
Variability Models

Dave Clarke

June 13, 2014

Abstract

This document includes a partial specification of a drink machine product line, a description
of the tasks to be performed during the course, and cheat sheets for various formalisms used.

1 Drink Machine Product Line Specification

The Drink Machine Product Line consists of the following features.

Features: Tea, Coffee

Different drink options are available: tea, coffee. Tea is essentially just hot water. No milk or
sugar is provided. Click button and drink will be served, assuming that payment has been made
(if required).

Feature: Sugar and Milk

Tea and coffee now have different options for milk and sugar. Additional buttons will be provided
to add different amounts of sugar and milk.

Feature: Fancy Coffee

A wider selection of coffees — cappuchino, latte, espresso, machiato, hot chocolate — are available.
A new panel will offer a choice between these drinks.

Feature: Cup Dispenser

The machine can provide cups, require/allow user to bring own cup (whose presence the machine
detects), or both. When cups run out, cups are no longer available (obviously). In this case, a
signal can be sent to display.

Feature: Primitive Display

Display consists of a board of 3 LEDs (red, green, yellow) which can be turned on or off pro-
grammatically, for instance, to indicate that a drink is being served or that ingredients have run
out.

1



Feature: Advanced Display

A small LCD display is available. Any text can be programmatically displayed on this. Display
can also be cleared programmatically.

Features: Cash payment, Card payment, No payment

These features would allow the machine to accept cash, cards, or give free drinks. For simplicity,
assume all drinks cost 1 coin. Payment is made and change given before drink is delivered.

Feature: Refill

Drinks/ingredients can run out. The refill features monitors these and can use display to show
status messages. Refill functionality is available—refilling is possible before ingredients run out.

Feature: Cancellation

Cancel purchase. Can take place before drink is delivered. Resets system to initial state (except for
ingredients used) and refunds coins. If card payment was being used, cannot cancel after payment
transaction has begun.

Additional Constraints

Assume that all drinks use 1 unit of whatever ingredient it needs, or multiples in the case of sugar
and milk.

2 Tasks

1. Develop Feature Model

• Identify all features

• Identify interactions, conflicts and dependencies between features

• Design a feature model to capture the variability and rule out conflicts — if required, use
abstract features to structure model better, and try to minimise cross-tree constraints
(excludes and requires)

2. Develop Behavioural Model

• Select a formalism — Featured transition systems, Feature Petri nets

• Develop isolated behavioural models for each feature

• Combine isolated models into single model

3. Develop Implementation

• Select approach — #ifdef vs delta-oriented

• Understand existing code modules

• Use selected approach to construct a product line from these modules. Begin incremen-
tally, integrating a feature at a time.

2



3 Cheat Sheet: Feature Models

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Figure 1: A sample feature model

lines since then. There are different feature model lan-
guages. We refer the reader to [69] for a detailed sur-
vey on the different feature model languages. Below,
we review the most well known notations for those
languages.

2.1. Basic feature models
We group as basic feature models those allowing the

following relationships among features:

• Mandatory. A child feature has a mandatory re-
lationships with its parent when the child is in-
cluded in all products in which its parent fea-
ture appears. For instance, every mobile phone
system in our example must provide support for
calls.

• Optional. A child feature has an optional rela-
tionship with its parent when the child can be
optionally included in all products in which its
parent feature appears. In the example, software
for mobile phones may optionally include sup-
port for GPS.

• Alternative. A set of child features have an al-
ternative relationship with their parent when only
one feature of the children can be selected when
its parent feature is part of the product. In the ex-
ample, mobile phones may include support for a
basic, colour or high resolution screen but only
one of them.

• Or. A set of child features have an or-relationship
with their parent when one or more of them can
be included in the products in which its parent
feature appears. In Figure 1, whenever Media is
selected, Camera, MP3 or both can be selected.

Notice that a child feature can only appear in a prod-
uct if its parent feature does. The root feature is a part
of all the products within the software product line. In

addition to the parental relationships between features,
a feature model can also contain cross-tree constraints
between features. These are typically in the form:

• Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion
of B in such product. Mobile phones including
a camera must include support for a high resolu-
tion screen.

• Excludes. If a feature A excludes a feature B,
both features cannot be part of the same product.
GPS and basic screen are incompatible features.

More complex cross-tree relationships have been
proposed later in the literature [5] allowing constraints
in the form of generic propositional formulas, e.g. “A
and B implies not C”.

2.2. Cardinality–based feature models

Some authors propose extending FODA feature
models with UML-like multiplicities (so-called car-
dinalities) [28, 65]. Their main motivation was driven
by practical applications [26] and “conceptual com-
pleteness”. The new relationships introduced in this
notation are defined as follows:

• Feature cardinality. A feature cardinality is a
sequence of intervals denoted [n..m] with n as
lower bound and m as upper bound. These in-
tervals determine the number of instances of the
feature that can be part of a product. This rela-
tionship may be used as a generalization of the
original mandatory ([1, 1]) and optional ([0, 1])
relationships defined in FODA.

• Group cardinality. A group cardinality is an in-
terval denoted 〈n..m〉, with n as lower bound and
m as upper bound limiting the number of child
features that can be part of a product when its

3

32 2 A Development Process for Feature-Oriented Product Lines

Additional cross-tree constraints can be expressed as propositional formulas, as
well. In fact, they are often already specified as propositional formulas the cor-
responding graphical notations. Therefore, we can directly reuse them in the logic
representation. All formulas for cross-tree constraints are connected via conjunction,
which restricts the set of possible products.

Our formalization is summarized in Definition 2.4:

Definition 2.4 A feature diagram is a graphical representation of a feature
model as a tree over the feature set F. Each edge in the tree is defined by
exactly one feature constraint, that is, by a declaration of one of the feature
constraint types mandatory, optional, alternative, or or.

root(f) ≡ f (2.1)

mandatory(p,f) ≡ f ⇔ p (2.2)

optional(p,f) ≡ f ⇒ p (2.3)

alternative(p, {f1, ...fn}) ≡ ((f1 ∨ . . . ∨ fn) ⇔ p) ∧∧

i<j

¬(fi ∧ fj) (2.4)

or(p, {f1, ...fn}) ≡ (f1 ∨ . . . ∨ fn) ⇔ p (2.5)

Additionally, a set of cross-tree constraints may be defined. The corresponding
propositional formula of the feature constraints and the cross-tree constraints
are conjoined resulting in one propositional formula that represents the seman-
tics of the whole feature diagram. !

Propositional logic enables us to use automated tools such as SAT solvers to
test interesting properties, such as checking validity of feature models and feature
selections, detecting dead features, and comparing feature models. In Chap. 10, we
explore different use cases of automated analyses of feature models based on the
mapping defined here.

2.3.4 The Feature Model for the Graph Library

We use the product line of graph libraries from Sect. 1.5 to illustrate feature diagrams
and their formalization. Recall, this product line supports variations in a library of
graph data structures and algorithms.

4 Cheat Sheet: Featured Transition Systems

This is how FTSs handle the situation in which a feature
adds transitions. The Y feature also removes the !1 "!red !2
transition. In FTSs, this is done by labeling !1 "!red !2 with
:Y . This way, only one of the transitions leaving !1 can
exist in a product. The resulting FTS is shown in Fig. 3b.
Features in an FTS can thus be nonmonotonic, i.e., remove
behavior.

In [26], the situation in which a feature causes a
transition t to be replaced by t0 was modeled by specifying
that t0 has priority over t. In the red lights example, transition
!1 ""!

yellow!4 would have priority over!1 "!red !2 . In this paper,
we drop the notion of priority in favor of Boolean
expressions. These are more natural and simplify the
notation.

Now consider the more comprehensive vending ma-

chine example. Figs. 1b and 1c show the impact of adding

features Tea and CancelPurchase to a machine serving only

soda: Both add two transitions. FreeDrinks replaces !1 ""!
pay

!2 """!
change !3 by a single transition !1 ""!

free !3 and !7 ""!
open

!8 ""!close !1 by!7 ""!take !1 . The corresponding FTS is given in

Fig. 4. The feature label of a transition is shown next to its

action label, separated by a slash. In these labels, as in the

subsequent text, we use the abbreviated feature names from

Fig. 2. The transitions are colored in the same way as the

features in Fig. 2.

3.1 Syntax and Semantics of FTSs

As the examples have shown, an FTS is a TS with an
additional labeling function and an FD.

Definition 4. An FTS is a tuple ðS;Act; trans; I; AP; L; d; !Þ,
where

. S;Act; trans; I; AP; L are defined as in Definition 2,

. d is an FD as defined in Definition 1,

. ! : trans! IBðNÞ is a total function, labeling each
transition with a feature expression, i.e., a Boolean
expression over the features. A product p % PðNÞ
defines a truth assignment for the variables in !ðtÞ.
The set of satisfying assignments, written ½½!ðtÞ'', is
thus a set of products. Regarding notation: p 2 ½½!ðtÞ'',
!ðtÞðpÞ ¼ 1, and p ) !ðtÞ are identical statements.

In the remainder of this paper, we write 1 to denote true
and 0 to denote false. Feature expressions work similarly to
presence conditions in [31]. The TS of a particular product p
is obtained by removing all transitions whose feature
expression is not satisfied. This operation is called projection.

Definition 5. The projection of an FTSfts to a product p 2
½½d''

FD
, noted fts jp, is the TS t ¼ ðS;Act; trans0; fig; AP; LÞ,

where trans0 ¼ ft 2 trans j p ) !ðtÞg.

Each TS obtained through projection describes the
behavior (as in Definition 2) of a product. The semantics
of an FTS is thus the union of the behaviors of the
projections on all products of the FD.

Definition 6. ½½fts''
FTS
¼
S
c2½½d''

FD
½½fts jc''TS .

It is important to point out that this is not equivalent to
removing d and ! from an FTS and interpreting it as a TS. In
other words, the FTS semantics from Definition 6 is not

equal to the TS semantics of Definition 2. In general, the
following theorem holds.

Theorem 7. Let TSðftsÞ be the TS obtained by removing d and !
from an FTS fts, then for any fts:

½½fts''
FTS
% ½½TSðftsÞ''

TS
:

Proof. Let ts1 and ts2 be two TSs that are identical except for
trans1 % trans2. Clearly, ½½ts1''TS % ½½ts2''TS . The theorem
follows from this; all projected TSs have fewer transitions
than TSðftsÞ and are otherwise identical. tu

The TS interpretation of an FTS thus has more behaviors. In
the vending machine SPL, for example, a valid execution e 2
½½TSðftsÞ''

TS
is one in which the vending machine would ask

the first customer for a coin and offer a free drink to the next
one. This is not admitted by the FTS semantics, according to

which a machine should either always offer free drinks or

always require payment: e 62 ½½fts''
FTS

. The choice between the
transitions!1 ""!

pay !2 and!1 ""!
free !3 is nondeterministic in

the TS interpretation. In an FTS, they are alternatives

depending on the presence of the FreeDrinks feature. See also
Section 8.1.

A corollary of Theorem 7 is that one cannot use classical
model checking algorithms directly on an FTS. They
would produce sound but incomplete results, i.e., find
false positives.

The semantics as defined in Definition 6 is the set of
behaviors that start in an initial state. This means that two
structurally different FTSs might be semantically equiva-
lent if the structural differences cannot be reached from an
initial state. An example of this is given in Fig. 4, where
the feature label of !2 """!

change !3 is v. Changing it to true,
v ^ :f or :f would lead to semantically equivalent
models. This is because the only way in which state !2
can be reached is via !1 ""!

pay !2 , which is labeled with
v ^ :f . Therefore, !2 is only reachable in products
½½v ^ :f ''

FD
, and the feature label of !2 """!

change !3 can be
changed to any expression " such that ½½v ^ :f ''

FD
% ½½"''

FD

while preserving the semantics of the FTS.
An important observation is that restricting feature

expressions to single features (i.e., consisting of a single
positive literal) does not affect expressiveness.

Theorem 8. For any FTS there is an equivalent FTS whose
transitions are labeled with single features.

Proof. Let fts ¼ ðS;Act; trans; I; AP; L; d; !Þ. An equivalent
FTS is given by fts0 ¼ ðS;Act; trans; I; AP; L; d0; !0Þ. Let
d0 ¼ d. For each transition t 2 trans, a new feature xt is
added to d0 so that ½½d'' ¼ ½½d0'', t is labeled by xt: !0ðtÞ ¼ xt,

1072 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 8, AUGUST 2013

Fig. 4. FTS of the vending machine.

Each transition has the following form:

state
action/application condition−−−−−−−−−−−−−−−−−−−→ state ′

where an application condition is a predicate feature names.

3



5 Cheat Sheet: Feature Petri Nets

Two different feature Petri net models are considered, transition-labelled and arc-labelled variants.
In these models, application conditions are written above the transition and arc, respectively.

Transition-labelled Feature Petri Net:

4 Radu Muschevici et al.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee
refillable

n

coffee
full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk
full

milk
refillable

milk
ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants
{{Co↵ee}, {Co↵ee,Milk}} showing each product in its initial state. Each transi-
tion has an application condition attached (label above transitions). Colour is used to
visually group transitions according to application conditions.

Figure 2 exemplifies a transition-labelled FN of a coffee machine with a milk
reservoir. It considers a product line whose products are over the set of features
{Co↵ee,Milk}, where Co↵ee is compulsory and Milk is optional. The conditions on
the transitions reflect that the three transitions on the right-hand side can be taken
only when both features Coffee and Milk are present, and the three transitions on the
left-hand side can be taken when the Coffee feature is present. The restriction of the
example net to the transitions that can fire for feature selection {Co↵ee} is exactly the
Petri net in Figure 1, after removing unreachable places.

wait ready

coffee
refillable

n

coffee
full

brew coffee

Co↵ee

Co↵ee

Co↵ee

Co↵ee

serve
Co↵eeCo↵ee

refill coffee

Co↵eeCo↵ee

m

milk
full

milk
refillable

add milk

Milk

Milk

Milk

Milk

refill milk

MilkMilk

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

Arc-labelled Feature Petri Net:

4 Radu Muschevici et al.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee
refillable

n

coffee
full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk
full

milk
refillable

milk
ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants
{{Co↵ee}, {Co↵ee,Milk}} showing each product in its initial state. Each transi-
tion has an application condition attached (label above transitions). Colour is used to
visually group transitions according to application conditions.

Figure 2 exemplifies a transition-labelled FN of a coffee machine with a milk
reservoir. It considers a product line whose products are over the set of features
{Co↵ee,Milk}, where Co↵ee is compulsory and Milk is optional. The conditions on
the transitions reflect that the three transitions on the right-hand side can be taken
only when both features Coffee and Milk are present, and the three transitions on the
left-hand side can be taken when the Coffee feature is present. The restriction of the
example net to the transitions that can fire for feature selection {Co↵ee} is exactly the
Petri net in Figure 1, after removing unreachable places.

wait ready

coffee
refillable

n

coffee
full

brew coffee

Co↵ee

Co↵ee

Co↵ee

Co↵ee

serve
Co↵eeCo↵ee

refill coffee

Co↵eeCo↵ee

m

milk
full

milk
refillable

add milk

Milk

Milk

Milk

Milk

refill milk

MilkMilk

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

6 Cheat Sheet: #ifdef

Don’t stick too strictly to the constraints imposed by the C preprocessor. Typically guards will be
application conditions.

The following usage ensures that code controlled text appears in the final product if GUARD
is true, based on statically available information.

#ifdef GUARD

controlled text

#endif

The following has the expected meaning.

4



#ifdef GUARD

controlled text

#else

alternative text

#endif

You can also use #ifndef to test whether guard is false.

7 Cheat Sheet: Delta Modelling

Assume that the base language is Java or anything you are comfortable with.

Deltas

Deltas are modules that sit beside a class hierarchy and, when applied, can perform the following
modifications of the hierarchy:

• Modifications on Class Level:

– Addition, Removal and Modification of Classes.

• Modifications of Class Structure:

– Changing interfaces

– Adding/Removing Fields/Methods

– Modifying Methods (wrapping original call)

The following delta modifies a method in a class, using original to call the original method.

delta Rpt (Int times) {

modifies Greeter {

modifies String say_hello() {

String result = "";

Int i = 0;

while (i < times) {

result = result + original();

i = i + 1;

}

return result;

}

}

}

The following delta adds a method to the Greeter class:

delta Goodbye {

modifies Greeter {

add String say_goodbye() {

5



return "Goodbye";

}

}

}

Similarly, classes can be added to systems using deltas.
The following delta removes class Greeter.

delta Remove {

removes Greeter

}

The following delta removes method say_hello() from class Greeter.

delta Remove {

modifies Greeter {

remove String say_hello();

}

}

Product Line Configuration

product line HelloMultiLingual {

features Repeat, German, French, Dutch, Swedish;

core English;

delta De when German && not Repeat;

delta Fr when French;

delta Nl when Dutch;

delta Sv when Swedish && Repeat;

delta Rpt(Repeat.times)

after De, Fr, Nl, Sv when Repeat;

}

• product line names the product line.

• feature describes the features referred to in the product line.

• core identifies the core to which the features will be applied.

• delta refers to a delta and states when the delta is applicable using a so-called application
condition.

• The parameter to Rpt comes from an attribute in the feature model associated with feature
Repeat.

• after declares that delta Rpt must be applied after deltas De, Fr, Nl, Sv, if present.

6


