Sophia Drossopoulou
Imperial College London

Recursion and Iteration are
fundamental tools in Mathemticd and

Computer Science

Theorem Provers have great
difficulties dealing with Recursion

The Semantics of Recursive Predicates
in Hoare Logics and Porgram
Verification Tools is subtle

What | will talk about

Zeno: A theorem prover for
inductively defined structures

Iso-recursive and Equi-recursive
assertions in a Logic with
Permissions

Zeno

an automated theorem prover for

inductively defined tructures

Will Sonnex
Computer Science Student
London, United Kingaaas

Will Sonnex,

Cambridge University
Sophia Drossopoulou
& Susan Eisenbach

Imperial College London

Professc
Head of D

Distributed ¢
Department
Imperizal Coll
Huxley Build
180 Queen’s
Directions to
Streetmap li
Phone: +44
Fax: +44 20

ses BETFALES

Zeno of Elea (c.490-c.430 BC), philosopher, follower
of Parmenides, famed for his paradoxes.

Zeno of Citium (333 BC - 264 BC), founder of the Stoic
school of philosophy

Zeno of Tarsus (200s BC), Stoic philosopher

Zeno of Sidon (1st century BC), Epicurean philosopher

Zeno at http://www.haskell.org/haskellwiki/Zeno

Zeno

Proves equality over Haskell-like expressions of the form
E=Byyer By =Bppy, ==> B = E7
where E may mention recursively defined functions

Variables are implicitly universally quantified; no support for
existentials

Booleans are encoded through the Boo1l data type.

Zeno can prove properties like

O rev (rev xs) = XS
o order (order xs) = order Xxs
o mult x (succ 0) = x

From a benchmark suite suggested by Isaplanner, Zeno can prove
more properties than Isaplanner and ACL2s

Zeno can discover necessary auxiliary lemmas, but cannot use
theories.

This Talk

* Example Zeno code

* The proof steps — by example
* |s Zeno sound?

e Zeno performance

* Trimming the search space

This Talk

 Example Zeno code

* The proof steps — by example
* |s Zeno sound?

e Zeno performance

* Trimming the search space

data

(<=)
ero
sSucc
sSucc

srtd
srtd
srtd
srtd

ordr
ordr
ordr

ins

ins n
ins n

Example - Haskell

Nat = Zero | Succ Nat
Nat -> Nat -> Bool

<= = True

X <= Zero = False

X <= Succ y = x <=yY

:: [Nat] -> Bool

[] = True

[x] = True

(x:y:zs) = (x <= vy) && srtd (y:zs)

:: [Nat] —-> [Nat]

[] = []

(X:xs8) = ins X (ordr xs)

Nat ->

[] = [n]

(x:xs8) |

[Nat] —-> [Nat]

n:x:xs |

otherwise x:

(lns n xXs)

Example - Haskell and HC

data Nat = Zero | Succ Nat

(<=) :: Nat -> Nat -> Bool
Zero <= = True
Succ X <= Zero = False

Succ X <= Succ y = x <= Y

data Nat = Zero | Succ Nat

letrec (<=) = A x. A y. case x of
{ Zero -> True;
Succ x’ -> case y of
{ Zero -> False;
Succ y’' > x!' <= vy’ }

Example - Haskell and HC

srtd :: [Nat] -> Bool

srtd [] = True

srtd [x] = True

srtd (x:y:ys) = (x <= vy) && srtd (y:ys)

letrec srtd = A ns. case ns of
{ [] -> True;
X:Xs —-> case xs of
{ [] =-> True;
y:ys —> case x<=y of
{ True -> srtd (y:ys);
False -> False } } }

Example Haskell and HC

ordr :: [Nat] -> [Nat]
ordr [] = []
ordr (x:xs) = 1ns x (ordr xs)

letrec ordr = A ns. case ns of

L I A B

X:xXsS —-> 1ns x (ordr xs)} } }

Example Haskell and HC

ins :: Nat -> [Nat] -> [Nat]
ins n [] = [n]
ins n (x:xs8) | n<=x = n:x:xs | otherwise xX:(1ns n xs)

letrec ins = A n. A ns. case ns of
{ [1 -> n:[];
X:Xs —-> case n<=x of
{ True -> n:xX:xXs;
False -> x:(ins n xs)} } }

Example in HC

letrec srtd = A ns. case ns of

{ [] —-> True;
X:xXs —> case xs of
{ [] —-> True;

y:ys —> case x<=y of
{ True -> srtd (y:ys);
False -> False } } }

letrec ordr = A ns. case ns of

{01 -> 117

X:Xs —-> ins n (ordr xs)} } }

letrec ins = A n. A ns. case ns of
{ [1 ->n:l];
X:Xs —-> case n<=x of
{ True -> n:x:xs;
False -> x:(ins n xs)} }

This Talk

* Example Zeno code

* The proof steps — by example
* |s Zeno sound?

e Zeno performance

* Trimming the search space

Zeno supports sequent-style proof rules.
It applies these rules backwards, possibly trying several.
These rules are:

* CON - contradiction

 EQL - substitute equals for equals
* IND - induction

* EXP —expansion

* GEN —generalization

 CASE — case analysis

* Modus Ponens

So, we want to prove

srtd (ordr 1s8)

We will first outline parts of the proof, and then
we will show the rules for the individual steps.

So, we want to prove

srtd (ordr 1s8)

We will first outline parts of the proof, and then
we will show the rules for the individual steps.

Proving srtd (ordr is)

22722 277

srtd (ordr is)

Proving srtd (ordr is)

227 297 22727 22727

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Proving srtd (ordr is)

2222 on

srtd (ord js) => srtd (ins j (ord Js))
2720

P77 EXP
srtd (ord []) srtd (ord js) => srtd (ord j:js)

IND

srtd (ordr is)

Proving srtd (ordr is)

Farare

srtd (ks) => srtd (ins 1 ks)

GEN
srtd (ord js) => srtd (ins j (ord js)
. 227 299 EXP
srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Proving srtd (ordr is)

Note:

2eno discovered the auxiliary lemma
srtd ks => srtd (ins j ks)

Farare

srtd (ks) => srtd (ins j ks)

GEN
srtd (ord js) => srtd (ins j (ord Js))
. 277 290 EXP
srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Proving srtd (ordr is)

227

7
2227 227 srtd (ms)=> srtd (ins i (ord ms)
srtd ([1) => . .
=> srtd (ins 1 []) srtd (m:ms)=> srtd (ins 1 (ord m:ms)
IND
srtd (ks) => srtd (ins 1 ks)
GEN
srtd (ord js) => srtd (ins j (ord Js))
. 277 299 EXP
srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

So, we want to prove

srtd (ordr 1s8)

We will first outline part of the proof, and then
we will show the rules for the individual steps.

Proving srtd (ordr is) —theIND step

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Proving srtd (ordr is) —theIND step

X has type T, free in @
for each K €Constrs (T) .
- olxi=z], ... Olxi=z,] => @[x:=K y;...v,]
where K y,...y, hastype T,
v:-..y, are fresh variables,
z,...z,, are those variables from vy,...v, with type T

- ¢

IND

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Proving srtd (ordr is) —the EXP step

srtd (ord js) => srtd (ins j (ord Js))

227 290 FXP

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Proving srtd (ordr is) —the EXP step

E evaluates to £’
= Q[E:=E’] EXD

- ¢

srtd (ord js) => srtd (ins j (ord Js))
2720

. 277 EXP
srtd (ord []) srtd (ord js) => srtd (ord j:js)

IND

srtd (ordr is)

Proving srtd (ordr is) -—the GEN step

x is fresh, and has type T

E has type T
= @ [E:=x] GEN
= @

srtd (ks) => srtd (ins 1 ks)

GEN
srtd (ord js) => srtd (ins j (ord Js))
. 227 299 EXP
srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

This Talk

* Example Zeno code

* The proof steps — by example
* |s Zeno sound?

e Zeno performance

* Trimming the search space

Zeno is sound

 Zeno’s proof rules correspond to sequent calculus
* Zeno emits Isabelle proofs, which it checks through Isabelle

This Talk

* Example Zeno code

* The proof steps — by example
* |s Zeno sound?

e Zeno performance

* Trimming the search space

... using the Isaplanner test suite

Theorem prover Percentage |ldentifiers of unproven
proven properties
Dafny (Z3 and IND) 53.5% 45-85
Isaplanner 55% 47-85
47,50, 54, 56, 72, 73,
ACL2s — coded types 87% 74, 81, 83, 84, 85
Zeno 96% 72,74, 85

What gives Zeno its performance?

* Trimming the search space, ie heuristics which
reduce applicability of the rules.
These heuristics can be understood as further
conditions on the rules.

This Talk

* Example Zeno code

* The proof steps — by example
* |s Zeno sound?

e Zeno performance

* Trimming the search space

The search space - example

277
2727

srtd (ordr is)

The search space- example

At this point, many steps could be considered:
= INDon1is
= CASEonord 1is
" CASEonsrtd(ord 1is)
= TNDonord 1is
CASEon first (i1is)

777

srtd (ordr is)

Zeno’s trimming heuristics

Prioritize CON and EQL steps.
Search for counterexample.
Critical expressions.

Critical paths.

Zeno’s trimming heuristics

* Prioritize CON and EQL steps.

— CON and EQL “close” proof braches;

K, K’ are constructors
K =/= K’ CON
(K E.LE)=K" E' .E'")=> ¢

therefore it pays to apply them ASAP

* Search for counterexample.
* Critical expressions.
* Critical paths.

Zeno’s trimming heuristics

Prioritize CON and EQL steps.

Search for counterexample.

— After generation of new proof goal (eg through GEN),
create examples (using critical expressions/paths) to
quickly test the new proof goal, and discard the branch if
counterexample found.

Critical expressions.
Critical paths.

Zeno’s trimming heuristics

Prioritize CON and EQL steps.
Search for counterexample after GEN steps.

Critical expressions.

— Aim to steer the proof search so that EXP steps
become applicable (ie function definitions may be

applied).

Critical paths.

Zeno’s trimming heuristics

* Prioritize CON and EQL steps.
* Search for counterexample after GEN steps.

* Critical expressions.

— Aim to steer the proof search so that EXP steps
become applicable (ie function definitions may be
applied).

This is in contrast with rippling (Isaplanner), which,
instead, tries to make the inductive hypothesis
applicable.

* Critical paths.

Critical expressions - example

PRPAP
— 777

srtd (ordr is)

Critical expressions - example

As we said earlier, ay this point, many steps could be considered:
= TNDon1is
= CASEonord 1is
" CASEonsrtd(ord 1s)
= TNDonord 1is
"= CASEonfirst (i1is)

777

srtd (ordr is)

Critical expressions - example

Similarly, at this point, the following steps could be
considered:

= TNDon js

= CASEon js

= CASEonord js

far e

srtd (ord js) => srtd (ord j:js)

2777

IND

srtd (ordr is)

Critical expressions - definition

E’ is critical fo

Crits(E) = -

r £, if value of E’ determines evaluation of E.

—

E is normal

E if £ is normal
Crits(E’) ifE->*case E’ of ..., E’' €EE
E’ if E->* case E’ of .., E'¢E

S—

if it cannot be further re-written

Critical expressions - examples

—

E if £ is normal
. i ’ i _>>l< ’ ey [—

Crits(E) = - Crits(E’) ifE->*case E’ of E’ €EE

E’ if E->* case E’ of .., E'€E
ord(is) —->* case 1s of { [] -> ..; x:xs —-> ..
srtd(ord(is)) ->* case ord(is) of

{ True -> ..; False -> ..

Crits(ord (is)) = 1is

Crits(srtd (ord (is))) = 1is

Using Critical Expressions - IND

Without Crits, following steps possible
= TNDonhis
= CASEonord 1is
" CASEonsrtd(ord 1is)
= INDonord 1is
" CASEonfirst(is)

srtd (ordr is)

Using Critical Expressions - IND

reduces the proof search space

X hastype T, x €Crits(Q)
foreach K €Constrs (T) . + @[xi=z,], ...0[x:i=z] => @O [x:=K y;...v,]
where ... IND

- @

srtd (ordr is)

Using Critical Expressions - IND

reduces the proof search space

Crits(srtd(ordr 1is)) = { 1is }

With Crits, several steps not applicable
= TNDonhis

- -ohoerd s

- -ohasriedierd is)

- -eherd—3s

. - .

srtd (ordr is)

Using Critical Expressions - IND

reduces the proof search space

X hastype T, x €Crits(Q)
foreach K €Constrs (T) . + @[xi=z,], ...0[x:i=z] => @O [x:=K y;...v,]
where .. IND
- @
Crits(srtd (ordr is)) = { 1is }

With Crits, several steps not applicable
= ITNDonis

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Critical expressions need not be subterms

gu—

E if E is normal
. Crits(E’ if E->*case E’ of .., E’' €EE
Crits(E) = (E7) ’
E’ if E->* case E’ of .., E'€E

S

ins i (J:js) —->* case 1 <= 7 of
{ True -> ..; False -> ..}
srtd(ins 1 (j:Js)) —>%*
case (1ns 1 (J:Js)) of
{ [1 -—> ..; y:ys —=> ..}

Crits(ins 1 (j:js)) = 1i<=j
Crits(srtd(ins 1 (j:js))) = i<=]

Use of critical Expressions which are not subterms

srtd (j:Js) => srtd(ins 1 (J:Jjs))

Use of critical Expressions which are not subterms

Critical expressions which are not
subterms are used for case analysis

Crits (srtd(ins i (j:js))) = 1<=]

CASE

srtd (j:Js) => srtd(ins 1 (J:Jjs))

Use of critical Expressions which are not subterms

Critical expressions which are not
subterms are used for case analysis

Crits (srtd(ins i (j:3s))) i<=j
22 27
1<=3] = True => 1<=] = False =>
srtd (jJ:3Js) => srtd (J:3Js) =>
srtd(1ns 1 (J:3Js)) srtd(1ns 1 (J:3Js))
CASE
srtd (j:Js) => srtd(ins 1 (J:Jjs))

However, consider ...

227 227

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

However, consider ...

Crits (srtd(ordr js)) = Crits(srtd(ordr js)) = Jjs
.. 222 5o
srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

However, consider ...

Crits (srtd(ordr js)) = Crits(srtd(ordr js)) = Jjs

Should we apply induction on §s?

227 227

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

However, consider ...

Crits (srtd(ordr js)) = Crits(srtd(ordr js)) = i<

I
-

Should we apply induction on §s? Again induction? @

Farars 290

srtd (ord []) srtd (ord js) => srtd (ord j:js)
IND

srtd (ordr is)

Zeno’s trimming heuristics

Prioritize CON and EQL steps.

Search for counterexample after GEN steps.
Critical expressions.

Critical paths.

Critical Pairs

We enhance our approach so that
P1 Case statements are labeled.

Critical Pairs

We enhance our approach so that
P1 Case statements are labeled.
P2 Critical expressions are decorated with paths of labels;
these describe the “intention” of the expression, ie the
case statements that this expression would represent.

Critical Pairs

We enhance our approach so that

P1 Case statements are labeled.

P2 Critical expressions are decorated with paths of labels;
these describe the “intention” of the expression, ie the
case statements that this expression would represent.

P3 Variables are decorated with paths of labels;
these describe the “history” of these variables, ie case
statements that these variables have represented.

Critical Pairs

We enhance our approach so that

P1 Case statements are labeled.

P2 Critical expressions are decorated with paths of labels;
these describe the “intention” of the expression, ie the
case statements that this expression would represent.

P3 Variables are decorated with paths of labels;
these describe the “history” of these variables, ie case
statements that these variables have represented.

P4 Induction avoids revisiting (parts of) an already visited
path. Therefore, induction not applicable when history
of critical expression “covers” its intention.

Similar for case analysis, generalization, etc.

P1: Labelling Case Statments

= ns of

letrec srtd = A ns. case®
{ [] —-> True;
x:1xs -> case®‘ xs of
{ [] —-> True;
v:ys —-> case®” x<=y of
{ True -> srtd (y:ys):;
False -> False } } }

1

2

3

letrec ordr = A ns. case®°’ ns of

{01 -> 117

X:Xs —-> ins n (ordr xs)} } }

1

letrec ins = A n. A ns. case " ns of

{ [] -=>n:[];
X:xXs —> case12 n<=x of
{ True -> n:x:xs;
False -> x:(ins n xs)} } }

P2: Decorating critical expressions

Critical expressions record their intention: which cases they will
consider, if chosen

B, [] if E is normal

Crits(E) = J E”,l:p if E->* case! E’ of ..., E’' €EE
Crits(E’) =E” ,p

E’,1 if E->* case! E’ of .., E'¢E

S

P2: Decorating critical expressions - examples

B, [] if E is normal
Crits(E) =_ E”,1l.p if E->* case! E’ of ..., E’' €EE
Crits(E")=E” ,p
E7,1 if E->* case! E’/ of .., E'¢E

ord (isll) ->* case°l is of { [] -> ..; X:Xs =-> ..
srtd(ord (isll)) ->* cases! ord(is) of
{ True -> ..; False -> .. }

Crits(ord (isll)) = isll,0l.[]
Crits(srtd (ord (isll))) = 1isll,sl.01.[]

P2: Decorating critical expressions - examples

B, [] if E is normal
Crits(E) =_ E”,1l.p if E->* case! E’ of ..., E’' €EE
Crits(E")=E” ,p
E7,1 if E->* case! E’/ of .., E'¢E

ord (isll) ->* case°l is of { [] -> ..; X:Xs =-> ..
srtd(ord (isll)) ->* cases! ord(is) of
{ True -> ..; False -> .. }

Crits(ord (1sll)) = i1isll,0l.[]
Crits(srtd (ord (istl))) = 1isll,sl.01.[]

When is!llistaken for srtd (ord (is!l)), itintends to
cover the cases sl.ol

P3: Decorating variables

IND

srtd (ordr isll)

P4: Induction — only when intention is not
“covered” by history

X hastype T,
xP, p’ €Crits(@®) and p’ notasubpath of p

foreachK €Constrs (T) . + @[xi=z,], ...0[xi=z,] => @O[x:=K y,...v,]
where ...

IND
- @

P4: Induction — only when intention is not
“covered” by history

Crits (srtd(ordr isll)) = 1isll,pl

where

Pl = sl.ol.[] Therefore, IND applicable now. ©

X hastype T,
xP, p’ €Crits(@®) and p’ nota subpath of p

foreachK €Constrs (T) . + @[xi=z,], ...0[xi=z,] => @ [x:=K y,...v,]
where ...

IND
- @

IND
srtd (ordr isll)

Second step in proof

Remember, here we wanted to
avoid application of induction.

far e

277

srtd (ord []) srtd (ord jsP') => srtd (ord jP:jsPl)
IND

srtd (ordr isll)

P4: Induction only applicable when
intention not covered by history

Crits (srtd(ordr jsPl')) = JsP! pl
Crits (srtd(ordr jP':jsPl)) = JsP!, pl
where

pl = sl.ol.[]

227 2272

srtd (ord []) srtd (ord jsP') => srtd (ord jP:jsPl)

IND

srtd (ordr isll)

P4: Induction only applicable when

intention not covered by history

Crits (srtd(ordr jsP)) = JjsP!,pl
Crits (srtd(ordr jP:jsP)) = JsP!, pl

Therefore, IND not applicable now. ©

x hastype T,
xP, p’ €Crits(@®) and p’ not a subpath of p
foreachK €Constrs (T) . + ¢[xi=z,], ...0[xi=z,] => d[x:=K y,...v,]

where ... IND
= ¢
e Farars 2907
srtd (ord []) srtd (ord jsP') => srtd (ord jP:jsPl)
IND

srtd (ordr is)

So far, ...
* Induction applicable in the first step. ©
* Induction not applicable in the second step. ©

What about the later steps?

We shall look at the fourth proof
step

At the fourth step

Remember, we wanted to
be allowed to apply IND here.

??7°

srtd (ksP!) => srtd (ins iP! ksP?!)
GEN

srtd (ord jsPl) => srtd (ins jP! (ord jsPl)

srtd (ord jSPl) => srtd (ord jf’ltj%%gf)
IND

srtd (ordr isPl)

At the fourth step

Crits (srtd(ksPl)) = ksP!, p2
Crits (srtd(ins iP! ksPl)) = ksP!,p3
where
pl = sl.01.][]
p2 = sl.][]
p3 = sl1.il.[]
IPAPAP
srtd (ksPl) => srtd (ins iP! ksPl) =
GEN
srtd (ord jsPl) => srtd (ins jP! (ord jsPl)

srtd (ord jSPl) => srtd (ord jf’ltj%%gf)
IND

srtd (ordr isPl)

At the fourth step

Crits (srtd(ksPl)) = ksP!, p2
Crits (srtd(ins iP! ksPl)) = ksP!,p3
where pl covers p2
pl = sl.0l.[] pl does not cover p3
p2 = sl.][]
p3 = sl1.il.[]
IPAPAP
srtd (ksPl) => srtd (ins iP! ksPl) =
GEN
srtd (ord jsPl) => srtd (ins jP! (ord jsPl)

srtd (ord jSPl) => srtd (ord jf’ltj%%gf)
IND

srtd (ordr isPl)

At the fourth step

Crits (srtd(ksPl)) = ksP!, p2

Crits (srtd(ins iP! ksPl)) = ksP!,p3

where pl covers p2

pl = sl.0l.[] pl does not cover p3

p2 = sl.][]

p3 = sl.il.[] Therefore, IND is applicable. ©

srtd (ksPl) => srtd (ins iP! ksPl) e
GEN

srtd (ord jsPl) => srtd (ins jP! (ord jsPl)

srtd (ord jSPl) => srtd (ord jf’ltj%%gf)
IND

srtd (ordr isPl)

Summary

Zeno proves equality over Haskell-like terms.

Variables implicitly universally quantified; no support for
existentials. Booleans are encoded through the Bool data type.

From Isaplanner benchmark suite, Zeno can prove more
properties than Isaplanner and ACL2s

Zeno sometimes discovers useful further lemmas.
Zeno’s heuristics

— Counteraxamples
— Prioritize EQL and CON

— Critical expressions restrict antecedents to “relevant ones” - they move
the proof search towards making it possible to expand function bodies —
as opposed to rippling

— Paths keep track of the proof cases visited so far and avoid revisiting
these cases; some “forbidden” steps my become allowed later in the
poof.

Page Discussion View source History

Zeno

Contents hide

1 Introduction
1.1 Features
2 Example Usage
3 Limitations
3.1 Isabelle/HOL output
3.2 Primitive Types
3.3 Infinite and undefined values

1 Introduction

Zeno is an automated proof system for Haskell program properties; developed at Imperial
College London by William Sonnex, Sophia Drossopoulou and Susan Eisenbach. It aims to
solve the general problem of equality between two Haskell terms, for any input value.

Many program verification tools available today are of the model checking variety; able to
traverse a very large but finite search space very quickly. These are well suited to problems
with a large description, but no recursive datatypes. Zeno on the other hand is designed to
inductively prove properties over an infinite search space, but only those with a small and
simple specification.

Tc

Further Work

Prove Soundness

Investigate Completeness

Add Existentials

Combine with SMT solver

Allow for Theories

Do the Heuristics reduce the cover of Zeno?

More Heuristics

Taxonomy of proofs vs the various tools’ behaviour

