Test Case Generation by Symbolic Execution: Basic
Concepts, a CLP-based Instance, and Actor-based
Concurrency

Elvira Albert

Complutense University of Madrid
elvira@sip.ucm.es

F, NVISAG

\.-1.

SFM-14:ESM

Bertinoro, 16-20 June, 2014

5=

-l SEVENTH FRAMEWORK
PROGRAMME

http://www.envisage-project.eu
T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

0/ 62

elvira@sip.ucm.es
http://www.envisage-project.eu
http://cordis.europa.eu/fp7/home_en.html
http://www.envisage-project.eu

Introduction: Test Case Generation

» Testing: vital part of the software development process
» Three recent factors have made it take more central role:

@ introduction of testing environments (e.g., JUnit)
@ increasingly complex systems are being built
© there is a growing tendency to prove software correctness

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 1/62

http://www.envisage-project.eu

Introduction: Test Case Generation

v

Testing: vital part of the software development process

v

Three recent factors have made it take more central role:

@ introduction of testing environments (e.g., JUnit)
@ increasingly complex systems are being built
© there is a growing tendency to prove software correctness

v

TCG: automatic generation of a collection of test-cases to be applied
to a system under test.

» Ensure certain coverage criterion: heuristics to estimate how well the
program is exercised by a test suite.

e statement coverage: each line of the code is executed,
e path coverage: every possible trace is executed,
e loop-k: limit to a threshold k the number of times we iterate on loops

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 1/62

http://www.envisage-project.eu

White-box Test Case Generation

Several classifications of testing techniques:
» Random vs. non-random = difficult to obtain high degree of code
coverage in random unless consider huge number of inputs
» Black-box vs. white-box = test cases obtained from specifications

vs. from program
» Dynamic vs. static = depending if input variables are instantiated

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 2 /62

http://www.envisage-project.eu

White-box Test Case Generation

Several classifications of testing techniques:
» Random vs. non-random = difficult to obtain high degree of code
coverage in random unless consider huge number of inputs
» Black-box vs. white-box = test cases obtained from specifications
vs. from program
» Dynamic vs. static = depending if input variables are instantiated

» Static white-box TCG miin,out)

e Symbolic Execution

e Execution with symbolic
values = constrained variables

e Non-determinism due to
branching instructions
involving unknown data

e Termination criterion
= loop-k

e Path coverage

e Result: Path conditions or

equivalence classes of inputs
T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 2 /62

http://www.envisage-project.eu

White-box Test Case Generation

Several classifications of testing techniques:
» Random vs. non-random = difficult to obtain high degree of code
coverage in random unless consider huge number of inputs
» Black-box vs. white-box = test cases obtained from specifications
vs. from program
» Dynamic vs. static = depending if input variables are instantiated

» Static white-box TCG e

e Symbolic Execution

e Execution with symbolic
values = constrained variables

e Non-determinism due to
branching instructions
involving unknown data

e Termination criterion
= loop-k

e Path coverage

e Result: Path conditions or

equivalence classes of inputs
T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 2 /62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
e Compositionallity

» Part 2: CLP-based TCG

e Introduction

e Translation from imperative to CLP
e Guided-TCG

e Demo

» Part 3: TCG of Concurrent (Actor) Programs

e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 3 /62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity
» Part 2: CLP-based TCG
e Introduction
e Translation from imperative to CLP
o Guided-TCG
e Demo
» Part 3: TCG of Concurrent (Actor) Programs
e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 4 /62

http://www.envisage-project.eu

Symbolic Execution

» King [Comm. ACM 1976], Clarke [IEEE TSE 1976]

» Analysis of programs with unspecified inputs
» Symbolic states represent sets of concrete states

e Variables carry symbolic expressions instead of concrete values
» For each path, build path condition

e Condition on inputs, for the execution to follow that path

e Check path condition satisfiability, explore only feasible paths

» Renewed interest in recent years

» Applications: test-case generation, error detection,...

» Tools: CUTE and jJCUTE (UIUC), EXE and KLEE (Stanford),
CREST and BitBlaze (UC Berkeley), Pex, SAGE, YOGI and PREfix
(Microsoft), PET (UCM-UPM), SPF (Symbolic Pathfinder, NASA
Ames),...

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 5 /62

http://www.envisage-project.eu

Elements Involved in the Testing Process

Java Code

int abs (int x) {
if (x >= 0) return x;
else return -x;

}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 6 / 62

http://www.envisage-project.eu

Elements Involved in the Testing Process

Java Code Test Cases

int abs (int x) {
if (x >= 0) return x;
else return -x;

}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 6 / 62

http://www.envisage-project.eu

Elements Involved in the Testing Process

Java Code

int abs (int x) {
if (x >= 0) return x;
else return -x;

}

Concrete Inputs

{(x=1, z =1),
(x=-1, z=1)}

T Elvira Albert

Test Case Generation by Symbolic Execution

Test Cases

16-20 June 2014

6/ 62

http://www.envisage-project.eu

Elements Involved in the Testing Process

Java Code Test Cases

int abs (int x) {

< = -
if (x >= 0) return x; (x 0,2 x) }
else return -x;
}
Concrete Inputs JUnit Code

{(x=1, z =1),

(x=-1, 2 =1) } void test_abs () {

assertEquals (abs(1),1);
assertEquals (abs(-1,1));
}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 6 /62

http://www.envisage-project.eu

Termination Criteria

Java source code

N

nt exp(int a,int n) {
if (n < 0)
throw new Exception();
else {
int r = 1;
while (n > 0) {
r = rxa;
n-—;
}
return r;

}

=ICICICICIGICIISIC)

Test Case Generation by Symbolic Execution 16-20 June 2014 7 /62

http://www.envisage-project.eu

Termination Criteria

Symbolic Execution Tree

Java source code ¢
5
int exp(int a,int n) { N <07
@ if (n < 0) {N<0}
® throw new Exception(); {N=>0}
@ else {
@ int r = 1; exc| N<O0?
©) while (n > 0) {
® r = r+aj; {N=0,R=1} {(N>0,N'=N~—1,
©) n--—; R=1xA}
® }
©) return r; N’ <07
(N {N">0,N""=N"-1,
) y R'=R*A}

Test Case Generation by Symbolic Execution 16-20 June 2014 7/ 62

http://www.envisage-project.eu

Termination Criteria

Test cases
| # Input Output Path condition
a\
. 1 [A, N] [exception] {N<O0}
int 2 (a, N] 1 {N=0}
% 3 [a, N R {N>0, N’ =N-1, N’ <=0, R=1#A}
©)
- —
while (n > 0) {
® r = r*a; {N=0,R=1} (N>0N=N-1,
D n--; R=1xA}
® }
©) return r; N <07
() (V' <0} {N'>0,N""=N"—1,
J R'=R«A}
m N7 < o7

Test Case Generation by Symbolic Execution

16-20 June 2014

7 /62

http://www.envisage-project.eu

Termination Criteria

—
L
-

"
2

| TQLUECLOBOLOG

T Elvira Albert

Test cases
Input Output Path condition
1 [A, N] [exception] {N<O0}
2 [A, N] 1 {N=0}
3 [A, N] R {N>0,N’=N-1,N’<=0,R=1xA}
inputs E— n
Concrete Inp (N=0,R=1} {N>O0,N'=N—1,

 ——— omot |
[Exception]

1 [#10, -10]
2 [-10, 0l
1]

3ot —

1
-10

{n' <o}

ok

R=1xA}

N’ < 07

R'=Rx*A}

Ty
N =07,

{N">0,N""=N"-1,

Test Case Generation by Symbolic Execution

16-20 June 2014

7 /62

http://www.envisage-project.eu

Termination Criteria

Unit tests (JUnit)
Test cases

Public void test_1¢) ¢

int inputo = -10, input1 = -10;
Input Ery{ int outpyr - T

est. intExp (inputO, inputl); }
catch(Exception ex)

—
5]
-

{
1 [A, N] [e: assertEquals("except),on", "ArithmeticExceth on",
! €X.getClass () -getName ()) ;
i 2 [A, N] return;
3 (3, N]

}
fail("rFaij) g

}
Public voiq test_2() ¢

a t int inputo = -10, input1 = 0;
COHCrete Inpu int outpyut = Test.intExp(inputO

. inputl);
int eXpected = g
assertEquals ("OK", €Xpected, Output) ;
}
—/ 5 3
Public voig test_3() ¢
lnPUt int inputo = -10, input1l = g L,
0 -101] int Ooutput = Test.lntExp(inputO,inputl);
1 [‘l v int expected = -10;
2 [~10, 0]] assertEquals("oK",expected,output),'
-i0, 1
_ 3 [

7 /62
il 16-20 June 2014

Test Case Generation by Symbolic Execution

* Elvira Albert

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction

e Translation from imperative to CLP
e Guided-TCG

e Demo

» Part 3: TCG of Concurrent (Actor) Programs

e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 8 /62

http://www.envisage-project.eu

Handling Heap-manipulating Programs

» Challenge: Efficiently handling heap-manipulating programs

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 9 /62

http://www.envisage-project.eu

Handling Heap-manipulating Programs

» Challenge: Efficiently handling heap-manipulating programs
e Complex dynamic data structures

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 9 /62

http://www.envisage-project.eu

Handling Heap-manipulating Programs

» Challenge: Efficiently handling heap-manipulating programs

e Complex dynamic data structures
e Aliasing of references

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 9 /62

http://www.envisage-project.eu

Handling Heap-manipulating Programs

» Challenge: Efficiently handling heap-manipulating programs

e Complex dynamic data structures
e Aliasing of references
e Explore all possible heap shapes

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 9 /62

http://www.envisage-project.eu

Handling Heap-manipulating Programs

» Challenge: Efficiently handling heap-manipulating programs
e Complex dynamic data structures
e Aliasing of references
e Explore all possible heap shapes
e Path explosion problem

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 9 /62

http://www.envisage-project.eu

Handling Heap-manipulating Programs

» Challenge: Efficiently handling heap-manipulating programs
Complex dynamic data structures

Aliasing of references

Explore all possible heap shapes

Path explosion problem

Outperform Lazy Initialization

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 9 /62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z.f = =-5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» Standard technique to handle aliasing. Used in state-of-the-art
systems, e.g., PET (UCM&UPM) and SPF (NASA Ames)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z.f = =-5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

I&f:l

» Standard technique to handle aliasing. Used in state-of-the-art
systems, e.g., PET (UCM&UPM) and SPF (NASA Ames)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z. £ -5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» Field accesses on unknown references trigger non-determinism: 1)
Null 2) New reference 3) Each aliasing possibility

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z. £ -5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» Field accesses on unknown references trigger non-determinism: 1)
Null 2) New reference 3) Each aliasing possibility

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z. £ -5;
y.f = x.£f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» Field accesses on unknown references trigger non-determinism: 1)
Null 2) New reference 3) Each aliasing possibility

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C y, C z)

{
x.f 1;
z. £ -5;
y.f = x.£+1;
m2();
if (x==2z)
m3(y.f); y.f=x.f+1
else
md (y.f);
}

» Field accesses on unknown references trigger non-determinism: 1)
Null 2) New reference 3) Each aliasing possibility

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C y, C z)

{
x.f 1; 2f=.5
z. £ -5;
y.f = x.£+1; y=z
m2 () ;
if (x==2z)
m3(y.f); y.f=x.f+1
else m20)
md (y.f);
}

» Field accesses on unknown references trigger non-determinism: 1)
Null 2) New reference 3) Each aliasing possibility

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C y, C z)

{
x.f =1; 2f=.5
z.£f = -5;
y.f = x.£f+1; y=z
m2 () ;
if (x==z)
m3(y.£); y.f=x.f+1
else m20)
md (y.f);
}

» Field accesses on unknown references trigger non-determinism: 1)
Null 2) New reference 3) Each aliasing possibility

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)
{

x.f =1;

z.£f = -5;
x.f+1;

y.£
m2 () ;
if (x==z)
m3(y.£f);
else
mé (y.f);

y.f=x.f+1

m2()

m3(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)
{

x.f =1;

z.£f = -5;
x.f+1;

y.£
m2 () ;
if (x==z)
m3(y.£f);
else
md (y.f);

y.f=x.f+1

m2()

m3(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)
{

x.f =1;

z.£f = -5;
x.f+1;

y.£
m2 () ;
if (x==z)
m3(y.£f);
else
md (y.f);

y.f=x.f+1

m2()

m3(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)

{
x.f =1; 2f=5
z.£f = -5;
y.f = x.£f+1; y=z
m2 () ;
if (x==z)
m3(y.£); y.f=x.f+1
else
md (y.f); m2()
}

m3(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)

{
x.f =1; 2f=5
z.£f = -5;
y.f = x.£f+1; y=z
m2 () ;
if (x==z)
m3(y.£); y.f=x.f+1
else
md (y.£); m20
}

m3(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)

{
x.f =1; —
z.£f = -5;
y.f = x.£f+1; y=2
m2 () ;
if (x==z)
m3(y.£); y.f=x.f+1 yf=x.f+1
else
m4 (y.f); m2() m2()
}

m3(y.f) ma(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)

{
x.f =1; I
z.£f = -5;
y.f = x.£f+1; y=z
m2 () ;
if (x==z)
m3(y.£); y.f=x.f+1
else
m4 (y.£); m20
}

m3(y.f)

» Symbolic execution quickly becomes impractical
» Redundant exploration of large number of paths

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z.f = =-5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» A more scalable approach than lazy initialization

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

Ixj:l
m(C x,C vy, C z)
{
x.f 1;
z.f = =-5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» A more scalable approach than lazy initialization

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

{
x.f 1;
z. £ -5;
y.f = x.f+1;
m2();
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

» Avoid non-determinism as much as possible

x.f=1

z.f=-5
{z=x; 2!'=x}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

x.f=1
m(C x,C y, C z)
x.f 1; z.f=-5
z.f =-5; {z=x; z!=x}
y.f = x.£+1;
m2 () ; y.fix..f+|1;
if (x==z) {y=z;y!=z}
m3(y.f);
else
mé (y.f);

» Treatment of reference aliasing by means of disjunctions

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C y, C z)

{
x.f 1;
z. £ -5;
y.f = x.£f+1;
m2 () ;
1if (x==2z)
m3 (y.f);
else
md (y.f);
}

x.f=1
z.f=-5
{z=x; z!=x}

y.f=x.f+1
{y=z;yl=z}

m2()

» Treatment of reference aliasing by means of disjunctions

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C y, C z)

{
x.f =1;
z.£f = -5;
y.f = x.£f+1;
m2 () ;
if (x==2z)
m3(y.£);
else
mé (y.f);
}

» Propagation of heap-related constraints

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C vy, C z)

{
x.f =1;
z.£f = -5;
y.f = x.£f+1;
m2 () ;
if (x==2z)
m3(y.£f);
else
mé (y.f);
}

» Support for heap assumptions to avoid certain aliasing configurations.
E.g., acyclic(x), non-aliasing(x,z)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Test Case Generation by Symbolic Execution

Lazy Initialization vs Heap Solver

m(C x,C y, C z)

{
x.f =1;
z.£f = -5;
y.f = x.£f+1;
m2 () ;
if (x==2z)
m3(y.£f);
else
md (y.£);
}

» Implemented in PET
» Applicable to other systems

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 10 / 62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction

e Translation from imperative to CLP
e Guided-TCG

e Demo

» Part 3: TCG of Concurrent (Actor) Programs

e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 11 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Motivation

» Compositional reasoning to tackle inter-procedural path explosion
> Generation and re-utilization of method summaries
» Handling native code and libraries

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 12 / 62

http://www.envisage-project.eu

Compositional Test Case Generation
Challenge

N
AN

#
a(--)

s SymEx Tree fm;xﬁ
P \

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 13 / 62

http://www.envisage-project.eu

Compositional Test Case Generation
Challenge

” Ve
R >
)
- SYmEx Tree for a

)
< b \

> Avoid inlining the symbolic execution tree of g

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 13 / 62

http://www.envisage-project.eu

Compositional Test Case Generation
Challenge

LN
/

-)
. \ Summary for q
) e

s SymEx Tree for;xﬁ q(' .)

> Avoid inlining the symbolic execution tree of g

» Use method summary for g: Check compatibility with current state of m
(Only compatible summary cases are composed)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 13 / 62

http://www.envisage-project.eu

Compositional Test Case Generation
Challenge

m(...

N
/

m

)
e \ Summary for q
—
a.-) SN
o SymEx Tree for;xﬁ q(' .)
VRN

> Avoid inlining the symbolic execution tree of g

» Use method summary for g: Check compatibility with current state of m
(Only compatible summary cases are composed)

» Incremental: summary for method m is created

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 13 / 62

http://www.envisage-project.eu

Compositional Test Case Generation
Challenge

m(...
yd

)
-)
\ m(
/\f \ ‘Summary for q
a(..) = / \
- SymEx Tree for g al...)
' VRN

v

Avoid inlining the symbolic execution tree of g

v

Use method summary for g: Check compatibility with current state of m
(Only compatible summary cases are composed)

v

Incremental: summary for method m is created

v

Compositional TCG must compute the same results as Standard TCG

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 13 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Composition Strategies

AN S -/

¢
() = PN
L SymEx Tree forxrrq q('))

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 14 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Composition Strategies

\ Summary for q

SN)

Context-sensitive
» Top-down traversal of call-graph

» Pro.: Only required information is
computed

» Con.: Reusability of summaries is not
always possible

Test Case Generation by Symbolic Execution 16-20 June 2014 14 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Composition Strategies

\ Summary for q

Context-sensitive Context-insensitive
» Top-down traversal of call-graph > Bottom-up traversal of call-graph
» Pro.: Only required information is » Pro.: Composition can always be
computed performed
» Con.: Reusability of summaries is not » Con.: Summaries can contain more test
always possible cases than necessary (more expensive)

Test Case Generation by Symbolic Execution 16-20 June 2014 14 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Generating Symbolic Execution Summaries

(...) ¢ =Path condition & Termination criterion C

N
/

\

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

15 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Generating Symbolic Execution Summaries

(...) ¢ =Path condition & Termination criterion C

/q\
SN
/

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

15 / 62

http://www.envisage-project.eu

Compositional Test Case Generation

Generating Symbolic Execution Summaries

(...) ¢ =Path condition & Termination criterion C

/q\
SN
/

> A summary is a finite representation of the symbolic execution of a program for a given
termination criterion, i.e., Sg = 7:70

» Each element in a summary corresponds to a symbolic execution path (test case)

» Complete for a given coverage criterion, but partial in general

* Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 15 / 62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction
e Translation from imperative to CLP
o Guided-TCG
e Demo
» Part 3: TCG of Concurrent (Actor) Programs
e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 16 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Test Case
Viewer

Term./Cov.
Criterion

\ .
: Program Translation CLP-translated | Symbolllc
under Test to CLP Program Execution
‘\ ! and TCG
77777777777 P H s 7I7 T e |UnitgTests
ase Phase Il Generator

> Translation of the source language to CLP

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

17 / 62

costa.ls.fi.upm.es/pet
http://www.envisage-project.eu

CLP-based Symbolic Execution and TC

G

Term./Cov.
Criterion

Test Case
Viewer

\ .
'/ Program Translation CLP-translated \ ! Symbolic
{ Execution
| \under Test to CLP Program ‘

and TCG

Ph | L L L L - _-_-_-_-_._C /| Unit Tests
ase Phase 11 Generator

> Translation of the source language to CLP

Java Code CLP-translated
int abs (int x) { abs (X,X) :— X \#>= 0.
if (x >= 0) return x; abs (X,2) :— X \#< 0,

else return -x; }

Z \#= -X.

> Bounded symbolic execution of the CLP-translated program

Elvira Albert Test Case Generation by Symbolic Execution

16-20 June 2014

17 / 62

costa.ls.fi.upm.es/pet
http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Test Case
Viewer

Term./Cov.
Criterion
7777777777 [Symboli
'/ Program Translation CLP-translated \ ! ymbolic
{ Execution >
| \under Test to CLP Program ‘

and TCG
L L L L - _-_-_-_-_._C /| Unit Tests
Phase | Phase 11

> Translation of the source language to CLP

Java Code CLP-translated

int abs (int x) { abs (X,X) :— X \#>= 0.
if (x >= 0) return x; abs (X,2) :— X \#< 0,
else return -x; } Z \#= -X.

> Bounded symbolic execution of the CLP-translated program
> Symbolic execution comes (almost) for free in CLP

Elvira Albert

Test Case Generation by Symbolic Execution 16-20 June 2014 17 / 62

costa.ls.fi.upm.es/pet
http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Test Case
Viewer

Term./Cov.
Criterion

7777777777 [Symboli

: Program Translation CLP-translated | PAUIEELS
under Test to CLP Program Execution >~

‘\ ! and TCG
77777777777 P E s 7I7 T e |UnitgTests
e Phase Il Generator

> Translation of the source language to CLP
Java Code CLP-translated
int abs (int x) { abs (X,X) :— X \#>= 0.
if (x >= 0) return x; abs (X,2) :— X \#< 0,
else return -x; } 7 \#= -X.
> Bounded symbolic execution of the CLP-translated program
> Symbolic execution comes (almost) for free in CLP
>

Backtracking and constraint manipulation/solving

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 17 / 62

costa.ls.fi.upm.es/pet
http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Term./Cov.
Criterion
[Symboli
‘ Program Translation CLP-translated '\ ! PAUIEELS
I\ to CLP Program Execution =~
‘ /‘ and TCG
77777777777777777 N L L L L T e T e e oo - - — - =/ [Unit Tests

Test Case
Viewer

> Translation of the source language to CLP
Java Code CLP-translated
int abs (int x) { abs (X,X) :— X \#>= 0.
if (x >= 0) return x; abs (X,2) :— X \#< 0,
else return -x; } 7 \#= -X.
> Bounded symbolic execution of the CLP-translated program
> Symbolic execution comes (almost) for free in CLP
> Backtracking and constraint manipulation/solving
Test cases Concrete inputs JUnit code
{ (x >= 0,2 = x), {(x=1,12z=1), void test-abs(){

(X <0,z = -X) } (x=-1, z=1) } assertEquals (abs(1),1);
assertEquals(abs(-1),1);}

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 17 / 62

costa.ls.fi.upm.es/pet
http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Test Case
Viewer

Term./Cov.
Criterion

\ .
‘ Program Translation CLP-translated | Symbolllc
I\ to CLP Program Execution =~
‘ /‘ and TCG
77777777777777777 N L L L L T e T e e oo - - — - =/ [Unit Tests

> Translation of the source language to CLP
Java Code CLP-translated
int abs (int x) { abs (X,X) :— X \#>= 0.
if (x >= 0) return x; abs (X,2) :— X \#< 0,
else return -x; } 7 \#= -X.
> Bounded symbolic execution of the CLP-translated program
> Symbolic execution comes (almost) for free in CLP
> Backtracking and constraint manipulation/solving
Test cases Concrete inputs JUnit code
{ (x >= 0,2 = x), {(x=1,12z=1), void test-abs(){

(X <0,z = -X) } (x=-1, z=1) } assertEquals (abs(1),1);
assertEquals(abs(-1),1);}

> The PET System (costa.ls.fi.upm.es/pet)

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 17 / 62

costa.ls.fi.upm.es/pet
http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Symbolic Execution and Test Case Generation

Let M be a method, m be its corresponding predicate from its
CLP-translated program P, and C be a termination criterion.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 18 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Symbolic Execution and Test Case Generation

Let M be a method, m be its corresponding predicate from its
CLP-translated program P, and C be a termination criterion.
» The symbolic execution of m is the possibly infinite CLP derivation
tree of P, denoted as 7,,, with root m(/n, Out, H;,, Hoyut, EF) and

initial constraint store 6 = {}.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 18 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Symbolic Execution and Test Case Generation

Let M be a method, m be its corresponding predicate from its
CLP-translated program P, and C be a termination criterion.

» The symbolic execution of m is the possibly infinite CLP derivation
tree of P, denoted as 7,,, with root m(/n, Out, H;,, Hoyut, EF) and
initial constraint store 6 = {}.

» TC is the finite, possibly incomplete version of 7, bounded by C.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 18 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Symbolic Execution and Test Case Generation

Let M be a method, m be its corresponding predicate from its
CLP-translated program P, and C be a termination criterion.

» The symbolic execution of m is the possibly infinite CLP derivation
tree of P, denoted as 7,,, with root m(/n, Out, H;,, Hoyut, EF) and
initial constraint store 6 = {}.

» TC is the finite, possibly incomplete version of 7, bounded by C.

> A test case for m wrt C is (o(In),o(Out), o(Hin), o0 (Hout), o(EF),0")
where o and @' are, resp., the substitution and the constraint store
associated to a successful (terminating) path in 7,<.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 18 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Symbolic Execution and Test Case Generation

Let M be a method, m be its corresponding predicate from its
CLP-translated program P, and C be a termination criterion.

» The symbolic execution of m is the possibly infinite CLP derivation
tree of P, denoted as 7,,, with root m(/n, Out, H;,, Hoyut, EF) and
initial constraint store 6 = {}.

» TC is the finite, possibly incomplete version of 7, bounded by C.

» A test case for m wrt C is (o (In), o(Out),o(Hin),c(Hout), o(EF),8")
where o and @' are, resp., the substitution and the constraint store
associated to a successful (terminating) path in 7,<.

» TCG is the process of generating the set of test cases for all
successful (terminating) paths in 7,<.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 18 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Concrete example

Java source code

int exp(int a,int n) {
if (n < 0)
throw new Exception();

else {
int r = 1;
while (n > 0) {
r = r*a;
n--;

}

return r;

Test Case Generation by Symbolic Execution 16-20 June 2014 19 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Concrete example

Java source code

int exp(int a,int n) {
if (n < 0)
throw new Exception();
else {
int r = 1;
while (n > 0) {
r = r*a;
n-—;
}

return r;

" Elvira Albert

Test Case Generation by Symbolic Execution

CLP-translated program

exp ([A,N],Out,H;,Ho,EF) :—
if ([A,N],Out,H;, Ho, EF) .
if ([A,N],_Out,H;,Ho,exc (X)) :—
N < O,

new_object (H;, "Exc’,X,Hs) .

if ([A,N],Out,H, H,ok) :-
N >= 0,
loop([A,N,1],0ut).
loop([_A,N,R],R) :-
N <= 0.
loop ([A,N,R],Out) :-
N > 0,
R’ = Rx*A,
N’ = N-1,
loop (A,N’,R’,Out) .

16-20 June 2014

19 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Concrete example

Symb. Ex. Tree
exp([A,N],Out, Hi, Ho,EF)

v

if([A,N],Out, Hi, Ho,EF)
<o l{N>0}

exc loop(...)

{N=0,R=1} {N>0,N'=N—1,
R=1xA}

loop(...)

{N'<0} {N'>0,N"=N"—1,

R'=RxA}

r—t-5
ok| [ltoop(...)

Test Case Generation by Symbolic Execution

CLP-translated program

exp([AlN]loutlHilHOlEF) H
if ([A,N],Out,H;, Ho,EF) .
if([A,N],_Out,H;,Hs,exc (X)) :—
N < 0,

new_object (H;, "Exc’,X,Hs) .

if ([A,N],Out,H,H,ok) :-

N >= 0,

loop([A,N,1],0ut).
loop([_A,N,R],R) :-

N <= 0.
loop([A,N,R],Out) :—

N > 0,

R’ = Rx*A,

N’ = N-1,

loop (A,N’,R’,Out) .

16-20 June 2014

19 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Concrete example

Test cases
Sy
Input Output Path condition
1 [A, N] [exception] {N<O0}
2 [A, N] 1 {N=0}
3 [A, N] R {N>0,N’=N-1,R=1%A,N’<=0}
exc Loop(...) NoZ= Uy
loop([A,N,1],0ut).
N=0,R=1 N
{ ! o loop ([_A,N,R],R) :-
N <= 0.
loop(. .) loop ([A,N,R],Out) :-
N > 0
N’ <0 ’ "N 4
{(N'<0y {f’?",;g;’x} N'-1, R’ = R«A,
_ _ N’ = N-1,
ok [loi)pl.;.)j loop (A,N’,R’,Out) .

Test Case Generation by Symbolic Execution

o) -

16-20 June 2014

19 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Concrete example

Test cases
Sy

Input Output Path condition

1 [A, N] [exception] {N<O0}

2 [A, N] 1 {N=0} -

3 [A, N] R {N>0,N’=N-1,R=1%A,N’<=0}

o) -

(e Concrete inputs N

loop([A,N,1],0ut).

/ ©oop([_A,N,R],R) :-—
Qutput

N <= 0.
Input ionl oop ([A,N,R],Out) :-
_ [Exceptilo N >0
1 [-10, 101 !
> [-10, O ! R R,
3 [-10, 1] 0 N
l _/— loop (A,N’,R’,Out) .

y

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 19 / 62

http://www.envisage-project.eu

CLP-based Symbolic Execution and TCG

Concrete example

Unit tests (JUnit)

Test cases
Sy I puibrl;é.civoid test_1¢) ¢
ot nput0 = -10, i
p try{ int output = ;ngtl R
s -intE i i
. T o ca;:h(Exceptlon ex) { Xp(lnpUtO'1HPUtl);)
SertEquals ("e tion",
! o €Xception ,'ArithmeticEx‘» t
ex.getclass() et
2 o . , return; e
’
) .

fail ("Failw),
. ;
¢ Public void test 2() 1
- . int inputo = _7, i
K Concrete Inpu int outpue = goqf [TPUCL = 0;
es?.lntExp(inputO

int expecteq - ;

assertEquals ("ogn
-) (‘)K"eXPECted;Output);

sinputi);

t i .
Inpu P“ib::CivoJ.d test_3 ()¢
nput() = -10 in
— i tl = 1,
1 [-10, 10] int output - Tes’;dnsgxl =1y
2 [-10, 0] Int expected = -1, P (inputo, inputy);
assertEquals ("oxn .
3 [_10, 1] } s ("OK ,expected,output);

* Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 19 / 62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction
e Translation from imperative to CLP
o Guided-TCG
e Demo
» Part 3: TCG of Concurrent (Actor) Programs
e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 20 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Motivation and Selective Coverage Criteria

’TCG = Symbolic exec. +

m(In,Out)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 21 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Motivation and Selective Coverage Criteria

’TCG = Symbolic exec. 4+ termination criterion + constraint solving

m(In,Out)

» Termination criteria: depth-k,

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 21 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Motivation and Selective Coverage Criteria

’TCG = Symbolic exec. 4+ termination criterion + constraint solving

m(In,Out)

» Termination criteria: depth-k, loop-k

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 21 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Motivation and Selective Coverage Criteria

’TCG = Symbolic exec. 4+ termination criterion + constraint solving

m(In,Out)

» Termination criteria: depth-k, loop-k
» Selection criteria: specific program point(s) (specific exception(s)), all
local paths, worst memory consumption (within a loop-k limit), ...

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 21 / 62

http://www.envisage-project.eu

Guided Test Case Generation
Naive Approach to Selective TCG

’Selective TCG (naive) = TCG + filtering of test cases

m(In,Out)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 22 / 62

http://www.envisage-project.eu

Guided Test Case Generation
Naive Approach to Selective TCG

’Selective TCG (naive) = TCG + filtering of test cases

m(In,Out)

» Paths in the symbolic execution tree can be labeled

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 22 / 62

http://www.envisage-project.eu

Guided Test Case Generation
Naive Approach to Selective TCG

’Selective TCG (naive) = TCG + filtering of test cases

m(In,Out,Trace)

» Paths in the symbolic execution tree can be labeled

» Filtering is done by looking at the traces associated to the test cases

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 22 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Intuition

» Challenge: Avoid the generation of non-interesting paths
» Idea: Use the trace argument as an input to guide symbolic exec.

m(In,Out,Trace)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 23 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Intuition

» Challenge: Avoid the generation of non-interesting paths
» Idea: Use the trace argument as an input to guide symbolic exec.

m(In,0ut;[a2,c1,f1,k,rl,s2])

Test Case Generation by Symbolic Execution 16-20 June 2014 23 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Intuition

» Challenge: Avoid the generation of non-interesting paths
» Idea: Use the trace argument as an input to guide symbolic exec.

m(In,0ut;[a2,c1,f1,k,rl,s2])

Guided TCG = Traces generator + guided symb. execs. + constr. solving

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 23 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Intuition

» Challenge: Avoid the generation of non-interesting paths
» Idea: Use the trace argument as an input to guide symbolic exec.

m(In,0ut;[a2,c1,f1,k,rl,s2])

Guided TCG = Traces generator + guided symb. execs. + constr. solving

» Traces can be complete

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 23 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Intuition

» Challenge: Avoid the generation of non-interesting paths
» Idea: Use the trace argument as an input to guide symbolic exec.

m(in,0Out,[a2,...])

Guided TCG = Traces generator + guided symb. execs. + constr. solving

» Traces can be complete or partial

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 23 / 62

http://www.envisage-project.eu

Guided Test Case Generation

Intuition

» Challenge: Avoid the generation of non-interesting paths
» Idea: Use the trace argument as an input to guide symbolic exec.

m(in,0Out,[a2,...])

Guided TCG = Traces generator + guided symb. execs. + constr. solving

» Traces can be complete or partial
» The different symbolic executions are independent of each other
e Can be performed in parallel and simplifies constraint solving

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 23 / 62

http://www.envisage-project.eu

Guided Test Case Generation
A Generic Algorithm for Guided TCG

Input: M, (TC,SC) and TraceGen

TestCases = {}
while TraceGen has more traces and TestCases doesn’t satisfy SC

Ask TraceGen to generate a new trace in Trace
TestCases = TestCases U {first of guidedSymbExec (M, ITC, Trace) }
Output: TestCases

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 24 / 62

http://www.envisage-project.eu

Conclusions & References (Parts 1 and 2)

@ Symbolic execution consists in executing the program with symbolic
(constraint) variables

@ Test cases are extracted from successful branches of the symbolic
execution tree

© The main challenges are related to scalability:

e heap-manipulating programs [ICLP'10,ICLP'13]
e compositionallity [LOPSTR'09]

@ CLP-based instance:

o Symbolic execution almost for free [LOPSTR'08]
e Language-independent approach (same TCG engine)
e Guided TCG [LOPSTR'11,LOPSTR'12]

@ PET: implementation of this approach [PEPM'10]

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 25 / 62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction

e Translation from imperative to CLP
o Guided-TCG

e Demo

» Part 3: TCG of Concurrent (Actor) Programs

e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 26 / 62

http://www.envisage-project.eu

Introduction

» Concurrency in programming is gaining importance

v

Additional hazards in concurrent programs: data races, deadlocks, etc.

» Software validation techniques urge especially in this context
» Path explosion problem - non-deterministic interleavings of processes

e An exhaustive exploration is often computationally intractable
e Challenge: Avoid redundant state exploration
o Partial Order Reduction techniques (POR)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 27 / 62

http://www.envisage-project.eu

Introduction

» Concurrency in programming is gaining importance
» Additional hazards in concurrent programs: data races, deadlocks, etc.

» Software validation techniques urge especially in this context
» Path explosion problem - non-deterministic interleavings of processes
e An exhaustive exploration is often computationally intractable
e Challenge: Avoid redundant state exploration
o Partial Order Reduction techniques (POR)
» Thread-based concurrency tends to be error-prone, very difficult to
debug and analyze and not scalable

» Alternative = the Actors-based concurrency model (e.g. Erlang,
Scala, ABS, Java libraries for actors, ...)
» Actors concurrency model in OO style (Concurrent Objects):

@ Actor/Object < concurrency unit

© No shared memory = Information exchange by means of
messages/asynchronous-method-calls

© Task scheduling is cooperative

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 27 / 62

http://www.envisage-project.eu

The Actor Model

Syntax of the Language
M void m(T %){s;}
s == s;s|x=-e|x=this.f|this.f =y |if bthen s else s |
while bdo s | x =new C | x | m(z) | return

v

A program is a set of classes. A class contains a set of fields f and
methods M.

» Actors are created dynamically using the instruction new.

» Each actor has its own local state and thread control and
communicate by exchanging messages asynchronously.

» An actor sends a message to another actor x by means of an
asynchronous method call x ! m(z).

» An actor configuration consists: local state and pending tasks.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 28 / 62

http://www.envisage-project.eu

Partial Order Reduction

» At each execution step, firstly an actor and secondly a process of its
pending tasks are scheduled.

» There are two levels of non-determinism:

e Actor-selection: The selection of which actor executes;
e Task-selection: The selection of the task within the selected actor.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 29 / 62

http://www.envisage-project.eu

Partial Order Reduction

» At each execution step, firstly an actor and secondly a process of its
pending tasks are scheduled.

» There are two levels of non-determinism:

e Actor-selection: The selection of which actor executes;
e Task-selection: The selection of the task within the selected actor.

State Explosion Problem

» As actors do not share their states, in testing we assume that
evaluation of all statements of a task is serial until processor released

» A naive exploration of the search space to reach all possible system
configurations does not scale.

» Partial-order reduction (POR) helps mitigate this problem by
exploring the subset of all possible interleavings which lead to a
different configuration.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 29 / 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f = 2} ti — this.f =5 tr — this.f =7
ho, = {this.g =1} t3 — this.g =9

01

e Warhat
{tlv t, &3 }

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 30 / 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f = 2} ty > this.f =5 ty > this.f =7
ho, = {this.g =1} t3 — this.g =9

o;
/1\\ =~
{ti,t2, t3 }

.V

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 31/ 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f = 2} ti — this.f =5 tr — this.f =7
ho, = {this.g =1} t3 — thisg =9

o
/1\\ =~
{tlv t27 t3 }

t

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

32 /62

http://www.envisage-project.eu

Partial Order Reduction

ho1 = {this.f = 2} t1 — this.f =5 th > this.f =7
ho, = {this.g =1} t3 — this.g =9

o;
/1\\ =~
{ti,t2, t3 }

t

this.g =9
this.f =7

S1

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 33 /62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f =2} t; — this.f =5 tr — this.f =7

ho, = {this.g =1} t3 — this.g =9

o
/1\\ =~
{tlv t27 t3 }

ty
t {3
t3 to
S1 S1
this.g =9
this.f =7
S1
T Elvira Albert Test Case Generation by Symbolic Execution

16-20 June 2014

34 / 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f =2} ti — this.f =5 tr > this.f =7
ho, = {this.g = 1} t3 > this.g =9
o1

e Warhat
{tlv t27 t3 }

this.g =9 this.g =9 1
this.f =7 this.f =5

S1 S

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 35 / 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f = 2} ti — this.f =5 tr — this.f =7
ho, = {this.g =1} t3 — thisg =9
o1

e Warhat
{ti, 2, 13}

this.g = 9 }
this.f =7 this.f =5

S1 S

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 36 / 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f = 2} ti — this.f =5 tr — this.f =7
ho, = {this.g =1} t3 — thisg =9
o1

e Warhat
{ti, 2, 13}

[this.g =9 J [this.g =9 1 orderino; :ty <th th <t

this.f =7 this.f =5 01, 0y are temporarily stable
S1 52
T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

37 / 62

http://www.envisage-project.eu

Partial Order Reduction

ho, = {this.f = 2} ti — this.f =5 tr — this.f =7
ho, = {this.g =1} t3 — thisg =9
o1

e Warhat
{ti, 2, 13}

this.g =9 this.g =9 1 orderino; :ty <th th <t
this.f =7 this.f =5 01, 0y are temporarily stable

S1 52

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 38 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

TransDPOR [Tasharofi et al FMOODS/FORTE 2012]

» Intuition: for each configuration, use a backtrack set, which is
updated during the execution of the program when it realises that a
non-deterministic choice must be tried

» Select Object and Select Task (non-deterministically) from a node
n: o.t

» Execute o.t in node n;
» If o has been previously selected, look for the first node n’ from the
root, selecting object o.

e If t was in n’, then mark backtracking on n’ with o.t;

e Otherwise, look from n upwards, the object o’ which introduced t by
executing o’.t". If o’.t" is in n’, add backtraking on o’.t" in node n’.
Otherwise repeat the process with o’.t" upwards.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

o.t

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

te Qo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

te Qo
Back = {o.t}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

te Qo
Back = {o.t}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

te Qo

o.t

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

te 9 tZ Qo

o.t

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

te 9 tZ Qo
t' e Q)

o.t

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

Back = {o'.t'}
tZ Qo
t' e Q)

te Qo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

Back = {o'.t'}
tZ Qo
t' e Q)

)
o.t ‘0.t

te Qo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

How to avoid redundant exploration in testing?

Back = {o'.t'}
tZ Qo
t' e Q)

! 4/
o.t; ‘o'.t

te Qo

<t

<t

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 39 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Workery(); N
Workers wk2 = new Workers(); 0
rg!r0(); f: 1
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } |:|:|]
void r2() { this.g++;return; }
! J
class Worker r2\easter
1 wk2

void wl(Reg rg) {
rg!rl(); return; }

r1/Register

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

‘)|

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); fi 1
wkllwl(rg); 1 ..
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } ..
void r2() { this.g++;return; }
) J
class Worker; { rZ\pegister
void wl(Reg rg) { r1/Register wk2
rg!rl(); return; } h
Q

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f:2
wkllwl(rg); 1 ..
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } ..
void r2() { this.g++;return; }
! J
class Worker; { rZ\pegister
void wl(Reg rg) { r1/Register wk2
rg!rl(); return; } h
Q

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f: 2
it Hions
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } ..
void r2() { this.g++;return; }
) J
class Worker; { rZ\pegister
void wl(Reg rg) { r1/Register wk2
rglrl(); return; } h
Q

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f:2
it Hinen
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g*=2; return; } |:|:|]
void r2() { this.g++;return; }
) J
class Worker rZ\eoster
L wk2

void wl(Reg rg) {
rg!rl(); return; }

r1/Register

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f:2
Cho 3] GBI
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } |:|:|]
void r2() { this.g++;return; }
) J
class Worker r2\easter
1 wk2

void wl(Reg rg) {
rg!rl(); return; }

r1/Register

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f:2
Cho Hioen
wk2!w2(rg); -
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } |:|:|]
void r2() { this.g++;return; }
) J
class Worker r2\easter
1 wk2

void wl(Reg rg) {
rg!rl(); return; }

r1/Register

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f:2
wkllwl(rg); 1 ..
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } ..
void r2() { this.g++;return; }
! J
class Worker; { rZ\pegister
void wl(Reg rg) { r1/Register wk2
rg!rl(); return; } h
Q

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f: 2
it 2 BT
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g¥*=2; return; } ..
void r2() { this.g++;return; }
) J
class Worker; { rZ\pegister
void wl(Reg rg) { r1/Register wk2
rg!rl(); return; } h
Q

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

Working Example. Actors in Action

{
Reg rg = new Reg(); rg
Worker; wkl = new Worker(); N
Workery wk2 = new Workers(); o)
rg!r0(); f:2
it Hinen
wk2!w2(rg);
} r0 |Register J
class Reg { wk1
int f=1; int g=1; h ~
void r0() { this.f++; return; } Q
void r1() { this.g*=2; return; } |:|:|]
void r2() { this.g++;return; }
) J
class Worker rZ\eoster
L wk2

void wl(Reg rg) {
rg!rl(); return; }

r1/Register

class Workerz {
void w2(Reg rg) {
rg!r2(); return; }

Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 40 / 62

http://www.envisage-project.eu

// main Block class Worker; {

Reg reg = new Reg; void wl(Reg rg) {rg!r1(); return;}
Worker; wkl = new Workery ();
Workery wk2 = new Workerz();
reg!r0();

wkllwl(reg); wk2!w2(reg);

class Worker, {
void w2(Reg rg) {rg!r2(); return;}

T Elvira Albert

reg:{r0}, wkl:{wl}, wk2:{w2}

Test Case Generation by Symbolic Execution 16-20 June 2014

41/ 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f4++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

reg:{r0}, wkl:{wl}, wk2:{w2}

g0 _— M&)
wkl:{wl}, wk2:{w2}

»> Macro-step semantics = Interleavings only at return points J

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f4++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}

g0 __— T

wkl:{wl}, wk2:{w2}

wkl.w% w.m

wk2:{w2}, reg:{r1}

» Macro-step semantics = Interleavings only at return points J

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f4++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}

g0 __— T

wkl:{wl}, wk2:{w2}

wkl.w% w.w2

wk2:{w2}, reg:{r1}

wk2.w§/ \leg- rl

reg:{rl, r2}

» Macro-step semantics = Interleavings only at return points J

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f4++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}

g0 __— T

wkl:{wl}, wk2:{w2}

wkl.w% w.w2

wk2:{w2}, reg:{r1}

wk2.w§/ \leg- rl
reg:{rl, r2}
reg.riy XZ
r0<rl r0<r2
<r2 <rl

» Macro-step semantics = Interleavings only at return points J

Test Case Generation by Symbolic Execution 16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!rl(); return;}
void r0() {this.f4++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}

g0 T

wkl:{wl}, wk2:{w2}

wkl.w% w w2

wk2:{w2}, reg:{r1}

wk2.wy NEE- rl

reg:{rl, r2} wk2:{w2}

reg.rly XZ w2y
r0<rl r0<r2 r0<rl
<r2 <rl <r2

> Partial Order Reduction: Executions with the same partial order are redundant J

Test Case Generation by Symbolic Execution 16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!rl(); return;}
void r0() {this.f4++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}

g0 T

wkl:{wl}, wk2:{w2}

wkl.w% w.wz
wk2:{ w2}, reg:{rl} wk1l:{wl}, reg:{r2}
wk2.wy Neg- r1 wkl.wy \reg r2
reg:{rl, r2} wk2:{w2} reg:{r2,rl} wk1l{wl}
reg.rly X2 w2y r2y Xl wly
r0<rl r0<r2 r0<rl r0<r2 r0<rl r0<r2
<r2 <rl <r2 <rl <r2 <rl

> Partial Order Reduction: Executions with the same partial order are redundant J

Test Case Generation by Symbolic Execution 16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg {
int f=1,;
void r0() {this.f4++; return;}
void r1() {this.g*=2; return;}
void r2() {this.g++; return;}

}

int g=1,

class Worker; {
void wl(Reg rg) {rg!rl(); return;}

class Workery {
void w2(Reg rg) {rg!r2(); return;}

reg:{r0}, wkl:{wl}, wk2:{w2}

wkl:{wl}, wk2:{w2}

wkl.w% w w2

wk2:{ w2}, reg:{rl} wk1l:{wl}, reg:{r2}

wk2.wy Neg-rl wkl.w% \regﬂ

k2. w2
reg:{r0, r1}, wk2:{w2} e

"egfy va2.w2

wk2:{w2}, reg:{r1} reg:{r0,rl,r2}

N NG

reg:{rl, r2} wk2:{w2} reg:{r2,rl} wkl{wl} reg:{rl,r2} wk2:{w2}...
reg.rly X2 w2y r2y Xl wly ry XZ w2y
r0<rl r0<r2 r0<rl r0<r2 r0<rl r0<r2 r0<rl r0<r2 r0<rl
<r2 <rl <r2 <rl <r2 <rl <r2 <rl <r2

> Partial Order Reduction: Executions with the same partial order are redundant J

> 32 paths are explored. 26 of them redundant!

Test Case Generation by Symbolic Execution

16-20 June 2014 41 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}

)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 42 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl:{wl}, wk2:{w2}
rey
wk1l{wl}, wk2:{w2} 4
Wkl.m?

reg:{rl}, wk2:{w2},

» To explore r1 before rQ actor wkl must be selected in the root

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)

wk1l{wl}, wk2:{w2} 4
wkl.vll/

reg:{rl}, wk2:{w2},

> Actor wkl is added to the backtrack set of the root

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
rey
wk1l{wl}, wk2:{w2} 4
wkl.wl
/
reg:{rl}, wk2:{w2},
wk2.w2\v
reg:{rl, r2}[,2]
rl\l,
reg:{rl}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
rey

wk1l{wl}, wk2:{w2} 4
wkl.vll/

reg:{rl}, wk2:{w2},
wk2.w2\v
reg:{rl, r2}[,2]
rl\l, \fz

reg:{r1} reg:{r2}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
reim/ wkl.wly,
wk1l{wl}, wk2:{w2} 4 reg{r0, r1}, wk2:{w2}
wkl.vll/
reg:{rl}, wk2:{w2},
wk2.w2v
reg:{rl, r2}[,2]
rlv \fz

reg:{r1} reg:{r2}

T Elvira Albert Test Case Generation by Symbolic Execution

16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
fei-f()/ wkl.wly,
wk1l{wl}, wk2:{w2} 4 reg{r0, r1}, wk2:{w2}
wkl.wl reg.r0
yd P
reg{rl}, wk2:{w2};| reg:{rl}, wk2:{w2},
wk2.w2v wk2.w2v
reg{rl, r2}(,z reg:{rl, r2}
rlv \fz

reg:{r1} reg:{r2}

P> To explore r2 before rO actor wk2 must be selected

Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
fei-f()/ wkl.wly,
wk1l{wl}, wk2:{w2} 4 reg:{r0, r1}, wk2:{w2} [z
wkl.wl reg.r0
yd P
reg:{rl}, wk2:{w2}| reg:{rl}, wk2:{w2},
wk2.w2v wk2.w2v
reg{rl, r2}(,z reg:{rl, r2}
rlv \fz

reg:{r1} reg:{r2}

» Actor wk2 is added to the backtrack set

Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
fei-f()/ wkl.wly,
wk1l{wl}, wk2:{w2} 4 reg:{r0, r1}, wk2:{w2} [z
wkl.wl reg.r0
yd P
reg:{rl}, wk2:{w2}| reg:{rl}, wk2:{w2},
wk2.w2v wk2.w2v
reg{rl, r2}(,z reg{rl, r2},z
rlv \r2 rlv \f2

reg:{r1} reg:{r2} reg:{rl} reg:{r2}

‘ r0<rl<r2 H r0<r2<rl H r0<ri<r2 H r0<r2<r1‘

Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}[,q)
fei-f()/ wkl.wly,

wk1l{wl}, wk2:{w2} 4 reg:{r0, r1}, wk2:{w2} [z
Wkl.\A? reffry wﬁ
reg:{rl}, wk2:{w2}| reg:{rl}, wk2:{w2}, reg:{r0, rl, r2}y
wk2.w2v wk2.w2v
reg{rl, r2}(,z reg{rl, r2},z
rlv \r2 rlv \f2

reg:{r1} reg:{r2} reg:{rl} reg:{r2}

‘ r0<rl<r2 H r0<r2<rl H r0<ri<r2 H r0<r2<r1‘

Test Case Generation by Symbolic Execution 16-20 June 2014

42 /62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2{w2}[,q)
feiw/ wkl.wly,

wk1l{wl}, wk2:{w2} 4 reg:{r0, r1}, wk2:{w2} [z

Wkl.m? re% w
reg:{rl}, wk2:{w2}| reg:{rl}, wk2:{w2}, reg:{r0, rl, r2}1)
wk2.w2y, wk2.w2y, 0y N2
reg{rl, r2}(,z reg{rl, r2},z reg{rl, r2}(,o {r0, r2}(yg) {r0, r1}jyy

N2 1y N2 2y 0 ry NN
reg{rl} reg{r2} reg{rl} reg:{r2} {r1} {r2} {r0} {r2} {ro} {r1}

‘ r0<rl<r2 H r0<r2<rl H r0<rl<r2 H r0<r2<r1‘ ‘r0<r1<r2‘ ‘r0<r2<r1‘ ‘r1<r0<r2‘ ‘r1<r2<r0‘ ‘r2<r0<r1‘ r2<<r;1
» TransDPOR reduces the exploration from 32 to 10 explorations J

Test Case Generation by Symbolic Execution 16-20 June 2014 42 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!r1(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2{w2}[,q)
feiw/ wkl.wly,

wk1l{wl}, wk2:{w2} 4 reg:{r0, r1}, wk2:{w2} [z

Wkl.m? re% w
reg:{rl}, wk2:{w2}| reg:{rl}, wk2:{w2}, reg:{r0, rl, r2}1)
wk2.w2y, wk2.w2y, 0y N2
reg{rl, r2}(,z reg{rl, r2},z reg{rl, r2}(,o {r0, r2}(yg) {r0, r1}jyy

N2 1y N2 2y 0 ry NN
reg{rl} reg{r2} reg{rl} reg:{r2} {r1} {r2} {r0} {r2} {ro} {r1}

‘ r0<rl<r2 H r0<r2<rl H r0<rl<r2 H r0<r2<r1‘ ‘r0<r1<r2‘ ‘r0<r2<r1‘ ‘r1<r0<r2‘ ‘r1<r2<r0‘ ‘r2<r0<r1‘ r2<<r;1
» TransDPOR reduces the exploration from 32 to 10 explorations
» But this can be improved further J

Test Case Generation by Symbolic Execution 16-20 June 2014 42 / 62

http://www.envisage-project.eu

First Contribution: Actor Selection based on Stability Crit.

» Effectiveness of (Trans)DPOR highly depends on selection ordering
e E.g., if wkl and wk2 are selected before reg no redundant execs are
produced
» Idea: Select first stable actors
e An actor is stable if no other actor different from it introduces tasks in
its queue
o If we select a stable actor its backtrack set will remain empty
e We provide an analysis which computes sufficient cond. for temporal
object stability (wrt the actors in that state)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 43 / 62

http://www.envisage-project.eu

First Contribution: Actor Selection based on Stability Crit.

» Effectiveness of (Trans)DPOR highly depends on selection ordering
e E.g., if wkl and wk2 are selected before reg no redundant execs are
produced
» Idea: Select first stable actors
e An actor is stable if no other actor different from it introduces tasks in
its queue
o If we select a stable actor its backtrack set will remain empty
e We provide an analysis which computes sufficient cond. for temporal
object stability (wrt the actors in that state)

> Intuition:
Ob:{tl}, Obli{tl}[] (t’ calls Ob.tz)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 43 / 62

http://www.envisage-project.eu

First Contribution: Actor Selection based on Stability Crit.

» Effectiveness of (Trans)DPOR highly depends on selection ordering
e E.g., if wkl and wk2 are selected before reg no redundant execs are
produced
» Idea: Select first stable actors
e An actor is stable if no other actor different from it introduces tasks in
its queue
o If we select a stable actor its backtrack set will remain empty
e We provide an analysis which computes sufficient cond. for temporal
object stability (wrt the actors in that state)
> Intuition:
Ob:{tl}, Obli{tl}[] (t’ calls Ob.tz)
/ wft’
Ob:{t1, tQ}, Ob/:{}[tz]
\L oby \ob.tz
ob:{t:}, ob"{}; ob:{t1}, ob"{};

ob.t2¢ ob.t; ¢

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 43 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!rl(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}

» Actor reg is not stable. wkl and wk2 are stable

)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

44 / 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!rl(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}
Wkl.Wl*,

reg:{r0, r1}, wk2:{w2}

» Actor reg is not stable. wk2 is stable J

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 44 | 62

http://www.envisage-project.eu

class Reg { class Worker; {

int f=1; int g=1; void wl(Reg rg) {rg!rl(); return;}
void r0() {this.f++; return;}

void r1() {this.g*=2; return;} class Workery {

void r2() {this.g++; return;} void w2(Reg rg) {rg!r2(); return;}

}

reg:{r0}, wkl{wl}, wk2:{w2}
wkl.wlv

reg:{r0, r1}, wk2:{w2}

reg:{rov r17 r2}[r1,r2]

/ { e N
reg:{rl, r2},z {r0, r2}pr2y {r0, ri}y
NG VN ’l/r2v fAO/rw N
{2y {1y {r2} {0} {1} {r0}

r2<rl
<r0

‘r0<r1<r2‘ ‘r0<r2<r1‘ ‘r1<r0<r2‘ ‘r1<r2<r0‘ ‘r2<r0<r1‘

» This reduces the exploration further, from 10 to 6 executions J

Test Case Generation by Symbolic Execution 16-20 June 2014 44 / 62

http://www.envisage-project.eu

Experimental Results of Actor Selection

» Not always possible finding a stable actor
e Either because our analysis loses precision or because there is not
e We propose Heuristics based on stability

» Experimental evaluation with 10 benchmarks:
e In 9 of them no backtracking due to actor selection is performed

® In 99% of the states (thousands, even millions!) a stable actor is found
e In the remaining 1% the heuristics selects a stable actor

e In the other benchmark more intelligent heuristics would be required

» Our actor selection is very effective in practice and has no significant
overhead

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 45 / 62

http://www.envisage-project.eu

2nd Contrib.: Task Selection based on Dependency Info.

Motivation

» Observation: Execs. with different partial order lead to the same state

reg{r0}, wkl:{wl}, wk2:{w2} class Reg {
Wkl‘wl\l/ int f=1; int g=1;
reg:{r0, r1}, wk2:{w2} void r0() {this.f++; return;}
- 2¢/ void r1() {this.g*=2; return;}
wi -w
reg{r0, r1, r2} , void r2() {this.g++; return;}
0T N2
reg:{rl, r2} {r0,r2} {r0,r1}
r1 Yr2 r0 Yr2 oy '1

:2 £:2 2 :2 :2 :2
g3 g4 g3 g3 g4 g4

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 46 / 62

http://www.envisage-project.eu

2nd Contrib.: Task Selection based on Dependency Info.

Motivation

» Observation: Execs. with different partial

reg{r0}, wkl:{wl}, wk2:{w2}
WklAwli/
reg:{r0, r1}, wk2:{w2}

Wk24W2¢
reg:{r0, rl, r2}

2 Al e
reg:{rl, r2} {r0,r2} {r0,r1}
rl yr2 r0 yr2 oy

:2 £:2 2 :2 :2 :2
g3 g4 g3 g3 g4 g4

r1

order lead to the same state

class Reg {

}

int f=1; int g=1;

void r0() {this.f++; return;}
void r1() {this.g¥*=2; return;}
void r2() {this.g++; return;}

» Execution of r0 is independent from that of rl and r2

‘indep(t,t’) < t does not write to fields that t' accesses and viceversa

> In the example we have: indep(r0,rl) and indep(r0,r2)

T Elvira Albert Test Case Generation by Symbolic Execution

16-20 June 2014 46 / 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 47 |/ 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

reg:{r0,rl, r2} indep(r0,r1) and indep(r0,r2)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 47 | 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

reg:{r0,rl, r2} indep(r0,r1) and indep(r0,r2)

2

reg:{rl, r2}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 47 | 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

reg:{r0,rl, r2} indep(r0,r1) and indep(r0,r2)
2
reg:{rl, r2} reg:{r0, r2}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 47 | 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

reg:{r0,rl, r2} indep(r0,r1) and indep(r0,r2)

LO/ rl\L

reg:{rl, r2} reg:{r0, r2}
e

reg:{r2}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 47 | 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

reg:{r0,rl, r2}

e rl\L

reg:{rl, r2}

reg:{r0, r2}

L |

reg:{r2} reg:{r0}

roy

f:2
g:3

indep(r0,r1) and indep(r0,r2)

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014 47 / 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

2

reg:{rl, r2}

reg:{r0,rl, r2}

N

reg:{r0, r2} reg:{r0,rl}

L |

reg:{r2} reg:{r0}

roy

f:2
g:3

indep(r0,r1) and indep(r0,r2)

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014 47 / 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

2

reg:{rl, r2}

reg:{r0,rl, r2}

N

reg:{r0, r2} reg:{r0,rl}

0 e

reg:{r2} reg:{r0} reg:{ri}

roy

f:2
g:3

indep(r0,r1) and indep(r0,r2)

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014 47 / 62

http://www.envisage-project.eu

A Task Selection Algorithm based on Indep. Info.

» Intuition of algorithm:
e Tasks have an associated mark, and can be marked or unmarked during
the execution
e A marked task cannot be selected
e When selecting a task, independent tasks after it in the queue are
marked, and the rest are unmarked

Algorithm in action

reg:{r0,rl, r2} ’ indep(r0,r1) and indep(r0,r2)
2Ty NG
reg:{rl, r2} reg:{r0, r2} reg:{r0,rl}

rO/ ¢1r2 r0¢/ \’1
reg:{r2} reg:{r0} reg:{r1} reg:{r0}
oy oy

f:2 f:2
g:3 g4

» Independent tasks are selected consecutively just in a single order

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 47 | 62

http://www.envisage-project.eu

Experimental Results

No task sel. reduction With task. sel. reduct. Speedup
Test name Execs Time States H Execs Time States H Execs Time
QSort.testl 4 2 18 3 4 2 18 3 1.0x 1.0x
QSort.test?2 16 10 70 21 16 10 70 21 1.0x 1.0x
Fib.testl 4 3 18 3 4 3 18 3 1.0x 1.0x
Fib.test2 128 80 524 189 128 381 524 189 1.0x 1.0x
PSort.testl 288 69 1294 144 288 71 1294 144 1.0x 1.0x
PSort.test2 5760 1385 25829 2880 288 71 1304 144 20.0x 19.5x
RegSim.testl 10080 806 27415 0 720 136 3923 0 14.0x 5.9x
RegSim.test2 11520 864 31576 0 384 70 2132 0 30.0x 12.3x
DHT .testl 1152 137 3905 0 36 6 141 0 32.0x 22.8x
DHT .test2 480 97 2304 0 12 4 85 0 40.0x 24.2x
Mail.test1 2648 557 11377 0 460 120 2270 0 5.8x 4.6x
Mail.test2 1665500 >200s 5109783 0 27880 4064 94222 0 >60x 49.2x
BB.testl 155520 23907 475205 O 4320 681 13214 0 36.0x 35.1x
BB.test2 1099008 165114 3028298 0 457926945 126192 0 24.0x 23.8x
» Except for the first two benckmarks, the pruning is huge, the speedup

ranging from one to two orders of magnitude

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

48 / 62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction

e Translation from imperative to CLP
e Guided-TCG

e Demo

» Part 3: TCG of Concurrent (Actor) Programs

e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 49 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Define a TCG framework for Actors:
» Symbolic execution (previous part)
» Termination criteria

» Coverage criteria

v

TCG with synchronization primitives (await and get)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 50 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on
loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

else this | q(m);

}
void p(int n) {
while (n > 0) {
this.f = this.f * n:
n=n-1;
}
}

if (n < m) then this ! p(n);

(N <= M}

pP(N)

choose(N,M)

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on
loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

else this | q(m);

}
void p(int n) {
while (n > 0) {
this.f = this.f * n:
n=n-1;
}
}

if (n < m) then this ! p(n);

choose(N,M)
{N <= M}

pP(N)

while (N > 0)

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on
loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

else this | q(m);

}
void p(int n) {
while (n > 0) {
this.f = this.f * n;
n=n-1;
}
}

if (n < m) then this ! p(n);

{N <= M}

pP(N)

choose(N,M)

while (N > 0)

(N=V

{N <=M, N =0, this.f = 1}

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on
loops for a task (similar to the sequential setting).

choose(N,M)

{N <= M}

class A {

int f=1;
void choose(int n, int m) { p(N)

if (n < m) then this ! p(n);

else this | q(m);
} -
void p(int n) { while (N > 0)

while (n > 0) { {N = 0} {N > 0}
this.f = this.f * n;

n=n-1; _ _ : _ g {N <=M, N >0,
} (N <=M, N=0, this.£ =1} While(N1>0) ‘. °" o 1, this.f = N]

}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on
loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

else this | q(m);

}
void p(int n) {
while (n > 0) {
this.f = this.f * n;
n=n-1;
}
}

if (n < m) then this ! p(n);

choose(N,M)
{N <= M}

pP(N)

while (N > 0)
I =V &> 0}

{N <=M, N=0, this.f = 1} while (N1 > 0)
{N1 = 0}

{(N<=M, N>0, NL =0
Nl = N - 1, this.f = N}

{N <=M, N > 0,

Nl = N - 1, this.f = N]

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on

loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

else this | q(m);

}
void p(int n) {

if (n < m) then this ! p(n);

choose(N,M)
{N <= M}

pP(N)

while (N > 0)

while (n > 0) { {N = 0} {N > 0}
this.f = this.f * n;
n=n-1; _ _ : _ A {N <=M, N >0,
} (N <=M, N=0, this.£ =1} While (l\\ll >0 D N- 1, this.f = N
} {N1 = 0} SL_ N1 > 0}
{N <=M N>0, N1 =0 Infinite Branch
Nl = N - 1, this.f = N}
T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on

loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

if (n < m) then this ! p(n);

else this | q(m);

}
void p(int n) {
while (n > 0) {
this.f = this.f * n:
n=n-1;
}
}

{N <=M,

{N <= M}

pP(N)

choo§e(N,M)

"~ _ Branch not Explored

qMm)

while (N > 0)

(N=V &> 0}

N = 0, this.f = 1}

{N1 = 0}

{(N<=M, N>0, NL =0
£ = N}

Nl = N - 1, this

while (N1 > 0)

{N <=M, N > 0,

Nl =N -1,

\\ {N1 > 0}

Infinite Branch

this.f = N]

Test Case Generation by Symbolic Execution

16-20 June 2014

51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

> loop-k coverage criteria: limits the number of times we iterate on

loops for a task (similar to the sequential setting).

class A {
intf=1;
void choose(int n, int m) {

else this | q(m);

}
void p(int n) {
while (n > 0) {
this.f = this.f * n:
n=n-1;
}
}

if (n < m) then this ! p(n);

loop-k =1 choose(N,M)
{N <= M} X
PON) am
while (N > 0)

(N=V

{N <=M, N =0, this.f = 1}

{N1 = 0}

{(N<=M, N>0, NL =0
Nl = N - 1, this.f = N}

<=M, N>0
=N

,
1 - 1, this.f = N]

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

51 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

Task-switching coverage criteria: limit the number of task switches per

object
choose(N,M)
class A { {N <= M}
int f=1;
void choose(int n, int m) { pP(N)
if (n < m) then this ! p(n); (N = 0} N > 0}

else this ! q(m);

void p(int n) {
if (n > 0) then {
this.f = this.f * n;
this | p(n-1);

{0 <=M, N =0, this.£ = 1} P(N1)
{this.f = this.f * N, N1 = N - 1}

(N1 > 0}

P(N2)

{N1 = 0}
{1 <=M, N=1, this.f = 1}

(N2=V w2>0}

{2 <=M, N =2, this.f = 2}
Infinite Branch

{this.f = this.f * N2, N2 = N1 - 1

T Elvira Albert

Test Case Generation by Symbolic Execution 16-20 June 2014

52 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

Task-switching coverage criteria: limit the number of task switches per

object

class A {
intf=1;
void choose(int n, int m) {

else this ! q(m);

void p(int n) {
if (n > 0) then {
this.f = this.f * n;
this | p(n-1);

if (n < m) then this ! p(n);

{N = 0}

{0 <=M, N =0, this.f = 1}

choose(N,M)
{N <= M}

P(N) new task (loop-k not applicable)

{N > 0}

P(NT) new task (loop-k not applicable)

{this.f = this.f * N, NIl = N - 1}

{N1 = 0}

{1 <=M, N=1, this.f = 1}

{

(2 <= M,

(N1 > 0}

P(N2) new task (loop-k not applicable)

{this.f = this.f * N2, N2 = N1 - 1

N2=V wz>o}

N = 2, this.f = 2}
Infinite Branch

. Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

52 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

Task-switching coverage criteria: limit the number of task switches per

object
task switches per object = 3 choose(N,M)
class A { {N <= M}
intf=1;
void choose(int n, int m) { p(N) 1 qm
if (n < m) then this ! p(n); (N = 0} (N > 0}
else this ! q(m);
{0 <=M, N =0, this.£f = 1} pP(NI1) 2
{this.f = this.f * N, N1 = N - 1
void p(int n) { N> O
if (n > 0) then { 1 =0} { !
this.f = this.f * n; p(N2) 3

this | p(n-1);

{1 <=M, N=1, this.f = 1}

(2 <=

(N2=V w>0}

M, N = 2, this.f = 2}

{this.f = this.f * N2, N2 = N1 - 1

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014

52 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects
Number of objects coverage criteria: limits the total number of created
objects during the execution.

class A {

void choose(int n, int m) {
if (n < m) then this ! p(n);
else this ! q(m);

void p(int n) {
if (n==0) then bodyThen
else {
Aa=newA(...);
a ! p(n-1);

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 53 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects
Number of objects coverage criteria: limits the total number of created
objects during the execution.

class A {

void choose(int n, int m) {
if (n < m) then this ! p(n);
else this ! q(m);

void p(int n) {
if (n==0) then bodyThen
else {
Aa=newA(...);
a ! p(n-1);

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 53 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects
Number of objects coverage criteria: limits the total number of created
objects during the execution.

Al!choose(N,M)

{N <= M}
class A { Al!p(N)
void choose(int n, int m) {
if (n < m) then this ! p(n); (N =0} (N> 0}
else this ! q(m);
bodyThen Al

A2I1p(NT) (N1 = N-1}

void p(int n) { A
if (n==0) then bodyThen (N1 = V w > 0}
else {
Aa=newA(...); bodyThen Al
a ! p(n-1); A2
A3!1p(N2) (N2 = N1-1}

}
} (N2 =V \\ENZ > 0}

bodyThen

Infinite Branch

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 53 / 62

http://www.envisage-project.eu

Symbolic Execution and TCG for Actor Models

Coverage and Termination Criteria for Concurrent Objects

Number of objects coverage criteria: limits the total number of created

objects during the execution.

global number of objects = 3

{N <= M}
class A { Al!1p(N)
void choose(int n, int m) {
if (n < m) then this | p(n); o = V w > 0}
else this ! q(m);
bodyThen Al
void p(int n) { A
if (n==0) then bodyThen {N1 = V
else {
Aa=newA(...); bodyThen
a ! p(n-1);

Al ! choose(N,M) 1

2 A21p(N1) (N1 = N-1}

am

WM)}

Al
A2
3 A3!p(N2) (N2 = N1-1}

(N2 =V T2 > 0)

bodyThen

T Elvira Albert

Test Case Generation by Symbolic Execution

16-20 June 2014 53 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

await and get primitives

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 54 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

await and get primitives

» await x?: If the value of x is ready, then the execution proceeds.
Otherwise, the execution from await x? on is stored in the queue of
tasks of the current object, and a new task is selected to be executed.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 54 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

await and get primitives
» await x?: If the value of x is ready, then the execution proceeds.
Otherwise, the execution from await x? on is stored in the queue of
tasks of the current object, and a new task is selected to be executed.

» y = x.get: If the value of x is ready then the execution proceeds.
Otherwise the execution in the current object is blocked until the
value of x be ready. Another task is selected to be executed

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 54 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

await and get primitives
» await x?: If the value of x is ready, then the execution proceeds.
Otherwise, the execution from await x? on is stored in the queue of
tasks of the current object, and a new task is selected to be executed.

» y = x.get: If the value of x is ready then the execution proceeds.
Otherwise the execution in the current object is blocked until the
value of x be ready. Another task is selected to be executed

y=o !q(n);
await y7;
z = y.get,;

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 54 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

Task Interleavings
» When a task t suspends, there could be other tasks on the same
object whose execution at this point could interleave with t and
modify the information stored in the heap.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 55 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

Task Interleavings
» When a task t suspends, there could be other tasks on the same
object whose execution at this point could interleave with t and
modify the information stored in the heap.

class A {
int n;
int p(...) {
n=0;
await .. .;
if (n>0)...;else...;

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 55 / 62

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

Task Interleavings
» When a task t suspends, there could be other tasks on the same
object whose execution at this point could interleave with t and
modify the information stored in the heap.

class A {
int n;
int p(...) {
n=0;
await .. .;
if (n>0)...;else...;

}

» The symbolic execution of p will consider just the path that goes
through the if branch;

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

http://www.envisage-project.eu

Synchronization Primitives for Concurrent Objects

Task Interleavings
» When a task t suspends, there could be other tasks on the same
object whose execution at this point could interleave with t and
modify the information stored in the heap.

class A {
int n;

int p(...) {
n=0;
await .. .;
if (n>0)...;else...;

}

» The symbolic execution of p will consider just the path that goes
through the if branch;

» There can be another task (suspended in the queue of the object)
which executes when p suspends and writes a negative value on n.
This would exercise the else branch when p resumes.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014

http://www.envisage-project.eu

Task Interleavings

Local Trace
Given a method m, the local trace associated with an execution of m is

the sequence of instructions that belong to m.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 56 / 62

http://www.envisage-project.eu

Task Interleavings

Local Trace
Given a method m, the local trace associated with an execution of m is

the sequence of instructions that belong to m.

» We look at the local trace rather than at the global trace since, when
testing m, our aim is to ensure proper coverage of the instructions in

method m.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 56 / 62

http://www.envisage-project.eu

Task Interleavings

Local Trace

Given a method m, the local trace associated with an execution of m is
the sequence of instructions that belong to m.

» We look at the local trace rather than at the global trace since, when
testing m, our aim is to ensure proper coverage of the instructions in
method m.

» The objective is to overapproximate, for each method m, the set
related(m), which contains all methods whose interleaved execution
with m can lead to a local execution not considered before.

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 56 / 62

http://www.envisage-project.eu

Task Interleavings

Local Trace

Given a method m, the local trace associated with an execution of m is
the sequence of instructions that belong to m.

» We look at the local trace rather than at the global trace since, when
testing m, our aim is to ensure proper coverage of the instructions in
method m.

» The objective is to overapproximate, for each method m, the set
related(m), which contains all methods whose interleaved execution
with m can lead to a local execution not considered before.

> Initially related(m) will contains all methods of the class under test.
» Limit the size of the queue

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 56 / 62

http://www.envisage-project.eu

Reducing the set related(m)

Pruning 1
Discard those methods which do not modify the heap J

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 57 / 62

http://www.envisage-project.eu

Reducing the set related(m)

Pruning 1
Discard those methods which do not modify the heap J

class A {
int f;
int g;
int p(B o, int n) {
this.f = this.f + 1;

=o !q(n);
await y7; _
7 = y.get: = related(p) = {setF, setG, set}

return z + this.f;

void setF(int v) { this.f = v; }
void setG(int v) { this.G = v; }
void set(int v1, int v2) { this.setF(v1); this.setG(v2); }

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 57 / 62

http://www.envisage-project.eu

Reducing the set related(m)

Pruning 2

Pruning 1 but discarding also those methods which modify the heap
transitively (not directly)

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 58 / 62

http://www.envisage-project.eu

Reducing the set related(m)

Pruning 2

Pruning 1 but discarding also those methods which modify the heap
transitively (not directly)

class A {
int f;
int g;
int p(B o, int n) {
this.f = this.f + 1;

y=o !q(n);
oo
:W_al; éet = related(p) = {setF, setG}

return z + this.f;

}

void setF(int v) { this.f = v; }

void setG(int v) { this.G = v; }

void set(int v1, int v2) { this.setF(v1); this.setG(v2); }

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 58 / 62

http://www.envisage-project.eu

Reducing the set related(m)

Pruning 3

Consider only interleavings with those methods that write directly on fields
which are used before an await and used after the await

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 59 / 62

http://www.envisage-project.eu

Reducing the set related(m)

Pruning 3

Consider only interleavings with those methods that write directly on fields
which are used before an await and used after the await

class A {
int f;
int g;
int p(B o, int n) {
this.f = this.f + 1;

y=o la(n);
o
:“f'; ;e’t = related(p) = {setF}

return z + this.f;

void setF(int v) { this.f = v; }
void setG(int v) { this.G = v; }
void set(int v1, int v2) { this.setF(v1); this.setG(v2); }

}

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 59 / 62

http://www.envisage-project.eu

Plan of the Lecture

» Part 1: Symbolic execution and TCG
e Introduction
e Handling heap-manipulating programs
o Compositionallity

» Part 2: CLP-based TCG

e Introduction

e Translation from imperative to CLP
e Guided-TCG

e Demo

» Part 3: TCG of Concurrent (Actor) Programs

e The path explotion problem
e Symbolic execution and TCG for actors
e Demo

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 60 / 62

http://www.envisage-project.eu

Conclusions & References (Part 3)

Conclusions
» Symbolic execution of actor systems [PADL'12]

v

We have proposed termination and coverage criteria for actors

v

We have proposed different prunings to consider task interleavings in
TCG [ICLP'12]
An implementation of the technique [ACM/FSE'13]

We have proposed two improvements to the state-of-the-art algorithm
for testing actor systems [FORTE'14]

@ Actor selection strategy based on actors stability

@ Task selection based on task independence

v

v

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 61 / 62

http://www.envisage-project.eu

Conclusions & References (Part 3)

Conclusions
» Symbolic execution of actor systems [PADL'12]

v

We have proposed termination and coverage criteria for actors

v

We have proposed different prunings to consider task interleavings in
TCG [ICLP'12]
An implementation of the technique [ACM/FSE'13]

We have proposed two improvements to the state-of-the-art algorithm
for testing actor systems [FORTE'14]

@ Actor selection strategy based on actors stability

@ Task selection based on task independence

v

v

Ongoing/Future Work
» Experiment with more intelligent heuristics

» Improve sufficient condition for task independence

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 61 / 62

http://www.envisage-project.eu

Conclusions

(CLP-based) TCG based on Symbolic Execution:

>

»

>

Symbolic execution is the standard approach to generating glass-box
test cases statically

The main challenges in TCG based on symbolic execution are related
to the scalability of the approach

We have presented a (scalable) approach to TCG of
heap-manipulating programs

We have studied compositionallity in TCG
Guided TCG

CLP-based TCG for Actor Systems:

>

>

>

Novel termination and coverage criteria
Elimination of redundant exploration

Consider tasks interleavings

T Elvira Albert Test Case Generation by Symbolic Execution 16-20 June 2014 62 / 62

http://www.envisage-project.eu

	Test Case Generation by Symbolic Execution
	Symbolic Execution
	Elements Involved in the Testing Process
	Termination Criteria
	Test Case Generation by Symbolic Execution
	Handling Heap-manipulating Programs

	Compositional Test Case Generation
	Motivation
	Challenge
	Composition Strategies
	Generating Symbolic Execution Summaries

	CLP-based Symbolic Execution and TCG
	Symbolic Execution and Test Case Generation
	Concrete example

	Guided Test Case Generation
	Motivation and Selective Coverage Criteria
	Naive Approach to Selective TCG
	Intuition
	A Generic Algorithm for Guided TCG

	Working example
	Actors in Action
	Exhaustive Exploration
	(Trans)DPOR in Action

	First Contribution: Actor Selection based on Stability Crit.
	(Trans)DPOR + Actor Selection in Action
	Experimental Results of Actor Selection

	2nd Contrib.: Task Selection based on Dependency Info.
	Motivation
	A Task Selection Algorithm based on Indep. Info.
	Experimental Results

	Conclusions & References (Part 3)
	Conclusions

