Variability Models

Dave Clarke
June 13, 2014

Abstract

This document includes a partial specification of a drink machine product line, a description
of the tasks to be performed during the course, and cheat sheets for various formalisms used.

1 Drink Machine Product Line Specification

The Drink Machine Product Line consists of the following features.

Features: Tea, Coffee

Different drink options are available: tea, coffee. Tea is essentially just hot water. No milk or
sugar is provided. Click button and drink will be served, assuming that payment has been made
(if required).

Feature: Sugar and Milk

Tea and coffee now have different options for milk and sugar. Additional buttons will be provided
to add different amounts of sugar and milk.

Feature: Fancy Coffee

A wider selection of coffees — cappuchino, latte, espresso, machiato, hot chocolate — are available.
A new panel will offer a choice between these drinks.

Feature: Cup Dispenser

The machine can provide cups, require/allow user to bring own cup (whose presence the machine
detects), or both. When cups run out, cups are no longer available (obviously). In this case, a
signal can be sent to display.

Feature: Primitive Display

Display counsists of a board of 3 LEDs (red, green, yellow) which can be turned on or off pro-
grammatically, for instance, to indicate that a drink is being served or that ingredients have run
out.

Feature: Advanced Display

A small LCD display is available. Any text can be programmatically displayed on this. Display
can also be cleared programmatically.

Features: Cash payment, Card payment, No payment

These features would allow the machine to accept cash, cards, or give free drinks. For simplicity,
assume all drinks cost 1 coin. Payment is made and change given before drink is delivered.

Feature: Refill

Drinks/ingredients can run out. The refill features monitors these and can use display to show
status messages. Refill functionality is available—refilling is possible before ingredients run out.

Feature: Cancellation

Cancel purchase. Can take place before drink is delivered. Resets system to initial state (except for
ingredients used) and refunds coins. If card payment was being used, cannot cancel after payment
transaction has begun.

Additional Constraints

Assume that all drinks use 1 unit of whatever ingredient it needs, or multiples in the case of sugar
and milk.

2 Tasks

1. Develop Feature Model
e Identify all features

o Identify interactions, conflicts and dependencies between features

e Design a feature model to capture the variability and rule out conflicts — if required, use
abstract features to structure model better, and try to minimise cross-tree constraints
(excludes and requires)

2. Develop Behavioural Model

e Select a formalism — Featured transition systems, Feature Petri nets
e Develop isolated behavioural models for each feature

e Combine isolated models into single model
3. Develop Implementation

e Select approach — #ifdef vs delta-oriented
e Understand existing code modules

e Use selected approach to construct a product line from these modules. Begin incremen-
tally, integrating a feature at a time.

3 Cheat Sheet: Feature Models

¢ Mandatory AN Alternative —— - Requires
& Optional A o <« Excludes
root(f) = £

mandatory(p,f) = f & p
optional(p,f) =f = p
alternative(p, {f1,...fn}) = ((f1 V...V £) & D) A
/\ —(f; A £5)
i<j

or(p, {f1, ...fta}) = (f1 V...V) & p

4 Cheat Sheet: Featured Transition Systems

return / ¢ @ gcancel/c

take / f
close /v

Each transition has the following form:

action /application condition

state state’

where an application condition is a predicate feature names.

5 Cheat Sheet: Feature Petri Nets

Two different feature Petri net models are considered, transition-labelled and arc-labelled variants.
In these models, application conditions are written above the transition and arc, respectively.
Transition-labelled Feature Petri Net:

Coffee Coffee A Milk

%E!VE
WAIT Coffee

BREW COFFEE ADD MILK
Coffee Coffee N Milk
COFFEE COFFEE MILK MILK
FULL REFILLABLE FULL REFILLABLE

REFILL COFFEE REFILL MILK

SERVE COFFEE W /MIL

Coffec AMy' MILK
READY

Arc-labelled Feature Petri Net:

ADD MILK

COFFEE
REFILLABLE FULL

REFILLABLE

REFILL COFFEE REFILL MILK

6 Cheat Sheet: #ifdef

Don’t stick too strictly to the constraints imposed by the C preprocessor. Typically guards will be
application conditions.

The following usage ensures that code controlled text appears in the final product if GUARD
is true, based on statically available information.

#ifdef GUARD
controlled text
#endif

The following has the expected meaning.

#ifdef GUARD
controlled text
#else
alternative text
#endif

You can also use #ifndef to test whether guard is false.

7 Cheat Sheet: Delta Modelling

Assume that the base language is Java or anything you are comfortable with.

Deltas

Deltas are modules that sit beside a class hierarchy and, when applied, can perform the following
modifications of the hierarchy:

e Modifications on Class Level:
— Addition, Removal and Modification of Classes.
e Modifications of Class Structure:

— Changing interfaces
— Adding/Removing Fields/Methods
— Modifying Methods (wrapping original call)

The following delta modifies a method in a class, using original to call the original method.

delta Rpt (Int times) {
modifies Greeter {
modifies String say_hello() {
String result = "";
Int i = 0;
while (i < times) {
result = result + original();
i=1i+1;
}
return result;
}
}
}

The following delta adds a method to the Greeter class:

delta Goodbye {
modifies Greeter {
add String say_goodbye() {

return "Goodbye";
}
}
}

Similarly, classes can be added to systems using deltas.
The following delta removes class Greeter.

delta Remove {
removes Greeter

}

The following delta removes method say_hello() from class Greeter.

delta Remove {
modifies Greeter {
remove String say_hello();

}
}

Product Line Configuration

product line HelloMultiLingual {
features Repeat, German, French, Dutch, Swedish;
core English;

delta De when German && not Repeat;
delta Fr when French;
delta N1 when Dutch;
delta Sv when Swedish && Repeat;
delta Rpt(Repeat.times)

after De, Fr, N1, Sv when Repeat;

e product line names the product line.
e feature describes the features referred to in the product line.
e core identifies the core to which the features will be applied.

e delta refers to a delta and states when the delta is applicable using a so-called application
condition.

e The parameter to Rpt comes from an attribute in the feature model associated with feature
Repeat.

e after declares that delta Rpt must be applied after deltas De, Fr, N1, Sv, if present.

