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Background / Area

* Specification/Verification logics for heap-based
programming languages

* Integration of permission-based verification with general
recursive definitions (predicates, functions, etc.)

* Many verification approaches make use of some kind of
permission, governing access to the heap

e.g. separation logics, implicit dynamic frames,

Need to specify recursive datatypes commonly leads to
logics which support recursive definitions

e.g. abstract predicates, pure methods/functions




Implicit Dynamic Frames (IDF)

Smans et al.’ 08

* Extend first-order assertions to additionally include
“accessibility predicates”: acc (x. £)

meaning: permission to access location x. £

* Assertions can also include heap-dependent expressions:
eg, x.f > 4

only allowed when permission to location is held
* Also includes a separating conjunction *

related to that of separation logic; expresses disjointness

of permissions, but allows heap reads :
acc(x.f) * (x.f # null = acc(x.f£.£f))

* self-framing assertions are those which require permission to
all heap locations they depend on .




Recursive Predicates

* Recursive predicates may specify permissions to
unbounded data structures

predicate list
acc(this.val) * acc(this.next) *
(this.next # null = this.next.list)

* Predicate bodies are assertions; they describe permissions
and other properties (eg this.val # 4 )

* Predicate instances are written e.g. x. 1ist and can be
used in assertions




Abstraction Functions

* Implicit Dynamic Frames (IDF) also provides abstraction
functions in its expression syntax

similar to allowing pure methods in specifications

* User-defined functions can abstract over data
function length() : int
{ next == null ? 1 : 1 + next.length() }

Function body is a (heap-dependent) expression
Functions can have assertions as pre-conditions
* We give a semantics to IDF recursive definitions




Recursive definitions: two views

* For recursive definitions, such as the predicate 1ist, we
consider two different interpretations:

* In the equirecursive interpretation, a predicate is
identified with its body

holding an instance of a predicate is “the same” as
holding the contents “all the way down”

* In the isorecursive interpretation, a predicate and its
body are differentiated from one another

However, the two can be explicitly exchanged

For predicates, this is typically achieved with ghost
fold and unfold steps in a program




[sorecursive vs Equirecursive

* The equirecursive approach is mathematically simple,
and easy to relate to a runtime semantics

typically used for formalisations of verifiers etc.
* ...not suitable for implementing a static verifier
general handling of recursion not automatable
* The isorecursive approach is used in many tools
predicates folded/unfolded to certain depths
function evaluation limited to certain depths
* This paper addresses this mismatch formally

handling isorecursion can be subtle; a prototype
encoding of functions in Chalice tool was unsound
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Equirecursive Assertions

ce:=null | x| ef|egle)|e=e|(e?e:e)
*a:=e|acc(ef)|e=a|a*a|e.P

* We seek to define a judgement H, 1, o =, a specifying
the equirecursive semantics of assertion a

H is a heap (map from field locations to values)
Mis a permission mask (set of field locations)
o is an environment (maps variables to values)
* [Parkinson/Summers’12] gives simple cases:
H,MN,oEka.%a, © 3 N,,MN,:
H,MN,oFa;, & H, N, 0 a,
Permissions are split across *




Equirecursive Assertions (2)

* What about heap-dependent expressions? x.f > 5

In general, reading from the heap without permission
might not be meaningful (races)

* We can’t locally see whether permission is held
even in an assertion such as acc(x.f) * x.f>5
* 15t Attempt:
* expressions undefined, unless overall expression holds
sufficient permissions

* Distinguish global from local permissions




Equirecursive Assertions (3)

* What about heap-dependent expressions? x.f > 5

In general, reading from the heap without permission
might not be meaningful (races)

* We can’t locally see whether permission is held
even in an assertion such as acc(x.f) * x.f > 5
* Solution:
> expressions get “optimistic” semantics

* A separate judgement H, 1, 0 =, a checks that an
assertion is framed in a state (i.e. only reads locations
to which permission is held)

* Only self-framing assertions used in contracts
overall assertion will thus be false in “bad” cases




Non-terminating predicates?

* Equirecursive semantics for predicates, given by:
H,MN, o x.P & H,N, ok Body(x.P)

But what about
predicate cyclic

* Or, even (previous example)
predicate list =
acc(this.val) * acc(this.next)
* (this.next # null = this.next.list)

when we have a cycle: this.next == this?
* Three Possible Approaches:

1. Predicate undefined

2. Predicate holds (greatest fixed point)

3. Predicate does not hold (least fixed point)

this.cyclic?




Non-terminating predicates? (2)

* Equirecursive semantics for predicates, given by:
H,MN, 0. xP < H,T, ok Body(x.P)

But what about
predicate cyclic = this.cyclic?

* Or, even (previous example)
predicate list =
acc(this.val) * acc(this.next)
* (this.next # null = this.next.list)

when we have a cycle: this.next == this?
* Our Solution: Predicate does not hold.

* We interpret predicate definitions as their least fixed-points
(an infinite instance means false)

* For verifiers this is not a restriction (describes unreachable
code)

 This also helps with functions, as shown next...




Non-terminating functions?

* Unrestricted function definitions are dangerous
function bad(): int { return 1 + bad() }

* encoding this to prover as a function is unsound

* typical approach: insist on function termination — this
guarantees existence of mathematical function

* Also, what about
function length() : int
{ next==null ? 1 : 1 + next.length() }

when this.next == this?




Non-terminating functions?

* Unrestricted function definitions are dangerous
function bad(): int { return 1 + bad() }

* Also, what about
function length() : int
{ next==null ? 1 : 1 + next.length() }

when this.next == this?

* Three Possible Approaches
1. Undefined

2. A fixed value from the underlying type, eg 1 for int.

3. An error value for each underlying type.




Non-terminating functions?

* Unrestricted function definitions are dangerous
function bad(): int { return 1 + bad() }

* Also, what about
function length() : int
{ next==null ? 1 : 1 + next.length() }

when this.next == this?

* Our Solution
3. An error value for each underlying type.

* Note difference in treatment of non-terminating expressions
and predicates




Error values for total semantics

We define naive expression semantics — regardless of access
permissions - by a judgemente U, _v.

e U,V is partial.

We add (to each type) a special value error

We define our actual semantics [lef|, , by:
Ie"H,o =V If € UH,GV
lell,,, =error if 73v (e U, v)

lell; . is total.

* As an assertion (not sub-expression) we treat error as we do
falsity




Equirecursive Semantics - concretely




Values of Equi-expressions e U v

* x U, ,0(x) null 4, ;...
°* true U, .. false U, ...
cefly v if

e.gle’) Vv if
ce=e U, true if

e=e’ U, false if

Remember:
We define naive expression semantics — regardless of
access permissions - by a judgement e U,, /v (not a total [ - J

function of e)




Values of Equi-expressionse U, ;v (2)

* x U, ,0(x) e null U, null

* true U,  true o false U, ;false
cefly v if el v & H(,f)=v

c egle) Vv if el L& eV, Vv

& Body(g)V, ;v
where o’ (this)=t, o’ (x)=V’

ce=e’ U, true if el, v & el, v forsomev
e=e’ U, false if el , v & e, v forsomevzV




Values of Equi-expressions e U, ;v

° (el?e2:e3) U, if 7?77
° (el?e2:e3) U, if 7?77

lelly s = - if 277

* Remember: We add an error value to each type, and
make |e[|,; , a total function.




Values of Equi-expressions e U, ;v (3

° (el?e2:e3) U, if ell, true and e2l, v
° (el?e2:e3) U, if ell, false and e2l, v

lell o =v if el v

lelly,, = error if 73v (el v)

Therefore, if z points to a cycle in H, o, then
zlength()[|; , = ???

z.length()=3]|,,, = ???
z.length()=37false:true||, , = ???




Values of Equi-expressions e U, ;v
°* (el?e2:e3) U, if ell, true & e2V, v
° (el?e2:e3) U, if ell, false & e2V, v

leflo =v if ev,,v

lelly . = error if 73v (e U, v)

Note that value of an expression always defined.

Therefore, if z points to a cycle in H, o, then
z.length()|l, , = error

z.length()=3||, , = error
z.length()=37false:true||, , = error




Semantics of Equi-assertions, H,Il,o =, a

*H,MN,o= e
H, N, o =, acc(e.f)

H N,oke->a
* H, M, 0K al*a2

H,N,ok eP

g ¢ ¢ ¢ 0




Semantics of Equi-assertions, H,I,o = a

*HM,oF e o e, true
H, N, o0k accle.f) < (lle]|,,,f) €N

*H,Nor,e->a < el true =H, N, 0kKa

* H, M, 0K al*a2 < H,MN1,0k,al &H, N2, 0k a2
&M= MN1*n2

*H,MN ok eP < H, N, o = Body(P)[e/this]

Therefore, if z points to a cycle, then
H, N, 0 ?=.? z.length()=3
H, N, 0 ?.? (z.length()=3? true : false)
H, N, o0 ?=? (z.length()=3 -> false)




Semantics of Equi-assertions, H,Il,o = a (3)

*H,MN,o= e & el true

* H,N,oF; acclef,q) < (lle],,f) €N

*H,Nor,e->a < ey true = H,M,0Fa

* H, M, 0K al*a2 < H,MN1,0k,al &H, N2, 0k a2
&M= MN1*n2

*H,MN ok eP < H, Vo = Body(P)[e/this]

Therefore, if z points to a cycle, then
H, N, o ¥ z.length()=3
H, N, o ¥, (z.length()=3? true : false)
H, N, 0 &, (z.length()=3 -> false) { > J
This may feel disturbing ... until we consider framing.




Framing: H,Il, 0 =4, ¢ €

* H, N, 0Fq,X * H, M, ok&;,: null
* H, N, o0&, true * H, N, ok, false
* H, N, o0&, ef if ..

* H,N 0K, egle) if ..

H,N,o IZfrmE e=¢ if ..
H, N, 0 =, el?e2:e3 if ..

H, N, 0 =,,,c e holdsif I contains permissions for all heap
accesses required for the evaluation of e (ie fore U )




Framing: H,Il, 0 =4, ¢ €

* H, N, 0Fq,X * H, M, ok&;,: null

* H, N, o0&, true * H, N, ok, false

* H, N, 0F,,:ef if H,NM,oF,,.e & (lefly,.f) €N
* H,MN,ok,, esgle) if HN,oF,, ;e & H M, 0K, €

& H, N, 0o g, Body(g)
& o’(this)=||e||H,0 & 0'(X)="e'"H,o
*H, N0k, e=¢ if H Mo, ,e & HI,oF,¢€
H, N, 0 =, €17e2:e3 if H, M, 0k, el
& ( H,Mo=el= H,N, ok, e2
& ( H,Mo* el= H,MN, o0k, €3

H, N, 0k, € holds if 1 contains permissions for all heap ( - J
accesses required for the evaluation of e (ie fore U )




Framing: H,Il, 0 =4, - a

* H, T, 0, a if [l contains permissions for all heap accesses
required to determine validity of a (ie for H, 1, 0 =, a)

* H, M, o, accle.f, q) if ...

*H,N, 0K, e->a if ...
*H, N, 0kF,,,al*a2 it ...
: H; I_I; o szrmE e-P |f

* a framese, iea e, if ahas permissions for all heap access
required to evaluate e

* A Fqme € if ..

* a is self-framing, ie =, 3, if it requires permissions for all hea
accesses required to determine whether it holds.

* FEfme 2 if ...




Framing: H, I, 0 &4,z a (2)

* H, M, 0, a if [l contains permissions for all heap accesses
required to determine validity of a (ie for H, M, 0 =, a)

* H, N, o0&, acclef) if H, M, 0, e

*H,N, 0K, e->a if H,N,0F,,e
& (H M ok,e = H,N, ok a)

*H,N,oF,al*a2 if H,N1, o0&, al & H, N2, 0k, a2
& MN=T11*MN2
* H, N, 0K, eP if H,N,o0F,,¢€ -
& H, N, ok, Body(P)[e/this]
° a framese, iear, . e, if ahas permissions for all heap
accesses required to evaluate e

* A Fq,e € if H,N,o0=a = H,MN, 0K, €

* a is self-framing, ie =, . 3, if it requires permissions for all
heap accesses required to determine whether it holds.

* FEfme 2 if H,N,0=a = H,MN,0kF;, a




Framing: H,I1, 0 =g,z a (3)

H, N, 0 Eppe accle.f, q)
H, N, o0&, e->a

H, N, 0 &, al * a2

* H,N,0F,e.P

a is self-framing, ;- a

if H,N, o0&, €

if H,M,0F;,,.e &
(H,MN,oe = H, M, 0k Q)

if H,M1,0k,,.al & H, N2 0k, a2
& M=N1*n2

if H N o Efme €
& H, M, 0, Body(P)[e/this]

if H,N,oka = H, N, 0 Fpe @

Thus, are the following assertions self-framing?

x.next == null
acc(x.next)
x.next=x.next
x.next#x.next
X.list

x.list * x.lengh=3
x.list -> x.lengh=3




Framing: H, I, 0 &4,z a (4)

H, N, 0 Ffpye acc(e.f)
H, N, o0&, e->a

H, N, 0 &, al * a2

* H,N,0F,e.P

° d t:frmE €

a is self-framing, =, - a

if H,N, o0&, €

if H,M,0F;,,.e &
(H,MN,oe = H, M, 0k Q)

if H,M1,0k,,.al & H, N2 0k, a2
& M=N1*n2

if H N o Efme €
& H, M, 0, Body(P)[e/this]

if H,N,oka = H, N, 0 Eqpe €
if H,MN,oka = H, N, 0 Fpe @

Thus, are the following assertions self-framing?
x.next == null not self-framing

acc(x.next)
x.next=x.next
x.next#x.next
X.list

x.list * x.lengh=3
x.list -> x.lengh=3

self-framing

not self-framing
not self-framing
not self-framing
self-framing
badly formed
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Equi-recursive Hoare Logic

Hoare triples: . {a,} s {a,}
Implicitly require pre/post-conditions to be self-framing (in the equi-
recursive sense, ie +; . a)

Some rules are standard, e.g. “skip” statement:

Fe {...} skip{...} (skipE)

Usual rule of consequence, using equi-entailment:

(consE)

Fe{a.} s {a,}




Equi-recursive Hoare Logic (2)

Hoare triples: . {a,} s {a,}
Implicitly require pre/post-conditions to be self-framing (in the equi-
recursive sense, ie +; . a)

Some rules are standard, e.g. “skip” statement:

-, {a} skip {a}  KPE/

Usual rule of consequence, using equi-entailment:
a,Fra; F{as}si{a,} a,Fca,

- {al} < {az} (consE)




Equi-recursive Hoare Logic (3)

* The assignment rule

e { } X:=e {a} (varAssE)

* Field Assignment:

(fldAssE)
o {..lx.f:=y {..}
* Sequence:
” (seqE)
¢ {a}S {a }
o (framekE)

--{a*al} s {a*a2}




Equi-recursive Hoare Logic (4)

* The assignment rule

ale/x] Efr €
- {ale/x]} x:=e {a}

(varAssE)

* Field Assignment:

(fldAssE)
- {xznull*acc(x,f)} x. £:=y {acc(x,f)*x.f=y}

* Sequence:
Fe{als {a'}  H{a'}s’ {a”}

e {a} s {a”}

* Frame: e {al} s {a2} mods(s)n FV(a)=2 Ffrme @ (frameE)
- {a*al} s {a*a2}

(seqE)
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Soundness - summary

* We extend assertions to talk about threads

* We define operational semantics for concurrency, and fork-j
— some novel approaches

* We prove soundness of equi-Hoare logic wrt operational
semantics
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[sorecursive Semantics

Isorecursive assertions differ in two ways:

Instead of predicate instances x.P, we have only permissions to
predicates, written acc(x.P)

We add assertions of the form unfolding x.PIN B

Functions and Predicates have Pre-conditions

Having permission to a predicate does not permit directly
using its contents

these can be accessed by fold/unfold statements

or, in assertions, using unfolding (temporary unfold)

Notion of (self-)framing differs correspondingly
e acc(x.list)* x.next == null %
acc(x.list)*(unfolding x.list in x.next == null) v




Well-formed definitions

Function definitions must satisfy conditions:
fore Errmi Thoay (POdy framed if precondition true)

HN ok fe = lfooq I, # error (termination)

Iso-recursive version of “length” function:
function length() : int
requires this.list {
unfolding this.list in
next == null ? 1 : 1 + next.length()

}

The function length is well-defined accord to the criteria from above.

Note that checking above criteria does not imply the need to actually
evaluate || f, 4, [lso

any termination proof is sufficient (unspecified)




[sorecursive Hoare Logic

* Derivation rules for Hoare triples: -, {A,} s {A,}

we implicitly require the pre/post-conditions to be self-framing (in the
iso-recursive sense)

* Some rules are standard, e.g. “skip” statement:

- {...} skip{...} (skipl)

* Usual rule of consequence, using iso-entailment:

F {A}s{A,} (consl)




[sorecursive Hoare Logic

* Derivation rules for Hoare triples: -, {A,} s {A,}

we implicitly require the pre/post-conditions to be self-framing (in the
iso-recursive sense)

* Some rules are standard, e.g. “skip” statement:

- {A} skip {A} (skipl)

* Usual rule of consequence, using iso-entailment:
AE Ay H {AFS{A AL A,

F {A}s{A,} (consl)




[sorecursive Hoare Logic

* Some rules need slightly careful treatment:

* We must check that the program only reads locations to
which permissions are held:

FH {A[E/X]}x :=E{A] (assl)

* Frame rule, based on that of separation logic, but only for self-
framing additional assertions:

mods(s) N FV(A,)=0
H {AFA} s {A*AS) (fram




[sorecursive Hoare Logic

* Some rules need slightly careful treatment:

* We must check that the program only reads locations to
which permissions are held:

ALE/X] =, E
- {A[E/x]} x :=E {A}

(assl)

* Frame rule, based on that of separation logic, but only for self-
framing additional assertions:

=i A3 H {A} s {A} mods(s) N FV(A,)=J
F {A AL} s {A*AS)

(fram




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

- {Body(x.P)} fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

- {Body(x.P)} fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

A’=Body(x . P)

H{ A }fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

A’=Body(x . P)

H{ A }fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

* For example, if we knew x.val=3 before fold,
how do we preserve this information after folding x.1ist ?

A’=Body(x . P)

H{ A }fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

A’=Body(x . P)

H{ A }fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

* We allow its preservation with an unfolding assertion

A’=Body(x . P)

H{ A }fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

* We allow its preservation with an unfolding assertion

A’=Body(x . P)

H{ A*B}fold x.P{ acc(x.P) }




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

* We allow its preservation with an unfolding assertion

A’=Body(x . P)

H{ A’*B}fold x.P{ acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement

For “fold”, we considered first the simplest rule

But, this does not allow us to preserve extra information about the st
framed by the body

We allow its preservation with an unfolding assertion

But, not all such B might be framed, here

A’=Body(x . P)

H{ A’*B}fold x.P{ acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement

* For “fold”, we considered first the simplest rule

* But, this does not allow us to preserve extra information about the st
framed by the body

* We allow its preservation with an unfolding assertion
* But, not all such B might be framed, here
what if B depends on other heap locations, too?

A’=Body(x . P)

H{ A’*B}fold x.P{ acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement

For “fold”, we considered first the simplest rule

But, this does not allow us to preserve extra information about the st
framed by the body

We allow its preservation with an unfolding assertion

But, not all such B might be framed, here
We allow an additional assertion A, on both sides:

A’=Body(x . P)

H{ A’*B}fold x.P{ acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement

For “fold”, we considered first the simplest rule

But, this does not allow us to preserve extra information about the st
framed by the body

We allow its preservation with an unfolding assertion

But, not all such B might be framed, here
We allow an additional assertion A, on both sides:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{ acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement

For “fold”, we considered first the simplest rule

But, this does not allow us to preserve extra information about the st
framed by the body

We allow its preservation with an unfolding assertion

But, not all such B might be framed, here
We allow an additional assertion A, on both sides:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A* acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement

For “fold”, we considered first the simplest rule

But, this does not allow us to preserve extra information about the st
framed by the body

We allow its preservation with an unfolding assertion

But, not all such B might be framed, here
We allow an additional assertion A, on both sides:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A* acc(x.P)*(unfolding x.P in B)}




[sorecursive “fold” statement ()

* So, from the fold Hoare rule,

= A A’=Body(x . P)

H{A*A’*B} fold x.P{A* acc(x.P)*(unfolding x.P in B)}
* we obtain

E ot A A’=Body(x .List)

- {A*A*x.length=3}
fold x.List
{A* acc(x.P)*(unfolding x.P in x . Length=3)}




[sorecursive “unfold” statement

* The fold statement is

= A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* The unfold statement is

i1 } unfold x.P { ... }




[sorecursive “unfold” statement (2)

* The fold statement is

= A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}
* The unfold statement is

= A A’=Body(x.List)

+ {A* acc(x.P) *(unfolding x.P in B)} unfold x.P {A*A’*B}
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Erasure: Iso --> Equi (assertions)

* We define an erasure function €A) from equi-recursive
assertions A to iso-recursive (a)

* |ldea: replace unfolding expressions with bodies, replace
permissions to predicates with instances

. e.g.
€ acc(x.list)*
(unfolding x.list in x.next == null) »
= x.list * x.next == null




Erasure: Iso -> Equi expressions

- L) = ..

o Lnull) = ...

o {true) = ...

- (false) = ...

- Lef) = ...

- Leg(e)) = ...

c Le=e') = ...
e1?e2:e3) = ...

« {unfoldinge.Pine’) = ...

« acc (e.f,q)) = ..

« {acc(e.P)) = ...

- (a*a’) = ...

« fe->a) = ...




Erasure: Iso -> Equi expressions (2)

« L) =x

« £null) = null

« {true) = true

« (false) = false

« Lef) = Kep f

© Keg(e)) = £e) g L))

+ Le=¢e') = (e) =Ke)
e1?e2:e3) = (e1) ? e2) : (e3)

« {unfolding e.Pine’) = e’y

« {acc(ef,q)) = acc( £e) .f,q)

« facc(e.P)) = ey .P

« Lara’) = (&) * K@)

« Le->a) = (e > (a)




Erasure: Iso -> Equi assertions

» We also define an erasure function A) from equi-recursive
assertions A to iso-recursive assertions (a)

* |ldea: replace unfolding expressions with bodies, replace
permissions to predicates with instances

° e.g.
€ acc(x.list)*
(unfolding x.list in x.next == null) »

= x.list * x.next == null

* Properties of erasure
Expression/assertion semantics are preserved
Framedness/self-framing are preserved
Entailment is preserved (iso to equi notions)




Erasure: Iso --> Equi (statements)

We extend erasure to statements £S)

Idea: replace fold and unfold with “skip”,
apply erasure to all expressions in the program

° e.g.
((unfold x.list; x.val := 4; fold x.list))

skip; x.val := 4; skip

Derivable Hoare triples preserved by erasure:

HAAIS{AY = { LAY } LSy {KA) )

Thus obtain soundness of iso-Hoare Logic! ©




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* In the equi-world:
{A* A’* B} fold x.P {A* acc(x.P)*(unfolding x.P in B)}




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program:
{A*A’*B} {fold x.P) {A*acc(x.P)*(unfolding x.P in B)}




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program:
{ A* A’*B } skip { A* acc(x.P)*(unfolding x.P in B) }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program, and the assertions
{ A* A’*B } skip { A* acc(x.P)*(unfolding x.P in B)




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program, and the assertions
{ {A*A’*B) } skip { {A* acc(x.P)*(unfolding x.P in B) ) }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..
{ {A* A’*B) } skip { {A* acc(x.P)*(unfolding x.P in B) ) }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..

{ {A* A’*B)Y } skip{ {A* acc(x.P) ) * {B) }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program and the assertions

{ {A* A’*B) } skip { {A* acc(x.P) ) * B }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..

{ {A*A’*B) } skip{ €AY *x.P* {B) }




[sorecursive “fold” statement

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..

{ {A*A'*B) }skip{ €AY *x.P* {B) }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..

{ €AY * LA ) * {BY }skip{ €AY *x.P* {B)}




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..

{ {A) * LA ) * {BY }skip{ A *x.P* {B)}




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program.. and the assertions..

{ €AY * {Body(x.P)) * {BY }skip{ €A *x.P * {B) }




Sanity: erasure of iso-fold Hoare Triple

* Recall isorecursive Hoare Logic rule for “fold”:

Erms A A’=Body(x . P)

H{A*A’*B} fold x.P{A*acc(x.P)*(unfolding x.P in B)}

* Apply erasure to the program and the assertions

{ €AY * {Body(x.P)» * {B) }skip{ €AY *x.P* {B)}

* The only difference between pre/postconditions is <<Body(x . P) >>
on one side, and x.P on the other

* In the equi-recursive semantics, the predicate and its body are equiva
thus, we can derive this triple




Conclusions and Future Work

* We presented equirecursive and isorecursive..
expression/assertion semantics
Axiomatic semantics (Hoare Logics)
... and shown their relationships

* ECOOP’2013 paper also discusses many design decisions and

delicate points, along with proofs.
Requires more kinds of permissions.

* We would like to formally connect our axiomatic semantics
with the (Boogie) encoding used in Chalice tool

* We would like to extend to the full logic
(eg a=>a rather than e=>a)

* We would like to adopt a more semantic approach to
framedness.




The End.. any questions?
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