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Where are probabilities in Computer Science?
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Where are probabilities in Computer Science?

m Randomized algorithms
m Randomized protocols for networked systems, Google search algorithm,
cryptography, ...
m Unreliable or unpredictable system behaviors
m Message losses, processor failures, unpredictable delays, soft deadlines,

System performance and dependability

]
m Quantify arrivals, waiting times, time between failures, ...
m Complex systems

m Social networks, chemical plants, biological systems, ...
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Where are probabilities in Computer Science?

m Randomized algorithms
m Randomized protocols for networked systems, Google search algorithm,
cryptography, ...
m Unreliable or unpredictable system behaviors
m Message losses, processor failures, unpredictable delays, soft deadlines,

System performance and dependability

]
m Quantify arrivals, waiting times, time between failures, ...
m Complex systems

m Social networks, chemical plants, biological systems, ...

Topic of this tutorial: Modeling and analyzing such systems
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’ PRISM modules My, ..., M, }—»’ counterexample ‘

compaosition

’ PRISM module I\/I} {counterexample‘
semantics

’ Discrete-time Markov model F {counterexample‘

Satisfaction/

’ Model checking }—» Violation

’ Probabilistic property‘
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The intuition behind the theory

Probabilistic automaton

Semantics
Probability Measurable
space Rardlem space
variables
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Definition (Experiments)

A random experiment is an act with uncertain outcome.

m Rolling a fair die

m Tossing a fair coin twice
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Sample spaces

Definition (Sample spaces)

The sample space 2 of an experiment is the set of all possible outcomes
(sample points) of the experiment.

NB: Sample spaces can be infinite or even uncountable. In this tutorial we
deal with countable sample spaces only.

Examples

m Rolling a die:

m Tossing a coin twice:
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Sample spaces

Definition (Sample spaces)

The sample space 2 of an experiment is the set of all possible outcomes
(sample points) of the experiment.

NB: Sample spaces can be infinite or even uncountable. In this tutorial we
deal with countable sample spaces only.

Examples

m Rolling a die: 2 =[1,6]C N
m Tossing a coin twice: Q = {H, T}?
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Definition (Events)

Given a sample space , an event is a subset of €. A event containing a

single sample point is a simple event.

Examples
Rolling a die: Q = [1, 6]

Tossing a coin twice: Q = {H, T}?
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Definition (Events)

Given a sample space , an event is a subset of €. A event containing a
single sample point is a simple event.

Examples
Rolling a die: Q = [1, 6]
{6} is the simple event of rolling a 6
{1,3,5} is the event of rolling an odd number
[1,6] is the event of rolling any number 1,...,6
Tossing a coin twice: Q = {H, T}?
{(H,H)} is the simple event of tossing heads twice
{(H,H),(H, T)} is the event of tossing heads first
0 is the event of tossing nothing
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Operations on events

Operations on events

E=Q\E E does not occur
EiU B either E; or E> occur
Ei, E> both E; and E, occur

Ei\E; = E1, E; Ej occurs and E; not
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Definition (o-algebra)

Given a sample space Q, a o-algebra F is a set of events containing the
maximal event Q and being closed under complement and countable union.

Examples
Rolling a die: Q = [1, 6]
{{6},,0} is

{{6},9,0,[1,5]} is
Tossing a coin twice: Q = {H, T}?

{Q,0} is
{(H,H)},Q,0} is
pal is
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Definition (o-algebra)

Given a sample space Q, a o-algebra F is a set of events containing the
maximal event Q and being closed under complement and countable union.

Examples
Rolling a die: Q = [1, 6]
{{6},Q,0} is not a o-algebra.

s a o-algebra.

{{6},9,0,[1,5]}
Tossing a coin twice: Q = {H, T}?

{Q, 0} s the smallest o-algebra.
{{(H,H)},Q,0} is not a o-algebra.

gt s the largest o-algebra.
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Probability measures
Definition (Probability measures)

Given (€, F), a probability measure is a function Pr: 7 — [0,1] C R with
m Pr(Q) =1,
m Pr(E)=1—Pr(E) forall Ec F
m Pr(Use,Ei) = >, Pr(Ej) where Ej € F and E; N Ej = 0 for all

i,jeN, i#j.
Example
Rolling a die: Q = [1,6], F = 2%
Pr({6}) = The probability of rolling a 6 is
Pr({1,3,5}) = The probability of rolling an odd number is
Pr([1,6]) = The probability of rolling any number is
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Probability measures
Definition (Probability measures)

Given (€, F), a probability measure is a function Pr: 7 — [0,1] C R with
m Pr(Q) =1,
m Pr(E)=1—Pr(E) forall Ec F
m Pr(Use,Ei) = >, Pr(Ej) where Ej € F and E; N Ej = 0 for all
i,jeEN, i#j.

Example
Rolling a die: Q = [1,6], F = 2%
Pr({6}) =1/6 The probability of rolling a 6 is 1/6.
Pr({1,3,5}) = 1/2 The probability of rolling an odd number is 1/2.
Pr([1,6]) =1 The probability of rolling any number is 1.
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Probability measures

Definition (Probability measures)

Given (2, F), a probability measure is a function Pr : F — [0,1] C R with

m Pr(Q) =1,
m Pr(E)=1—Pr(E) forall Ec F
m Pr(Use,Ei) = >, Pr(Ej) where Ej € F and E; N Ej = 0 for all

ijeN,i#].
Example
Tossing a coin twice: Q = {H, T}?, F =29
Pr({(H,H),(H, T)}) = The probability of tossing heads first
Pr(Q2) = The probability of tossing anything is
Pr(0) = The probability of tossing nothing is
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Probability measures

Definition (Probability measures)

Given (2, F), a probability measure is a function Pr : F — [0,1] C R with

m Pr(Q) =1,
m Pr(E)=1—Pr(E) forall Ec F

m Pr(Use,Ei) = >, Pr(Ej) where Ej € F and E; N Ej = 0 for all
ijEN, i].

Example

Tossing a coin twice: Q = {H, T}?, F =29
Pr({(H,H),(H, T)}) =1/2 The probability of tossing heads first 1/2.
Pr(2) =1 The probability of tossing anything is 1.
Pr(0) =0 The probability of tossing nothing is 0.
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Measurability

Definition (Measurability)

An event is measurable if it is in the domain of Pr (i.e., in F).

(2, F) is also called a measurable space.

Examples
Rolling a die: Q = [1,6], F = {[1,5],{6},%, 0}
Pr({1}) = Rolling a 1 is
Tossing a coin twice: Q = {H, T}?, F = {Q,0}
Pr({(H,H)}) = Tossing heads twice is
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Measurability

Definition (Measurability)

An event is measurable if it is in the domain of Pr (i.e., in F).

(2, F) is also called a measurable space.

Examples
Rolling a die: Q = [1,6], F = {[1,5],{6},%, 0}
Pr({1}) =L Rolling a 1 is not measurable.

Tossing a coin twice: Q = {H, T}?, F = {Q,0}
Pr({(H,H)}) = L Tossing heads twice is not measurable.
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Probability spaces

Definition (Probability spaces)

A probability space is a triple (2, F, Pr) with
m (©,F) a measurable space and

m Pr a probability measure for (2, F).
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Random variables

Definition (Random variables)

Assume (2, F, Pr) and a measurable space (S, X).
mFor X:Q— S, se€Sand o€ X we define
m X =stobe {weQ|X(w)=s}and
B X 1(0) = Useo (X = 5).

m X is measurable if X~1(0) € F for all 0 € T.

m A random variable is a measurable function X : Q — S.
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Random variables

Definition (Random variables)

Assume (2, F, Pr) and a measurable space (S, X).
mFor X:Q— S, se€Sand o€ X we define
m X =stobe {weQ|X(w)=s}and
B X 1(0) = Useo (X = 5).

m X is measurable if X~1(0) € F for all 0 € T.

m A random variable is a measurable function X : Q — S.

Examples
Rolling a die: Q = [1,6], F =29, S = Q, X is identity
Pr(X=2) =

Erika Abraham - Probabilistic Modeling and Model Checking 14 / 77



Random variables

Definition (Random variables)

Assume (2, F, Pr) and a measurable space (S, X).
mFor X:Q— S, se€Sand o€ X we define
m X =stobe {weQ|X(w)=s}and
B X 1(0) = Useo (X = 5).

m X is measurable if X~1(0) € F for all 0 € T.

m A random variable is a measurable function X : Q — S.

Examples
Rolling a die: Q = [1,6], F =29, S = Q, X is identity
Pr(X =2) = Pr({2})=1/6
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Random variables

Definition (Random variables)

Assume (2, F, Pr) and a measurable space (S, X).
mFor X:Q— S, se€Sand o€ X we define
m X =stobe {weQ|X(w)=s}and
B X 1(0) = Useo (X = 5).

m X is measurable if X~1(0) € F for all 0 € T.

m A random variable is a measurable function X : Q — S.

Examples

Tossing a coin twice: Q = {H, T}?, F =29, S =0,2], X counts heads
Pr(X =1)
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Random variables

Definition (Random variables)

Assume (2, F, Pr) and a measurable space (S, X).
mFor X:Q— S, se€Sand o€ X we define
m X =stobe {weQ|X(w)=s}and
B X 1(0) = Useo (X = 5).

m X is measurable if X~1(0) € F for all 0 € T.

m A random variable is a measurable function X : Q — S.

Examples

Tossing a coin twice: Q = {H, T}?, F =29, S =0,2], X counts heads
Pr(X=1) = Pr({(H, T),(T,H)}) =2/4
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Some relevant properties

m Given two random variables X and Y and random values x and y with
Pr(X = x) > 0, the conditional probability of Y =y given X = x is
Pr(Y =y, X = x)
Pr(X = x)

Pr(Y =y|X=x) =

Erika Abraham - Probabilistic Modeling and Model Checking



Some relevant properties

m Given two random variables X and Y and random values x and y with
Pr(X = x) > 0, the conditional probability of Y =y given X = x is
Pr(Y =y, X = x)
Pr(X = x)

Pr(Y =y|X=x) =

m Two random variables X and y are independent if
Pr(X=x,Y=y) = Pr(X=x)-Pr(Y =y)

for all random values x and y.
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Some relevant properties

m Given two random variables X and Y and random values x and y with
Pr(X = x) > 0, the conditional probability of Y =y given X = x is
Pr(Y =y, X = x)
Pr(X = x)

Pr(Y =y|X=x) =

m Two random variables X and y are independent if
Pr(X=x,Y=y) = Pr(X=x)-Pr(Y =y)

for all random values x and y.

m The expected value of a random variable X is

Zs-Pr(X:s).

seS
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Stochastic processes: Some historical notes
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Stochastic processes: Some historical notes

m Starting in the late 19th century
m 1880 Thorvald N. Thiele: least squares for Brownian motion
m 1900 Louis Bachelier: stochastic analysis of the financial markets

m 1905 Albert Einstein, 1906 Marian Smoluchowski, 1908 Jean Baptiste
Perrin: indirect proof of existence of atoms and molecules
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Stochastic processes: Some historical notes

m Starting in the late 19th century
m 1880 Thorvald N. Thiele: least squares for Brownian motion
m 1900 Louis Bachelier: stochastic analysis of the financial markets

m 1905 Albert Einstein, 1906 Marian Smoluchowski, 1908 Jean Baptiste
Perrin: indirect proof of existence of atoms and molecules

“It must clearly be assumed that [...] the movements of one and the same
particle in different time intervals are independent processes, as long as these
time intervals are not chosen too small.

We introduce a time interval T into consideration, which is very small [...],
but nevertheless so large that in two successive time intervals T, the motions
executed by the particle can be thought of as events which are independent
of each other”. [Albert Einstein]
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Stochastic processes
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Stochastic processes

Definition (Stochastic processes)

Given (Q,F, Pr) and (S, X), a stochastic process is a collection of random
variables, indexed by a totally ordered set T (“time"):

{X¢|te T}.

The space S is called the state space of the process.
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Stochastic processes

Definition (Stochastic processes)

Given (Q,F, Pr) and (S, X), a stochastic process is a collection of random
variables, indexed by a totally ordered set T (“time"):

{X¢|te T}.

The space S is called the state space of the process.

Classes of state-based Markov models

’ H Deterministic ‘ Non-deterministic ‘
Discrete Discrete-time Markov decision
time Markov chains (DTMCs) processes (MDPs)
Probabilistic automata (PA)
Continuous Continuous-time Continuous-time Markov
time Markov chains (CTMCs) | decision processes (CTMDPs)
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Discrete-time Markov chains
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Discrete-time Markov chains

m Stochastic process as basic model
Q: (infinite) experiment sequences, S: system states
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Discrete-time Markov chains

|
m Stochastic process as basic model
Q: (infinite) experiment sequences, S: system states

m Discrete-time stochastic process: time model is discrete
(one execution step = one time unit)
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Discrete-time Markov chains

m Stochastic process as basic model
Q: (infinite) experiment sequences, S: system states

m Discrete-time stochastic process: time model is discrete
(one execution step = one time unit)

]
Discrete-time Markov process: discrete-time stochastic

process with the “memoryless” Markov-property:

Pr(Xt+1:Xt+1 | XOX]_ 500 Xt:XOX1 555 Xt) = Pr(Xt+1:xt+1 | Xt:Xt)
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Discrete-time Markov chains

m Stochastic process as basic model
Q: (infinite) experiment sequences, S: system states

m Discrete-time stochastic process: time model is discrete
(one execution step = one time unit)

]
Discrete-time Markov process: discrete-time stochastic

process with the “memoryless” Markov-property:

Pr(Xt+1:Xt+1 | XOX]_ 500 Xt:XOX1 555 Xt) = Pr(Xt+1:xt+1 | Xt:Xt)

m Time-homogeneity:
Pr(Xt+1:Xt+1 ’ Xt:Xt) = Pr(Xt1+1:Xt/+1 ’ Xt’:Xt’)
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Discrete-time Markov chains

m Stochastic process as basic model
Q: (infinite) experiment sequences, S: system states

m Discrete-time stochastic process: time model is discrete
(one execution step = one time unit)

]
Discrete-time Markov process: discrete-time stochastic

process with the “memoryless” Markov-property:

Pr(Xt+1:Xt+1 | XOX]_ 500 Xt:XOX1 555 Xt) = Pr(Xt+1:xt+1 | Xt:Xt)

m Time-homogeneity:
Pr(Xt+1:Xt+1 ’ Xt:Xt) = Pr(Xt1+1:Xt/+1 ’ Xt’:Xt’)

m Discrete-time Markov chain (DTMC):
time-homogeneous discrete-time discrete-space Markov process
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Probability distributions
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Probability distributions

Can we give an automata-based definition for DTMCs?
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Probability distributions

Can we give an automata-based definition for DTMCs?

Definition (Probability distributions)

A (discrete probability) distribution over a countable set S is a function
p:S—[0,1] CR with > _sp(s) =1.

DTMCs: for each x € S we define the distribution P(x,-) by
P(x,y) = Pr(Xet1 =y | Xe = x)

forall y € S.
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Discrete-time Markov chains
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Discrete-time Markov chains

Discrete-time Markov chains

A discrete-time Markov chain (DTMC) consists of

m a countable state space S,

m an initial state st € S in which the execution starts, and

m for each state s € S a distribution P(s,-) defining for each s’ € S the
probability P(s,s’) to move from s to s’
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Discrete-time Markov chains

Discrete-time Markov chains

A discrete-time Markov chain (DTMC) consists of

m a countable state space S,

m an initial state st € S in which the execution starts, and

m for each state s € S a distribution P(s,-) defining for each s’ € S the
probability P(s,s’) to move from s to s’

Additionally,

m Labeling function L : S — 24P labels states with atomic propositions
from AP.
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Discrete-time Markov chains

Discrete-time Markov chains

A discrete-time Markov chain (DTMC) consists of

m a countable state space S,

m an initial state st € S in which the execution starts, and

m for each state s € S a distribution P(s,-) defining for each s’ € S the
probability P(s,s’) to move from s to s’

Additionally,

m Labeling function L : S — 24P labels states with atomic propositions
from AP.

Thus a DTMC is a tuple (S, sinit, P, L).
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Example DTMC [Kemeny, Snell and Thompson]

m In the Land of Oz there are never two nice days (N) in a row.

m A nice day is followed by a day with either rain (R) or snow (S) with
equal probability.

m In half of the cases, a day with snow or rain is followed by the same
kind; the remaining cases are equally probable.
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Example DTMC [Kemeny, Snell and Thompson]

m In the Land of Oz there are never two nice days (N) in a row.

m A nice day is followed by a day with either rain (R) or snow (S) with
equal probability.

m In half of the cases, a day with snow or rain is followed by the same
kind; the remaining cases are equally probable.

N R S
p_ N /0 1/2 1/2

R <1/4 1/2 1/4)
s \1/4 1/4 1)2
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Example DTMC [Kemeny, Snell and Thompson]

m In the Land of Oz there are never two nice days (N) in a row.

m A nice day is followed by a day with either rain (R) or snow (S) with
equal probability.

m In half of the cases, a day with snow or rain is followed by the same
kind; the remaining cases are equally probable.

N R

p_ N /0 12 1/2 /@\
R <1/4 1/2 1/4
s \1/4 1/4 1/2
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Example DTMC [Kemeny, Snell and Thompson]

m In the Land of Oz there are never two nice days (N) in a row.

m A nice day is followed by a day with either rain (R) or snow (S) with
equal probability.

m In half of the cases, a day with snow or rain is followed by the same
kind; the remaining cases are equally probable.

N R

p_ N /0 12 1/2
R <1/4 1/2 1/4
s \1/4 1/4 1/2

1/4
For all n € N, P" is a stochastic matrix: its rows sum up to 1.
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Another example DTMC
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Another example DTMC

" state
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Another example DTMC

initial
state

" state
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Another example DTMC

initial
state N\ ) e

transition with probability
P(s7,s8) = 0.5

" state
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Another example DTMC
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Another example DTMC

Paths are state sequences spsj . ..

with P(s},sj,;) >0
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Another example DTMC

Paths are state sequences spsj . ..

with P(s],s;, ;) > 0 (probability?)
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Another example DTMC

Paths are state sequences spsj . ..
with P(s],s;, ;) > 0 (probability?)
Cylinder set of finite path spsi:

Erika Abraham - Probabilistic Modeling and Model Checking



Another example DTMC

Paths are state sequences spsj . ..
with P(s],s;, ;) > 0 (probability?)
Cylinder set of finite path spsi:

Semantical basis:
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Another example DTMC

Paths are state sequences spsj . ..
with P(s],s;, ;) > 0 (probability?)
Cylinder set of finite path spsi:

Semantical basis: smallest o-algebra over all cylinder sets with

n—1

Prs, (Cyl(so e s,,)) = P(sp,s1) - Prg (Cy|(51 ... s,,)) = H P(si,Sit+1) -
i=0

We write Prey(so...ss) for Prs, (Cyl(so .. .sn)).
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n-step transition probabilities

|
Probability P()(s, t) to reach t from s in i steps:

1 s=t
0 else

PO(s,t) = I(s,t):{

P(:‘Jrl)(s7 t) = Z P(s,s’) - P(i)(s’, t)  (Chapman-Kolmogorov)
s’'eS
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n-step transition probabilities

|
Probability P()(s, t) to reach t from s in i steps:

1 s=t
0 else

PO(s,t) = I(s,t):{

P(:‘Jrl)(s7 t) = Z P(s,s’) - P(i)(s’, t)  (Chapman-Kolmogorov)
s’'eS

i-step transition probabilities: P(®) = / (id matrix) and P() = P for i > 0.
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n-step transition probabilities

|
Probability P()(s, t) to reach t from s in i steps:

1 s=t
0 else

PO(s,t) = I(s,t):{

P(:‘Jrl)(s7 t) = Z P(s,s’) - P(i)(s’, t)  (Chapman-Kolmogorov)
s’'eS

i-step transition probabilities: P(®) = / (id matrix) and P() = P for i > 0.

Transient probability of reaching t from st in i steps:

PO (sinit, t)

Transient probability distribution:
Sinit P!
~—

characteristic vector for sinit
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Weather forecast in the Land of Oz

l

N R S 1/2 1/2
p_ N 0 1/2 1/2 14/ \y/4
R <1/4 1/2 1/4)
s \1/4 1/4 1)2 1/2 14 1/2
1/4
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The world's largest matrix computation
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The world's largest matrix computation

Google matrix for n pages:
G=dA+(1—-d)E

with
m d: damping factor

m A: n X n stochastic matrix obtained from the page link adjacency
matrix of the web by scaling the rows

m E: n X n stochastic matrix with entries 1/n
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The world's largest matrix computation

Google matrix for n pages:
G=dA+(1-d)E

with
m d: damping factor

m A: n X n stochastic matrix obtained from the page link adjacency
matrix of the web by scaling the rows

m E: n X n stochastic matrix with entries 1/n
G is an n x n stochastic matrix with eigenvalue 1.

The corresponding eigenvector scaled so that the largest value is 10 is called
the page rank of d.
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The world's largest matrix computation

Google matrix for n pages:
G=dA+(1-d)E

with
m d: damping factor
m A: n X n stochastic matrix obtained from the page link adjacency
matrix of the web by scaling the rows

m E: n X n stochastic matrix with entries 1/n

G is an n x n stochastic matrix with eigenvalue 1.
The corresponding eigenvector scaled so that the largest value is 10 is called

the page rank of d.

In 2006: n = 8.1 billion
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Symbolic representation of DTMCs
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Symbolic representation of DTMCs

So|S1|S2 | S3
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Symbolic representation of DTMCs
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Markov decision processes (MDPs) and probabilistic

automata (PA)

When non-determinism comes into play...
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Markov decision processes (MDPs) and probabilistic

automata (PA)

When non-determinism comes into play...

0.4

Discrete-time Markov chain Probabilistic automaton

Markov decision process
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Semantics of MDPs and PA

Atomic execution step:
choice of an action-distribution pair

choice of a transition
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Scheduler

m The non-determinism is resolved by a scheduler.

m It assigns to each finite path a distribution over the action-distribution
pairs possible in the last state.
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m The non-determinism is resolved by a scheduler.

m It assigns to each finite path a distribution over the action-distribution
pairs possible in the last state.

m A deterministic scheduler puts the whole probability into a unique
action-distribution pair.

m The decisions made by a memoryless scheduler depend only on the last
state of the path.
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Scheduler

m The non-determinism is resolved by a scheduler.

m It assigns to each finite path a distribution over the action-distribution
pairs possible in the last state.

m A deterministic scheduler puts the whole probability into a unique
action-distribution pair.

m The decisions made by a memoryless scheduler depend only on the last
state of the path.

Each scheduler for an MDP/PA induces a DTMC.
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’ PRISM modules My, ..., M, }—»’ counterexample ‘

compaosition

’ PRISM module I\/I} {counterexample‘
semantics

’ Discrete-time Markov model F {counterexample‘

Satisfaction/

’ Model checking }—» Violation

’ Probabilistic property‘
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Example PRISM module

module coin || processor
f: bool init 0; ¢ bool init 0; p: bool init 0;
[r] -f 2 05:(f =1)&(c'=1)+05: (f =1)&(c' =0);
[reset] fA—-c—1:(f =0)&(p' =0);
[procl fFA=p —0.99: (f =1)&(p'=1)+0.01: (' =1)&(p' =1);
[flp—1:(p =1);
endmodule
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The semantics of PRISM modules
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The semantics of PRISM modules
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The semantics of PRISM modules

a=lab—p:hA+...+pn:fy DTMC
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The semantics of PRISM modules

ca=lalby—=pr:fA+...+pn:t
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The semantics of PRISM modules
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The semantics of PRISM modules

ca=lalby—=pr:fA+...+pn:t

c=[bby—q:g+...+dm:&m

C3:[a]b3—>r1:h1—{—...—|—rk:hk PA
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Example PRISM module

module coin || processor
f: bool init 0; c: bool init 0; p: bool init 0
[r] -f 2 05:(f =1)&(c'=1)+05:(f =1)&(c' =0);
[reset] fA—-c—1:(f =0)&(p' =0);
[procl FA=p —099: (f =1)&(p'=1)+0.01: (' =1)&(p' =1);
[flp—=1:(p =1);
endmodule

reset, 1

Erika Abraham - Probabilistic Modeling and Model Checking 35 /77
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Example PRISM module composition

module coin
f: bool init 0; c: bool init O;
[r] of 205:(f =1)&(c'=1)+05: (f =1)&(c' =0);
[reset] f A—-c—1:(f =0);
[procl f =+ 0.99: (f' =1)+0.01: (¢' =1);
endmodule
module processor
p: bool init 0;
[proc] =p —1:(p' =1);
[Fl1p—=1:(p=1)
[reset] true— 1: (p’ =0)
endmodule

module coin || processor
f: bool init 0; c: bool init 0; p: bool init 0;
[r] -f 2 05:(f =1)&(c'=1)+05: (f =1)&(c' =0);
[reset] fA—-c—1:(f =0)&(p' =0);
[procl] fA-p—099:(f =1)&(p'=1)+0.01: (' =1)&(p' =1);
[flp—1:(p =1);
endmodule
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The parallel composition of PRISM modules
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The parallel composition of PRISM modules

My [ M
Cly...,Cn clyeeeyChy
c=lalb—...+p:fi+... = la] bt —...+pf+...

\ /

cowc = [a bAY = ...+pi-p i if +...
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The parallel composition of PRISM modules

My
Cly. ..\ Cn el ..,c

My || M
G ® cjf for synchronizing commands
ck, ¢, for non-synchronizing commands

c=lalb—...+pi:fi+... C':[a]b’—>...—i—pj’-:75-’+...

\ /

cowc = [a bAY = ...+pi-p i if +...
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Probabilistic computation tree logic

Probabilistic computation tree logic (PCTL) extends CTL with probabilities.
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Probabilistic computation tree logic

Probabilistic computation tree logic (PCTL) extends CTL with probabilities.
Definition (PCTL syntax)

m State formulas:

o n= true|a| oAy | | Py(1)

with a € AP an atomic proposition, % a path formula and J C [0,1] a
non-empty real-valued interval.

m Path formulas:
Y o= Op | elUe | pU™ @
with ¢ a state formula and k € N.
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Probabilistic computation tree logic

Probabilistic computation tree logic (PCTL) extends CTL with probabilities.
Definition (PCTL syntax)

m State formulas:

o n= true|a| oAy | | Py(1)

with a € AP an atomic proposition, % a path formula and J C [0,1] a
non-empty real-valued interval.

m Path formulas:
Y o= Op | elUe | pU™ @

with ¢ a state formula and k € N.

Syntactic sugar:
O = trueld p
P<p(Op) = Po1p(Omp)



Probabilistic computation tree logic

Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
P o= Q¢ | olUe | pUkp
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Probabilistic computation tree logic

Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D,s EPyy) if
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Probabilistic computation tree logic

Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D, s |=P,(¢) if the probability that paths starting in s fulfill ¢ lies in J
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Probabilistic computation tree logic
Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D, s |=P,(¢) if the probability that paths starting in s fulfill ¢ lies in J
m D, = USKpy if
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Probabilistic computation tree logic
Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D, s |=P,(¢) if the probability that paths starting in s fulfill ¢ lies in J
mD,mE g U=K 5 if @1 holds until @5 holds within k steps
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Probabilistic computation tree logic
Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D, s |=P,(¢) if the probability that paths starting in s fulfill ¢ lies in J
mD,mE g U=K 5 if @1 holds until @5 holds within k steps

mDEgif
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Probabilistic computation tree logic

Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D, s |=P,(¢) if the probability that paths starting in s fulfill ¢ lies in J
mD,mE g U=K 5 if @1 holds until @5 holds within k steps

2 DEif D, s b= o
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Probabilistic computation tree logic

Definition (PCTL syntax)

m State formulas:

o u= true|a| oAy | | Py(1)

m Path formulas:
Y u= Op | pUp | U=y

Definition (PCTL semantics)

m D, s |=P,(¢) if the probability that paths starting in s fulfill ¢ lies in J
mD,mE g U=K 5 if @1 holds until @5 holds within k steps

2 DEif D, s b= o

NB: The satisfaction sets of PCTL path formulas are measurable.
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Probabilistic reachability properties

m Model checking PCTL formulas for DTMCs can be reduced to check
probabilistic reachability properties.

| E.g., D, Sinit ‘: ]P)<0.01(<>1.')
“The probability to reach t from syt in D is less than 0.01."
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Probabilistic reachability properties

m Model checking PCTL formulas for DTMCs can be reduced to check
probabilistic reachability properties.

| E.g., D, Sinit ‘: ]P)<0.01(<>1.')
“The probability to reach t from syt in D is less than 0.01."

Prs(Ct)
= Prs,., ({a// infinite paths starting in syix and visiting t})
= Pre (Ufinite paths sinit . .. t Cyl(sinit - - - t))

n—1
— > 11 P(sissiva)-

finite paths so . ..sn With so = Sipit, Sn = t, t ¢ {so,...,sn—1} =0
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Reachability probabilities
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Reachability probabilities

Pr50(<>54) = Pr50(505154) +
Pr50(5051525154) +
Pr50(5051525354) +

(

Prs,(sosssesa) + . . .
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Reachability properties of MDPs and PAs

m A probabilistic reachability property is satisfied by an MDP /PA if it is
satisfied by the induced DTMCs of all schedulers.

m It is sufficient to check memoryless deterministic schedulers.

Erika Abraham - Probabilistic Modeling and Model Checking 44 | 77



’ PRISM modules My, ..., M, }—»’ counterexample‘

compaosition

’ PRISM module M} {counterexample‘
semantics

’ Discrete-time Markov model F {counterexample‘

Satisfaction/

’ Model checking }—» Violation

’ Probabilistic property‘
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’ PRISM modules My, ..., M, }—»’ counterexample ‘

compaosition

’ PRISM module M} {counterexample‘
semantics

’ Discrete-time Markov model F {counterexample‘

Satisfaction/
Violation

’ Model checking }—»

’ Probabilistic property ‘
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PCTL model checking for DTMCs

Recursively determine the satisfaction sets for sub-formulas inside-out:
ma
B 1 Apr:
m
m P,(Oyp):
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PCTL model checking for DTMCs

Recursively determine the satisfaction sets for sub-formulas inside-out:
ma Sat(a)={seS|ac L(s)}
m o1 A1 Sat(pr A @2) = Sat(e1) N Sat(v2)
m —: Sat(—p1) = S\Sat(p)
m P;(O¢): Via matrix multiplication

m given characteristic vector ¢

(0/1-vector over S, 1 meaning the satisfaction of ¢)
m compute P - (probabilities to satisfy Q)
m collect states with probabilities in J
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PCTL model checking for DTMCs

| | ]P’J((pl Z/[Sk (pz):

| ]P’J(<p12/{g02):
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PCTL model checking for DTMCs

o1 USK ©2): Via matrix multiplication

Py(

m make states satisfying =1 V o absorbing
m remove states from which no ¢,-state is reachable
m given characteristic vector ¢

= compute P¥ - oo

m collect states with probabilities in J
L%

]

]

]

]

1U ¢2): Via probabilistic reachability properties

make states satisfying =7 V o absorbing

remove states from which no ¢,-state is reachable
compute reachability probabilities for G

collect states with probabilities in J
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Weather properties in the Land of Oz

N R

p_ N /0 1/2 1/2 /@\
R <1/4 1/2 1/4
s \1/4 1/4 1/2
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Model checking reachability properties of DTMCs
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Model checking reachability properties of DTMCs

m S set of states, T set of absorbing target states
m States from which T is not reachable are irrelevant and get deleted.
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Model checking reachability properties of DTMCs

m S set of states, T set of absorbing target states
m States from which T is not reachable are irrelevant and get deleted.

Probabilities of reaching T from s € S

)1 ifseT,
P = Yooes P(s,s') - ps  otherwise.
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Model checking reachability properties of DTMCs

m S set of states, T set of absorbing target states
m States from which T is not reachable are irrelevant and get deleted.

Probabilities of reaching T from s € S

)1 ifseT,
P = Yooes P(s,s') - ps  otherwise.

m Option 1: Solve the linear equation system

m Option 2: Iterative approach to approximate the fixedpoint for
probabilities = P - probabilities

m Option 3: SCC-based model checking
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Model checking reachability properties of DTMCs

m S set of states, T set of absorbing target states
m States from which T is not reachable are irrelevant and get deleted.

Probabilities of reaching T from s € S

)1 ifseT,
P = Yooes P(s,s') - ps  otherwise.

m Option 1: Solve the linear equation system

m Option 2: Iterative approach to approximate the fixedpoint for
probabilities = P - probabilities

m Option 3: SCC-based model checking

Probabilistic model checkers

m PRISM (Kwiatkowska, Norman, Parker)
m MRMC (Katoen, Zapreev, Hahn, Hermanns, Jansen (David N.))

m Comics (Jansen, Abraham, Wimmer, Katoen, Becker
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Option 1. Example

N R

p_ N /0 1/2 1/2 /@\
R <1/4 1/2 1/4
s \1/4 1/4 1/2
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Option 2: Example

N R

p_ N /0 1/2 1/2 /@\
R <1/4 1/2 1/4
s \1/4 1/4 1/2
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Option 3: SCC-based model checking for DTMCs
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Option 3: SCC-based model checking for DTMCs
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Option 3: SCC-based model checking for DTMCs
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Option 3: SCC-based model checking for DTMCs

1
1
0.5
0.7
1
/
0.3 N l i
0.25 0.5 0.5
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Option 3: SCC-based model checking for DTMCs

0.5
0.7
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Option 3: SCC-based model checking for DTMCs
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Option 3: SCC-based model checking for DTMCs

1

0.57
0.7

1
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0.3 < j 029 4
3 0.14 S
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Option 3: SCC-based model checking for DTMCs
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Option 3: SCC-based model checking for DTMCs

0.7

0.66

03 \.{ — 8
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Option 3: SCC-based model checking for DTMCs
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Model checking reachability properties of MDPs/PAs

= MDP/PA *%4* pTMC

|
An MDP /PA satisfies a probabilistic reachability property if every DTMC
induced by any scheduler satisfies it.
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Model checking reachability properties of MDPs/PAs

= MDP/PA *2%< pTMmC

|
An MDP /PA satisfies a probabilistic reachability property if every DTMC
induced by any scheduler satisfies it.

m Compute minimal/maximal scheduler under the memoryless
deterministic ones

m Model check the induced DTMC
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Model checking reachability properties of PRISM models

|
Model check the underlying DTMC/MDP/PA models.
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’ PRISM modules My, ..., M, }—»’ counterexample ‘

compaosition

’ PRISM module M} {counterexample‘
semantics
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’ Model checking }—»

’ Probabilistic property ‘
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Probabilistic counterexamples
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Counterexamples

7

“It is impossible to overestimate the importance of the
counterexample feature. The counterexamples are invaluable in
debugging complex systems. Some people use model checking just
for this feature.”

Edmund Clarke, Turing-Award Winner 2007

m Application areas:
m Guide for debugging erroneous systems (error reproduction)
m Counterexample-guided abstraction refinement (CEGAR)
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Counterexamples for DTMCs

m Digital systems:

m Safety property: AG safe
m Violation: £F —safe
m Counterexample: Path from the initial state to a —safe state
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Counterexamples for DTMCs

m Digital systems:

m Safety property: AG safe
m Violation: £F —safe
m Counterexample: Path from the initial state to a —safe state

m Probabilistic systems:
m Safety property: P> (G safe)
m Violation: P~q_(F —safe)
m Counterexample: Set C of paths from the initial state to a —safe state
with Pr(C) >1— X
m Not computed as a by-product of model checking
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Counterexamples for DTMCs

m Digital systems:

m Safety property: AG safe
m Violation: £F —safe
m Counterexample: Path from the initial state to a —safe state

m Probabilistic systems:
m Safety property: P> (G safe)
m Violation: P~q_(F —safe)
m Counterexample: Set C of paths from the initial state to a —safe state

with Pr(C) >1— X
m Not computed as a by-product of model checking
Existing Tools:
m DiPro (Aljazzar et al.)

m COMICS (Jansen et al.)
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The number of paths in C can be VERY large — much larger than the
system itself!
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Large counterexamples

Property P 2(<$—safe)

= Number of paths in each counterexample is exponential in the number of
states
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Counterexamples can be even infinite sets
0.5 1
0.25 8 0.25 6
S
)

Property: Po5(<s)
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Counterexamples can be even infinite sets

1 0.5 1
0.25 0.25
1

Property: Po5(<s)
Consider set C of all paths leading to state s;:

C ={(s0) = 5, (50)* = 52,(%)> = s,...}

Probability of C: >-2°,(0.5)" - 0.25
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Counterexamples can be even infinite sets
0.5 1
0.25 8 0.25 6
S
)

Property: Po5(<s)

Consider set C of all paths leading to state s;:

C ={(s0) = 5, (50)* = 52,(%)> = s,...}

geom. ser.

Probability of C: 3.72(0.5) - 0.25 ° =" 55 -0.25
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Counterexamples can be even infinite sets

1 0.5 1
8 0.25 8 0.25 é Property is violated!
1

Property: Po5(<s)
Consider set C of all paths leading to state s;:

C ={(s0) = 5, (50)* = 52,(%)> = s,...}

geom. ser.

Probability of C: 3-72,(0.5)'-0.25 © =" ;75+-0.25=105
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Critical subsystems for DTMCs

Counterexamples can be represented
m by enumeration of the paths,
m by regular expressions, trees,. ..
m critical subsystems [Aljazzar/Leue, 2009; Jansen et al., 2011].

Critical subsystem

Subset S’ of the states such that the probability of reaching a —safe-state
visiting only states from S’ is already beyond 1 — \.
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Critical subsystems for DTMCs: Example

P>o75(Gsafe) = P<gos(F —safe)
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Critical subsystems for DTMCs: Example

P>o75(Gsafe) = P<gos(F —safe)
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Path-based counterexamples
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Path-based computation of hierarchical critical subsystems

for DTMCs

Representation:

m Critical subsystem
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Path-based computation of hierarchical critical subsystems

for DTMCs

Representation:
m Critical subsystem
Method:

m SCC-based model checking
m If property was falsified:

m Search for counterexample on abstract system
m Hierarchical concretization
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Path-based computation of hierarchical critical subsystems

for DTMCs

Representation:
m Critical subsystem
Method:

m SCC-based model checking
m If property was falsified:

m Search for counterexample on abstract system
m Hierarchical concretization

Advantages:
m Compact representation ~~ Usability
m Abstract counterexamples ~» Treatment of large systems

m Hierarchical approach ~» Omission of irrelevant system parts
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Hierarchical algorithm for DTMCs - Overview

m Input: Abstract DTMC, target states, probability bound
m Find a critical subsystem

,,,,,,,,,,,,,,,,,,,,,

DTMC D
probability bound A
S = {Sinit}

model check |

i
|

|

' >\

3 Ds: 3
| 1< !
! determine |
. states S C S !
! I
! I
! I
! I
! |
! I
! I
! I

m Concretize one or more abstract states and refine the critical subsystem.
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Hierarchical algorithm for DTMCs - Overview

m Input: Abstract DTMC, target states, probability bound
m Find a critical subsystem

,,,,,,,,,,,,,,,,,,,,,

DTMC D
probability bound A
S = {Sinit}

model check |

i
|

|

' >\

3 Ds: 3
| 1< !
! determine |
. states S C S !
! I
! I
! I
! I
! |
! I
! I
! I

m Concretize one or more abstract states and refine the critical subsystem.
m Global Search

m Searches for the most probable paths
m Local Search
m Searches for most probable path fragments connecting parts of
previously found paths
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Hierarchical counterexamples for DTMCs - Global search

Task: Find a critical
subsystem that
violates

Po.5(<4)
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Hierarchical counterexamples for DTMCs - Global search

Initial Search
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Hierarchical counterexamples for DTMCs - Global search

Critical subsystem

Probability 0.9

©

0.9 1
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Hierarchical counterexamples for DTMCs - Global search

\—

) ~—

oL Choose state 0 for

concretization
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[

0.9 1
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Hierarchical counterexamples for DTMCs - Global search

Concretize state 0

0.9 1
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Hierarchical counterexamples for DTMCs - Global search

Concretize state 0
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Hierarchical counterexamples for DTMCs - Global search

Search for most
probable path
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Hierarchical counterexamples for DTMCs - Global search

Critical subsystem
updated

Probability 0.7

©
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Hierarchical counterexamples for DTMCs - Global search
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Choose state 1 for
concretization




Hierarchical counterexamples for DTMCs - Global search

Concretize state 1
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Hierarchical counterexamples for DTMCs - Global search

Concretize state 1
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Hierarchical counterexamples for DTMCs - Global search

Search for most
probable path
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Hierarchical counterexamples for DTMCs - Global search

Critical subsystem
updated

Probability 0.35

9 ©

0.5
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Hierarchical counterexamples for DTMCs - Global search

Search for next most
probable path
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Hierarchical counterexamples for DTMCs - Global search
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Critical subsystem
updated

Probability 0.462

®



Hierarchical counterexamples for DTMCs - Global search

Search for next most
probable path
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Hierarchical counterexamples for DTMCs - Global search

Critical subsystem
updated

Probability 0.66

©
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Hierarchical counterexamples for DTMCs - Local search

Task: Find a critical
subsystem that
violates

Po.5(<4)
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Hierarchical counterexamples for DTMCs - Local search

Initial search
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Hierarchical counterexamples for DTMCs - Local search

0.9 5
1
T Critical subsystem
0.1 v .-
o Probability 0.9
9

[ay

e
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Hierarchical counterexamples for DTMCs - Local search

VN Choose state 0 for

N concretization
0.9 5

1

4_,
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Hierarchical counterexamples for DTMCs - Local search

Concretize state 0
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Hierarchical counterexamples for DTMCs - Local search

Search for next most
probable path
fragments connecting
nodes of the
subsystem
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Hierarchical counterexamples for DTMCs - Local search
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Critical subsystem
updated

Probability 0.7
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Hierarchical counterexamples for DTMCs - Local search
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Hierarchical counterexamples for DTMCs - Local search

Concretize state 1
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Hierarchical counterexamples for DTMCs - Local search
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Search for next most
probable path
fragments connecting
nodes of the
subsystem




Hierarchical counterexamples for DTMCs - Local search

Critical subsystem
updated

Probability 0.35

9 ©

0.5
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Hierarchical counterexamples for DTMCs - Local search
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Search for next most
probable path
fragments connecting
nodes of the
subsystem




Hierarchical count

xamples for DTMCs - Local search

0.5

0.6

0.5
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Critical subsystem
updated

Probability 0.538
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Path-based counterexamples for MDPs [Aljazzar, Leue]
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Path-based counterexamples for MDPs [Aljazzar, Leue]
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Path-based counterexamples for MDPs [Aljazzar, Leue]
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Minimal counterexamples
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Another approach
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Another approach

Compute a critical subsystem with a minimal number of states.

Possible approaches:
m SAT-modulo-theories solving

m Mixed integer linear programming

Erika Abraham - Probabilistic Modeling and Model Checking 71 /77



MILP formulation for DTMCs
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MILP formulation for DTMCs

m 1 — )\: probability bound
m x; € {0,1} C Z with x; = 1 iff s belongs to the subsystem
m ps € [0,1] C R: probability of state s within the subsystem
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MILP formulation for DTMCs

m 1 — )\: probability bound
m x; € {0,1} C Z with x; = 1 iff s belongs to the subsystem
m ps € [0,1] C R: probability of state s within the subsystem

min(—%psinit + D ses xs> such that
Psyie > 1— A
Vs €T :xs = ps
Vs e S\ T :ps < xs ps <> ges P(s,s') - ps
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MILP formulation for MDPs
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MILP formulation for MDPs

m 05, € [0,1] € Z: encoding of the scheduler
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MILP formulation for MDPs

m 05, € [0,1] € Z: encoding of the scheduler

min (—%psinit + D ecs x5> such that
Psinie = 1=

targets : x;

Ps

non-target s : ps < x. Xs = Y cA0s,a

non-target s, action a: ps < (1 —0s2) + Y gcs P(s,a,5") - ps
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MILP formulation for MDPs: Problematic states

B 05, € [0,1] € Z: encoding of the scheduler
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MILP formulation for MDPs: Problematic states

B 05, € [0,1] € Z: encoding of the scheduler
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MILP formulation for MDPs

m 05, € [0,1] C Z: encoding of the scheduler

'
min <—%psinit + D ses xs) such that
Psinie = 1-A
targets : Xs = ps
non-target s : ps < Xs Xs = ) 2cA0s,a
non-target s, action a: ps < (1 —0s2)+ > oecs P(s,a,5) - ps

probl. s, s’ esucc(s, a) : 2ts ¢ < x5 + Xg
rs < I’S/ + (1 - t575/)
(1 - XS) + (1 - 05,3) + Es’Esucc(s,a) ts,s/ =1
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MILP approach for minimal critical command sets
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MILP approach for minimal critical command sets

m x. € {0,1} C Z: selecting commands
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MILP approach for minimal critical command sets

m x. € {0,1} C Z: selecting commands

min(—%pSinit + > cec XC) such that
Psinie = 1-A
targets : ps =1
non-target s : ps < > .4 0s.a
non-target s, action a: ps < (1 —0sa) +> csP(s,a,s") - ps
non-target s, action a: os, < Xc
probl. s, action a: o 5 < Zs’ésucc(s,a) i o0

probl. s, s’ esucc(s,a) : rs < rg + (1 —tss)
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’ PRISM modules My, ..., M, }—»’ counterexample ‘

compaosition

’ PRISM module M} {counterexample‘
semantics

’ Discrete-time Markov model F {counterexample‘

Satisfaction/
Violation

’ Model checking }—»

’ Probabilistic property ‘
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’ PRISM modules My, ..., M, }—»’ counterexample ‘

compdsition
Y
’ PRISM module M} {counterexample ‘
semantics
Y
’ Discrete-time Markov model F {counterexample ‘

Satisfaction/
Violation

’ Model checking }—»

’ Probabilistic property ‘
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