Tt (x)))dt .

Theorem (Birkhoff)

Given a discrete measure theoretic dynamical system (T,X ),
with T measure preserving, and a function f : X → R with
f ∈ L1(X , µ) then the following holds:

(T,X ) is ergodic ⇔ µ(f ) = f ∗(x) µ-almost everywhere.
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Elements of Linear Dynamical
Systems
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Linear Dynamical System

Definition
A linear dynamical system is a dynamical system (G, π,X ) with

G is a group (typically G = Z),
X is a vector space

and π fulfils the
Linearity Axiom:

π(g, .) : X → X is linear ∀g ∈ G.

Many versions of linear dynamical systems play an important
role in control theory investigating e.g. feed back loops etc.
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Abstract Vector Spaces

Definition
A Vector Space (over a field K, e.g. R or C) is a set V together
with two operations:

Scalar Multiplication . ·. : K× V 7→ V
Vector Addition .+. : V × V 7→ V

such that (∀x , y , z ∈ V and α, β ∈ K):

1 x + (y + z) = (x + y) + z
2 x + y = y + x
3 ∃o : x + o = x
4 ∃−x : x + (−x) = o

1 α(x + y) = αx + αy
2 (α + β)x = αx + βx
3 (αβ)x = α(βx)

4 1x = x (1 ∈ K)
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Tuple Spaces

Theorem
All finite dimensional vector spaces are isomorphic to the (finite)
Cartesian product of the underlying field Kn (i.e. Rn or Cm).

Finite dimensional vectors can always be represented via their
coordinates with respect to a given base, e.g.

x = (x1, x2, x3, . . . , xn)

y = (y1, y2, y3, . . . , yn)

Algebraic Structure

αx = (αx1, αx2, αx3, . . . , αxn)

x + y = (x1 + y1, x2 + y2, x3 + y3, . . . , xn + yn)
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Linear Operators

Definition
A map T : V → W between two vector spaces V andW is
called a linear map iff

1 T(x + y) = T(x) + T(y) and
2 T(αx) = αT(x)

for all x , y ∈ V and all α ∈ K (e.g. K = C or R).

The set of all linear maps between V andW is denoted
L(V,W). For V =W we talk about a linear operator on V.

On normed vector spaces the continuous or equivalently
bounded linear operators are of particular interest, i.e.

B(V) = {T | ‖T‖ = sup
x∈V

‖T(x)‖
‖x‖

<∞} ⊆ L(V) = L(V,V).
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Normed Spaces

Definition
A complex vector space V is called a normed (vector) space if
there is a real valued function ‖.‖ on V that satisfies (∀x , y ∈ V
and ∀α ∈ C):

1 ‖x‖ ≥ 0
2 ‖x‖ = 0 ⇐⇒ x = o
3 ‖αx‖ = |α| ‖x‖
4 ‖x + y‖ ≤ ‖x‖+ ‖y‖

The function ‖.‖ is called a norm on V.

We have a Banach space if the topology induced by d(x , y)
= ‖x − y‖ is complete – always for finite dimensional spaces.

Herbert Wiklicky Dynamical Systems



Normed Spaces

Definition
A complex vector space V is called a normed (vector) space if
there is a real valued function ‖.‖ on V that satisfies (∀x , y ∈ V
and ∀α ∈ C):

1 ‖x‖ ≥ 0
2 ‖x‖ = 0 ⇐⇒ x = o
3 ‖αx‖ = |α| ‖x‖
4 ‖x + y‖ ≤ ‖x‖+ ‖y‖

The function ‖.‖ is called a norm on V.

We have a Banach space if the topology induced by d(x , y)
= ‖x − y‖ is complete – always for finite dimensional spaces.

Herbert Wiklicky Dynamical Systems



Hilbert Spaces

Definition
A complex vector space H is called an inner product space (or
(pre-)Hilbert space) if there is a complex valued function 〈., .〉
on H×H that satisfies (∀x , y , z ∈ H and ∀α ∈ C):

1 〈x , x〉 ≥ 0
2 〈x , x〉 = 0 ⇐⇒ x = o
3 〈αx , y〉 = α 〈x , y〉
4 〈x , y + z〉 = 〈x , y〉+ 〈x , z〉
5 〈x , y〉 = 〈y , x〉

The function 〈., .〉 is called an inner product on H.

If the topology induced by ‖x‖ =
√
〈x , x〉 is complete then we

have a Hilbert space – always for finite dimensional spaces.
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Basis Vectors

A set of vectors xi is said to be linearly independent iff

λixi =
∑

λixi = 0 implies that ∀ i : λi = 0

Two vectors in a Hilbert space are orthogonal iff 〈x , y〉 = 0
An orthonormal system (base if it generates all H) in a Hilbert
space is a set of linearly independent vectors {bi}i with:〈

bi ,bj
〉

= δij =

{
1 iff i = j
0 iff i 6= j

Theorem
For a Hilbert space there exists an orthonormal basis {bi}. The
representation of each vector is unique:

x =
∑

i

xibi =
∑

i

〈x ,bi〉bi
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Dual Spaces

A linear functional on a vector space V is a map f : V → K such
that f (x + y) = f (x) + f (y) and f (αx) = αf (x) for all
x , y ∈ V, α ∈ K.

Theorem (Riesz Representation Theorem)
Every (bounded) linear functional on a Hilbert space H can be
represented by a vector in the Hilbert space H, such that

f (x) = 〈yf |x〉 = fy (x)

The dual Hilbert space H∗ is isomorphic to the original Hilbert
space H, e.g. for the universal Hilbert space `2(N)∗ = `2(N).

`p(X) =

(xi)i∈X |

(∑
i∈X
|xi |2

) 1
p


Herbert Wiklicky Dynamical Systems



Dual Spaces

A linear functional on a vector space V is a map f : V → K such
that f (x + y) = f (x) + f (y) and f (αx) = αf (x) for all
x , y ∈ V, α ∈ K.

Theorem (Riesz Representation Theorem)
Every (bounded) linear functional on a Hilbert space H can be
represented by a vector in the Hilbert space H, such that

f (x) = 〈yf |x〉 = fy (x)

The dual Hilbert space H∗ is isomorphic to the original Hilbert
space H, e.g. for the universal Hilbert space `2(N)∗ = `2(N).

`p(X) =

(xi)i∈X |

(∑
i∈X
|xi |2

) 1
p


Herbert Wiklicky Dynamical Systems



Dual Spaces

A linear functional on a vector space V is a map f : V → K such
that f (x + y) = f (x) + f (y) and f (αx) = αf (x) for all
x , y ∈ V, α ∈ K.

Theorem (Riesz Representation Theorem)
Every (bounded) linear functional on a Hilbert space H can be
represented by a vector in the Hilbert space H, such that

f (x) = 〈yf |x〉 = fy (x)

The dual Hilbert space H∗ is isomorphic to the original Hilbert
space H, e.g. for the universal Hilbert space `2(N)∗ = `2(N).

`p(X) =

(xi)i∈X |

(∑
i∈X
|xi |2

) 1
p


Herbert Wiklicky Dynamical Systems



Finite-Dimensional Hilbert Spaces

We represent vectors and their transpose using coordinates:

~x =

 x1
...

xn

 , ~y =

 y1
...

yn


T

= (y1, . . . , yn)

The adjoint of ~x = (x1, . . . , xn), with .∗ = . denoting complex
conjugate in C), is given by

~x† = ~x∗ = (x∗1 , . . . , x
∗
n )T

The inner product is:〈
~y , ~x

〉
=
∑

i

y∗i xi = ~y†~x
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Differential Equations
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Discrete (Time) Dynamical Systems: Collatz

The Colltaz problem is a (one-sided) discrete time dynamical
system (C,Z), which we can describe by the following
transformation:

C : Z→ Z

with

C(n) =

{
n/2 if n is even

3× n + 1 otherwise.

The unsolved question is:

Does ∃m ∈ N such that Cm(n) = 1 for all n ∈ N?

Herbert Wiklicky Dynamical Systems



Discrete (Time) Dynamical Systems: Collatz

The Colltaz problem is a (one-sided) discrete time dynamical
system (C,Z), which we can describe by the following
transformation:

C : Z→ Z

with

C(n) =

{
n/2 if n is even

3× n + 1 otherwise.

The unsolved question is:

Does ∃m ∈ N such that Cm(n) = 1 for all n ∈ N?

Herbert Wiklicky Dynamical Systems



Continuous Dynamical Systems

A popular way to specify continuous time dynamical systems is
via (ordinary) differential equations, e.g. Morris W. Hirsch,
Stephen Smale, and Robert L. Devaney. Differential Equations,
Dynamical Systems and An Introduction to Chaos. Elsevier,
2004.

The group action is interpreted as time t ∈ R.

Ordinary Differential Equations

x ′1 = dx1
dt = f1(t , x1, x2, . . . , xn)

x ′2 = dx2
dt = f2(t , x1, x2, . . . , xn)

. . . . . . . . .

x ′n = dxn
dt = fn(t , x1, x2, . . . , xn)
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Differential

Given a function f : R→ R. We say it is differentiable at a point
t ∈ R if there is a linear map Df (t) : R→ R which approximates
f at t . That is, ∀ε > 0 there is a neigborhood U of t such that:

‖f (t ′)− f (t)− Df (t)(t − t ′)‖ < ε‖t − t ′‖ ∀t ′ ∈ U

We also write for the differential (quotient) Df = df
dt .

We also approximate a function f : Rn → Rm by a linear map
Df (x) : Rn → Rm represented by the matrix of partial derivates:

(Df )ij =
∂fi
∂tj

i = 1, . . . ,m, i = 1, . . . ,n.
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Euler’s Number

What is Euler’s e? Metafont users know, it is e = 2.7183 . . .
It is the unique number such that for f (t) = et we have

df
dt

(t) = f (t)

The exponential function is the fixed-point or eigen-function of
the differential operator d

dt . One could show this via the Taylor
expansion of exp(x) =

∑∞
n=0

xn

n! as d
dt

tn

n! = ntn−1

n(n−1)! = tn−1

(n−1)! .

The simplest differential equation one can think of is perhaps:

x ′(t) =
dx
dt

(t) = ax(t)

The solution is x(t) = keat = k exp(at) for some constant k
(can be determined via an initial/boundary condition, e.g. x(0)).
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Ordinary Linear Differential Equations [1, p129]

Solution to ordinary differential equations via exponentation.

x ′1 = dx1
dt = a11x1 + a12x2 + . . .+ a1nxn

x ′2 = dx2
dt = a21x1 + a22x2 + . . .+ a2nxn

. . . . . . . . .

x ′n = dx2
dt = an1x1 + an2x2 + . . .+ annxn

Theorem
Let A be an n × n matrix. Then the unique solution to the initial
value problem x′ = Ax with x(0) = x0 is given by
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Computing Solutions

The exponential of a matrix A can be computed as:

exp(A) =
∞∑

k=0

Ak

k !

However this anything but an efficient way to compute it.

We can represent matrices e.g. in Jordan normal form:
A = D + N where D is a diagonal matrix and N is an upper
diagonal matrix which is nilpotent, i.e. ∃m s.t. Nm vanishes.
This boils down to finding the eigenvalues of A (via SVD).

We then have exp(A) = exp(D + N) = exp(D) exp(N) with
exp(diag(d1, . . . ,dn)) = diag(exp(d1), . . . ,exp(dn)) and Nk 6= 0
only for finitely many terms.
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Smooth Functions

We say a function f is differentiable on R or U ∈ R if it is
differentiable at every point t ∈ R or t ∈ U. We then write
f ∈ C1(R) = C1 or f ∈ C(U).

We can see Df (x) itself as a function Rn → L(Rn,Rm) = Rnm.

As such we can ask if this is itself differentiable. We denote the
set of p-times differentiable maps by Cp and by C∞ the set of
infinitely differentiable or smooth functions.

Note: Differentiation is primarily a real number notion. We need
to introduce the notion of a differentiable manifold as a space
which looks like Rm locally (with respect to diff. operations).
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Differentiable Manifolds

Definition
Let M be a topological space.

A chart (V ,Φ) is a homeomorphism Φ of an open set V of M
into an open set of Rm.

Two charts (V1,Φ1) and (V2,Φ2) are said to be compatible in
case V1 ∩ V2 = ∅ or the restricted maps Φ1 ◦ Φ−1

2 and Φ2 ◦ Φ−1
1

are in C∞(Rm).

A atlas is a set of compatible charts that cover all of M. Two
atlases are compatible if all their charts are.

A differentiable manifold is a separable, metrizisable space with
an set of compatible (equivalent) atlases.
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Tangents

Definition
Let f ,g ∈ L(V,W) then we say that f is tangent to g at t iff

lim
t ′→t

‖f (t ′)− g(t ′)‖
‖t ′ − t‖

= 0

Definition

Let M be a manifold and m ∈ M. A curve at m is a C1 map
c : I → M with an open interval in R containing 0 s.t. c(0) = m.

We say that two curves c1 and c2 are tangent if Φ ◦ c1 and
Φ ◦ c2 are tangent at 0.

The tangent space Tm(M) of M at m is the set of (tangent)
equivalent classes of curves.
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Lie Groups

Definition
A Lie group over a field K is a group G equipped with the
structure of a differentiable manifold over K sich that

. · . : G ×G→ G is differentable.

Using the implicit function theorem, one can also show that
g 7→ g−1 is differentiable (a diffeomorphism).

The fields we are typically interested are K = R or K = C.
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Fields

Definition
A field is a set K together with two operations:

Addition .+. : K×K 7→ K
Multiplication . ·. : K×K 7→ K

such that

1 ∀x , y , z ∈ K : x + (y + z) = (x + y) + z
2 ∃ o ∈ K, ∀x ∈ K : o + x = x
3 ∀ x ∈ K, ∃ −x ∈ K : x + (−x) = o
4 ∀x , y ∈ K : x + y = x + y
5 ∀x , y , z ∈ K : x · (y · z) = (x · y) · z
6 ∃ o 6= e ∈ K, ∀x ∈ K : e · x = x
7 ∀ o 6= x ∈ K, ∃x−1 ∈ K : x · x−1 = e
8 ∀x , y ∈ K : x · y = y · x
9 x · (y + z) = x · y + x · z, ∀x , y , z ∈ K
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Examples of Lie Groups

Examples of Lie groups we can mentions here:

The additive group of the field K = K+.
The multiplicative group of the field K×.
The “circle” T = {z ∈ C | |z| = 1} or {eiφ | φ ∈ [0,2π)}.
GLn(K) of invertible matrices of order n over K.
SLn(K) of matrices of order n over K with det = 1.
On(K) orthogonal matrices over K of order n.
Un unitary matrices over C of order n.
SOn(K) = On(K) ∩ SLn(K).
SUn = Un ∩ SLn(C).
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Lie Algebras

Definition
A Lie algebra is a vector space g over some field K together
with a binary operation [·, ·] : g× g→ g called the Lie bracket,
which satisfies the following:

Bilinearity: ∀α, β ∈ K and ∀x , y , z ∈ g

[αx + βy , z] = α[x , z] + β[y , z]

[z, αx + βy ] = α[z, x ] + β[z, y ]

Alternating on g: ∀x ∈ g
[x , x ] = 0

Jacobi identity: ∀x , y , z ∈ g

[x , [y , z]] + [z, [x , y ]] + [y , [z, x ]] = 0
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Examples of Lie Algebras

It follows easily ∀x , y ∈ g that [x , y ] = −[y , x ]. One could also
define a associative product on an algebra g and then introduce
the Lie bracket as [x , y ] = xy − yx .

Theorem
Given a Lie group G then the tangent space at the unit g = TeG
is a Lie algebra.

Let g(t) and h(t) be differentiable paths or C1 curves on G.
Assume, g(0) = h(0) = e as well as dg

dt (0) = ξ and dh
dt (0) = η

then we define a Lie bracket on the tangent space Te(G) via

[ξ, η] =
∂2

∂t∂s
[g(t),h(s)]|s=t=0

where [g,h] = ghg−1h−1 is the group commutator.
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Prescribed Velocities

Definition
A path or curve g(t) in a Lie group G with t ∈ R is called a
one-parameter subgroup if

g(t + s) = g(t)g(s).

We denote by gξ(s) the one-parameter sub-group with
g′ = dg

dt (s) = ξ(s) – i.e. with prescribed “velocity” ξ(s).

Definition
For a Lie group G and ξ ∈ g, i.e. its Lie algebra, we define:

exp(ξ) = gξ(1)
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Exponentation

Theorem
The exponential map exp : g→ G maps a neighbourhood of
zero in the tangent algebra g = Te(G) diffeomorphically onto a
neighbourhood of the identity in G.

Theorem
Let g = a1 ⊕ . . .⊕ ak be a decomposition of a Lie algebra as
direct sum, then ξ1 + . . .+ ξk 7→ exp(ξ1) . . . exp(ξk ) maps a
neighbourhood of zero in g diffeomorphically onto a
neighbourhood of the identity in G.

If G is the group of invertible elements in an associative algebra
(e.g. of non-singular matrices), then

exp(ξ) =
∞∑

n=0

ξn

n!
.
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Stochastic Dynamics
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Discrete Time Markov Chains (DTCM)

Definition
A discrete time Markov chain (DTMC) on S is defined via a
stochastic matrix P, i.e. an r × r (square) matrix with entries
0 ≤ pij ≤ 1 and such that all row sums are equal to one, i.e.∑

j

pij = 1.

This defines a discrete linear dynamical system:

Phase group: Z or N,
Phase space: Rr ,
Group action: π(n, x) = x · Pn.
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Memoryless Property of DTMC

Let I be a finite (or maybe countable) set. Each i ∈ I is called a
state or index. Given a probability space (Ω, σ,P) a random
variable is a map X : Ω→ I.

A sequence of random variables Xn is a Markov Chain if

P(Xn+1 = i + 1 | X0 = i0,X1 = i1, . . . ,Xn = in) =

= P(Xn+1 = i + 1 | Xn = in) =

= pin,in+1P(Xn = in)

The probability P(i →n j) of reaching state (actually index) j
from i in exactly n steps is given by p(n)

ij i.e. the entry in row i
and column j of Pn.
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Properties

Definition
Given a DTMC with transition matrix P. A state i is said to be

recurrent if P(i →n i for infinitely many n} = 1
transient if P(i →n i for infinitely many n} = 0

Definition
A DTMC with transition matrix P is called

ergodic or irreducible: if ∀i , j ∃n such that Pn
ij > 0.

regular: if ∃n such that ∀i , j we have Pn
ij > 0.
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Long Run Behaviour

Theorem
Given a DTMC with transition matrix P. If it is regular and v an
arbitrary probability vector. Then

lim
n→∞

vPn = w

where w is the unique probability vector for P.

Theorem
Given a DTMC with transition matrix P. Assume P is ergodic.
Let An be the matrix defined by:

An =
I + P + . . .+ Pn

n + 1

then An →W where W is a matrix all of whose rows are equal
to the unique vector w for P.
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Continuous Time Markov Chains (CTMC)

Definition
A continuous time Markov chain (CTMC) on S = {s1, . . . , sr} is
defined via an r × r (square) generator or Q-matrix Q = (qij)
specifying the rates going from an index or state i to an index or
state j and which fullfills:

1 0 ≤ −qii <∞ for all i
2 qij ≥ 0 for all i 6= j

3
∑

j

qij = 0 for all i
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Computing Transition Probabilities

Again we use exponentation to get the transition probabilities.

P(t) = exp(tQ) =
∞∑

k=0

(tQ)k

k !

This gives the unique solutions to the forward equations

d
dt

P(t) = P(t)Q with P(0) = I

and the backward equation

d
dt

P(t) = QP(t) with P(0) = I

and fulfills the (semi-)group property:

P(s + t) = P(s)P(t).
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Dynamical Systems in Physics
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Classical Mechanics (in 10min)

Consider point particles (no volume) with mass m. The position
of a particle is given in some coordinates qi .

The velocity of the particle is given by

vi =
dqi

dt
= q̇i

its acceleration is given by

ai =
dv
dt

=
d2qi

dt2 = q̈i

its momentum is defined as

pi = mq̇i = m
dqi

dt
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Lagrange Formalism

Describe the dynamics of a mechanical system via the
Lagrange function or Lagrangian

L(q1,q2, . . . ,qs, q̇1, q̇2, . . . , q̇s, t)

the action is defined as S =
∫ t2

t1
L(qi , q̇i , t)dt .

The Principle of Least Action then implies the Lagrange
equations which give the dynamics:

d
dt
∂L
∂q̇i
− ∂L
∂qi

= 0

L.D. Landau and E.M. Lifschitz. Mechanik. Akademie-Verlag,
Berlin, 1981.
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Lagrange Examples

Single Particle:
L =

m
2

(ẋ2 + ẏ2 + ż2)

Pendulum: length l , angle φ, mass m, gravitational constant g

L =
m
2

l2φ̇2 + mgl cos(φ)

Double Pendulum: angles φ1 and φ2, lengths l1 and l2, masses
m1 and m2 [2, p13]:

L =
m1 + m2

2
l21 φ̇

2
1 +

m2

2
l22 φ̇

2
2 +

m2l1l2φ̇1φ̇2 cos(φ1 − φ2) +

(m1 + m2)gl1 cos(φ1) + m2gl2 cos(φ2)
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Hamiltonian Formalism

Describe the dynamics of a mechanical system via the
Hamilton function or Hamiltonian:

H(pi ,qi , t) =
∑

i

pi q̇i − L(qi , q̇i , t)

The dynamics of the system is then described via the
Hamiltonian or canonical equations:

q̇i =
dq
dt

=
∂H
∂pi

q̇i =
dq
dt

= −∂H
∂qi

L.D. Landau and E.M. Lifschitz. Mechanik. Akademie-Verlag,
Berlin, 1981.
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Hamiltonian Examples

Single Particle:

H =
1

2m
(p2

x + p2
y + p2

z )

Particle in Field:

H =
1

2m
(p2

x + p2
y + p2

z ) + U(x , y , z)

Pendulum: with pφ = ml2φ̇ and φ̇ =
pφ

ml2

H =
p2
φ

2ml2
−mgl cos(φ)
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Quantum Mechanics (in 20min)

Arguably, physics is ultimately about explaining experiments
and forecasting measurement results.

Observables: Entities which are (actually) measured when an
experiment is conducted on a system.

State: Entities which completely describe (or model) the
system we are interested in.

Measurement establishes a relation between states and
observables of a given system. Dynamics describes how
observables and/or the state changes over time.

Related Questions: What is our knowledge of what? How do
we obtain this information? What is a description on how the
system changes?
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Postulates for Quantum Mechanics (ca 1950)

The quantum state of a (free) particle is described by a
(normalised) complex valued function:

~ψ ∈ L2(x) i.e.
∫
|ψ(x)|2dx = 1

Two quantum states can be superimposed, i.e.

α1 ~ψ1 + α2 ~ψ2

Any observable A is represented by a linear, self-adjoint
operator A on L2(x).
Possible measurement results: Eigenvalues of A,
representing the observable A:

A~φi = λi ~φi

Probability to measure λn if the system is in state
~ψ =

∑
i ψi ~φi is

Pr(A = λn, ~ψ) = ‖~ψn‖2
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Postulates for Quantum Mechanics

Observables and states of a system are represented by
hermitian (i.e. self-adjoint) elements a of a C*-algebra A and by
states w (i.e. normalised linear functionals) over this algebra.

Possible results of measurements of an observable a are
given by the spectrum Sp(a) of an observable. Their probability
distribution in a certain state w is given by the probability
measure µ(w) induced by the state w on Sp(a).

Walter Thirring: Quantum Mathematical Physics, 2nd ed.
Springer Verlag, 2002
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Quantum Mathematics

Quantum physics is often/sometimes counter-intuitive.

However, the standard mathematical model of (closed)
quantum systems is relatively simple and just requires some
basic (complex) linear algebra.

The information describing the state of an (isolated)
quantum mechanical system is represented
mathematically by a (normalised) vector in a complex
vector Hilbert space H.
An observable are represented mathematically by a
self-adjoint matrix (operator) A acting on H.

Two states can be combined to form a new state α |x〉+ β |y〉
as long as |α|2 + |β|2 = 1 (Superposition).
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Quantum States and Notation

The state of a QM system is usually denoted by |x〉 ∈ H. The
inner product 〈x |y〉 of two vectors in H – which is describing the
angle between them – is very important in QM.

P.A.M. Dirac “invented” the Bra-Ket Notation based on the
following simple facts:

Typewriters had no sub-scripts ~xi
Hilbert spaces have inner product

Simply “take inner product appart” to denote vectors in H:〈
xi , yj

〉
=
〈
xi |yj

〉
= 〈i | |j〉
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Conventions

Physical Convention:

〈x |αy〉 = α 〈x |y〉

Mathematical Convention:

〈αx , y〉 = α 〈x , y〉

Linear in first or second argument? In mathematics we have:

〈x , αy〉 = 〈αy , x〉 = ᾱ〈y , x〉 = ᾱ 〈x , y〉
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Quantum Measurement

The expected result of measuring A of a system in state
|x〉 ∈ H is given by:

〈A〉x = 〈x |A |x〉 = 〈x | |Ax〉

The only possible results are eigenvalues λi of A.
The probability of measuring λn in state |x〉 is

Pr(A = λn, x) = 〈x |Pn |x〉

with Pn the (orthogonal) projection (s.t. A =
∑

i λiPi )

Pn =

d(n)∑
j=1

|λn, j〉 〈λn, j |
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Quantum Dynamics

The dynamics of a closed system is described by the
Schrödinger Equation:

i~
d |x〉

dt
= H |x〉

for the (self-adjoint) Hamiltonian H.
The solution is a unitary operator Ut = exp(itH).

Theorem
For any self-adjoint operator A the operator

exp(iA) = eiA =
∞∑

n=0

(iA)n

n!

is a unitary operator.
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Adjoint Operator

For a matrix A = (Aij) its transpose matrix AT is defined as

(AT
ij ) = (Aji)

the conjugate matrix A∗ is defined by

(A∗ij) = (Aij)
∗

and the adjoint matrix A† is given via

(A†ij) = (A∗ji) or A† = (A∗)T

Notation: In mathematics the adjoint operator is usually
denoted by A∗ and defined implicitly via:

〈A(x), y〉 = 〈x ,A∗(y)〉 or 〈A†x |y〉 = 〈x ,Ay〉
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Unitary Operators

A square matrix/operator U is called unitary if

U†U = I = UU†

That means U’s inverse is U† = U−1. It also implies that U is
invertible and the inverse is easy to compute.

The postulates of Quantum Mechanics require that the time
evolution to a quantum state, e.g. a qubit, are implemented via
a unitary operator (as long as there is no measurement).

The unitary evolution of an (isolated) quantum state/system is a
mathematical consequence of being a solution of the
Schrödinger equation for some Hamiltonian operator H.
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Self Adjoint Operators

An operator A is called self-adjoint or hermitian iff

A = A†

The postulates of Quantum Mechanics require that a quantum
observable A is represented by a self-adjoint operator A.

Possible measurement results are eigenvalues λi of A
defined as

A |i〉 = λi |i〉 or A~ai = λi~ai

Probability to observe λk in state |x〉 =
∑

i αi |i〉 is

Pr(A = λk , |x〉) = |αk |2
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Projections

Projections
An operator P on Cn is called projection (or idempotent) iff

P2 = PP = P

Orthogonal Projection
An operator P on Cn is called (orthogonal) projection iff

P2 = P = P†

We say that an (orthogonal) projection P projects onto its
image space P(Cn), which is always a linear sub-spaces of Cn.

Birkhoff-von Neumann: Projection on a Hilbert space form an
ortho-lattice which gives rise to non-classical a “quantum logic”.
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Spectral Theorem

In the bra-ket notation we can represent a projection onto the
sub-space generated by |x〉 by the outer product Px = |x〉〈x |.

Theorem
A self-adjoint operator A (on a finite dimensional Hilbert space,
e.g. Cn) can be represented uniquely as a linear combination

A =
∑

i

λiPi

with λi ∈ R and Pi the (orthogonal) projection onto the
eigen-space generated by the eigen-vector |i〉, i.e. Pi = |i〉〈i |

In the degenerate case we had to consider: Pi =
∑d(n)

j=1

∣∣ij〉〈ij ∣∣.
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Measurement Process

If we perform a measurement of the observable represented by:

A =
∑

i

λi |i〉〈i |

with eigen-values λi and eigen-vectors |i〉 in a state |x〉 we have
to decompose the state according to the observable, i.e.

|x〉 =
∑

i

Pi |x〉 =
∑

i

|i〉〈i |x〉 =
∑

i

〈i |x〉 |i〉 =
∑

i

αi |i〉

With probability |αi |2 = | 〈i |x〉 |2 two things happen
The measurement instrument will the display λi .
The state |x〉 collapses to |i〉.

Herbert Wiklicky Dynamical Systems



Measurement Process

If we perform a measurement of the observable represented by:

A =
∑

i

λi |i〉〈i |

with eigen-values λi and eigen-vectors |i〉 in a state |x〉 we have
to decompose the state according to the observable, i.e.

|x〉 =
∑

i

Pi |x〉 =
∑

i

|i〉〈i |x〉 =
∑

i

〈i |x〉 |i〉 =
∑

i

αi |i〉

With probability |αi |2 = | 〈i |x〉 |2 two things happen
The measurement instrument will the display λi .
The state |x〉 collapses to |i〉.

Herbert Wiklicky Dynamical Systems



Measurement Process

If we perform a measurement of the observable represented by:

A =
∑

i

λi |i〉〈i |

with eigen-values λi and eigen-vectors |i〉 in a state |x〉 we have
to decompose the state according to the observable, i.e.

|x〉 =
∑

i

Pi |x〉 =
∑

i

|i〉〈i |x〉 =
∑

i

〈i |x〉 |i〉 =
∑

i

αi |i〉

With probability |αi |2 = | 〈i |x〉 |2 two things happen
The measurement instrument will the display λi .
The state |x〉 collapses to |i〉.

Herbert Wiklicky Dynamical Systems



Measurement Process

If we perform a measurement of the observable represented by:

A =
∑

i

λi |i〉〈i |

with eigen-values λi and eigen-vectors |i〉 in a state |x〉 we have
to decompose the state according to the observable, i.e.

|x〉 =
∑

i

Pi |x〉 =
∑

i

|i〉〈i |x〉 =
∑

i

〈i |x〉 |i〉 =
∑

i

αi |i〉

With probability |αi |2 = | 〈i |x〉 |2 two things happen
The measurement instrument will the display λi .
The state |x〉 collapses to |i〉.

Herbert Wiklicky Dynamical Systems



Spectrum

The set of eigen-values {λ1, λ2, . . .} of an operator A is called
its spectrum σ(A).

σ(A) = {λ | λI− A is not invertible}

It is possible that for an eigen-value λi in the equation

A |i〉 = λi |i〉

we may have more than one eigen-vector |i〉, i.e. the dimension
of the eigen-space d(n) > 1. We will not consider these
degenerate cases here.
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Heisenberg and Schrödinger Picture

Describe the dynamics in terms of observables or states.

In particular if we consider not just pure (isolated) states, i.e.
vectors in a Hilbert space, but instead probabilistic states which
are repesented by density matrices.

A density matrix ρ ∈ B(H) is a Hermitian semi-positive definite
matrix or operator with trace(ρ) = 1. Note that a given pure
state |ψ〉 can also be represented with density matrix |ψ〉〈ψ|.

The quantum dynamics can be described as for A observable
and ρ state (as density matrix/operator).

Schrödinger Picture: %t = U(t)%0U∗(t).
Heisenberg Picture: At = U∗(t)A0U(t).
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Reversibility

Quantum Dynamics
For unitary transformations describing qubit dynamics:

U† = U−1

The quantum dynamics is invertible or reversible

Quantum Measurement
For projection operators involved in quantum measurement:

P† 6= P−1

The quantum measurement is not reversible. However

P2 = P

The quantum measurement is idempotent.
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Dynamics of Programs
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pWhile – Syntax I

Full programs contain optional variable declarations:

P ::= begin S end
| var D begin S end

Declarations are of the form:

r ::= bool
| int
| { c1, . . . , cn }
| { c1 .. cn }

D ::= v : r
| v : r ; D

with ci (integer) constants and r denoting ranges.
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pWhile – Syntax II

The syntax of statements S is as follows:

S ::= stop
| skip
| v := a
| v ?= r
| S1; S2
| choose p1 : S1 or p2 : S2 ro
| if b then S1 else S2 fi
| while b do S od

Where the pi are constants, representing choice probabilities.
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Evaluation of Expressions

σ 3 State = Var→ Z ] T

To illustrate approach consider only finite sub-range of Z.
Evaluation E of expressions e in state σ:

E(n)σ = n
E(v)σ = σ(v)

E(a1 � a2)σ = E(a1)σ � E(a2)σ

E(true)σ = tt
E(false)σ = ff
E(not b)σ = ¬E(b)σ

. . . = . . .
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pWhile – SOS Semantics I

R0 〈skip, σ〉⇒1〈stop, σ〉

R1 〈stop, σ〉⇒1〈stop, σ〉

R2 〈v:=e, σ〉⇒1〈stop, σ[v 7→ E(e)σ]〉

R3 〈v?=r , σ〉⇒ 1
|r|
〈stop, σ[v 7→ ri ∈ r ]〉

R41
〈S1, σ〉⇒p〈S′1, σ′〉

〈S1; S2, σ〉⇒p〈S′1; S2, σ
′〉

R42
〈S1, σ〉⇒p〈stop, σ′〉
〈S1; S2, σ〉⇒p〈S2, σ

′〉
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pWhile – SOS Semantics II

R51 〈choose p1 : S1 or p2 : S2, σ〉⇒p1〈S1, σ〉

R52 〈choose p1 : S1 or p2 : S2, σ〉⇒p2〈S2, σ〉

R61 〈if b then S1 else S2, σ〉⇒1〈S1, σ〉 if E(b)σ = tt

R62 〈if b then S1 else S2, σ〉⇒1〈S2, σ〉 if E(b)σ = ff

R71 〈while b do S, σ〉⇒1〈S; while b do S, σ〉 if E(b)σ = tt

R72 〈while b do S, σ〉⇒1〈stop, σ〉 if E(b)σ = ff
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Factorial

var
m : {0..2};
n : {0..2};

begin
m := 1;
while (n>1) do

m := m*n;
n := n-1;

od;
stop; # looping
end
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Multi Variable State

The problem we first consider is how to describe distributions
over the cartesian product in order to represent the probabilities
that two or more variables have certain values.

As we have D(S) ⊆ V(S) we investigate V(S × S). In order to
understand the relation between V(S) and V(S × S) and in
general V(Sn) we need to consider the tensor product.

Essential for the further treatment is the fact (more later) that

V(S × S) = V(S)⊗ V(S)
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Kronecker Product

Given a n ×m matrix A and a k × l matrix B:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 B =

 b11 . . . b1l
...

. . .
...

bk1 . . . bkl


The tensor or Kronecker product A⊗ B is a nk ×ml matrix:

A⊗ B =

 a11B . . . a1mB
...

. . .
...

an1B . . . anmB


Special cases are square matrices (n = m and k = l) and
vectors (row n = k = 1, column m = l = 1).
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Tensor Product Properties

The tensor product of n linear operators A1, A2, . . . , An is
associative (but in general not commutative) and has e.g. the
following properties:

1 (A1 ⊗ . . .⊗ An) · (B1 ⊗ . . .⊗ Bn) = A1 · B1 ⊗ . . .⊗ An · Bn

2 A1 ⊗ . . .⊗ (αAi)⊗ . . .⊗ An = α(A1 ⊗ . . .⊗ Ai ⊗ . . .⊗ An)

3 A1 ⊗ . . .⊗ (Ai + Bi)⊗ . . .⊗ An =
= (A1 ⊗ . . .⊗Ai ⊗ . . .⊗An) + (A1 ⊗ . . .⊗Bi ⊗ . . .⊗An)

4 (A1 ⊗ . . .⊗ An)∗ = A∗1 ⊗ . . .⊗ A∗n
5 ‖A1 ⊗ . . .⊗ An‖ = ‖A1‖ . . . ‖An‖
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Tensor Product Base

Every vector space has an algebraic base {ei}

x = x1e1 + x2e2 + . . .

This allows to specify vectors via coordinates x = (x1, x2, . . .).
Base vectors are in this context simply of the form

ei = (ei1,ei2, . . .) with eij =

{
1 for i = j
0 otherwise

The tensor product space V ⊗W can be seen as generated by
(formal) tensors of the form vi ⊗wj with in vi ∈ V and w ∈ W
base vectors.
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Classical and Probabilistic State

We have (always) a finite number v of variables.

Classical state σ ∈ State given by:

σ ∈ State = (Var→ Value) = Valuev

For each variable we assume also a finite range of values.

Probabilistic state d of a single variable is a distribution over
possible values of the variable.

d ∈ V(Value) = { (xc)c∈Value | xi ∈ R}
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States and Tensor Products

For finite ranges we can represent distributions over cartesian
product as an element in the tensor product in V(Value)⊗v .

Probabilistic state d of a all variables together

d ∈ V(Var→ Value) =

= V(Value1 × Value2 × . . .× Valuev ) =

= V(Value1)⊗ V(Value2)⊗ . . .⊗ V(Valuev )

For infinite value ranges we would need to consider measures.
Product measures exist, for example, by Fubini’s Theorem.
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Probabilistic Control Flow

Consider the following (labelled) program:

1: while [z < 100]1 do
2: choose2 1

3 : [x:=3]3 or 2
3 : [x:=1]4 ro

3: od
4: [stop]5

Its probabilistic control flow is given by:

flow(P) = {〈1,1,2〉, 〈1,1,5〉, 〈2, 1
3
,3〉, 〈2, 2

3
,4〉, 〈3,1,1〉, 〈4,1,1〉}.
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Init — First Statement

init([skip]`) = `

init([stop]`) = `

init([v:=e]`) = `

init([v?=e]`) = `

init(S1; S2) = init(S1)

init(choose` p1 : S1 or p2 : S2) = `

init(if [b]` then S1 else S2) = `

init(while [b]` do S) = `
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Final — Last Statements

final([skip]`) = {`}
final([stop]`) = {`}
final([v:=e]`) = {`}
final([v?=e]`) = {`}
final(S1; S2) = final(S2)

final(choose` p1 : S1 or p2 : S2) = final(S1) ∪ final(S2)

final(if [b]` then S1 else S2) = final(S1) ∪ final(S2)

final(while [b]` do S) = {`}
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Flow I — Control Transfer

flow([skip]`) = ∅
flow([stop]`) = {〈`,1, `〉}
flow([v:=e]`) = ∅
flow([v?=e]`) = ∅
flow(S1; S2) = flow(S1) ∪ flow(S2) ∪

∪ {(`,1, init(S2)) | ` ∈ final(S1)}
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Flow ||— Control Transfer

flow(choose` p1 : S1 or p2 : S2) = flow(S1) ∪ flow(S2) ∪
∪ {(`,p1, init(S1)), (`,p2, init(S2))}

flow(if [b]` then S1 else S2) = flow(S1) ∪ flow(S2) ∪
∪ {(`,1, init(S1)), (`,1, init(S2))}

flow(while [b]` do S) = flow(S) ∪
∪ {(`,1, init(S))}
∪ {(`′,1, `) | `′ ∈ final(S)}
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Collecting Semantics

The collecting semantics of a program P is given by:

T(P) =
∑

〈i,pij ,j〉∈F(P)

pij · T(`i , `j)

i.e. as a linear operator on V(Value)⊗v ⊗ V(Lab).

Local effects T(`i , `j): Data Update N + Control Step M

T(`i , `j) = Ni ⊗Mij = Ni1 ⊗ Ni2 ⊗ . . .⊗ Niv ⊗Mij
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Local Transfer Operators

T(`1, `2) = I⊗ E(`1, `2) for [skip]`1

T(`, `) = I⊗ E(`, `) for [stop]`

T(`1, `2) = U(v ← e)⊗ E(`1, `2) for [v:=e]`1

T(`1, `2) =
(

1
|r |
∑

c∈r U(v := c)
)
⊗ E(`1, `2) for [v?=r ]`1

T(`, `k ) = I⊗ E(`, `k ) for [choose]`

T(`, `t ) = P(b = tt)⊗ E(`, `t ) for [b]`

T(`, `f ) = P(b = ff)⊗ E(`, `f ) for [b]`
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Trivial Operators

Matrix Units – Represent a single transition

(E(m,n))ij =

{
1 if m = i ∧ n = j
0 otherwise.

Identity – Represents “no change” transition

(I)ij =

{
1 if i = j
0 otherwise.
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Tests Operators and Filters

Select a certain value c ∈ Value:

(P(c))ij =

{
1 if i = c = j
0 otherwise.

Select a certain classical state σ ∈ State:

P(σ) =
v⊗

i=1

P(σ(vi))

Select states where expression e = a | b evaluates to c:

P(e = c) =
∑
E(e)σ=c

P(σ)
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Selection via Projections

Filtering out relevant configurations, i.e. only those which fulfill
a certain condition. Use diagonal matrix P:

(P)ii =

{
1 if condition holds for Ci
0 otherwise.



C1
C2
C3
C4
C5
C6



t

·



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 =



0
C2
C3
0

C5
0



t
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Update Operators

For all initial values change to constant c ∈ Value:

(U(c))ij =

{
1 if j = c
0 otherwise.

Set value of the k th variable vk ∈ Var to constant c ∈ Value:

U(vk ← c) =

(
k−1⊗
i=1

I

)
⊗ U(c)⊗

(
v⊗

i=k+1

I

)

Set value of variable vk ∈ Var to value given by e = a | b:

U(vk ← e) =
∑

c

P(e = c)U(vk ← c)
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Program Approximation
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Problems and Solutions

A general approach towards problems and attempts to solve
them could be described as follows:

If the problem is to difficult
formulate a simplified version,
try to solve this easy problem.

Investigate the realtion between the true and the
approximate solution.

We know that program analysis is a hard (undecidible) problem.
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Probabilistic Program Analysis

Possible aims of Static Program Analysis:

Safe Approximations:
Correct under all circumstances.
Good/Close Estimates:
Fix it (at runtime) if there is a problem.

With modern computer architectures some compile time tasks
(type checking, threading, etc.) become runtime features.

A possible application could support Speculative Evaluation.
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Semantical Abstraction

Consider a Concrete Domain C and an Abstract Domain D:

C A //

T
��

D

T#

��
C

A
// D

With an abstraction A : C→ D and a concretisation G : D→ C:

T# = GTA
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T# = GTA

Probabilistic Abst.Int.: (A,G) Moore-Penrose Pseudo-Inverse.
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Galois Connections

Definition
Let C = (C,≤) and D = (D,v) be two partially ordered set. If
there are two functions α : C → D and γ : D → C such that for
all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) v d ,

then (C, α, γ,D) form a Galois connection.
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Moore-Penrose Pseudo-Inverse I

Definition
Let C and D be two Hilbert spaces and A : C → D a bounded
linear map. A bounded linear map A† = G : D → C is the
Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA,
(ii) G ◦ A = PG,

where PA and PG denote orthogonal projections onto the
ranges of A and G.
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(Orthogonal) Projections – Idempotents

On finite dimensional vector (Hilbert) spaces we have an inner
product 〈., .〉. This allows us to define an adjoint via:

〈A(x), y〉 = 〈x ,A∗(y)〉

An operator A is self-adjoint if A = A∗.
An operator A is positive, i.e. A w 0, if there exists an
operator B such that A = B∗B.
An (orthogonal) projection is a self-adjoint E with EE = E.

Projections identify (closed) sub-spaces YE = {Ex | x ∈ V}.
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Moore-Penrose Pseudo-Inverse II

Definition
An operator A ∈ B(H) is Moore-Penrose invertible if there
exists an element G ∈ B(H) such that:

(i) AGA = A,
(ii) GAG = G,
(iii) (AG)∗ = AG,
(iv) (GA)∗ = GA.

If it exists G = A† is called Moore-Penrose pseudo-inverse.
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Galois Connection II

Definition
Let C = (C,≤C) and D = (D,≤D) be two partially ordered sets
with two order-preserving functions α : C 7→ D and γ : D 7→ C.
Then (C, α, γ,D) form a Galois connection iff

(i) α ◦ γ is reductive i.e. ∀d ∈ D, α ◦ γ(d) ≤D d ,
(ii) γ ◦ α is extensive i.e. ∀c ∈ C, c ≤C γ ◦ α(c).

Proposition

Let (C, α, γ,D) be a Galois connection. Then α and γ are
quasi-inverse, i.e.

(i) α ◦ γ ◦ α = α

(ii) γ ◦ α ◦ γ = γ
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Examples of Abstractions

Parity Abstraction operator on V({1, . . . ,n}) (with n even):

Ap =



1 0
0 1
1 0
0 1
...

...
0 1


A†p =

( 2
n 0 2

n 0 . . . 0
0 2

n 0 2
n . . . 2

n

)
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Examples of Abstractions

Sign Abstraction operator on V({−n, . . . ,0, . . . ,n}):

As =



1 0 0
...

...
...

1 0 0
0 1 0
0 0 1
...

...
...

0 0 1


A†s =

 1
n . . . 1

n 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1

n . . . 1
n


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Lifting of an extraction function α : C 7→ D

Power Set lifting to an abstraction function α̃ : P(C)→ P(D)

α̃({c1, c2, . . .}) = {α(c1), α(c2), . . .}

Vector Space lifting to an abstraction function ~α : V(C)→ V(D)

~α(p1 · ~c1 + p2 · ~c2 + . . .) = pi · α(c1) + p2 · α(c2) . . .

Support Set: supp : V(C)→ P(C)

supp(~x) =
{

ci | 〈ci ,pi〉 ∈ ~x and pi 6= 0
}

Uniform Distribution: vec : P(C)→ V(C)

vec(x̃) = {〈ci ,1/|x̃ |〉}
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Relation between Abstractions [PPDP00]

Proposition
Let ~α be a probabilistic abstraction function and let ~γ be its
Moore-Penrose pseudo-inverse.

Then ~γ ◦ ~α is extensive with respect to the inclusion on the
support sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~x) ⊆ supp(~γ ◦ ~α(~x)).
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Least Square Approximation

Given a linear equation
xA = b

it has either (i) a (unique) solution x̄ , or (ii) the residual

rx = b − xA

is non-zero for all x .

The (unique) least-square solution x̄ , i.e. for which the residual
‖b − x̄A‖ is minimal, can be obtained using the Moore-Penrose
pseudo-inverse:

x̄ = bA†
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Abstract LOS Semantics

Moore-Penrose Pseudo-Inverse of a Tensor Product is simply

(A1 ⊗ A2 ⊗ . . .⊗ An)† = A†1 ⊗ A†2 ⊗ . . .⊗ A†n

Via linearity we can construct T# in the same way as T, i.e

T#(P) =
∑

〈i,pij ,j〉∈F(P)

pij · T#(`i , `j)

with local abstraction of individual variables:

T#(`i , `j) = (A†1Ni1A1)⊗ (A†2Ni2A2)⊗ . . .⊗ (A†v Niv Av )⊗Mij
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Proof Argument

T# = A†TA
= A†(

∑
i,j

T(i , j))A

=
∑
i,j

A†T(i , j)A

=
∑
i,j

(
⊗

k

Ak ⊗ I)†T(i , j)(
⊗

k

Ak ⊗ I)

=
∑
i,j

(
⊗

k

Ak ⊗ I)†(
⊗

k

Nik ⊗Mij)(
⊗

k

Ak ⊗ I)

=
∑
i,j

(
⊗

k

(A†kNikAk )⊗Mij)
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Example: Factorial

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5
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Example: Factorial

1: [m← 1]1;
2: while [n > 1]2 do
3: [m← m × n]3;
4: [n← n − 1]4

5: od
6: [stop]5

T = U(m← 1)⊗ E(1,2)

+ P(n > 1)⊗ E(2,3)

+ P(n ≤ 1)⊗ E(2,5)

+ U(m← m × n)⊗ E(3,4)

+ U(n← n − 1)⊗ E(4,2)

+ I⊗ E(5,5)

The abstract versions of the local filters and updates, e.g.
P#(n > 1),U#(m← m × n),U#(n← n − 1) etc. justify our
previous ad hoc analysis.
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Abstract Semantics

Abstraction: A = Ap ⊗ I, i.e. m abstract (parity) but n concrete.

T# = U#(m← 1)⊗ E(1,2)

+ P#(n > 1)⊗ E(2,3)

+ P#(n ≤ 1)⊗ E(2,5)

+ U#(m← m × n)⊗ E(3,4)

+ U#(n← n − 1)⊗ E(4,2)

+ I# ⊗ E(5,5)
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Abstract Semantics

U#(m← i) =

=

(
0 1
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 1



Herbert Wiklicky Dynamical Systems



Abstract Semantics

U#(n← n − 1) =

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


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Abstract Semantics

P#(n > 1))

=

(
1 0
0 1

)
⊗



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


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Abstract Semantics

P#(n ≤ 1) =

=

(
1 0
0 1

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


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Abstract Semantics

U#(m← m × n) =

(
1 0
0 0

)
⊗



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


+

+

(
0 0
1 0

)
⊗



1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


+

(
0 0
0 1

)
⊗



0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
. . .


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Implementation

Implementation of concrete and abstract semantics of Factorial
using octave. Ranges: n ∈ {1,2,max} and m ∈ {1,2,max!}.

n dim(T(F )) dim(T#(F ))

2 45 30
3 140 40
4 625 50
5 3630 60
6 25235 70
7 201640 80
8 1814445 90
9 18144050 100

Using uniform initial distributions d0 for n and m.
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Scaleablity

The abstract probabilities for m being even or odd when we
execute the abstract program for various maximal n values are:

n even odd
10 0.81818 0.18182

100 0.98019 0.019802
1000 0.99800 0.0019980

10000 0.99980 0.00019998
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The End
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