
Run-Time Assertion Checking and Monitoring
Java Programs

Envisage Bertinoro Summer School June 2014

June 19, 2014

Your Lecturers Today

Frank en Stijn

What This Talk Is All About

Formal Methods in Practice:

Theorie ist, wenn man alles weiss und nichts klappt.
Praxis ist, wenn alles klappt und keiner weiss warum.

What Fails In Practice: Run-Time Assertion Checking

Take for example JML (citing Peter Wong)

I Stability of tooling

I IDE support e.g. on-the-fly parsing and type checking,
navigability between specifcations and source codes

I Maintainability of specification due to constant code change

I Error reporting and analysis

See also

Run-time checking of data- and protocol-oriented
properties of Java programs: an industrial case study.
Stijn de Gouw, Frank S. de Boer, Peter Y. H. Wong and
Einar Broch Johnsen. SAC 2013.

Outline

Formal Specification: Assertions

Behavioral Abstraction

Run-time checking of data- and protocol-oriented properties

Tooling

What? Formal Specfification? Assertions?

Industrial Relevance

National Institute of Standards and Technology (NIST):

Software errors cost us approximately $60 billion per year
in lost productivity, increased time to market costs, higher
market transaction costs, etc. If allowed to continue
unchecked this problem’s costs may get much worse.

Managerial Misconceptions:

Software development is not an art, and programmers are
not artists, despite any claims to the contrary.

Management has come to believe the first and most
important misconception: that it is impossible to ship
software devoid of errors in a cost-effective way.

What Makes Software Buggy?

An imperative program describes how a problem can be
solved by a computer.

The Von Neumann Architecture of Imperative
Programming

What The Hack Are You Doing?

What does the following program compute,
assuming that the initial value of x is greater than or equal to 0?

y := 0; u := 0; v := 1;
while u + v ≤ x
do y := y + 1;

u := u + v ;
v := v + 2

od

Debugging: Let it Flow

x y u v
13 0 0 1
13 1 1 3
13 2 4 5
13 3 9 7
...

...
...

...

What’s the relation between the values of x, y , u and v?

Robert Floyd Introduced Assertions For Program
Specification in the Seventies

y2 ≤ x < (y + 1)2

Edsger Dijkstra Introduced Structured Programming

Debugging only shows that a program is incorrect.

Sir. Tony Hoare Developed a First Programming Logic

{P}S{Q}

Design by Contract

Caller = Client and Callee = Supplier
in

Method calls in object-oriented programs

Designer must formally specify for each method:

I What does it expect? (precondition)

I What does it guarantee?(postcondition)

I What does it maintain? (invariant)

Main idea:

Formal specification of contracts by assertions, i.e.
logical formulas

Design by Contract in Practice

I Object-oriented programming language Eiffel introduced by
the company Eiffel Software.

I The Java Modelling Language JML supports run-time
assertion checking.

I Spec# is a formal language for API contracts developed and
used by Microsoft.

I Object Constraint Language (OCL) for the specification of
UML diagrams

Behavioral Abstraction (Information Hiding)

State of the Art (= state-based)

I Getters:
Get X

I Model variables (JML):

public model instance JMLObjectBag
elementsInQueue

Formal Semantics: Full Abstraction

Minimal information required for compositionality

That is,

smallest congruence containing operational equivalence:

S ≡ S ′if and only if O(C [S]) = O(C [S ′]),

for every context C [·]

Compositionality Java Programs

Two perspectives:

I Threads (stack: shared-variable concurrency)

I Classes (Objects) (monitor: message passing)

Compositionality Shared Variable Concurrency
(Multi-threading)

Initial/final state semantics is not compositional:

O(x := x + 1; x := x + 1) = O(x := x + 2)
but
O(x := x + 1; x := x + 1 ‖ x := 0) 6= O(x := x + 2 ‖ x := 0)

We need reactive sequences:

R(x := x + 1) = {〈σ, σ[x := σ(x) + 1]〉 | σ ∈ Σ}

and
R(S1 ‖ S2) = R(S1) ‖ R(S2)

where ‖ denotes interleaving.
See

Reasoning about Recursive Processes in Shared-Variable
Concurrency. F.S. de Boer. LNCS 5930, 2010.

Compositional Proof Theory for Communicating
Sequential Processes (CSP)

From non-compositional:

Communication Assumptions {p}c?x{q} and {p}c!e{q}
Cooperation Test

{p} c!e {q}
{p′} c?x {q′}

}
⇒ {p ∧ p′}x := e{q ∧ q′}

to compositional by means of histories (or traces)

Communication Axioms

{∀x .p[h·(c , x)/h]}c?x{q} and {p[h·(c , e)/h]}c!e{q}
Example:

{[h]c = ε}c?x{[h]c = (c , x)} {[h]c = ε}c!0{[h]c = (c , 0)}
{[h]c = ε}c?x ‖ c!0{[h]c = (c , x) ∧ [h]c = (c , 0)}

See

An assertion-based proof system for multithreaded Java
by Abraham, de Boer, de Roever and Steffen, in TCS,
Vol. 331, 2005.

A Short History of Histories

I Proofs of networks of processes by Misra and Chandy, in IEEE
Transactions on Sofware Engineering, 1981.

I Formal justification of a proof system for CSP by K.R. Apt in
J.ACM, Vol 30, 1983.

I A theory of communicating sequential processes, by Brookes,
Hoare and Roscoe, in J. ACM, Vol. 31, 1984.

I Compositionality and concurrent networks: soundness and
completeness of a proof system by Zwiers, de Roever and van
Emde Boas, in LNCS, Vol. 194, 1985.

I Fully abstract trace semantics for a core Java language by
Jeffrey and Rathke, in LNCS, Vol. 344, 2005.

I Object Connectivity and Full Abstraction for a Concurrent
Calculus of Classes. Erika Ábrahám, Marcello M. Bonsangue,
Frank S. de Boer, Martin Steffen: ICTAC 2004: 37-51

The Very Nature of Object-Orientation

Inherently Parallel (even If Sequential)

Run-Time Assertion Checking

Requires

I Executable assertions

But what we want (need badly) is

combining data- and protocol-oriented
properties

Main Idea

Grammars to specify protocols (= formal languages)

Main problem/challenge:

Integration grammars in assertion checking

that works in practice

Specifying Interfaces in Java: A Running Example

interface Stack {
void push(Object item);
Object pop();
}

The Modelling Framework: Messages

call-push return-push

call-pop return-pop

AttributesAttributes AttributesAttributes

Attributes

Attributes

Attributes

Attributes

public Object item

public Object item

public Object item

public Object result

The Modelling Framework: Communication Views

Partial mappings from call and return events to tokens

Communication Views: An Example

view StackHistory {
return void push(Object item) push,
return Object pop() pop
}

General Properties of Communication Views

I Multiple views for interfaces

I Multiple views for classes/components (provided/required
methods)

I User-defined event names

I Abstraction of irrelevant events

I Identifying different events

I Distinguishing different events using method signatures
(method overloading)

The Modelling Framework: Attribute Grammars

class EList extends List {
public EList append(Object element)
public EList append(EList list) }

Elist stack

S ::= push S1 stack = S1.stack.append(push.item)
| S1 S2 stack = S2.stack.append(S1.Stack)
| B stack = new EList()

B ::= push B pop
| ε

Example
Parse tree of sequence of tokens

push(5) push(7) pop(7)

S

SS

B

S.stack=5

S.stack=<>push

push pop

5

7 7

The Modelling Framework: Interface Specifications

interface Stack {
//@ public model instance StackHistory history;

//@ ensures history.stack() ==
\old(history.stack()).append(item);

void push(Object item);

//@ requires history.stack().size ! = 0;
//@ ensures history.stack() = \old(history.stack()).tail();
//@ ensures \result == \old(history.stack()).head();
Object pop()

The Modelling Framework: Summary

VIEW

ATTRIBUTE
GRAMMAR

INTERFACE

HISTORY

JML

TERMINALS

ATTRIBUTES

MODEL
FIELDS

MESSAGE
TYPES

SPECIFICATION

Run-Time Assertion Checking: Method Invocation

Program

Program

JML API

JML API

History (instance)

History (instance)

Parser

Parser

Check Precondition

Get Attributes

Attribute values

Incoming Method Call

Triggers

New Attribute values

Run-Time Assertion Checking: Method Return

Program

Program

History (instance)

History (instance)

Parser

Parser

JML API

JML API

stdout

stdout

Method Return

Triggers

Attribute values

Check Postcondition

Get Attributes

Attribute values

Assertion Failure

Attribute Grammars as Behavioral Types
Another Example: Specifying the BufferedReader class

Class BufferedReader {
BufferedReader(Reader in);
void close();
String readLine();
. . .
}

Communication View:

view BufferedReaderHistory {
new(Reader in) open,
call String readLine() read,
call void close() close
}

Extended Attribute Grammar modeling the behavior of a
BufferedReader

I BufferedReader can only be read when opened and before
closed.

I BufferedReader can only be closed by the object that opened
it:

S ::= open C assert open.caller != null
==> open.caller == C.caller;

| ε
C ::= read C1 C.caller = C1.caller;
| close S C.caller = close.caller;
| ε C.caller = null;

Summarizing

Attribute grammars provide a systematic approach for specifying
histories which

I allows a declarative expression of complex properties of
histories and

I seamlessly combines specification of
I protocol oriented properties (grammar)
I data-oriented properties (attributes)

into a single formalism.

	Formal Specification: Assertions
	Behavioral Abstraction
	Run-time checking of data- and protocol-oriented properties
	Tooling

