
Variability Models
Dave Clarke!

Uppsala University, Sweden!
KU Leuven, Belgium

Overview

Context – Variability and Software Product Line Engineering
(20 minutes)!

3 Formalisms:!

Feature Models (30 minutes)!

Behavioural Models: Feature Transition Systems and
Feature Petri Nets (1 hour)!

Code: Delta Modelling (1 hour)!

Conclusions (10 minutes)

Variability and
Software Product Line Engineering

Motivation

A lot of companies produce products that are!

... somehow all the same!

... but all a little different

... somehow all the same!
... but a little different

... somehow all the same!
... but a little different

... somehow all the same!
... but a little different

Motivation: Reflection

!

Different customer requirements (market needs)!

features vs price!

Innovation to distinguish products from competitors’!

Products sell and earn money (customers want new version).!

The company cannot afford to develop each system from
scratch.

Why are there so many products from a single
company that are more or less all the same?

Software Product Lines

A software product line (SPL) is a set of programs
that share significant common functionality and
structure. !

The differences between the set of programs are
well-understood and organised in some form.!

Supports systematic re-use of configurable artefacts
across development activities!

Product line targets specific market segment.

Software Product Line Engineering

“a paradigm to develop software applications (software
intensive systems and software products) using

platforms and mass customisation” [Pohl et al ’05]

 Software Platform
a set of software building blocks with

common interfaces that can be combined to
derive a variety of products

Variability Mechanisms
Variability Mechanisms

One core
implementation.!

Adaptable behaviour.

Multiple Component
Implementations. !

Choose one or !
develop product

specific.

Generic Interface
for !

adding
components

Feature Models

Feature Models

Describe the variability of a system at a high-
level of abstraction!

Expressed in terms of features (names) and
sometimes attributes and cardinality

2.3 Feature Modeling 35

writing, there is a draft from the Object Management Group1 and an Eclipse incubator
project2—but they are not yet in a mature form. As a result, different notations and
file formats are omnipresent.

In this book, we use a simple form of feature diagrams. Each pair of nodes partic-
ipates in maximally one of the basic four feature constraint types; so, for example,
it is not possible to add an optional feature as an edge in an alternative group.

In the literature, there are many variations of feature diagrams including:

1. Some cross-tree constraints can be modeled graphically. Arrows can denote impli-
cations or mutual exclusion, as exemplified in Fig. 2.8a.

2. Some notations distinguish abstract from concrete features. Abstract features
are used for structuring and documentation purposes only and are not bound
to implementation artifacts. They structure a diagram but do not reflect actual
variability in the domain (such as features EdgeType and Search in Fig. 2.6). We
exemplify the difference in Fig. 2.8b, in which abstract features are denoted by
gray boxes.

3. Some notations support multiple group types under the same feature. For example,
in Fig. 2.8c, features I, J, and K share the same parent even though they belong
to different groups. In our notation, we can express such combinations only by
introducing additional abstract features.

(a)

(b) (c)

Fig. 2.8 Some variations of feature diagrams: a cross-tree constraints, b transformation toward
abstract inner features, c mixing optionality and group constraints

1 Common Variability Language (CVL), http://www.omgwiki.org/variability.
2 EMF Feature Model, http://www.eclipse.org/modeling/emft/featuremodel/.

Abstract and Concrete Features

2.3 Feature Modeling 35

writing, there is a draft from the Object Management Group1 and an Eclipse incubator
project2—but they are not yet in a mature form. As a result, different notations and
file formats are omnipresent.

In this book, we use a simple form of feature diagrams. Each pair of nodes partic-
ipates in maximally one of the basic four feature constraint types; so, for example,
it is not possible to add an optional feature as an edge in an alternative group.

In the literature, there are many variations of feature diagrams including:

1. Some cross-tree constraints can be modeled graphically. Arrows can denote impli-
cations or mutual exclusion, as exemplified in Fig. 2.8a.

2. Some notations distinguish abstract from concrete features. Abstract features
are used for structuring and documentation purposes only and are not bound
to implementation artifacts. They structure a diagram but do not reflect actual
variability in the domain (such as features EdgeType and Search in Fig. 2.6). We
exemplify the difference in Fig. 2.8b, in which abstract features are denoted by
gray boxes.

3. Some notations support multiple group types under the same feature. For example,
in Fig. 2.8c, features I, J, and K share the same parent even though they belong
to different groups. In our notation, we can express such combinations only by
introducing additional abstract features.

(a)

(b) (c)

Fig. 2.8 Some variations of feature diagrams: a cross-tree constraints, b transformation toward
abstract inner features, c mixing optionality and group constraints

1 Common Variability Language (CVL), http://www.omgwiki.org/variability.
2 EMF Feature Model, http://www.eclipse.org/modeling/emft/featuremodel/.

Feature of product line

For structuring model

2.3 Feature Modeling 35

writing, there is a draft from the Object Management Group1 and an Eclipse incubator
project2—but they are not yet in a mature form. As a result, different notations and
file formats are omnipresent.

In this book, we use a simple form of feature diagrams. Each pair of nodes partic-
ipates in maximally one of the basic four feature constraint types; so, for example,
it is not possible to add an optional feature as an edge in an alternative group.

In the literature, there are many variations of feature diagrams including:

1. Some cross-tree constraints can be modeled graphically. Arrows can denote impli-
cations or mutual exclusion, as exemplified in Fig. 2.8a.

2. Some notations distinguish abstract from concrete features. Abstract features
are used for structuring and documentation purposes only and are not bound
to implementation artifacts. They structure a diagram but do not reflect actual
variability in the domain (such as features EdgeType and Search in Fig. 2.6). We
exemplify the difference in Fig. 2.8b, in which abstract features are denoted by
gray boxes.

3. Some notations support multiple group types under the same feature. For example,
in Fig. 2.8c, features I, J, and K share the same parent even though they belong
to different groups. In our notation, we can express such combinations only by
introducing additional abstract features.

(a)

(b) (c)

Fig. 2.8 Some variations of feature diagrams: a cross-tree constraints, b transformation toward
abstract inner features, c mixing optionality and group constraints

1 Common Variability Language (CVL), http://www.omgwiki.org/variability.
2 EMF Feature Model, http://www.eclipse.org/modeling/emft/featuremodel/.

Abstract & Concrete Features

2.3 Feature Modeling 35

writing, there is a draft from the Object Management Group1 and an Eclipse incubator
project2—but they are not yet in a mature form. As a result, different notations and
file formats are omnipresent.

In this book, we use a simple form of feature diagrams. Each pair of nodes partic-
ipates in maximally one of the basic four feature constraint types; so, for example,
it is not possible to add an optional feature as an edge in an alternative group.

In the literature, there are many variations of feature diagrams including:

1. Some cross-tree constraints can be modeled graphically. Arrows can denote impli-
cations or mutual exclusion, as exemplified in Fig. 2.8a.

2. Some notations distinguish abstract from concrete features. Abstract features
are used for structuring and documentation purposes only and are not bound
to implementation artifacts. They structure a diagram but do not reflect actual
variability in the domain (such as features EdgeType and Search in Fig. 2.6). We
exemplify the difference in Fig. 2.8b, in which abstract features are denoted by
gray boxes.

3. Some notations support multiple group types under the same feature. For example,
in Fig. 2.8c, features I, J, and K share the same parent even though they belong
to different groups. In our notation, we can express such combinations only by
introducing additional abstract features.

(a)

(b) (c)

Fig. 2.8 Some variations of feature diagrams: a cross-tree constraints, b transformation toward
abstract inner features, c mixing optionality and group constraints

1 Common Variability Language (CVL), http://www.omgwiki.org/variability.
2 EMF Feature Model, http://www.eclipse.org/modeling/emft/featuremodel/.

Mandatory and Optional Features

28 2 A Development Process for Feature-Oriented Product Lines

too large to be practical; therefore, other notations to describe relationships have
been proposed.

In principle, very different modeling approaches can describe the relationships
between features. One may follow a linguistic perspective using ontologies, or a direct
logic-based approach specifying the valid feature combinations using propositions.
Other approaches may use known modeling formalisms such as UML and provide
only a special interpretation.

In feature-oriented design and implementation, feature diagrams are a standard
visual representation, whose semantics is specified by a translation into proposi-
tional logic. Feature diagrams define a feature model as a hierarchy of features and
constraints among them.

2.3.2 Feature Diagrams

A feature diagram is a graphical notation to specify a feature model. It is a tree
whose nodes are labeled with feature names. Different notations convey various
parent–child relationships between features and their constraints.

If a feature f is a child of another feature p, f can be selected only when p is also
selected. Typically, a feature diagram includes mutual relations between features.
For example, the parent feature denotes a more general concept and the child a
specialization.

Mandatory and optional features are distinguished by a small circle on the child
node—a filled bullet denotes a mandatory feature, whereas an empty bullet denotes
an optional feature (see Fig. 2.2). The parent node is labeled with p, the child node
with f.

Specific graphical elements define additional constraints, if the child features of a
common parent cannot be selected independently. Figures 2.3 and 2.4 show graphical
notations for disjunctive combinations.

In Fig. 2.3, the edges between a parent feature and a group of child features fi are
connected via an empty arc. This graphical element denotes a choice of exactly one
feature out of a feature group (that is, choose one from {f1 . . . fn}). In propositional
logic, it is a generalization of an exclusive disjunction. Typical examples of exclusive
disjunctions of features are different implementations of the same functionality or

Fig. 2.2 Graphical notation
for optional and manda-
tory features. A filled bullet
denotes a mandatory feature,
and an empty bullet denotes
an optional feature

28 2 A Development Process for Feature-Oriented Product Lines

too large to be practical; therefore, other notations to describe relationships have
been proposed.

In principle, very different modeling approaches can describe the relationships
between features. One may follow a linguistic perspective using ontologies, or a direct
logic-based approach specifying the valid feature combinations using propositions.
Other approaches may use known modeling formalisms such as UML and provide
only a special interpretation.

In feature-oriented design and implementation, feature diagrams are a standard
visual representation, whose semantics is specified by a translation into proposi-
tional logic. Feature diagrams define a feature model as a hierarchy of features and
constraints among them.

2.3.2 Feature Diagrams

A feature diagram is a graphical notation to specify a feature model. It is a tree
whose nodes are labeled with feature names. Different notations convey various
parent–child relationships between features and their constraints.

If a feature f is a child of another feature p, f can be selected only when p is also
selected. Typically, a feature diagram includes mutual relations between features.
For example, the parent feature denotes a more general concept and the child a
specialization.

Mandatory and optional features are distinguished by a small circle on the child
node—a filled bullet denotes a mandatory feature, whereas an empty bullet denotes
an optional feature (see Fig. 2.2). The parent node is labeled with p, the child node
with f.

Specific graphical elements define additional constraints, if the child features of a
common parent cannot be selected independently. Figures 2.3 and 2.4 show graphical
notations for disjunctive combinations.

In Fig. 2.3, the edges between a parent feature and a group of child features fi are
connected via an empty arc. This graphical element denotes a choice of exactly one
feature out of a feature group (that is, choose one from {f1 . . . fn}). In propositional
logic, it is a generalization of an exclusive disjunction. Typical examples of exclusive
disjunctions of features are different implementations of the same functionality or

Fig. 2.2 Graphical notation
for optional and manda-
tory features. A filled bullet
denotes a mandatory feature,
and an empty bullet denotes
an optional feature

Mandatory Optional

Subfeatures (AND)

2.3 Feature Modeling 29

Fig. 2.3 Graphical notation
for a one-out-of many choice.
This choice corresponds to a
generalized xor operator

Fig. 2.4 Graphical notation
for a some-out-of-many
choice. This choice corre-
sponds to the logical or
operator

different technical platforms such as the choice of the supported operating system.
This construct is called alternative or mutually exclusive choice.

Figure 2.4 shows child features connected via a filled arc. This graphical element
denotes an unrestricted choice of one or more features out of a feature group. It is
chosen if, at least, one feature of the collection has to be selected, but there are no
other restrictions. Mathematically, it denotes an inclusive disjunction.

Example 2.9 Selecting one or several supported data types for storage is an example
for an unrestricted choice in the domain of embedded data management. For the
graph library, we may select one or more algorithms (any combination of algorithms
is possible). !

The notational elements of feature diagrams support a natural description of a wide
range of variability schemata, but not all. More general restrictions are needed in the
form of propositional logic constraints. Typical constraints are implications between
features located in different parts of the feature hierarchy, for example, to express that
a certain algorithm requires a special data structure or that a certain function is not
available for a certain operating system. Additional constraints can be simply added
as arrows or in textual form to the diagram. Those additional constraints may span
large parts of the feature diagrams and are therefore called cross-tree constraints.

There is no clear rule of when to use a hierarchical decomposition and when to
use cross-tree constraints. In principle, all feature dependencies could be expressed
as cross-tree constraints over features that are all marked as optional. Typically,
a hierarchical decomposition is used to structure a maximal space of features, whereas
cross-tree constraints are used sparingly for remaining constraints that do not fit into
the chosen hierarchy. As usual in modeling, there is no single ‘best’ answer. We will
see in Sect. 2.3.3 that there can be many equivalent answers.

Generalises
previous slide

Alternative (XOR)

2.3 Feature Modeling 29

Fig. 2.3 Graphical notation
for a one-out-of many choice.
This choice corresponds to a
generalized xor operator

Fig. 2.4 Graphical notation
for a some-out-of-many
choice. This choice corre-
sponds to the logical or
operator

different technical platforms such as the choice of the supported operating system.
This construct is called alternative or mutually exclusive choice.

Figure 2.4 shows child features connected via a filled arc. This graphical element
denotes an unrestricted choice of one or more features out of a feature group. It is
chosen if, at least, one feature of the collection has to be selected, but there are no
other restrictions. Mathematically, it denotes an inclusive disjunction.

Example 2.9 Selecting one or several supported data types for storage is an example
for an unrestricted choice in the domain of embedded data management. For the
graph library, we may select one or more algorithms (any combination of algorithms
is possible). !

The notational elements of feature diagrams support a natural description of a wide
range of variability schemata, but not all. More general restrictions are needed in the
form of propositional logic constraints. Typical constraints are implications between
features located in different parts of the feature hierarchy, for example, to express that
a certain algorithm requires a special data structure or that a certain function is not
available for a certain operating system. Additional constraints can be simply added
as arrows or in textual form to the diagram. Those additional constraints may span
large parts of the feature diagrams and are therefore called cross-tree constraints.

There is no clear rule of when to use a hierarchical decomposition and when to
use cross-tree constraints. In principle, all feature dependencies could be expressed
as cross-tree constraints over features that are all marked as optional. Typically,
a hierarchical decomposition is used to structure a maximal space of features, whereas
cross-tree constraints are used sparingly for remaining constraints that do not fit into
the chosen hierarchy. As usual in modeling, there is no single ‘best’ answer. We will
see in Sect. 2.3.3 that there can be many equivalent answers.

Some-Of-Many (OR)
2.3 Feature Modeling 29

Fig. 2.3 Graphical notation
for a one-out-of many choice.
This choice corresponds to a
generalized xor operator

Fig. 2.4 Graphical notation
for a some-out-of-many
choice. This choice corre-
sponds to the logical or
operator

different technical platforms such as the choice of the supported operating system.
This construct is called alternative or mutually exclusive choice.

Figure 2.4 shows child features connected via a filled arc. This graphical element
denotes an unrestricted choice of one or more features out of a feature group. It is
chosen if, at least, one feature of the collection has to be selected, but there are no
other restrictions. Mathematically, it denotes an inclusive disjunction.

Example 2.9 Selecting one or several supported data types for storage is an example
for an unrestricted choice in the domain of embedded data management. For the
graph library, we may select one or more algorithms (any combination of algorithms
is possible). !

The notational elements of feature diagrams support a natural description of a wide
range of variability schemata, but not all. More general restrictions are needed in the
form of propositional logic constraints. Typical constraints are implications between
features located in different parts of the feature hierarchy, for example, to express that
a certain algorithm requires a special data structure or that a certain function is not
available for a certain operating system. Additional constraints can be simply added
as arrows or in textual form to the diagram. Those additional constraints may span
large parts of the feature diagrams and are therefore called cross-tree constraints.

There is no clear rule of when to use a hierarchical decomposition and when to
use cross-tree constraints. In principle, all feature dependencies could be expressed
as cross-tree constraints over features that are all marked as optional. Typically,
a hierarchical decomposition is used to structure a maximal space of features, whereas
cross-tree constraints are used sparingly for remaining constraints that do not fit into
the chosen hierarchy. As usual in modeling, there is no single ‘best’ answer. We will
see in Sect. 2.3.3 that there can be many equivalent answers.

Feature Model for Embedded Data
Management30 2 A Development Process for Feature-Oriented Product Lines

FAME-DBMS

Storage Index

OS-Abstraction

Buffer Manager

Replacement

Memory Alloc

B+-Tree

NutOS

Win32

List

API

put

remove

update

get

add

remove

update

search

Static

Dynamic

LFU

LRU

Transaction

SQL Engine

Linux

Optimizer

Access

Data Types

Data
Dictionary

Tables

Columns

Aggregation
queries

Relational
queries

Stream-based
Queries

Select
queries

Fig. 2.5 Sample feature diagram for embedded data management

Example 2.10 For our embedded data management example, several partial feature
diagrams are published (Rosenmüller et al. 2008; Rosenmüller et al. 2009b; Saake
et al. 2009; Siegmund et al. 2009b). Figure 2.5 shows an excerpt of a feature diagram
that, in its complete form, covers 65 features (Rosenmüller et al. 2011). Nodes shaded
in gray are folded subtrees. !

Example 2.11 For embedded data management, storing an explicit data dictionary
requires the support of the String data type to store attribute names:

DataDictionary ⇒ String

For the graph library, a typical cross-tree constraint would be that the computation
of minimal spanning trees requires undirected, weighted edges:

MST ⇒ Undirected ∧ Weighted

!

Cross tree constraints

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Figure 1: A sample feature model

lines since then. There are different feature model lan-
guages. We refer the reader to [69] for a detailed sur-
vey on the different feature model languages. Below,
we review the most well known notations for those
languages.

2.1. Basic feature models
We group as basic feature models those allowing the

following relationships among features:

• Mandatory. A child feature has a mandatory re-
lationships with its parent when the child is in-
cluded in all products in which its parent fea-
ture appears. For instance, every mobile phone
system in our example must provide support for
calls.

• Optional. A child feature has an optional rela-
tionship with its parent when the child can be
optionally included in all products in which its
parent feature appears. In the example, software
for mobile phones may optionally include sup-
port for GPS.

• Alternative. A set of child features have an al-
ternative relationship with their parent when only
one feature of the children can be selected when
its parent feature is part of the product. In the ex-
ample, mobile phones may include support for a
basic, colour or high resolution screen but only
one of them.

• Or. A set of child features have an or-relationship
with their parent when one or more of them can
be included in the products in which its parent
feature appears. In Figure 1, whenever Media is
selected, Camera, MP3 or both can be selected.

Notice that a child feature can only appear in a prod-
uct if its parent feature does. The root feature is a part
of all the products within the software product line. In

addition to the parental relationships between features,
a feature model can also contain cross-tree constraints
between features. These are typically in the form:

• Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion
of B in such product. Mobile phones including
a camera must include support for a high resolu-
tion screen.

• Excludes. If a feature A excludes a feature B,
both features cannot be part of the same product.
GPS and basic screen are incompatible features.

More complex cross-tree relationships have been
proposed later in the literature [5] allowing constraints
in the form of generic propositional formulas, e.g. “A
and B implies not C”.

2.2. Cardinality–based feature models

Some authors propose extending FODA feature
models with UML-like multiplicities (so-called car-
dinalities) [28, 65]. Their main motivation was driven
by practical applications [26] and “conceptual com-
pleteness”. The new relationships introduced in this
notation are defined as follows:

• Feature cardinality. A feature cardinality is a
sequence of intervals denoted [n..m] with n as
lower bound and m as upper bound. These in-
tervals determine the number of instances of the
feature that can be part of a product. This rela-
tionship may be used as a generalization of the
original mandatory ([1, 1]) and optional ([0, 1])
relationships defined in FODA.

• Group cardinality. A group cardinality is an in-
terval denoted ⟨n..m⟩, with n as lower bound and
m as upper bound limiting the number of child
features that can be part of a product when its

3

Semantics

32 2 A Development Process for Feature-Oriented Product Lines

Additional cross-tree constraints can be expressed as propositional formulas, as
well. In fact, they are often already specified as propositional formulas the cor-
responding graphical notations. Therefore, we can directly reuse them in the logic
representation. All formulas for cross-tree constraints are connected via conjunction,
which restricts the set of possible products.

Our formalization is summarized in Definition 2.4:

Definition 2.4 A feature diagram is a graphical representation of a feature
model as a tree over the feature set F. Each edge in the tree is defined by
exactly one feature constraint, that is, by a declaration of one of the feature
constraint types mandatory, optional, alternative, or or.

root(f) ≡ f (2.1)

mandatory(p,f) ≡ f ⇔ p (2.2)

optional(p,f) ≡ f ⇒ p (2.3)

alternative(p, {f1, ...fn}) ≡ ((f1 ∨ . . . ∨ fn) ⇔ p) ∧
∧

i<j

¬(fi ∧ fj) (2.4)

or(p, {f1, ...fn}) ≡ (f1 ∨ . . . ∨ fn) ⇔ p (2.5)

Additionally, a set of cross-tree constraints may be defined. The corresponding
propositional formula of the feature constraints and the cross-tree constraints
are conjoined resulting in one propositional formula that represents the seman-
tics of the whole feature diagram. !

Propositional logic enables us to use automated tools such as SAT solvers to
test interesting properties, such as checking validity of feature models and feature
selections, detecting dead features, and comparing feature models. In Chap. 10, we
explore different use cases of automated analyses of feature models based on the
mapping defined here.

2.3.4 The Feature Model for the Graph Library

We use the product line of graph libraries from Sect. 1.5 to illustrate feature diagrams
and their formalization. Recall, this product line supports variations in a library of
graph data structures and algorithms.

What are the semantics of “implies” and “mutual exclusion”?

Analysis of Feature Models

Void feature model!

Valid product!

Valid partial selection!

All products!

Number of products!

Filter (= all products
for partial selection)!

Dead features!

False optional features!

Redundancies!

Obligatory features

Exercise: Develop Feature Model

Identify features and interactions, conflicts and
dependencies between features!

Design a feature model to capture the variability!

Use abstract features to structure model better!

Try to minimise cross-tree constraints
(excludes and requires)

Return

Experiences?!

What difficulties were experienced?

Behavioural Models

Behavioural Modelling

Capture the behaviour of the entire software
product line in a model!

Verify properties of model!

Absolute!

Feature-dependent!

Which products satisfy property P?

Labelled Transition Systems !
Example: Vending Machine#1: Labeled transition systems PMC

A beverage vending machine

pay

selectsprite beer

insert coin

τ
τ

get sprite get beer

c⃝ JPK 6

Labelled Transition Systems

A labelled transition system is a 4-tuple (S,Act ,!, I), where

• S is a set of states

• Act is a set of actions

• ! ✓ S ⇥ Act ⇥ S is a transition relation, and

• I ✓ S is a set of initial states.

(s, a, s0) 2! is written s
a�! s0

Featured Transition Systems

This is how FTSs handle the situation in which a feature
adds transitions. The Y feature also removes the !1 "!red !2
transition. In FTSs, this is done by labeling !1 "!red !2 with
:Y . This way, only one of the transitions leaving !1 can
exist in a product. The resulting FTS is shown in Fig. 3b.
Features in an FTS can thus be nonmonotonic, i.e., remove
behavior.

In [26], the situation in which a feature causes a
transition t to be replaced by t0 was modeled by specifying
that t0 has priority over t. In the red lights example, transition
!1 ""!

yellow!4 would have priority over!1 "!red !2 . In this paper,
we drop the notion of priority in favor of Boolean
expressions. These are more natural and simplify the
notation.

Now consider the more comprehensive vending ma-

chine example. Figs. 1b and 1c show the impact of adding

features Tea and CancelPurchase to a machine serving only

soda: Both add two transitions. FreeDrinks replaces !1 ""!
pay

!2 """!
change !3 by a single transition !1 ""!

free !3 and !7 ""!
open

!8 ""!close !1 by!7 ""!take !1 . The corresponding FTS is given in

Fig. 4. The feature label of a transition is shown next to its

action label, separated by a slash. In these labels, as in the

subsequent text, we use the abbreviated feature names from

Fig. 2. The transitions are colored in the same way as the

features in Fig. 2.

3.1 Syntax and Semantics of FTSs

As the examples have shown, an FTS is a TS with an
additional labeling function and an FD.

Definition 4. An FTS is a tuple ðS;Act; trans; I; AP; L; d; !Þ,
where

. S;Act; trans; I; AP; L are defined as in Definition 2,

. d is an FD as defined in Definition 1,

. ! : trans! IBðNÞ is a total function, labeling each
transition with a feature expression, i.e., a Boolean
expression over the features. A product p % PðNÞ
defines a truth assignment for the variables in !ðtÞ.
The set of satisfying assignments, written ½½!ðtÞ'', is
thus a set of products. Regarding notation: p 2 ½½!ðtÞ'',
!ðtÞðpÞ ¼ 1, and p) !ðtÞ are identical statements.

In the remainder of this paper, we write 1 to denote true
and 0 to denote false. Feature expressions work similarly to
presence conditions in [31]. The TS of a particular product p
is obtained by removing all transitions whose feature
expression is not satisfied. This operation is called projection.

Definition 5. The projection of an FTSfts to a product p 2
½½d''

FD
, noted fts jp, is the TS t ¼ ðS;Act; trans0; fig; AP; LÞ,

where trans0 ¼ ft 2 trans j p) !ðtÞg.

Each TS obtained through projection describes the
behavior (as in Definition 2) of a product. The semantics
of an FTS is thus the union of the behaviors of the
projections on all products of the FD.

Definition 6. ½½fts''
FTS
¼
S
c2½½d''

FD
½½fts jc''TS .

It is important to point out that this is not equivalent to
removing d and ! from an FTS and interpreting it as a TS. In
other words, the FTS semantics from Definition 6 is not

equal to the TS semantics of Definition 2. In general, the
following theorem holds.

Theorem 7. Let TSðftsÞ be the TS obtained by removing d and !
from an FTS fts, then for any fts:

½½fts''
FTS
% ½½TSðftsÞ''

TS
:

Proof. Let ts1 and ts2 be two TSs that are identical except for
trans1 % trans2. Clearly, ½½ts1''TS % ½½ts2''TS . The theorem
follows from this; all projected TSs have fewer transitions
than TSðftsÞ and are otherwise identical. tu

The TS interpretation of an FTS thus has more behaviors. In
the vending machine SPL, for example, a valid execution e 2
½½TSðftsÞ''

TS
is one in which the vending machine would ask

the first customer for a coin and offer a free drink to the next
one. This is not admitted by the FTS semantics, according to

which a machine should either always offer free drinks or

always require payment: e 62 ½½fts''
FTS

. The choice between the
transitions!1 ""!

pay !2 and!1 ""!
free !3 is nondeterministic in

the TS interpretation. In an FTS, they are alternatives

depending on the presence of the FreeDrinks feature. See also
Section 8.1.

A corollary of Theorem 7 is that one cannot use classical
model checking algorithms directly on an FTS. They
would produce sound but incomplete results, i.e., find
false positives.

The semantics as defined in Definition 6 is the set of
behaviors that start in an initial state. This means that two
structurally different FTSs might be semantically equiva-
lent if the structural differences cannot be reached from an
initial state. An example of this is given in Fig. 4, where
the feature label of !2 """!

change !3 is v. Changing it to true,
v ^ :f or :f would lead to semantically equivalent
models. This is because the only way in which state !2
can be reached is via !1 ""!

pay !2 , which is labeled with
v ^ :f . Therefore, !2 is only reachable in products
½½v ^ :f ''

FD
, and the feature label of !2 """!

change !3 can be
changed to any expression " such that ½½v ^ :f ''

FD
% ½½"''

FD

while preserving the semantics of the FTS.
An important observation is that restricting feature

expressions to single features (i.e., consisting of a single
positive literal) does not affect expressiveness.

Theorem 8. For any FTS there is an equivalent FTS whose
transitions are labeled with single features.

Proof. Let fts ¼ ðS;Act; trans; I; AP; L; d; !Þ. An equivalent
FTS is given by fts0 ¼ ðS;Act; trans; I; AP; L; d0; !0Þ. Let
d0 ¼ d. For each transition t 2 trans, a new feature xt is
added to d0 so that ½½d'' ¼ ½½d0'', t is labeled by xt: !0ðtÞ ¼ xt,

1072 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 8, AUGUST 2013

Fig. 4. FTS of the vending machine.
Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking !

Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay, and Jean-Francois Raskin !
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 8, AUGUST 2013

Critique

LTL model checking tools have successfully
been applied to FTS!

Featured transition systems tend to be very
low level

Petri Nets

Feature Nets 3

ments of our approaches. Section 8 surveys related work, and Section 9 concludes the
paper.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering using an
example of a software product line of coffee vending machines. A manufacturer of
coffee machines offers products to match different demands, from the basic black coffee
dispenser to more sophisticated machines, such as ones that can add milk or sugar,
or charge a payment for each serving. Each machine variant needs to run software
adapted to the selected set of hardware features. Such a family of different software
products that share functionality is typically developed using an SPLE approach, that
is, as one piece of software structured along distinct features. This approach has major
advantages in terms of code reuse, maintenance overhead, and so forth. The challenge
is ensuring that the software works appropriately in all product configurations.

wait ready

coffee

refillable

n

coffee

full

brew coffee

serve

refill coffee

Fig. 1: Petri net model of a basic coffee machine that can only dispense coffee. Labels
on places indicate states of the system; labels on transitions indicate its behaviour.

Petri nets [25] are used to specify how systems behave. Figure 1 presents an example
of a Petri net for a coffee machine. This has a capacity for n coffee servings; it can
brew and dispense coffee, and refill the machine with new coffee supplies. If we now
add an optional Milk feature, so that the machine can also add milk to a coffee serving,
we need to adapt the Petri net, not only to include the functionality of adding milk,
but also to be able to control whether or not this feature is present in the resulting
software product.

To address the challenge of modelling a software product line with multiple fea-
tures, which may or may not be included in any given product, we first introduce
transition-labelled Feature Nets. Feature Net transitions are annotated with applica-
tion conditions [27], which are propositional formula over features that reflect when the
transition is enabled. Later we introduce a variation of Feature Nets in which applica-
tion conditions are placed on arcs, rather than transitions, called arc-labelled Feature
Nets.

Definition

Feature Nets 5

Fig. 3 exemplifies an arc-labelled Feature Net of the same coffee machine SPL.
The application condition above each arc reflects that the arc is present only when the
condition evaluates to true. Only then does the arc affect behaviour. If the condition
is false, the arc has no effect on behaviour. Consequently, the three transitions on the
left-hand side can only fire when the Co↵ee feature is present; the two transitions on
the right-hand side can be taken only when the feature Milk is present. Observe that
the restriction of this example net to the transitions that can fire for feature selection
{Co↵ee} is, again, exactly the Petri net in Fig. 1, after removing unreachable places.

Arc-labelled Feature Nets have advantages over transition-labelled Feature Nets
when it comes to supporting a modular approach to modelling. This will become clear
in Section 6.1, where a composition technique for Feature Nets is proposed.

3 Petri Nets

We start with some necessary preliminaries, first by defining multisets and basic oper-
ations over multisets. Then we define Petri nets and their behaviour.

Definition 1 (Multiset) A multiset over a set S is a mapping M : S ! N.

We view a set S as a multiset in the natural way, that is, S(x) = 1 if x 2 S, and
S(x) = 0 otherwise. We also lift arithmetic operators to multisets as follows. For any
function � : N⇥ N ! N and multisets M1, M2, define M1 �M2 as (M1 �M2)(x) =

M1(x)�M2(x).
To ground our theory, we recall the terminology and notation surrounding Petri

nets [14].

Definition 2 (Petri Net) A Petri net is a tuple (S, T,R,M0), where S and T are two
disjoint finite sets, R is a relation on S [T (the flow relation) such that R\ (S⇥S) =

R\(T⇥T) = ;, and M0 is a multiset over S, called the initial marking. The elements of
S are called places and the elements of T are called transitions. Places and transitions
are called nodes.

Sometimes we omit the initial marking M0.

Definition 3 (Marking of a Petri Net) A marking M of a Petri net (S, T,R) is a
multiset over S. A place s 2 S is marked iff M(s) > 0.

Definition 4 (Pre-sets and post-sets) Given a node x of a Petri net, the set •
x =

{y | (y, x) 2 R} is the pre-set of x and the set x

•
= {y | (x, y) 2 R} is the post-set

of x.

Definition 5 (Enabling) A marking M enables a transition t 2 T if it marks every
place in •

t, that is, if M � •
t.

The behaviour of a Petri net is a sequence of states, where each state is defined
by a marking. The change from the current state to a new state occurs by the firing
of a transition. A transition t can fire if it is enabled. Firing transition t changes the
marking of the Petri net by decreasing the marking of each place in the pre-set of t by
one, and increasing the marking of each place in the post-set of t by one.

Feature Nets 3

ments of our approaches. Section 8 surveys related work, and Section 9 concludes the
paper.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering using an
example of a software product line of coffee vending machines. A manufacturer of
coffee machines offers products to match different demands, from the basic black coffee
dispenser to more sophisticated machines, such as ones that can add milk or sugar,
or charge a payment for each serving. Each machine variant needs to run software
adapted to the selected set of hardware features. Such a family of different software
products that share functionality is typically developed using an SPLE approach, that
is, as one piece of software structured along distinct features. This approach has major
advantages in terms of code reuse, maintenance overhead, and so forth. The challenge
is ensuring that the software works appropriately in all product configurations.

wait ready

coffee

refillable

n

coffee

full

brew coffee

serve

refill coffee

Fig. 1: Petri net model of a basic coffee machine that can only dispense coffee. Labels
on places indicate states of the system; labels on transitions indicate its behaviour.

Petri nets [25] are used to specify how systems behave. Figure 1 presents an example
of a Petri net for a coffee machine. This has a capacity for n coffee servings; it can
brew and dispense coffee, and refill the machine with new coffee supplies. If we now
add an optional Milk feature, so that the machine can also add milk to a coffee serving,
we need to adapt the Petri net, not only to include the functionality of adding milk,
but also to be able to control whether or not this feature is present in the resulting
software product.

To address the challenge of modelling a software product line with multiple fea-
tures, which may or may not be included in any given product, we first introduce
transition-labelled Feature Nets. Feature Net transitions are annotated with applica-
tion conditions [27], which are propositional formula over features that reflect when the
transition is enabled. Later we introduce a variation of Feature Nets in which applica-
tion conditions are placed on arcs, rather than transitions, called arc-labelled Feature
Nets.

Semantics: Enabling

Feature Nets 5

Fig. 3 exemplifies an arc-labelled Feature Net of the same coffee machine SPL.
The application condition above each arc reflects that the arc is present only when the
condition evaluates to true. Only then does the arc affect behaviour. If the condition
is false, the arc has no effect on behaviour. Consequently, the three transitions on the
left-hand side can only fire when the Co↵ee feature is present; the two transitions on
the right-hand side can be taken only when the feature Milk is present. Observe that
the restriction of this example net to the transitions that can fire for feature selection
{Co↵ee} is, again, exactly the Petri net in Fig. 1, after removing unreachable places.

Arc-labelled Feature Nets have advantages over transition-labelled Feature Nets
when it comes to supporting a modular approach to modelling. This will become clear
in Section 6.1, where a composition technique for Feature Nets is proposed.

3 Petri Nets

We start with some necessary preliminaries, first by defining multisets and basic oper-
ations over multisets. Then we define Petri nets and their behaviour.

Definition 1 (Multiset) A multiset over a set S is a mapping M : S ! N.

We view a set S as a multiset in the natural way, that is, S(x) = 1 if x 2 S, and
S(x) = 0 otherwise. We also lift arithmetic operators to multisets as follows. For any
function � : N⇥ N ! N and multisets M1, M2, define M1 �M2 as (M1 �M2)(x) =

M1(x)�M2(x).
To ground our theory, we recall the terminology and notation surrounding Petri

nets [14].

Definition 2 (Petri Net) A Petri net is a tuple (S, T,R,M0), where S and T are two
disjoint finite sets, R is a relation on S [T (the flow relation) such that R\ (S⇥S) =

R\(T⇥T) = ;, and M0 is a multiset over S, called the initial marking. The elements of
S are called places and the elements of T are called transitions. Places and transitions
are called nodes.

Sometimes we omit the initial marking M0.

Definition 3 (Marking of a Petri Net) A marking M of a Petri net (S, T,R) is a
multiset over S. A place s 2 S is marked iff M(s) > 0.

Definition 4 (Pre-sets and post-sets) Given a node x of a Petri net, the set •
x =

{y | (y, x) 2 R} is the pre-set of x and the set x

•
= {y | (x, y) 2 R} is the post-set

of x.

Definition 5 (Enabling) A marking M enables a transition t 2 T if it marks every
place in •

t, that is, if M � •
t.

The behaviour of a Petri net is a sequence of states, where each state is defined
by a marking. The change from the current state to a new state occurs by the firing
of a transition. A transition t can fire if it is enabled. Firing transition t changes the
marking of the Petri net by decreasing the marking of each place in the pre-set of t by
one, and increasing the marking of each place in the post-set of t by one.

Semantics: Transitions

6 Radu Muschevici et al.

Definition 6 (Transition occurrence rule) Given a Petri net N = (S, T,R), a
transition t 2 T occurs, leading from a state with marking Mi to a state with marking
Mi+1, denoted Mi

t�! Mi+1, iff the following two conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)

The behaviour defined above is also known as the firing of a transition. Transitions
fire sequentially, that is, only one transition occurs at a time.

Definition 7 (Petri net trace) Given a Petri net N = (S, T,R,M0), the behaviour
the net exhibits by passing through a sequence of states with markings M0, . . . ,Mn,
where each change of marking is triggered by a transition occurrence Mi

ti�! Mi+1, is

called a trace. A trace is written M0
t0�! M1

t1�! · · ·
tn�1���! Mn.

Definition 8 (Petri net behaviour) The behaviour of a Petri net is given by the
set of all traces from a given initial marking.

For example, the following trace is part of the behaviour of the coffee machine Petri
net illustrated in Fig. 1 (the tuples represent markings of the places listed on the left).

wait

ready

coffee full

coffee refillable

0

BB@

1

0

n

0

1

CCA
brew coffee���������!

0

BB@

0

1

n� 1

1

1

CCA
serve����!

0

BB@

1

0

n� 1

1

1

CCA

To verify properties over a Petri net it is usually more convenient to represent
all possible traces in a more compact way, using reachability graphs. The reachability
graph of a Petri net has markings as nodes, transitions as edges, and an initial node
given by the initial marking. Furthermore, only markings that can be reached from the
initial marking are represented in the reachability graph. Traditional model-checkers
can then be used to analyse reachability graphs.

Definition 9 (Reachability graph) Let the reachability set of a Petri net N =

(S, T,R,M0) be the smallest set Reach(N) that contains M0 and all markings Mn

such that M0
t0�! · · ·

tn�1���! Mn is a trace of N , for some transitions t0, . . . , tn�1. The
reachability graph of N is the tuple G = (Reach(N), E, T,M0) where Reach(N) are the
nodes of the graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings
such that (M, t,M

0
) 2 E iff M

t�! M

0, T are the transitions of N , and M0 is the initial
state.

Traversals of the reachability graph of a Petri net N correspond to traces of N .
The example from Fig. 1 has the following reachability graph when n = 2, where
(a b c d) represents the marking {wait 7! a,ready 7! b,coffee full 7! c,coffee

refillable 7! d}.

1 0 2 0 1 0 1 1 1 0 0 2

0 1 2 0 0 1 1 1 0 1 0 2

brew

refill

brew

refill

serve

refill

serve

refill

serve

Semantics: Traces and Behaviour

6 Radu Muschevici et al.

Definition 6 (Transition occurrence rule) Given a Petri net N = (S, T,R), a
transition t 2 T occurs, leading from a state with marking Mi to a state with marking
Mi+1, denoted Mi

t�! Mi+1, iff the following two conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)

The behaviour defined above is also known as the firing of a transition. Transitions
fire sequentially, that is, only one transition occurs at a time.

Definition 7 (Petri net trace) Given a Petri net N = (S, T,R,M0), the behaviour
the net exhibits by passing through a sequence of states with markings M0, . . . ,Mn,
where each change of marking is triggered by a transition occurrence Mi

ti�! Mi+1, is

called a trace. A trace is written M0
t0�! M1

t1�! · · ·
tn�1���! Mn.

Definition 8 (Petri net behaviour) The behaviour of a Petri net is given by the
set of all traces from a given initial marking.

For example, the following trace is part of the behaviour of the coffee machine Petri
net illustrated in Fig. 1 (the tuples represent markings of the places listed on the left).

wait

ready

coffee full

coffee refillable

0

BB@

1

0

n

0

1

CCA
brew coffee���������!

0

BB@

0

1

n� 1

1

1

CCA
serve����!

0

BB@

1

0

n� 1

1

1

CCA

To verify properties over a Petri net it is usually more convenient to represent
all possible traces in a more compact way, using reachability graphs. The reachability
graph of a Petri net has markings as nodes, transitions as edges, and an initial node
given by the initial marking. Furthermore, only markings that can be reached from the
initial marking are represented in the reachability graph. Traditional model-checkers
can then be used to analyse reachability graphs.

Definition 9 (Reachability graph) Let the reachability set of a Petri net N =

(S, T,R,M0) be the smallest set Reach(N) that contains M0 and all markings Mn

such that M0
t0�! · · ·

tn�1���! Mn is a trace of N , for some transitions t0, . . . , tn�1. The
reachability graph of N is the tuple G = (Reach(N), E, T,M0) where Reach(N) are the
nodes of the graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings
such that (M, t,M

0
) 2 E iff M

t�! M

0, T are the transitions of N , and M0 is the initial
state.

Traversals of the reachability graph of a Petri net N correspond to traces of N .
The example from Fig. 1 has the following reachability graph when n = 2, where
(a b c d) represents the marking {wait 7! a,ready 7! b,coffee full 7! c,coffee

refillable 7! d}.

1 0 2 0 1 0 1 1 1 0 0 2

0 1 2 0 0 1 1 1 0 1 0 2

brew

refill

brew

refill

serve

refill

serve

refill

serve

6 Radu Muschevici et al.

Definition 6 (Transition occurrence rule) Given a Petri net N = (S, T,R), a
transition t 2 T occurs, leading from a state with marking Mi to a state with marking
Mi+1, denoted Mi

t�! Mi+1, iff the following two conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)

The behaviour defined above is also known as the firing of a transition. Transitions
fire sequentially, that is, only one transition occurs at a time.

Definition 7 (Petri net trace) Given a Petri net N = (S, T,R,M0), the behaviour
the net exhibits by passing through a sequence of states with markings M0, . . . ,Mn,
where each change of marking is triggered by a transition occurrence Mi

ti�! Mi+1, is

called a trace. A trace is written M0
t0�! M1

t1�! · · ·
tn�1���! Mn.

Definition 8 (Petri net behaviour) The behaviour of a Petri net is given by the
set of all traces from a given initial marking.

For example, the following trace is part of the behaviour of the coffee machine Petri
net illustrated in Fig. 1 (the tuples represent markings of the places listed on the left).

wait

ready

coffee full

coffee refillable

0

BB@

1

0

n

0

1

CCA
brew coffee���������!

0

BB@

0

1

n� 1

1

1

CCA
serve����!

0

BB@

1

0

n� 1

1

1

CCA

To verify properties over a Petri net it is usually more convenient to represent
all possible traces in a more compact way, using reachability graphs. The reachability
graph of a Petri net has markings as nodes, transitions as edges, and an initial node
given by the initial marking. Furthermore, only markings that can be reached from the
initial marking are represented in the reachability graph. Traditional model-checkers
can then be used to analyse reachability graphs.

Definition 9 (Reachability graph) Let the reachability set of a Petri net N =

(S, T,R,M0) be the smallest set Reach(N) that contains M0 and all markings Mn

such that M0
t0�! · · ·

tn�1���! Mn is a trace of N , for some transitions t0, . . . , tn�1. The
reachability graph of N is the tuple G = (Reach(N), E, T,M0) where Reach(N) are the
nodes of the graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings
such that (M, t,M

0
) 2 E iff M

t�! M

0, T are the transitions of N , and M0 is the initial
state.

Traversals of the reachability graph of a Petri net N correspond to traces of N .
The example from Fig. 1 has the following reachability graph when n = 2, where
(a b c d) represents the marking {wait 7! a,ready 7! b,coffee full 7! c,coffee

refillable 7! d}.

1 0 2 0 1 0 1 1 1 0 0 2

0 1 2 0 0 1 1 1 0 1 0 2

brew

refill

brew

refill

serve

refill

serve

refill

serve

322 R. Muschevici, J. Proença, and D. Clarke

Definition 6 (Pre-sets and post-sets). Given a node x of a feature net and a
feature selection FS, the set (FS)x = {y | (y, x) ∈ R,FS |= f(y, x)} is the pre-set of
x and the set x(FS) = {y | (x, y) ∈ R,FS |= f(x, y)} is the post-set of x.

Definition 7 (Enabling). Given a feature selection FS, a marking M enables
a transition t ∈ T if it marks every place in (FS)t, that is, if M ≥ (FS)t.

We now define the behaviour of feature nets for a given feature selection.

Definition 8 (Transition occurrence). Let N = (S, T, R, M0, F, f) be a fea-
ture net and FS ⊆ F a feature selection. A transition t ∈ T occurs, leading from
a state with marking Mi to a state with marking Mi+1, denoted Mi

t,FS−−−→ Mi+1,
iff the following two conditions are met:

Mi ≥ (FS)t (enabling)

Mi+1 = (Mi − (FS)t) + t(FS) (computing)

The transition rule for FN is used to define traces that describe the FN’s be-
haviour. We now define the semantics of a feature net by projecting it onto a
Petri net for a given feature selection.

Definition 9 (Projection). Given a feature net N = (S, T, R, M0, F, f) and
a feature selection FS ⊆ F , the projection of N onto FS, denoted N ↓FS, is a
Petri net (S, T, R′, M0), with R′ = {(x, y) | (x, y) ∈ R,FS |= f(x, y)}.

One projects N onto a feature selection FS by evaluating all application condi-
tions f(x, y) with respect to FS for all arcs (x, y) ∈ R. If FS does not satisfy
f(x, y), then (x, y) is removed from the Petri net.

The behaviour of a feature net is the union of the behaviour of the Petri
nets obtained by projecting all possible feature selections. The behaviour of a
Petri net N = (S, T, R, M0) is given by the set of all of its traces [12], written
Beh(N) = {M0

t1−→ · · · ts−→ Mn | Mi ⊆ S, i ∈ 1..n, Mi−1
ti−→ Mi}, and does not

include application conditions nor feature selections.

Definition 10 (FN Behaviour). Given an FN N = (S, T, R, M0, F, f), we
define Beh(N) as follows:

Beh(N) =
⋃

FS⊆F

Beh(N ↓FS).

A feature net combines the behaviour of a set of Petri nets in a single model.
Feature nets do not exceed the expressive power of Petri nets. This is indicated
by the fact that a feature net can be encoded as a set of Petri nets. Such an
encoding involves two steps: first encoding a FN as a transition-labelled Feature
Petri Net [18], and secondly describing the behaviour of the Feature Petri Net
using a set of regular Petri nets. The first encoding replaces each transition
attached to n arcs in R by 2n transitions, one for each possible combination of

Example

Feature Nets 3

technique for constructing larger Feature Net from smaller ones to model the addition
of new features to an SPL. Section 7 discusses the encoding of Feature Nets into Petri
nets. Section 8 surveys related work, and Section 9 concludes the paper.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering using an
example of a software product line of coffee vending machines. A manufacturer of
coffee machines offers products to match different demands, from the basic black coffee
dispenser to more sophisticated machines, such as ones that can add milk or sugar,
or charge a payment for each serving. Each machine variant needs to run software
adapted to the selected set of hardware features. Such a family of different software
products that share functionality is typically developed using an SPLE approach, that
is, as one piece of software structured along distinct features. This approach has major
advantages in terms of code reuse, maintenance overhead, and so forth. The challenge
is ensuring that the software works appropriately in all product configurations.

wait ready

coffee

refillable

n

coffee

full

brew coffee

serve

refill coffee

Fig. 1: Petri net model of a basic coffee machine that can only dispense coffee. Labels
on places indicate states of the system; labels on transitions indicate its behaviour.

Petri nets [27] are used to specify how systems behave. Fig. 1 presents an example
of a Petri net for a coffee machine. This has a capacity for n coffee servings; it can
brew and dispense coffee, and refill the machine with new coffee supplies. If we now
add an optional Milk feature, so that the machine can also add milk to a coffee serving,
we need to adapt the Petri net, not only to include the functionality of adding milk,
but also to be able to control whether or not this feature is present in the resulting
software product.

To address the challenge of modelling a software product line with multiple fea-
tures, which may or may not be included in any given product, we first introduce
transition-labelled Feature Nets. Feature Net transitions are annotated with applica-
tion conditions [30], which are propositional formula over features that reflect when the
transition is enabled. Later we introduce a variation of Feature Nets in which applica-
tion conditions are placed on arcs, rather than transitions, called arc-labelled Feature
Nets.

6 Radu Muschevici et al.

Definition 6 (Transition occurrence rule) Given a Petri net N = (S, T,R), a
transition t 2 T occurs, leading from a state with marking Mi to a state with marking
Mi+1, denoted Mi

t�! Mi+1, iff the following two conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)

The behaviour defined above is also known as the firing of a transition. Transitions
fire sequentially, that is, only one transition occurs at a time.

Definition 7 (Petri net trace) Given a Petri net N = (S, T,R,M0), the behaviour
the net exhibits by passing through a sequence of states with markings M0, . . . ,Mn,
where each change of marking is triggered by a transition occurrence Mi

ti�! Mi+1, is

called a trace. A trace is written M0
t0�! M1

t1�! · · ·
tn�1���! Mn.

Definition 8 (Petri net behaviour) The behaviour of a Petri net is given by the
set of all traces from a given initial marking.

For example, the following trace is part of the behaviour of the coffee machine Petri
net illustrated in Fig. 1 (the tuples represent markings of the places listed on the left).

wait

ready

coffee full

coffee refillable

0

BB@

1

0

n

0

1

CCA
brew coffee���������!

0

BB@

0

1

n� 1

1

1

CCA
serve����!

0

BB@

1

0

n� 1

1

1

CCA

To verify properties over a Petri net it is usually more convenient to represent
all possible traces in a more compact way, using reachability graphs. The reachability
graph of a Petri net has markings as nodes, transitions as edges, and an initial node
given by the initial marking. Furthermore, only markings that can be reached from the
initial marking are represented in the reachability graph. Traditional model-checkers
can then be used to analyse reachability graphs.

Definition 9 (Reachability graph) Let the reachability set of a Petri net N =

(S, T,R,M0) be the smallest set Reach(N) that contains M0 and all markings Mn

such that M0
t0�! · · ·

tn�1���! Mn is a trace of N , for some transitions t0, . . . , tn�1. The
reachability graph of N is the tuple G = (Reach(N), E, T,M0) where Reach(N) are the
nodes of the graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings
such that (M, t,M

0
) 2 E iff M

t�! M

0, T are the transitions of N , and M0 is the initial
state.

Traversals of the reachability graph of a Petri net N correspond to traces of N .
The example from Fig. 1 has the following reachability graph when n = 2, where
(a b c d) represents the marking {wait 7! a,ready 7! b,coffee full 7! c,coffee

refillable 7! d}.

1 0 2 0 1 0 1 1 1 0 0 2

0 1 2 0 0 1 1 1 0 1 0 2

brew

refill

brew

refill

serve

refill

serve

refill

serve

Convert Petri net into LTS.

Feature Petri nets

A Petri net extension to describe software
product lines.!

Extends Petri nets in the same way that FTS
extends LTS!

Two variants: application conditions on
transitions or on arcs

Transition-Labelled Feature Petri
Nets4 Radu Muschevici et al.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee

refillable

n

coffee

full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk

full

milk

refillable

milk

ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants
{{Co↵ee}, {Co↵ee,Milk}} showing each product in its initial state. Each transi-
tion has an application condition attached (label above transitions). Colour is used to
visually group transitions according to application conditions.

Figure 2 exemplifies a transition-labelled FN of a coffee machine with a milk
reservoir. It considers a product line whose products are over the set of features
{Co↵ee,Milk}, where Co↵ee is compulsory and Milk is optional. The conditions on
the transitions reflect that the three transitions on the right-hand side can be taken
only when both features Coffee and Milk are present, and the three transitions on the
left-hand side can be taken when the Coffee feature is present. The restriction of the
example net to the transitions that can fire for feature selection {Co↵ee} is exactly the
Petri net in Figure 1, after removing unreachable places.

wait ready

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

serve

C

o

↵

e

e

C

o

↵

e

e

refill coffee

C

o

↵

e

e

C

o

↵

e

e

m

milk

full

milk

refillable

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

Arc-Labelled Feature Petri Net

4 Radu Muschevici et al.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee

refillable

n

coffee

full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk

full

milk

refillable

milk

ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants
{{Co↵ee}, {Co↵ee,Milk}} showing each product in its initial state. Each transi-
tion has an application condition attached (label above transitions). Colour is used to
visually group transitions according to application conditions.

Figure 2 exemplifies a transition-labelled FN of a coffee machine with a milk
reservoir. It considers a product line whose products are over the set of features
{Co↵ee,Milk}, where Co↵ee is compulsory and Milk is optional. The conditions on
the transitions reflect that the three transitions on the right-hand side can be taken
only when both features Coffee and Milk are present, and the three transitions on the
left-hand side can be taken when the Coffee feature is present. The restriction of the
example net to the transitions that can fire for feature selection {Co↵ee} is exactly the
Petri net in Figure 1, after removing unreachable places.

wait ready

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

serve

C

o

↵

e

e

C

o

↵

e

e

refill coffee

C

o

↵

e

e

C

o

↵

e

e

m

milk

full

milk

refillable

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

Semantics!
Application Conditions

Modular Modelling of Software Product Lines with Feature Nets 321

which the arc applies. If the application condition is false, it is as if the arc were
not present.

We define feature nets and give their semantics. We adapt the definition of
feature nets described in previous work [18], where application conditions apply
to transitions instead of arcs. In that paper two semantic definitions of feature
nets were presented. The first semantics directly models the FN for a given
feature selection. The second semantics, which we use and adapt here, is given
by projecting the FN for a given feature selection onto a Petri net by removing
arcs with unsatisfied application conditions. These two notions have been shown
to coincide [18]. We start with some necessary preliminaries, first by defining
multisets and basic operations over multisets, then by defining feature nets and
their behaviour. Our terminology is standard for Petri nets [8].

Definition 1 (Multiset). A multiset over a set S is a mapping M : S → N.

We view a set S as a multiset in the natural way, that is, S(x) = 1 if x ∈ S,
and S(x) = 0 otherwise. We also lift arithmetic operators to multisets as follows.
For any function ⊙ : N × N → N and multisets M1, M2, define M1 ⊙ M2 as
(M1 ⊙ M2)(x) = M1(x) ⊙ M2(x).

Definition 2 (Application condition [21]). An application condition ϕ is a
propositional formula over a set of features F , defined by the following grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ,

where a ∈ F . Write ΦF to denote the set of all application conditions over F .

Definition 3 (Satisfaction of application conditions). Given an applica-
tion condition ϕ ∈ ΦF and a set of features FS ⊆ F , called a feature selection,
we say that FS satisfies ϕ, written as FS |= ϕ, defined as follows:

FS |= a iff a ∈ FS
FS |= ϕ1 ∧ ϕ2 iff FS |= ϕ1 and FS |= ϕ2

FS |= ¬ϕ iff FS✓✓|=ϕ.

Definition 4 (Feature Net). A feature net is a tuple N = (S, T, R, M0, F, f),
where S and T are two disjoint finite sets, R is a relation on S ∪ T (the flow
relation) such that R∩ (S × S) = R∩ (T ×T) = ∅, and M0 is a multiset over S,
called the initial marking. The elements of S are called places and the elements
of T are called transitions. Places and transitions are called nodes. The elements
of R are called arcs. Finally, F is set of features and f : R → ΦF is a function
associating each arc with an application condition from ΦF .

Without f and F , a feature net is just a Petri net. Sometimes we omit the initial
marking M0. The function f determines a node’s pre- and post-set, defined
below.

Definition 5 (Marking of a feature net). A marking M of a feature net
(S, T, R, F, f) is a multiset over S. A place s ∈ S is marked iff M(s) > 0.

Modular Modelling of Software Product Lines with Feature Nets 321

which the arc applies. If the application condition is false, it is as if the arc were
not present.

We define feature nets and give their semantics. We adapt the definition of
feature nets described in previous work [18], where application conditions apply
to transitions instead of arcs. In that paper two semantic definitions of feature
nets were presented. The first semantics directly models the FN for a given
feature selection. The second semantics, which we use and adapt here, is given
by projecting the FN for a given feature selection onto a Petri net by removing
arcs with unsatisfied application conditions. These two notions have been shown
to coincide [18]. We start with some necessary preliminaries, first by defining
multisets and basic operations over multisets, then by defining feature nets and
their behaviour. Our terminology is standard for Petri nets [8].

Definition 1 (Multiset). A multiset over a set S is a mapping M : S → N.

We view a set S as a multiset in the natural way, that is, S(x) = 1 if x ∈ S,
and S(x) = 0 otherwise. We also lift arithmetic operators to multisets as follows.
For any function ⊙ : N × N → N and multisets M1, M2, define M1 ⊙ M2 as
(M1 ⊙ M2)(x) = M1(x) ⊙ M2(x).

Definition 2 (Application condition [21]). An application condition ϕ is a
propositional formula over a set of features F , defined by the following grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ,

where a ∈ F . Write ΦF to denote the set of all application conditions over F .

Definition 3 (Satisfaction of application conditions). Given an applica-
tion condition ϕ ∈ ΦF and a set of features FS ⊆ F , called a feature selection,
we say that FS satisfies ϕ, written as FS |= ϕ, defined as follows:

FS |= a iff a ∈ FS
FS |= ϕ1 ∧ ϕ2 iff FS |= ϕ1 and FS |= ϕ2

FS |= ¬ϕ iff FS✓✓|=ϕ.

Definition 4 (Feature Net). A feature net is a tuple N = (S, T, R, M0, F, f),
where S and T are two disjoint finite sets, R is a relation on S ∪ T (the flow
relation) such that R∩ (S × S) = R∩ (T ×T) = ∅, and M0 is a multiset over S,
called the initial marking. The elements of S are called places and the elements
of T are called transitions. Places and transitions are called nodes. The elements
of R are called arcs. Finally, F is set of features and f : R → ΦF is a function
associating each arc with an application condition from ΦF .

Without f and F , a feature net is just a Petri net. Sometimes we omit the initial
marking M0. The function f determines a node’s pre- and post-set, defined
below.

Definition 5 (Marking of a feature net). A marking M of a feature net
(S, T, R, F, f) is a multiset over S. A place s ∈ S is marked iff M(s) > 0.

Semantics: Feature Nets

Feature Nets 7

4 Transition-Labelled Feature Nets

Transition-labelled Feature Nets are a Petri net variant used to model the behaviour of
an entire software product line. For this purpose, transition-labelled FN have applica-
tion conditions [30] attached to their transitions. An application condition is a boolean
logical formula over a set of features, describing the feature combinations to which the
transition applies. It constitutes a necessary (although not sufficient) condition for the
transition to fire. In effect, if the application condition is false, it is as if the transition
was not present.

Throughout this section, the term Feature Net (FN) refers to a transition-labelled
Feature Net. We define Feature Nets and give their semantics. We present two semantic
accounts of FN. First, when a set of features is selected, an FN directly models the
behaviour of the product corresponding to the feature selection. Second, by projecting
an FN onto a feature selection, one obtains a Petri net describing the behaviour of the
same product. We show that these two notions of semantics coincide.

Definition 10 (Application condition [30]) An application condition ' is a propo-
sitional formula over a set of features F , defined by the following grammar:

' ::= a | ' ^ ' | ¬' | >,

where a 2 F . The remaining logical connectives can be encoded as usual. Write �F to
denote the set of all application conditions over F .

Definition 11 (Satisfaction of application conditions) Given an application con-
dition ' 2 �F and a set of features FS ✓ F , called a feature selection, we say that FS
satisfies ', written as FS |= ', defined as follows:

FS |= > always

FS |= a iff a 2 FS

FS |= '1 ^ '2 iff FS |= '1 and FS |= '2

FS |= ¬' iff FS ◆◆|='.

After formally recalling Petri nets and application conditions, we are now in the
position to introduce Feature Nets.

Definition 12 (Feature Net) A Feature Net is a tuple N = (S, T,R,M0, F, f),
where (S, T,R,M0) is a Petri net, F is set of features, and f : T ! �F is a function
associating each transition with an application condition from �F .

For f(t), the application condition associated with transition t, write 't. For con-
ciseness, we say that a feature selection FS satisfies transition t whenever FS |= 't.

4.1 Semantics of Feature Nets

We now define the behaviour of Feature Nets for a given (static) feature selection.

4 Radu Muschevici et al.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee

refillable

n

coffee

full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk

full

milk

refillable

milk

ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants
{{Co↵ee}, {Co↵ee,Milk}} showing each product in its initial state. Each transi-
tion has an application condition attached (label above transitions). Colour is used to
visually group transitions according to application conditions.

Figure 2 exemplifies a transition-labelled FN of a coffee machine with a milk
reservoir. It considers a product line whose products are over the set of features
{Co↵ee,Milk}, where Co↵ee is compulsory and Milk is optional. The conditions on
the transitions reflect that the three transitions on the right-hand side can be taken
only when both features Coffee and Milk are present, and the three transitions on the
left-hand side can be taken when the Coffee feature is present. The restriction of the
example net to the transitions that can fire for feature selection {Co↵ee} is exactly the
Petri net in Figure 1, after removing unreachable places.

wait ready

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

serve

C

o

↵

e

e

C

o

↵

e

e

refill coffee

C

o

↵

e

e

C

o

↵

e

e

m

milk

full

milk

refillable

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

Semantics: Transition Occurrence

8 Radu Muschevici et al.

Definition 13 (Transition occurrence rule for FN) Given a Feature Net N =

(S, T,R,M0, F, f) and a feature selection FS ✓ F , a transition t 2 T occurs, leading
from a state with marking Mi to a state with marking Mi+1, denoted (Mi,FS) t�!
(Mi+1,FS), iff the following three conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS |= 't (satisfaction)

In the above definition the state of the Petri net is denoted by a tuple consisting
of a marking and a feature selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature selections which can change
during execution.

The transition rule for FN is used to define traces that describe the FN’s behaviour
in the same way as Petri nets.

Definition 14 (FN Trace) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the behaviour the net exhibits by passing through a sequence
of markings M0, . . . ,Mn, where each change of marking is triggered by a transition
occurrence (Mi,FS) ti�! (Mi+1,FS), is called a trace over FS . A trace is written

(M0,FS) t0�! (M1,FS) t1�! · · ·
tn�1���! (Mn,FS).

Given an FN, there is a set of traces representing the behaviour of the FN for each
feature selection.

Definition 15 (FN behaviour for a given feature selection) Given a Feature
Net N = (S, T,R,M0, F, f) and a feature selection FS ✓ F , the behaviour of N for
FS , denoted Beh(N,FS) is the set of all traces over FS from the initial marking M0.

If we consider all possible feature selections, we can express the behaviour of the FN.

Definition 16 (FN Behaviour) Given a Feature Net N = (S, T,R,M0, F, f), we
define Beh(N) to be the combined set of behaviours for all feature selections over F :

Beh(N) =

[

FS2PF

Beh(N,FS).

4.2 Projection-based Semantics of FN

We now present an alternative semantics of Feature Nets. Given a feature selection,
the semantics of an FN is a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 17 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri
net (S, T

0
, R

0
,M0), with T

0
= {t 2 T | FS |= 't} and the flow relation R

0
=

R \ ((S [T

0
)⇥ (S [T

0
)).

Semantics

8 Radu Muschevici et al.

Definition 13 (Transition occurrence rule for FN) Given a Feature Net N =

(S, T,R,M0, F, f) and a feature selection FS ✓ F , a transition t 2 T occurs, leading
from a state with marking Mi to a state with marking Mi+1, denoted (Mi,FS) t�!
(Mi+1,FS), iff the following three conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS |= 't (satisfaction)

In the above definition the state of the Petri net is denoted by a tuple consisting
of a marking and a feature selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature selections which can change
during execution.

The transition rule for FN is used to define traces that describe the FN’s behaviour
in the same way as Petri nets.

Definition 14 (FN Trace) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the behaviour the net exhibits by passing through a sequence
of markings M0, . . . ,Mn, where each change of marking is triggered by a transition
occurrence (Mi,FS) ti�! (Mi+1,FS), is called a trace over FS . A trace is written

(M0,FS) t0�! (M1,FS) t1�! · · ·
tn�1���! (Mn,FS).

Given an FN, there is a set of traces representing the behaviour of the FN for each
feature selection.

Definition 15 (FN behaviour for a given feature selection) Given a Feature
Net N = (S, T,R,M0, F, f) and a feature selection FS ✓ F , the behaviour of N for
FS , denoted Beh(N,FS) is the set of all traces over FS from the initial marking M0.

If we consider all possible feature selections, we can express the behaviour of the FN.

Definition 16 (FN Behaviour) Given a Feature Net N = (S, T,R,M0, F, f), we
define Beh(N) to be the combined set of behaviours for all feature selections over F :

Beh(N) =

[

FS2PF

Beh(N,FS).

4.2 Projection-based Semantics of FN

We now present an alternative semantics of Feature Nets. Given a feature selection,
the semantics of an FN is a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 17 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri
net (S, T

0
, R

0
,M0), with T

0
= {t 2 T | FS |= 't} and the flow relation R

0
=

R \ ((S [T

0
)⇥ (S [T

0
)).

Semantics

8 Radu Muschevici et al.

Definition 13 (Transition occurrence rule for FN) Given a Feature Net N =

(S, T,R,M0, F, f) and a feature selection FS ✓ F , a transition t 2 T occurs, leading
from a state with marking Mi to a state with marking Mi+1, denoted (Mi,FS) t�!
(Mi+1,FS), iff the following three conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS |= 't (satisfaction)

In the above definition the state of the Petri net is denoted by a tuple consisting
of a marking and a feature selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature selections which can change
during execution.

The transition rule for FN is used to define traces that describe the FN’s behaviour
in the same way as Petri nets.

Definition 14 (FN Trace) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the behaviour the net exhibits by passing through a sequence
of markings M0, . . . ,Mn, where each change of marking is triggered by a transition
occurrence (Mi,FS) ti�! (Mi+1,FS), is called a trace over FS . A trace is written

(M0,FS) t0�! (M1,FS) t1�! · · ·
tn�1���! (Mn,FS).

Given an FN, there is a set of traces representing the behaviour of the FN for each
feature selection.

Definition 15 (FN behaviour for a given feature selection) Given a Feature
Net N = (S, T,R,M0, F, f) and a feature selection FS ✓ F , the behaviour of N for
FS , denoted Beh(N,FS) is the set of all traces over FS from the initial marking M0.

If we consider all possible feature selections, we can express the behaviour of the FN.

Definition 16 (FN Behaviour) Given a Feature Net N = (S, T,R,M0, F, f), we
define Beh(N) to be the combined set of behaviours for all feature selections over F :

Beh(N) =

[

FS2PF

Beh(N,FS).

4.2 Projection-based Semantics of FN

We now present an alternative semantics of Feature Nets. Given a feature selection,
the semantics of an FN is a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 17 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri
net (S, T

0
, R

0
,M0), with T

0
= {t 2 T | FS |= 't} and the flow relation R

0
=

R \ ((S [T

0
)⇥ (S [T

0
)).

8 Radu Muschevici et al.

Definition 13 (Transition occurrence rule for FN) Given a Feature Net N =

(S, T,R,M0, F, f) and a feature selection FS ✓ F , a transition t 2 T occurs, leading
from a state with marking Mi to a state with marking Mi+1, denoted (Mi,FS) t�!
(Mi+1,FS), iff the following three conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS |= 't (satisfaction)

In the above definition the state of the Petri net is denoted by a tuple consisting
of a marking and a feature selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature selections which can change
during execution.

The transition rule for FN is used to define traces that describe the FN’s behaviour
in the same way as Petri nets.

Definition 14 (FN Trace) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the behaviour the net exhibits by passing through a sequence
of markings M0, . . . ,Mn, where each change of marking is triggered by a transition
occurrence (Mi,FS) ti�! (Mi+1,FS), is called a trace over FS . A trace is written

(M0,FS) t0�! (M1,FS) t1�! · · ·
tn�1���! (Mn,FS).

Given an FN, there is a set of traces representing the behaviour of the FN for each
feature selection.

Definition 15 (FN behaviour for a given feature selection) Given a Feature
Net N = (S, T,R,M0, F, f) and a feature selection FS ✓ F , the behaviour of N for
FS , denoted Beh(N,FS) is the set of all traces over FS from the initial marking M0.

If we consider all possible feature selections, we can express the behaviour of the FN.

Definition 16 (FN Behaviour) Given a Feature Net N = (S, T,R,M0, F, f), we
define Beh(N) to be the combined set of behaviours for all feature selections over F :

Beh(N) =

[

FS2PF

Beh(N,FS).

4.2 Projection-based Semantics of FN

We now present an alternative semantics of Feature Nets. Given a feature selection,
the semantics of an FN is a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 17 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri
net (S, T

0
, R

0
,M0), with T

0
= {t 2 T | FS |= 't} and the flow relation R

0
=

R \ ((S [T

0
)⇥ (S [T

0
)).

Projection-Based semantics

8 Radu Muschevici et al.

Definition 13 (Transition occurrence rule for FN) Given a Feature Net N =

(S, T,R,M0, F, f) and a feature selection FS ✓ F , a transition t 2 T occurs, leading
from a state with marking Mi to a state with marking Mi+1, denoted (Mi,FS) t�!
(Mi+1,FS), iff the following three conditions are met:

Mi � •
t (enabling)

Mi+1 = (Mi � •
t) + t

• (computing)
FS |= 't (satisfaction)

In the above definition the state of the Petri net is denoted by a tuple consisting
of a marking and a feature selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature selections which can change
during execution.

The transition rule for FN is used to define traces that describe the FN’s behaviour
in the same way as Petri nets.

Definition 14 (FN Trace) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the behaviour the net exhibits by passing through a sequence
of markings M0, . . . ,Mn, where each change of marking is triggered by a transition
occurrence (Mi,FS) ti�! (Mi+1,FS), is called a trace over FS . A trace is written

(M0,FS) t0�! (M1,FS) t1�! · · ·
tn�1���! (Mn,FS).

Given an FN, there is a set of traces representing the behaviour of the FN for each
feature selection.

Definition 15 (FN behaviour for a given feature selection) Given a Feature
Net N = (S, T,R,M0, F, f) and a feature selection FS ✓ F , the behaviour of N for
FS , denoted Beh(N,FS) is the set of all traces over FS from the initial marking M0.

If we consider all possible feature selections, we can express the behaviour of the FN.

Definition 16 (FN Behaviour) Given a Feature Net N = (S, T,R,M0, F, f), we
define Beh(N) to be the combined set of behaviours for all feature selections over F :

Beh(N) =

[

FS2PF

Beh(N,FS).

4.2 Projection-based Semantics of FN

We now present an alternative semantics of Feature Nets. Given a feature selection,
the semantics of an FN is a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 17 (Projection) Given a Feature Net N = (S, T,R,M0, F, f) and a fea-
ture selection FS ✓ F , the projection of N onto FS , denoted N # FS , is a Petri
net (S, T

0
, R

0
,M0), with T

0
= {t 2 T | FS |= 't} and the flow relation R

0
=

R \ ((S [T

0
)⇥ (S [T

0
)).

4 Radu Muschevici et al.

One advantage of both transition-labelled and arc-labelled Feature Nets is that they
enable the superposition of the behaviour of the various products (given by different
feature selections) in the same model.

wait ready

coffee

refillable

n

coffee

full

brew coffee

Co↵ee

serve

Co↵ee

refill coffee

Co↵ee

m

milk

full

milk

refillable

milk

ready

add milk

Co↵ee ^ Milk

refill milk

Co↵ee ^ Milk

serve coffee w/milk

Co↵ee ^ Milk

Fig. 2: Transition-labelled FN of the product line with variants
{{Co↵ee}, {Co↵ee,Milk}} showing each product in its initial state. Each transi-
tion has an application condition attached (label above transitions). Colour is used to
visually group transitions according to application conditions.

Figure 2 exemplifies a transition-labelled FN of a coffee machine with a milk
reservoir. It considers a product line whose products are over the set of features
{Co↵ee,Milk}, where Co↵ee is compulsory and Milk is optional. The conditions on
the transitions reflect that the three transitions on the right-hand side can be taken
only when both features Coffee and Milk are present, and the three transitions on the
left-hand side can be taken when the Coffee feature is present. The restriction of the
example net to the transitions that can fire for feature selection {Co↵ee} is exactly the
Petri net in Figure 1, after removing unreachable places.

wait ready

coffee

refillable

n

coffee

full

brew coffee

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

C

o

↵

e

e

serve

C

o

↵

e

e

C

o

↵

e

e

refill coffee

C

o

↵

e

e

C

o

↵

e

e

m

milk

full

milk

refillable

add milk

M

i

l

k

M

i

l

k

M

i

l

k

M

i

l

k

refill milk

M

i

l

k

M

i

l

k

Fig. 3: Arc-labelled FN of the product line {{Co↵ee}, {Co↵ee,Milk}}. Each arc has an
application condition attached.

Feature Nets 3

technique for constructing larger Feature Net from smaller ones to model the addition
of new features to an SPL. Section 7 discusses the encoding of Feature Nets into Petri
nets. Section 8 surveys related work, and Section 9 concludes the paper.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering using an
example of a software product line of coffee vending machines. A manufacturer of
coffee machines offers products to match different demands, from the basic black coffee
dispenser to more sophisticated machines, such as ones that can add milk or sugar,
or charge a payment for each serving. Each machine variant needs to run software
adapted to the selected set of hardware features. Such a family of different software
products that share functionality is typically developed using an SPLE approach, that
is, as one piece of software structured along distinct features. This approach has major
advantages in terms of code reuse, maintenance overhead, and so forth. The challenge
is ensuring that the software works appropriately in all product configurations.

wait ready

coffee

refillable

n

coffee

full

brew coffee

serve

refill coffee

Fig. 1: Petri net model of a basic coffee machine that can only dispense coffee. Labels
on places indicate states of the system; labels on transitions indicate its behaviour.

Petri nets [27] are used to specify how systems behave. Fig. 1 presents an example
of a Petri net for a coffee machine. This has a capacity for n coffee servings; it can
brew and dispense coffee, and refill the machine with new coffee supplies. If we now
add an optional Milk feature, so that the machine can also add milk to a coffee serving,
we need to adapt the Petri net, not only to include the functionality of adding milk,
but also to be able to control whether or not this feature is present in the resulting
software product.

To address the challenge of modelling a software product line with multiple fea-
tures, which may or may not be included in any given product, we first introduce
transition-labelled Feature Nets. Feature Net transitions are annotated with applica-
tion conditions [30], which are propositional formula over features that reflect when the
transition is enabled. Later we introduce a variation of Feature Nets in which applica-
tion conditions are placed on arcs, rather than transitions, called arc-labelled Feature
Nets.

#{Co↵ee}

Equivalence of Semantics

Feature Nets 9

One projects N onto a feature selection FS by evaluating all application conditions
't with respect to FS for transitions t 2 T . If FS does not satisfy 't, then transition
t is removed from the Petri net. All application conditions are also removed when
projecting.

For example, by projecting the FN of the product line {{Co↵ee}, {Co↵ee,Milk}}
(Fig. 2) onto the feature selection {Co↵ee}, the application condition Co↵ee (on transi-
tions serve, brew coffee and refill coffee) evaluates to true, while the application
condition Co↵ee ^Milk (on serve cofeee w/milk, add milk and refill milk) eval-
uates to false. Hence, the latter transitions are removed, along with unreachable places.
The result is the Petri net depicted in Fig. 1.

The behaviour of the projection of a Feature Petri net N onto a feature selection
FS coincides with the behaviour of N for FS , as stated by the following theorem.

Theorem 1 Given a Feature Net N and FS ✓ F , then:

Beh(N,FS)#FS = Beh(N #FS).

By projecting Beh(N,FS) onto the feature selection FS , the feature selection is
removed from the traces of N ’s behaviour.

Proof (✓) We show that every trace � 2 Beh(N,FS) # FS is also a trace in
Beh(N #FS). Firstly, the initial markings M0 coincide in both Petri nets. Secondly, if
(M,FS) t�! (M

0
,FS) then, by Definition 15, FS |= 't, and by Definition 17 it is also

a transition of N #FS . Hence, M t�! M

0.

(◆) Following a similar reasoning as before, we show that every trace � 2 Beh(N #FS)
is also a trace in Beh(N,FS). Observe that, if M

t�! M

0, then t is a transition of
N #FS , and by Definition 17 FS |= 't. Hence, by Definition 15 we conclude that also
(M,FS) t�! (M

0
,FS). ut

4.3 Reachability Analysis

The reachability graph of a Petri net represents the markings reachable from the
initial marking by firing of transitions (c.f. Definition 9). In a Feature Net transitions
have an associated application condition that influences their behaviour. The reacha-
bility graph of a Feature Net is therefore also extended with application conditions,
into what we call a variable reachability graph.

Definition 18 (Variable reachability graph) Let the reachability set of a Feature
Net N = (S, T,R,M0, F, f) be the smallest set Reach(N) that contains M0 and all

markings Mn such that (M0,FS) t0�! · · ·
tn�1���! (Mn,FS) is a trace of N , for some

transitions t0, . . . , tn�1 and a feature selection FS . The variable reachability graph of
N is the tuple G = (Reach(N), E, T, F, f,M0) where Reach(N) are the nodes of the
graph, E ✓ Reach(N) ⇥ T ⇥ Reach(N) are the edges between markings such that
(M, t,M

0
) 2 E iff there is a feature selection FS where (M,FS) t�! (M

0
,FS), T is the

set of transitions of N , F is the set of features of N , f associates each transition from
T to an application condition over F , and M0 is the initial state.

Reachability
10 Radu Muschevici et al.

s1 s2 s3
t1

F1 ^ ¬F2

t2

F2 1 0 0 0 1 0F1 ^ ¬F2

t1

1 0 0 0 1 0 0 0 1F1 ^ ¬F2

t1

F2

t2

Fig. 4: A Feature Net (left) and its variable reachability graphs (right).

We will also consider a variation of this definition of a variability graph, which we
call a relaxed variable reachability graph. This relaxed variant is intended to be easier to
calculate, while still being accurate enough for model checking purposes. Fig. 4 presents
the encoding of a simple example into these two variability graphs. The labels on the
edges include not only the transitions but also the associated application condition,
given by the function f included in the graph definitions. The top reachability graph
was obtained based on Definition 18, while the second, relaxed version includes an extra
node (0 0 1) that can never be reached from the initial marking if the feature selec-
tion is fixed statically (no feature selection can simultaneously satisfy the application
conditions of T1 and T2). Relaxed variability graphs consider all feature selections at
any given state, therefore including some states that are unreachable when the feature
selection is fixed a priori. A relaxed variability graph has two main advantages. First,
it is simpler to build, by ignoring the feature selections and just including satisfiable
application conditions. Second, it includes transitions and states that are reachable in
a more dynamic environment where the feature selection can change at runtime, which
will be exploited in the next section.

Definition 19 (Relaxed variable reachability graph) Let the relaxed reachable
set of a Feature Net N = (S, T,R,M0, F, f) be the smallest set ReachR(N) such that
M0 2 ReachR(N), and if M 2 ReachR(N) and (M,FS) t�! (M

0
,FS) for some M

0, FS
and t, then M

0 2 ReachR(N). The relaxed variable reachability graph of N is the tuple
GR built in the same way as the variable reachability graph of N (cf. Definition 18),
using ReachR(N) instead of Reach(N) as the set of nodes.

The results regarding the semantics-preserving projection of Feature Nets onto Petri
nets are now lifted to reachability graphs. Intuitively, projecting a variable reachability
graph of a Feature Net N onto a feature selection FS yields a reachability graph. The
same graph is obtained based on the projection of N onto FS . The definition of the
projection of reachability graphs ensures that the above equality always holds.

Definition 20 (Graph projection) Given a variable reachability graph (relaxed or
not) G = (Ns, E, T, F, f,M0) and a feature selection FS ✓ F , the projection of G onto
FS , denoted G#FS , is a reachability graph (Ns, E

0
, T

0
,M0), with E

0
= {(n1, t, n2) 2

E | FS |= 't}, and T

0
= {t 2 T | FS |= 't}.

As it stands, projecting a Feature Net and deriving its reachability graph is not
necessarily the same as deriving the variable reachability graph of the Feature Net and
projecting it with the same feature selection. Let G⇡!r be the reachability graph from
the first approach, and Gr!⇡ the one from the second approach. These only differ in
the set of unreachable nodes and transitions: Gr!⇡ has only a minimal set of nodes and
transitions, while G⇡!r can have some nodes and transitions that are not connected

10 Radu Muschevici et al.

s1 s2 s3
t1

F1 ^ ¬F2

t2

F2 1 0 0 0 1 0F1 ^ ¬F2

t1

1 0 0 0 1 0 0 0 1F1 ^ ¬F2

t1

F2

t2

Fig. 4: A Feature Net (left) and its variable reachability graphs (right).

We will also consider a variation of this definition of a variability graph, which we
call a relaxed variable reachability graph. This relaxed variant is intended to be easier to
calculate, while still being accurate enough for model checking purposes. Fig. 4 presents
the encoding of a simple example into these two variability graphs. The labels on the
edges include not only the transitions but also the associated application condition,
given by the function f included in the graph definitions. The top reachability graph
was obtained based on Definition 18, while the second, relaxed version includes an extra
node (0 0 1) that can never be reached from the initial marking if the feature selec-
tion is fixed statically (no feature selection can simultaneously satisfy the application
conditions of T1 and T2). Relaxed variability graphs consider all feature selections at
any given state, therefore including some states that are unreachable when the feature
selection is fixed a priori. A relaxed variability graph has two main advantages. First,
it is simpler to build, by ignoring the feature selections and just including satisfiable
application conditions. Second, it includes transitions and states that are reachable in
a more dynamic environment where the feature selection can change at runtime, which
will be exploited in the next section.

Definition 19 (Relaxed variable reachability graph) Let the relaxed reachable
set of a Feature Net N = (S, T,R,M0, F, f) be the smallest set ReachR(N) such that
M0 2 ReachR(N), and if M 2 ReachR(N) and (M,FS) t�! (M

0
,FS) for some M

0, FS
and t, then M

0 2 ReachR(N). The relaxed variable reachability graph of N is the tuple
GR built in the same way as the variable reachability graph of N (cf. Definition 18),
using ReachR(N) instead of Reach(N) as the set of nodes.

The results regarding the semantics-preserving projection of Feature Nets onto Petri
nets are now lifted to reachability graphs. Intuitively, projecting a variable reachability
graph of a Feature Net N onto a feature selection FS yields a reachability graph. The
same graph is obtained based on the projection of N onto FS . The definition of the
projection of reachability graphs ensures that the above equality always holds.

Definition 20 (Graph projection) Given a variable reachability graph (relaxed or
not) G = (Ns, E, T, F, f,M0) and a feature selection FS ✓ F , the projection of G onto
FS , denoted G#FS , is a reachability graph (Ns, E

0
, T

0
,M0), with E

0
= {(n1, t, n2) 2

E | FS |= 't}, and T

0
= {t 2 T | FS |= 't}.

As it stands, projecting a Feature Net and deriving its reachability graph is not
necessarily the same as deriving the variable reachability graph of the Feature Net and
projecting it with the same feature selection. Let G⇡!r be the reachability graph from
the first approach, and Gr!⇡ the one from the second approach. These only differ in
the set of unreachable nodes and transitions: Gr!⇡ has only a minimal set of nodes and
transitions, while G⇡!r can have some nodes and transitions that are not connected

This is a feature transition system.!
Can now use model checkers for those!

Exercise

Apply Featured Transition Systems or
Feature Petri nets to handed-out examples!

One strategy: model each feature
independently, then combine.

Return

Experiences?!

Pros and cons of each approach?

Delta Modelling

Running Example:
Multi-lingual Hello World

English: “Hello World”!

German: “Hallo Welt”!

Dutch: “Hallo Wereld”!

Swedish: “Hejsan Allihopa”!

French: “Bonjour tout le monde”!

Possibly with repetition

Ingredients of Variability in ABS

Core ABS !

Feature Model (µTVL) – describing variability!

Deltas – implementing variability!

Configuration Language!

Feature Selection Language
Dave Clarke, Nikolay Diakov, Reiner Hähnle, Einar Broch Johnsen, Ina Schaefer, !
Jan Schäfer, Rudolf Schlatte, and Peter Y. H. Wong!
Modeling Spatial and Temporal Variability with the HATS Abstract Behavioral Modeling Language!
Proc. 11th Intl. School on Formal Methods for the Design of Computer, Communication and Software Systems (SFM 2011).

The Core

interface Greeting {
 String say_hello();
}
!
class Greeter implements Greeting {
 String say_hello() {
 return "Hello world";
 }
}

English by default

A fully functioning application!
(minus main)

Delta Modelling

Delta-oriented Programming

Modifications on Class Level:!

Addition, Removal and Modification of Classes !

Modifications of Class Structure:!

Changing interfaces!

Adding/Removing Fields/Methods !

Modifying Methods (wrapping original call)

Delta-oriented Programming of Software Product Lines. Schaefer, Bettini, Bono, Damiani, Tanzarella. SPLC 2010.

The Repeat Delta

delta Rpt (Int times) {
 modifies Greeter {
 modifies String say_hello() {
 String result = "";
 Int i = 0;
 while (i < times) {
 result = result + original();
 i = i + 1;
 }
 return result;
 }
 }
}

The German Delta

delta De {
 modifies Greeter {
 modifies String say_hello() {
 return "Hallo Welt";
 }
 }
}

The Dutch Delta

delta Nl {
 modifies Greeter {
 modifies String say_hello() {
 return "Hallo wereld";
 }
 }
}

Product Line Configuration

Configuration

product line HelloMultiLingual {
 features Repeat, German, French, Dutch, Swedish;
 core English;
!
 delta De when German && not Repeat;
 delta Fr when French;
 delta Nl when Dutch;
 delta Sv when Swedish && Repeat;
 delta Rpt(Repeat.times)
 after De, Fr, Nl, Sv when Repeat;
}

parameter passing

ordering

application conditions

Feature Selection

Feature Selection

// apply delta Fr and Repeat
product P3 (French, Repeat{times=10}) {
 Greeting bob;
 bob = new Greeter();
 String s = "";
 s = bob.say_hello();
}

Attribute SpecificationFeature Selection

}Initialisation !
(aka main)

Product Generation

Given Feature Selection

// apply delta Fr and Repeat
product P3 (French, Repeat{times=10})
{
 Greeting bob;
 bob = new Greeter();
 String s = "";
 s = bob.say_hello();
}

Apply Delta Fr
class Greeter implements Greeting {
 String say_hello() {
 return "Hello world";
 }
}

delta Fr {
 modifies Greeter {
 modifies String say_hello() {
 return "Bonjour tout le monde";
 }
 }
}

+

Apply Delta Fr

class Greeter implements Greeting {
 String say_hello() {
 return "Bonjour tout le monde";
 }
}

Configure Repeat

delta Rpt (Int times) {
 modifies Greeter {
 modifies String say_hello() {
 String result = "";
 Int i = 0;
 while (i < times) {
 result = result + original();
 i = i + 1;
 }
 return result;
 }
 }
}

times=10

Configure Repeat

delta Rpt {
 modifies Greeter {
 modifies String say_hello() {
 String result = "";
 Int i = 0;
 while (i < 10) {
 result = result + original();
 i = i + 1;
 }
 return result;
 }
 }
}

Apply Repeat

delta Rpt {
 modifies Greeter {
 modifies String say_hello() {
 String result = "";
 Int i = 0;
 while (i < 10) {
 result = result + original();
 i = i + 1;
 }
 return result;
 }
 }
}

class Greeter implements Greeting {
 String say_hello() {
 return "Bonjour tout le monde";
 }
}

+

Apply Repeat

class Greeter implements Greeting {
 String __say_hello_original() {
 return "Bonjour tout le monde";
 }
!
 String say_hello() {
 String result = "";
 Int i = 0;
 while (i < 10) {
 result = result + __say_hello_original();
 i = i + 1;
 }
 return result;
 }
}

Adding Initialisation
class Greeter implements Greeting {
 String __say_hello_original() {
 return "Bonjour tout le monde";
 }
!
 String say_hello() {
 String result = "";
 Int i = 0;
 while (i < 10) {
 result = result + __say_hello_original();
 i = i + 1;
 }
 return result;
 }
}
{
 Greeting bob;
 bob = new Greeter();
 String s = "";
 s = bob.say_hello();
}

Another Example

Delta Modelling Example

interface IAccount { Unit deposit(Int x); }
!
class Account implements IAccount { // Core Product
 Int balance = 0;
 Unit deposit(Int x) {
 balance = balance + x;
 }
}
!
delta DFee(Int fee) { // Implements Feature Fee
 modifies class Account {
 modifies Unit deposit(Int x) {
 if (x >= fee) original(x-fee);
 }
 }
}

Delta Modelling Example (cont’d)

delta DOverdraft() { // Implements Feature Overdraft
 modifies class Account {
 adds Int limit;
 modifies Unit deposit(Int x) {
 if (balance + x > limit) original(x);
 }
 }
}
!
productline AccountPL { // Product Line Declaration
 features Basic, Overdraft, Fee;
 delta DFee(Fee.amount) when Fee;
 delta DOverdraft after DFee when Overdraft;
}

Exercise

Apply delta modelling or #ifdefs to handed
out code.!

Currently code includes only two products
from product line. Can you make it express
all?

Return

Experiences?!

Pros and cons of each approach?!

How would selected approach scale to larger
project?

Concluding Remarks

References

Feature Petri Nets. Radu Muschevici, Dave Clarke, José Proença. SPLC
Workshops 2010: 99-106!

Featured Transition Systems: Foundations for Verifying Variability-
Intensive Systems and Their Application to LTL Model Checking. Andreas
Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-Francois Raskin IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 39, NO. 8, AUGUST 2013!

Delta-oriented Programming of Software Product Lines. Schaefer, Bettini,
Bono, Damiani, Tanzarella. SPLC 2010.!

Variability Modelling in the ABS Language. Dave Clarke, Radu
Muschevici, José Proença, Ina Schaefer, Rudolf Schlatte. FMCO 2010:
204-224

