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§  How to ensure software quality? 

§  Classical program logic 

§  Separation logic 

§  The next challenge: concurrent software 

§  Permission-based separation logic 

§  Functional properties of concurrent programs 

§  Reasoning about GPU kernels 

OUTLINE OF THIS LECTURE 



SOFTWARE QUALITY 
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Peter Naur 
1968 
Working on the 
Software crisis 
report 
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SOFTWARE QUALITY IS A CHALLENGE 

Mars Climate Orbiter: 
Crash due to different units 

ICT problems Dutch gouvernment 

Unreachable 
banks because 
of network 
problems 

Toyata Prius: software errors 
due to lack of testing 
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OUR APPROACH 

Software        Box it        Check the components 
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Use logic to describe behaviour of program components 

§  Precondition: what do you know in advance? 

Example: increaseBy(int n)  

requires n > 0 

§  Postcondition: what holds afterwards 

Example: increaseBy(int n)  

x increased by n 

ensures x == old(x) + n 
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SPECIFYING PROGRAM BEHAVIOUR 

Bob Floyd 
(1936 – 2001) 

Tony Hoare 
(1934 -  ) 

Dates 
back to 
the 60-ies 

Notation: {P}S{Q} 

Hoare triples 

Verification of Concurrent Systems 

precondition 
postcondition 

6 



19/06/2014 

HOARE TRIPLES FOR ALL COMPONENTS 

{P1}S1{Q1} 

{P2}S2{Q2} 

{P3}S3{Q3} 

{P4}S4{Q4} 

{P5}S5{Q5} 

{P6}S6{Q6} 

{P7}S7{Q7} {P8}S8{Q8} 
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HISTORY OF PROGRAM VERIFICATION 

Floyd  -  Hoare 

Krakatoa 

My thesis 
(around 2000) State-of-the-art 

Dijkstra 
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PROGRAM LOGIC 

Bob Floyd 
1936 - 2001 
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§  Precondition: property that should be satisfied when method is called – 
otherwise correct functioning of method is not guaranteed 

§  Postcondition: property that method establishes – caller can assume 
this upon return of method   

§  Method specification is contract between implementer and caller of 
method. 

§  Caller promises to call method only in states 
in which precondition holds 
§  Implementer guarantees postcondition will  
be established 

PRE- AND POSTCONDITIONS 
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§  {P}S{Q} 

§  Due to Tony Hoare (1969)  

§  Meaning: if P holds in initial state s, and execution of S in s terminates 
in state s',  then Q holds in s’ 

§  Formally: 

 {P}S{Q} = ∀s.P(s) ∧ (S,s) è s’ ⇒ Q(s’) 

HOARE TRIPLES 

1934 - 
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§  Hoare triples: specify behaviour of methods 

§  How to guarantee that methods indeed respect this behaviour? 

§  Collection of derivation rules to reason about Hoare triples 

§  Rules defined by induction on the program structure 

§  Proven sound w.r.t. program semantics 

§  Here: a very simple language, but exists for more complicated 
languages 

HOARE LOGIC 
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AXIOMS 

{P}Skip{P}                                                       
 

{P[v:= e]}v := e{P} 

Skip 

Ass. 
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STATEMENT DECOMPOSITION 

 {P}S1{Q}    {Q}S2{R}  

{P}S1;S2{R} 

 {P ∧ b}S1{Q}     {P ∧ ¬b}S2{Q}  

{P}if (b) S1 else S2 {Q} 
 

Seq 

If 
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EXAMPLE 

{a ≥ 0 ∧ n ≥ 0} k:= 0; z := 1; while (k < n) {z := z * a; k := k + 1;} {z = a^n}        

{a ≥ 0 ∧ n ≥ 0} k:= 0; z := 1 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }        
{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 } while (k < n) {z := z * a; k := k + 1;} {z = a^n}        Seq 

Seq 

{a ≥ 0 ∧ n ≥ 0} k:= 0 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 }        

{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 } z := 1 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }        

{a ≥ 0 ∧ n ≥ 0 ∧ 0 = 0} k:= 0 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 }        
a ≥ 0 ∧ n ≥ 0 ⇒ a ≥ 0 ∧ n ≥ 0 ∧ 0 = 0       

Ass 

(*) 

{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ 1 = 1} z := 1 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }        

a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ⇒ a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ 1 = 1 

(*) 

Ass 

a ≥ 0 ∧ n ≥ 0 ∧ k = 0 [k := 0] =  
a ≥ 0 ∧ n ≥ 0 ∧ 0 = 0 

a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 [z := 1] =  
a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ 1 = 1  

(*): precondition strengthening 
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RULES OF CONSEQUENCE 

 P ⇒ P'     {P'}S{Q}  

{P}S{Q} 
 

 {P}S{Q}     Q ⇒ Q'  

{P}S{Q'} 
 

Pre. Str. 

Post. Weak. 
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.               

§  I called loop invariant 

§  Preserved by every iteration of the loop 

§  Can in general not be found automatically 

§  Notation in our language 
invariant I; 
while (b) S 

LOOPS 

{I ∧  b}S{I}  

{I}while (b) S {I ∧ ¬b} 
 

Loop 

Verification of Concurrent Systems 19/06/2014 17 



{ a ≥ 0 ∧ n ≥ 0 }  
k := 0; 
z := 1; 
{ a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 } 
while (k < n) 

 {   z := z * a; 
  k := k + 1; 
 } 

{ z = a^n } 
 
What should be the loop invariant? 

 

 

EXAMPLE: METHOD POWER 

Verification of Concurrent Systems 

z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ k ≥ 0 
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{z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ !(k = n)} z := z * a; k := k + 1 {z = a^k ∧ k ≤ n ∧ a ≥ 0}        
{z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ !(k = n)} z := z * a {z = a^(k +1) ∧ k + 1 ≤ n ∧ a ≥ 0 }        

EXAMPLE CONTINUED 

{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 } while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}        
Pre. Str. 
a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 ⇒ z = a^k ∧ k ≤ n ∧ a ≥ 0 

{z = a^k ∧ k ≤ n ∧ a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}        
Post. Weak. 

{z = a^k ∧ k ≤ n ∧ a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ k = n }        
z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ k = n ⇒ z = a^n        

Loop 
Seq 

{z = a^(k + 1) ∧ k + 1 ≤ n ∧ a ≥ 0} k := k + 1 {z = a^k ∧ k ≤ n ∧ a ≥ 0}        
Ass 

{z*a = a^(k+1) ∧ k + 1 ≤ n ∧ a ≥ 0} z := z * a {z = a^(k +1) ∧ k + 1 ≤  n ∧ a ≥ 0}        
z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ !(k = n) ⇒ z*a = a^(k +1) ∧ a ≥ 0 ∧ k + 1 ≤ n        

Ass 

Pre. Str. 
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TOOL SUPPORT FOR PROGRAM VERIFICATION 

Rustan Leino 
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Many intermediate predicates can be computed 

 

§  Weakest liberal precondition wp(S,Q) 

§  The weakest predicate such that {wp(S,Q)}S{Q} 

§  Due to Edsger Dijkstra (1975) 

§  Calculus allows to compute weakest 
preconditions of sequential code 

§  Proof obligations: preconditions imply weakest 
liberal preconditions 

§  Loop invariants still given explicitly  

A CALCULATIONAL APPROACH 

1932 - 
2002 
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Preferably also counter example: why does program not have desired 
behaviour 

19/06/2014 

AUTOMATION 

Program with 
desired 
properties 

Apply weakest 
precondition  

rules  

Proof 
obligations in 
first-order logic 

Automatic 
first-order 

logic provers 

√ 
X 
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§  Idealised language 

§  No side-effects in conditions 

§  No pointers 

§  No multi-threading 

Separation logic 

§  Reasoning about pointers 

§  Natural extension to multi-threading 

LIMITATIONS OF CLASSICAL PROGRAM LOGIC 
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SEPARATION LOGIC 

John Reynolds 
1935 - 2013 
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class C { 
 
  D f; 
  D g; 
} 
 
class D { 
  int x := 0; 
} 
 
 

ensures c.g.x = 0; 
method m() { 
  c := new C; 
  d := new D; 
  c.f := d; 
  c.g := d; 
  update_x(c.f, 3); 
} 
 
ensures d.x = v; 
method update_x(d, v) { 
  d.x := v; 
} 

THE CHALLENGE OF POINTER PROGRAMS 

Verification of Concurrent Systems 

This should not 
be verified! 
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§  State distinguishes heap and store 
§  Heap contains dynamically allocated data that exists during run-time of 

program  
(Object-oriented program: the objects are stored on the heap) 

§  Store (or call stack) contains data related to method call (parameters, 
local variables) 

§  Heap accessed by pointers 
§  Locations on heap can be aliased 
§  Main idea: assertions about state can be decomposed into assertions 

about disjoint substates 

SEPARATION LOGIC 
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Syntax extension of predicate logic: 

φ ::= e.f → e’ | φ à  φ | φ ‒à  φ | ...  

where e  is an expression, and f a field 

Meaning:  

§  e.f →  e’ – heap contains location pointed to by e.f, containing the 
value given by the meaning e’    

§  φ1 à  φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2, 
respectively 

§  φ1 ‒à  φ2 – if heap extended with part that satisfies φ1, composition 
satisfies φ2  

Monotone w.r.t. extensions of the heap 

INTUITIONISTIC SEPARATION LOGIC 
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Suppose x is an object in the store, with 
fields f and g 

h0 = [ s(x.f) : 0]    h1 = [ s(x.g) : 1] 

 

EXAMPLES INTUITIONISTIC SEPARATION LOGIC 

0 

1 

h0 

h1 

p s, h |= p p s, h |= p 
x.f → 0 x.f → 0 à  

(x.f → 0 ∨ x.g → 1) 
x.g → 1 (x.f → 0 ∨ x.g → 1) à  

(x.f → 0 ∨ x.g → 1) 
x.f→ 0 à x.g → 1 x.f → 0 à x.g → 1à  

(x.f → 0 ∨ x.g → 1) 
 
 

x.f → 0 à x.f → 0  x.f → 0 à true 
x.f → 0 ∨ x.g → 1 

x

h0 ⊆ h 
 

h1 ⊆ h 
 

h0àh1 ⊆ h 

false 
 

false 
 h0 ⊆ h 

 h0 ⊆ h or  
h1 ⊆ h 

 

h0àh1 ⊆ h 

h0àh1 ⊆ h 

x 

s  h  

Verification of Concurrent Systems 

f 

g 
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class Box { 

int cnts; 

 
requires this.cnts → _; 
ensures this.cnts → o; 
void set (int o) { 

 this.cnts = o; 
 return null; 

} 
 
 
 

 
 
 
 
requires this.cnts → X; 
ensures this.cnts → X ∧  result = X; 
int get() { 
 return this.cnts; 
} 
 
 
} 

EXAMPLE: CLASS BOX 

requires P; 
ensures Q; 
void m(..) { ... } 
alternative notation for 
{P} method m() {Q} 

Verification of Concurrent Systems 

Compare with specifications in 
classical Hoare logic 
requires true; 
ensures this.cnts == o; 

19/06/2014 29 



§  Reasoning about programs with pointers 
§  Two interpretations e.f →  v  

§  Field e.f contains value v 

§  Permission to access field e.f 

A field can only be accessed or written if e.f →  _ holds! 
§  Implicit disjointness of parts of the heap allows reasoning about 

(absence) of aliasing 
 x.f →  _  à y.f →  _ implicitly says that x and y are not aliases 

§  Local reasoning 
§  only reason about heap that is actually accessed by code fragment 

§  rest of heap is implicitly unaffected: frame rule 

 

 

ADVANTAGES OF SEPARATION LOGIC 
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where X and Y are logical variables 

§  For simplicity v is typically assumed to be a simple (unqualified) 
expression 

§  Any assignment e.f := e’.g can be split up in x := e’.g; e.f := x 

UPDATES AND LOOKUP OF THE HEAP 

{e.f → _} e.f := v {e.f → v} 

{X = e ∧ X.f → Y}v := e.f {X.f → Y ∧ v =  Y} 

Verification of Concurrent Systems 

Logical variables 
needed to handle 
x := x.f 
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{x.f → Y}x := x.f {x.f → Y ∧ x =  Y} is not correct! 

 

 

 

 

 

 

But this is: 

{X = e ∧ X.f → Y}v := e.f {X.f → Y ∧ v =  Y} 

 

WHY IS THE LOGICAL VARIABLE NEEDED? 

Verification of Concurrent Systems 

x f x f x f 

f 
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. 

 

 

 

 

 

 

 

 

where R does not contain any variable that is modified by S. 

 

FRAME RULE 

 {P}S{Q}  

{P à R}S{Q à R} 
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class C { 
 
  D f; 
  D g; 
} 
 
class D { 
  int x := 0; 
} 
 
 

method m() { 
  c := new C; 
  d := new D; 
  c.f := d; 
  c.g := d; 
  update_x(c.f, 3); 
} 
 
ensures d.x = v; 
method update_x(d, v) { 
  d.x := v; 
} 

THE CHALLENGE OF POINTER PROGRAMS 

Verification of Concurrent Systems 

Empty frame 

c.f → _ à c.g → _ 
does not hold 
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ABSTRACT PREDICATES 

Matthew Parkinson 
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§  Abstract predicates represent and encapsulate state, with appropriate 
operations 

§  Abstract predicates are scoped 

§  Code verified in scope can use name and body 

§  Code verified out of scope can only use name 

§  Explicit open/close axiom to open definition of abstract predicate, 
provided it is in scope 

α(x1, ..,xn) = P in scope |- α(e1, .., en) ⇒ P[x1 := e1,.. xn := en] 

SPECIFYING DATA STRUCTURES 

⇒ 
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§  Predicate list 

§  pred list (i)= (i = null) ∨ ∃ Node j, int a. i.val → a à i.next → j à list j 

recognises list structure 

§  Predicate list: 

§  pred list (ϵ, i) = (i = null) 

§  pred list ((a.α), i) = ∃Node j. i.val → a à i.next → j à list α j 

relates list content with abstract list value 

§  Operations like append and reverse in specifications can be defined 
on abstract type 

 

ABSTRACT PREDICATES ON LIST 

Verification of Concurrent Systems 

class Node { 
 int val; 
 Node next; 

} 
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§  tree i = (i = null) ∨ ∃Node j, k. i.left → j à i.right → k à tree j à tree k 

recognises tree structure 

Is this a tree? 

 

 

 

 

 

ABSTRACT PREDICATE ON TREES 

right 

left 

YES NO 

right 

left 

left 

right 

right 

right 
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CONCURRENCY: THE NEXT CHALLENGE 

19/06/2014 Verification of Concurrent Systems 39 
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THE FUTURE OF COMPUTING IS MULTICORE 
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Multicore Cell 
Processor 

Multiple threads of execution 
 
Coordination problem shifts 
from hardware to software 

Single core processors:  
The end of Moore’s law  
 
 
 
 
 
 
 
 
 
Solution: 
Multi-core processors   
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MULTIPLE THREADS CAUSE PROBLEMS 

shared memory 

read v 

write v 

§  Order? 
§  More threads? 

 

Possible consequences: 
errors such as data races caused 
lethal bugs as in Therac-25 
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Chalice 
Verifast 

19/06/2014 

VERIFICATION OF MULTITHREADED PROGRAMS 

Owicki  -  Gries 

Jones 

Concurrency 
(multithreading) 

VerCors 
O’Hearn 

2004 
separation logic 

Floyd  -  Hoare 

Krakatoa 

Dijkstra 

Verification of Concurrent Systems 

Scientific
Organizers

• Marieke Huisman, U Twente
• Einar Johnsen, UiO Oslo

Reliability of Concurrent  
and Distributed Software 

Workshop: 6 -‐ 9 May 2014, Leiden, the Netherlands

Poster design: SuperNova Studios . NL

The Lorentz Center is an international 
center in the sciences. Its aim is to 

organize workshops for scientists in an 
atmosphere that fosters collaborative 

work, discussions and interactions.
For registration see: www.lorentzcenter.nl
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OUR APPROACH 
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requires true 

ensures x is the last element in the list 

void addToList(Elem x) { 

 // code  

}  

19/06/2014 Verification of Concurrent Systems 

SPECIFICATIONS IN A CONCURRENT SETTING 

Any other thread 
might invalidate 
this! 

‘x is in the list’ 
cannot even be 
guaranteed! 

Except when no 
other thread can 
update the list 

x 

44 



SOME HISTORY: REASONING ABOUT THREADS 

Susan Owicki 
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§  For each thread: give a complete proof outline 

§  Verify each thread w.r.t. the proof outline 

§  For each annotation in the proof outline, show that it cannot be 
invalidated by any other thread: interference freedom 

OWICKI-GRIES METHOD (1975) 

David Gries 
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{x = 0 ∧ y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 ∧ y = 2} 

Proven correct by proving correctness of following: 

§  proof outlines 

§  {x = 0} x := x + 1 {x = 1} x := x + 1 {x = 2} 

§  {y = 0} y := y + 1 {y = 1} y := y + 1 {y = 2} 

§  interference freedom   

§  {x = i ∧ y = j}y := y + 1 {x = i} (for i = 0, 1, 2, j = 0,1) 

§  {x = j ∧ y = i}x := x + 1 {y = i} (for i = 0, 1, 2, j = 0,1) 

EXAMPLE OWICKI-GRIES 

2 x 2 x 3 proof obligations!! 
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§  Number of proof obligations easily blows up 

§  Non-compositional 

§  Proof outlines need to be complete: annotations after each atomic step 

§  Sometimes weakening of annotations necessary to be able to prove 
interference freeness 

 

DRAWBACKS OWICKI-GRIES 
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How to prove correctness of 

{x = 0} x := x + 1 || x := x + 2 {x = 3} 

(assuming complete assignments are atomic) 

 

Following proof outlines need to be proven  

correct and free of interference 

§  {x = 0 ∨ x = 2} x := x + 1 {x = 1 ∨ x = 3} 

§  {x = 0 ∨ x = 1} x := x + 2 {x = 2 ∨ x = 3} 

EXAMPLE WEAKENING OF ASSERTIONS 
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{x = a + b & a == 0 & b == 0} 

{x == a + b & a == 0}     || {x == a + b & b == 0} 

<x := x + 1;>                  || <x := x + 2;> 

<a := 1;> // ghost                   || <b :=2;> //ghost 

{x == a + b & a == 1}     || {x == a + b & b == 2} 

{x == a + b & a == 1 & b == 2} 

{x == 3} 

 

ALTERNATIVE APPROACH: WITH GHOST CODE 
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§  Jones (1980) 

§  Compositional  

§  For each thread, specify  

§  what it assumes from other threads 

§  what it guarantees to other threads 

 

RELY-GUARANTEE METHOD 

rely ∨ guar1 ⇒ rely2 
rely ∨ guar2 ⇒ rely1 

guar1 ∨ guar2 ⇒ guar 
〈relyi, guari〉 : {Pi} Si {Qi}, i = 1,2 
〈rely, guar〉 : {P} S1 || S2 {Q} 

Rely: what transitions may 
other threads make 
Guarantee: what transitions 
may current thread make 
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AVOIDING DATA RACES 

John Boyland 
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§  Separation logic for sequential Java (Parkinson) 

§  Concurrent Separation Logic (O’Hearn) 

§  Permissions (Boyland) 

                  Permission-based Separation Logic for Java 

Verification of Concurrent Systems 

RECIPE FOR REASONING ABOUT JAVA 
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where no variable free in Pi or Qi is changed in Sj (if i ≠ j) 

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT 

{P1}S1{Q1}     .......... {Pn}Sn{Qn} 
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn}  
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{x = 0}x := x + 1; x := x + 1{x = 2}          {y = 0} y := y + 1; y := y + 1 {y = 2} 

{x = 0 à y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 à y = 2} 

 

EXAMPLE 

No interference between the threads 
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§  Simultaneous reads not allowed 

§  Number of parallel threads is fixed 

WHY IS THIS NOT SUFFICIENT? 

1. Distinguish between read and write accesses 
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§  Permission to access a variable 

§  Value between 0 and 1 

§  Full permission 1 allows to change the variable 

§  Fractional permission in (0, 1) allows to inspect a variable 

§  Points-to predicate decorated with a permission 

§  Global invariant: for each variable, the sum of all the permissions in 
the system is never more than 1 

§  Permissions can be split and combined 

PERMISSIONS 
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Syntax extension of predicate logic: 

φ ::= e.f → v | φ à  φ | φ ‒à  φ | ...  

Meaning:  

§  e.f →  v – e.f contains value v and thread has access right π on e.f 

§  φ1 à  φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2, 
respectively 

§  φ1 ‒à  φ2 – if heap extended with part that satisfies φ1, 
composition satisfies φ2  

PERMISSION-BASED SEPARATION LOGIC 

π 

π 

Notation: 
e.f → v     PointsTo(e.f, π, v) 
∃v. e.f → v  Perm(e.f, π) 

π 
π 
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{PointsTo(x,1,0) à Perm(n, ½)}     {PointsTo(y,1,0) à Perm(n, ½)} 
  x := x + n; x := x + n         y := y + n; y := y + n 

{PointsTo(x,1,2*n) à Perm(n, ½)}       {PointsTo(y,1,2*n) à Perm(n, ½)}          
{PointsTo(x,1,0) à PointsTo(y,1,0) à Perm(n,1)} 

   x := x + n; x := x + n || y := y + n; y := y + n 

{PointsTo(x,1,2*n) à PointsTo(y,1,2*n) à Perm(n,1)}} 
 

 

 

EXAMPLE 

Shared variable is only read 
No interference between the threads 

Permissions on n equally 
distributed over threads 

Perm(x,1) = Perm(x, ½) à Perm(x, ½) 
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§  Simultaneous reads not allowed 

§  Number of parallel threads is fixed 

WHY IS THIS NOT SUFFICIENT? 

2. Dynamic thread creation 
 
Thread specifications indicate how 
permissions should be distributed 

1. Distinguish between read and write accesses 
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EXAMPLE 

t1                        

x := new List; 
x.val := ...; 
t2 := new T; 
t2.y := x; 
fork t2; 
read x.val; 
... 
 
 
join t2; 
x.val := ...; 

run(){ 
... 
read y.val 
...  
} 

val 
 
 
 

next 

t1.x.val 

t2.y.val 

t2 

11/2 

1/2 

class List { 
 int val; List next; 
  ... 

} 
 
class T { 

 List y; 
 void run() { ... } 

} 
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requires y.val → _ ; 
ensures y.val → _ ; 
void run() {....} 

 

§  Forking thread has to give up required permissions 

§  Joining thread gains back ensured permissions 

What happens if run is specified as follows: 
requires y.val → _ ; 
ensures y.val → _ ; 
void run() {....} 

 

 

SPECIFICATION FOR RUN METHOD IN T2 

1/2 

1/2 

1 
1 
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EXAMPLE 

t1                        

x := new List; 
x.val := ...; 
t2 := new T; 
t2.y := x; 
fork t2(); 
read x.val; 
... 
 
 
join t2; 
read x.val; 
x.val := ...; 

run(){ 
... 
read y.val 
...  
} 

val 
 
 
 

next 

t1.x.val 

t2.y.val 

t2 

10 

1 

class List { 
 int val; List next; 
  ... 

} 
 
class T { 

 List y; 
 void run() { ... } 

} 

NOT 
ALLOWED! 

Now the 
permissions 
are back 
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THREAD TERMINATION 

  t 

join t  

t1 

1

1

join t   

t2 

1/2 

1/2 
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§  Extension of property language Join(e, π) 

§  Permission to pick up fraction π after thread e has terminated 

§  Thread that creates thread t obtains Join-permission Join(t, 1) 

§  Join-permission treated as any other permission: can be transferred 
and split 

Join(e, π) à⎯à Join(e, π/2) à Join(e, π/2)  

 

 

JOIN TOKEN 
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§  Precondition fork = precondition run 

§  Which permissions are transferred from creating to the newly 
created thread 

§  Postcondition run = postcondition join 

§  Which permissions are released by the terminating thread, and can 
be reclaimed by another thread 

§  Join only terminates when run has terminated 

§  Specification for run final, it can only be changed by extending 
definition of predicates preFork and postJoin 

RULES FOR FORK AND JOIN 
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class Thread { 

 pred preFork = true; 

 group postJoin<perm p> = true; 

  

 requires preFork; 
 ensures postJoin<1>; 
 void run() { 
  return null 
 } 

} 

FORK, JOIN AND THREAD 

{t.preFork} fork t {join(t, 1)} 

 

{join(t, π)} join t {t.postJoin(π)} 
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class Fib { 
int number; 
 
void init(n) { 

 this.number := n; 
 } 

 
void run() { 

 .. 
 } 

} 
 

EXAMPLE: CLASS FIB 

Leonardo di Pisa/ 
Fibonacci 
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pred preFork = number → _;  
group postJoin<perm p> = number → _; 
 
requires preFork;  
ensures postJoin<1>; 
void run() { 

 if (! (this.number < 2))  
 {  f1 = new Fib; f1.init(number -1);  
  f2 = new Fib; f2.init(number - 2); 
    fork f1; fork f2; join f1; join f2;  

        this.number := f1.number + f2.number } 
 else this.number := 1; 

} 

FIB’S RUN METHOD 

1
p
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requires preFork;  
void run() { 

 if (! (this.number < 2))  
 {  f1 = new Fib; f1.init(number -1); f2 = new Fib; f2.init(number - 2); 
  {Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)} 
  [fold preFork (2x)] 
  {f1.preFork à f2.preFork à Perm(number, 1)} 
    fork f1;  
  {join(f1, 1) à f2.preFork à Perm(number, 1)} 

         fork f2;  
  {join(f1, 1) à join(f2, 1) à Perm(number, 1)} 

         join f1; join f2;  
  {f1.postJoin à f2.postJoin à Perm(number, 1)} 
  [unfold postJoin (2x)] 
  {Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}

 this.number := f1.number + f2.number  
  [close postJoin] 
  {this.PostJoin}} 
 else this.number := 1; 

} 
ensures postJoin(1); 

PROOF OUTLINE 
pred preFork = number → _;  
group postJoin<perm p> = number → _; 

1
p
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MULTIPLE JOINS: PLOTTER 

Sampler 

Filter A 

Filter B 

Plotter 
Raw input 
data 

Sampled 
data Filtered data 

Print 
on  

screen 

Filter A and Filter B both join Sampler 
 
Plotter joins Filter A and Filter B 

19/06/2014 Verification of Concurrent Systems 71 



requires … ensures … 
void main(MVList lst) { 
{S*A*B*P} [abbreviates preFork – joinToken for Sampler, Filter A/B,  Plotter] 
Sampler<len> smp = new Sampler; smp.init(data); smp.fork(); 
{ Join(smp,1) * A * B * P } 
AFilter<len> af = new AFilter; af.init(data, smp); af.fork(); 
{ Join(smp,1/2) * Join(af,1) * B * P } 
BFilter<len> bf = new BFilter; bf.init(data, smp); bf.fork();  
{ Join(af,1) * Join(bf,1) * P } 
Plotter<len> plt = new Plotter; plt.init(data,af,bf); plt.fork(); 
{ Join(plt,1) } 
plt.join(); 
{ plt.postJoin<1> } 
} } 

MAIN METHOD OF PLOTTER APPLICATION 
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REASONING ABOUT LOCKS 

Clément Hurlin 

19/06/2014 Verification of Concurrent Systems 73 



§  Lock x acquired and released with lock x and unlock x 

§  Each lock has associated resource invariant 

§  Lock acquired          resource invariant lend to thread 

§  Lock released          resource invariant taken back from thread 

§  Class Object contains predicate 

pred inv = true; 

§  In rules: if I is resource invariant of x 

{true} lock x {I} 

{I}unlock x{true} 

§  This is sound only for single-entrant locks 

RESOURCE INVARIANT – CLASSICAL APPROACH 

{true} 
lock x; 
{I} 
lock x; 
{I à I} 
... 
 
Resource I has 
been duplicated! 
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§  Add extra predicates to logic 

§  φ ::= e.f → v | φ à  φ | φ ‒à  φ |  

   Lockset(S) | S contains e  

§  Lockset (S)   - S  is the multiset of locks held by current thread 

§  S contains E  - multiset S contains e 

  

EXTRA PREDICATES 

π

Multiset: set where you count the number of 
occurrences of each element 
For multiset S: x.x.S ≠ x.S 
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{Lockset(S) à ¬(S contains u) à u.initialized} 
lock u 

{Lockset(u.S) à u.inv} 

{Lockset(u.S) }lock u{Lockset(u.u.S)} 

RULES FOR LOCKING 

Will be 
explained 
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RULES FOR UNLOCKING 

{Lockset(u.S) à u.inv}unlock u{Lockset(S)} 

{Lockset(u.u.S) }unlock u{Lockset(u.S)} 
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class Account { 
int balance; 
pred inv = this.balance → _ ; 

requires initialized à unlocked(S);  ensures Lockset(S); 
void deposit(int x) {  

 {initialized à unlocked(S)}  
 lock this;  
 {Lockset(S · this) à inv}  
 this.balance := this.balance + x; 
 {Lockset(S · this) à inv} 
 unlock this; 
 {Lockset(S)} 

} 

EXAMPLE 

1

e.unlocked(e′) = Lockset(e′) à ¬ (e′ contains e) 

open and close of 
predicate 

19/06/2014 Verification of Concurrent Systems 78 



Specification for method run becomes: 

 
requires preFork à Lockset(nil);  
ensures postJoin<1>; 

 method run() { 
  return null; 
 } 

NEW THREADS HAVE EMPTY LOCKSET 

Empty multiset 
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requires Lockset(S) à S contains this à inv; 
ensures Lockset(S) à inv; 
void wait(); 
 
requires Lockset(S) à S contains this; 
ensures Lockset(S); 
void notify(); 

SPECIFICATIONS FOR WAIT AND NOTIFY 
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§  Locks created dynamically 

§  Initialisation of resource invariant necessary  

§  Object can only be used as lock when its resource invariant has been 
initialised 

§  Special annotation command commit to mark that resource invariant is 
initialised 

§  Default position for commit: end of constructor 

LOCK INITIALISATION 
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§  Class ThreadPool contains Vector v to store threads 

§  Construction of ThreadPool gives Perm(v, 1) 

§  Resource invariant inv = Perm(v, 1) 

§  Constructor body: 

§  Initialise v to empty Vector 

§  commit: Perm(v, 1) stored inside lock 

§  Now lock on ThreadPool can be acquired and released by threads, to 
add and remove threads to threadpool 

§  Only when thread has lock on ThreadPool, does it have permission to 
access v 

LOCK INITIALISATION EXAMPLE 

19/06/2014 Verification of Concurrent Systems 82 



§  Add extra predicates to logic 

§  φ ::= e.f → v | φ à  φ | φ ‒à  φ |  

   Lockset(S) | S contains e | e.fresh | e.initialized 

§  Lockset (S)   - S  is the multiset of locks held by current thread 

§  S contains e  - multiset S contains e 

§  e.fresh    - e’s resource invariant not yet initialized   

§  e.initialized   - e’s resource invariant initialized  

Some of these atomic propositions can be freely duplicated, some cannot
  

EXTRA PREDICATES 

π
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§  Copyable properties: persistent state properties 

Once established, they hold forever 

§  Non-copyable properties: transient state properties 

Properties that hold temporarily 

§  Axiom for copyable properties (to use in proofs): 

(G ∧ F) ‒à (G à F) 

§  This implies 

F ‒à (F à F) 

i.e., formula can be duplicated freely 

COPYABLE VERSUS NON-COPYABLE 
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§  Lockset (S)   -  

§  S contains e  -  

§  e.fresh    -  

§  e.initialized   -  

COPYABLE VERSUS NON-COPYABLE 

  non-copyable 

  non-copyable 

  copyable 

  copyable 
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Now we can formulate the rules for new and commit 

RULES FOR LOCK CREATION AND COMMIT 

{true} 
v := new C 

{∃X.v → X à X.f1 → null à ... àX.fn → à v.fresh} 

{Lockset(S) à u.inv à u.fresh}  
commit u 

{Lockset(S) à ¬(S contains u) à u.initialized} 

19/06/2014 Verification of Concurrent Systems 86 



WORK IN PROGRESS 

FUNCTIONAL VERIFICATION OF CONCURRENT 
PROGRAMS 
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Marina Zaharieva – 
Stojanovski 



How to prove: 

{x == 0} 

<x := x + 1;> || <x := x + 1;> 

{x == 2} 

 

Problem: 

{x == 0} 

< x := x + 1;> 

{x == 1} 

unstable: assertions can be made invalid by other threads 

EXAMPLE: PARALLEL INCREASE 
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Ghost code solution: 
{x = a + b & a == 0 & b == 0} 

{x == a + b & a == 0}  || {x == a + b & b == 0} 
<x := x + 1;>               || <x := x + 1;> 
<a := 1;> // ghost                   || <b :=1;> //ghost 
{x == a + b & a == 1}  || {x == a + b & b == 1} 

{x == a + b & a == 1 & b == 1} 
{x == 2} 

Our approach: 
Maintain abstract history of updates 



class Counter{ 
    int data; 
    Lock l;   

 resource_inv = exists v. PointsTo(data, 1, v); 
 
requires true; 
ensures  true; 
void increase(){ 
    l.lock();         // obtain PointsTo(data, 1, v); 
     data ++; 
    l.unlock();       // loose PointsTo(data, 1, v + 1); 
    // now we don’t know anything about data anymore 
   } 
} 
 

Verification of Concurrent Systems 

AS A JAVA-LIKE PROGRAM 

Client: 
    
   c = new Counter(0); 
   fork t1;   //t1 calls c.increase(); 
   fork t2;   //t2 calls c.increase(); 
   join t1;  
   join t2; 
 
   // Is  c.data  == 2 ? 

Permission to 
read and update 
data 

Needed: 
A specification of 
increase that 
records the update 
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§  Perm(x,1)     -    permission to access x 

§  Init(x, {v})     -    initial value of x 

§  Hist(x, 1, H)   -    history of all updates/actions to x 

Verification of Concurrent Systems 

SEPARATE PERMISSION AND VALUE 

[Separation Rule] 
PointsTo(x, 1, v) *-* Perm(x, 1) * Init(x, {v}) * Hist(x, 1, {}); 
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History H is process algebra term composed of user-defined actions 
(use ACP) 
 
Examples 

action a<int x>(int k) = \old(x) + k; 

action b<list l>(int e) = cons(\old(l), e); 

action c<int k>(int w) = w; 
 

Verification of Concurrent Systems 

A HISTORY OF ACTIONS 
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class Counter { 
   int data; 
   Lock l;   

 //resource_inv = Perm(data, 1); 
 
    //action a<int x> () = \old(x) + 1; 
 
requires Hist(data, p, H); 
ensures Hist(data, p, H.a); 
void increase(){ 
   l.lock();  /* start a */ data ++; /* record a */ l.unlock();  

 } 
} 
 Verification of Concurrent Systems 

COUNTER SPECIFICATION 

Record LOCAL 
changes in the history 
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Verification of Concurrent Systems 

HISTORY MANIPULATION 

[SplitHist Rule] 
Hist(x, p, H) *-* Hist(x, p/2, H1) * Hist(x, p/2, H2); 
             H = H1 || H2 

§  Forking a thread: mark with special synchronisation action (s, s) 
     H = H.s || s 

§  Current thread: H.s 
§  New thread: s 

§  Joining a thread: continue with the parallel composition of the local 
histories 
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To reason about the value in data, we need: 
§  Init(data, V) predicate 
§  Full  Hist(data, 1, H)   token 

After the client of the Counter joins both threads, we can 

reinitialize the History: 
Init(data, {0}) * Hist(data, 1, st1. st2 || st1. a() || st2. a()) *-* 

 Init(data, {2}) * Hist(data, 1, {}) 

 

Verification of Concurrent Systems 

CLIENT-SIDE REASONING 

The only possible value for data is 2 
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class Counter{ 
//action a<int x> (int n) = \old(x) + n; 
//action b<int x> (int n) = \old(x) * n; 
requires Hist(data, p, H); 
ensures  Hist(data, p, H.a(n)); 
void increase(int n){ 
    l.lock(); data = data + n; l.unlock();        
   } 
requires Hist(data, p, H); 
ensures  Hist(data, p, H.b(m)); 
void increase(int m){ 
    l.lock(); data = data * m; l.unlock();        
   } 
} 
 Verification of Concurrent Systems 

NON-DETERMINISTIC BEHAVIOUR 

Client: 
    
   c = new Counter(0); 
   fork t1;   //t1: c.increase(4); 
   fork t2;   //t2: c.multiply(4); 
   join t1;  
   join t2; 
 
   // What is  c.data? 
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Reinitialisation of  the History: 
Init(data, {0}) * Hist(data, 1, st1. st2 || st1. a(4) || st2. b(4)) *-* 

Init(data, {0}) * Hist(data, 1, a(4).b(4) + b(4).a(4)) *-* 
Init(data, {4,16}) * Hist(data, 1, {}) 

 

Extensions 

§  Histories for multiple variables 
§  Data structures 
 

Verification of Concurrent Systems 

COMPUTING POSSIBLE VALUES 
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§  Class invariant: property about reachable object state 

§  Typical: relation between object’s fields 

§  In sequential setting: breaking allowed within method boundaries 

§  In concurrent setting: breaking allowed when violation cannot be 
observed 

§  Explicit pack and unpack operations 
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CLASS INVARIANTS IN CONCURRENT SETTING 

{holds(v.I, 1)} unpack(v.I){unpacked(v.I, 1) ∗ v.I}  
 

{v ̸= null ∗ PointsTo(v.f,1,w) ∗ \forall∗ (I∈inv(V),v.f∈fp(v.I). unpacked(v.I,π))}  
v.f = w;  

{PointsTo(v.f,1,w) ∗ \forall∗ (I∈inv(V),v.f∈fp(v.I). unpacked(v.I,π))} 
 

{unpacked(v.I, 1) ∗ v.I} pack(v.I) {holds(v.I, 1)} 
Usage: 

{holds(v.I, π) ∗ v.I} c {F } 
{holds(v.I, π)} c {F } 
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§  Originally for graphics 

§  More and more used also for other applications 

§  Single-Instruction-Multiple-Thread model (similar to Vector machines) 

§  Host (typically CPU) invokes kernel on separate device 

§  Kernel: 

§  Many threads 

§  Execute all same code 

§  But on different data 

§  OpenCL: extended subset of C, platform-independent 

GPU KERNELS 
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_kernel void square( _global float* input,  

          _global float* output) { 

 int i = get_global_id(0); 

 output[i] = input[i] * input[i];  

} 

 

 

VECTOR ADDITION AS OPENCL KERNEL 

__global 
Where are the 
arrays stored 
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§  Barrier: all threads block until all threads have reached (the same) 
barrier 

§  This is the only moment where you can make an assumption about the 
state of another thread 

§  Main problem: barrier divergence 

§  Example of possible barrier divergence: 

if b  

 BARRIER(…); 

else 

 BARRIER(…); 

SYNCHRONISATION WITHIN A KERNEL 

Only okay if  
all threads satisfy 
b or not b 
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_kernel void square( _global float* input, _global float* output) { 

 int i = get_global_id(0); 

 output[i] = input[i] * input[i];  

 barrier(CLK_GLOBAL_MEM_FENCE);  

 output[(i+1)%wg_size]=output[(i+1)%wg_size] * input[i]; 

} 

BARRIER EXAMPLE 
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§  What happens when host invokes a kernel? 

§  Relation between kernel and thread 

§  What happens at the barrier? 

§  What should be specified? 

§  What should be verified? 

Verification of Concurrent Systems 

REASONING ABOUT KERNELS 
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Kernel Specification:  
Global Memory Resources:  

Write permission on all entries of output 
Read permission on all entries of input 

Shared Memory Resources: - 
Thread Specification: 

Resources: 
Perm(output[i], 1) ★ Perm(input[i], π) 

Precondition: - 
Postcondition: 

output[(i + 1) % wg_size] = input[i] * input[(i + 1) % wg_size]^2 

EXAMPLE SPECIFICATION 

 
  _kernel void square( _global float* input,  
                                   _global float* output) { 
    int i = get_global_id(0); 

  output[i] = input[i] * input[i];  
  barrier(CLK_GLOBAL_MEM_FENCE);  
  output[(i+1)%wg_size]= 
      output[(i+1)%wg_size] * input[i]; 

  } 

Verification of Concurrent Systems 

Provided by host 

Global proof obligation: 
All threads together use no 
more resources than 
available in the kernel 
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Kernel Specification:  
Global Memory Resources:  

Write permission on all entries of output 
Read permission on all entries of output 

Shared Memory Resources: - 

Barrier Specification: 
Resources:  

Exchange write permission on output [i] for  

 write permission on output[(i+1) % wg_size] 

Keep read permission on input[i] 

Precondition: output[i] = input[i] * input[i] 

Postcondition: output[(i + 1)%wg_size] = input[(i + 1)%wg_size]^2 

 

EXAMPLE 
BARRIER SPECIFICATION 

Verification of Concurrent Systems 

Global proof obligation: 
All permissions available in kernel 

 
  _kernel void square( _global float* input,  
                                   _global float* output) { 
    int i = get_global_id(0); 

  output[i] = input[i] * input[i];  
  barrier(CLK_GLOBAL_MEM_FENCE);  
  output[(i+1)%wg_size]= 
      output[(i+1)%wg_size] * input[i]; 

  } 

Global proof obligation: 
Barriers correctly 
transfer knowledge 
about state 
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§  Threads respects their thread specification 

§  Kernel resources are sufficient to provide each thread necessary 
global resources 

§  Local resources are properly distributed over threads 

§  Kernel precondition implies universal quantification of thread 
precondition 

§  Barriers only redistribute permissions that are in the kernel 

§  Universal quantification of barrier precondition implies universal 
quantification of barrier postcondition 

§  Universal quantification of thread postcondition implies kernel 
postcondition 

 

Verification of Concurrent Systems 

PROOF OBLIGATIONS 

Extra layer:  
workinggroup specifications  
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§  Software quality remains a challenge 

§  Classical Hoare logic-based techniques are becoming more and more 
powerful 

§  Next challenge: verification of concurrent software 

§  Separation logic and permissions 

§  Permission transfer whenever threads synchronise 

§  Verification of functional properties 

§  Also applicable to other concurrent programming paradigms 

SUMMARY 

19/06/2014 Verification of Concurrent Systems 108 

More information?  
Want to try it out yourself? 
Go to: http://www.utwente.nl/vercors 


