
VERCORS:
VERIFICATION OF CONCURRENT SYSTEMS

MARIEKE HUISMAN
UNIVERSITY OF TWENTE, NETHERLANDS

§  How to ensure software quality?

§  Classical program logic

§  Separation logic

§  The next challenge: concurrent software

§  Permission-based separation logic

§  Functional properties of concurrent programs

§  Reasoning about GPU kernels

OUTLINE OF THIS LECTURE

SOFTWARE QUALITY

19/06/2014 Verification of Concurrent Systems 3

Peter Naur
1968
Working on the
Software crisis
report

19/06/2014 Verification of Concurrent Systems 4

SOFTWARE QUALITY IS A CHALLENGE

Mars Climate Orbiter:
Crash due to different units

ICT problems Dutch gouvernment

Unreachable
banks because
of network
problems

Toyata Prius: software errors
due to lack of testing

19/06/2014

OUR APPROACH

Software Box it Check the components
Verification of Concurrent Systems 5

Use logic to describe behaviour of program components

§  Precondition: what do you know in advance?

Example: increaseBy(int n)

requires n > 0

§  Postcondition: what holds afterwards

Example: increaseBy(int n)

x increased by n

ensures x == old(x) + n

19/06/2014

SPECIFYING PROGRAM BEHAVIOUR

Bob Floyd
(1936 – 2001)

Tony Hoare
(1934 -)

Dates
back to
the 60-ies

Notation: {P}S{Q}

Hoare triples

Verification of Concurrent Systems

precondition
postcondition

6

19/06/2014

HOARE TRIPLES FOR ALL COMPONENTS

{P1}S1{Q1}

{P2}S2{Q2}

{P3}S3{Q3}

{P4}S4{Q4}

{P5}S5{Q5}

{P6}S6{Q6}

{P7}S7{Q7} {P8}S8{Q8}

Verification of Concurrent Systems 7

19/06/2014

HISTORY OF PROGRAM VERIFICATION

Floyd - Hoare

Krakatoa

My thesis
(around 2000) State-of-the-art

Dijkstra

Verification of Concurrent Systems 8

PROGRAM LOGIC

Bob Floyd
1936 - 2001

Verification of Concurrent Systems 19/06/2014 9

§  Precondition: property that should be satisfied when method is called –
otherwise correct functioning of method is not guaranteed

§  Postcondition: property that method establishes – caller can assume
this upon return of method

§  Method specification is contract between implementer and caller of
method.

§  Caller promises to call method only in states
in which precondition holds
§  Implementer guarantees postcondition will
be established

PRE- AND POSTCONDITIONS

Verification of Concurrent Systems 19/06/2014 10

§  {P}S{Q}

§  Due to Tony Hoare (1969)

§  Meaning: if P holds in initial state s, and execution of S in s terminates
in state s', then Q holds in s’

§  Formally:

 {P}S{Q} = ∀s.P(s) ∧ (S,s) è s’ ⇒ Q(s’)

HOARE TRIPLES

1934 -

Verification of Concurrent Systems 19/06/2014 11

§  Hoare triples: specify behaviour of methods

§  How to guarantee that methods indeed respect this behaviour?

§  Collection of derivation rules to reason about Hoare triples

§  Rules defined by induction on the program structure

§  Proven sound w.r.t. program semantics

§  Here: a very simple language, but exists for more complicated
languages

HOARE LOGIC

Verification of Concurrent Systems 19/06/2014 12

AXIOMS

{P}Skip{P}

{P[v:= e]}v := e{P}

Skip

Ass.

Verification of Concurrent Systems 19/06/2014 13

STATEMENT DECOMPOSITION

 {P}S1{Q} {Q}S2{R}

{P}S1;S2{R}

 {P ∧ b}S1{Q} {P ∧ ¬b}S2{Q}

{P}if (b) S1 else S2 {Q}

Seq

If

Verification of Concurrent Systems 19/06/2014 14

EXAMPLE

{a ≥ 0 ∧ n ≥ 0} k:= 0; z := 1; while (k < n) {z := z * a; k := k + 1;} {z = a^n}

{a ≥ 0 ∧ n ≥ 0} k:= 0; z := 1 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }
{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 } while (k < n) {z := z * a; k := k + 1;} {z = a^n} Seq

Seq

{a ≥ 0 ∧ n ≥ 0} k:= 0 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 }

{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 } z := 1 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }

{a ≥ 0 ∧ n ≥ 0 ∧ 0 = 0} k:= 0 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 }
a ≥ 0 ∧ n ≥ 0 ⇒ a ≥ 0 ∧ n ≥ 0 ∧ 0 = 0

Ass

(*)

{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ 1 = 1} z := 1 {a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }

a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ⇒ a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ 1 = 1

(*)

Ass

a ≥ 0 ∧ n ≥ 0 ∧ k = 0 [k := 0] =
a ≥ 0 ∧ n ≥ 0 ∧ 0 = 0

a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 [z := 1] =
a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ 1 = 1

(*): precondition strengthening

Verification of Concurrent Systems 19/06/2014 15

RULES OF CONSEQUENCE

 P ⇒ P' {P'}S{Q}

{P}S{Q}

 {P}S{Q} Q ⇒ Q'

{P}S{Q'}

Pre. Str.

Post. Weak.

Verification of Concurrent Systems 19/06/2014 16

.

§  I called loop invariant

§  Preserved by every iteration of the loop

§  Can in general not be found automatically

§  Notation in our language
invariant I;
while (b) S

LOOPS

{I ∧ b}S{I}

{I}while (b) S {I ∧ ¬b}

Loop

Verification of Concurrent Systems 19/06/2014 17

{ a ≥ 0 ∧ n ≥ 0 }
k := 0;
z := 1;
{ a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 }
while (k < n)

 { z := z * a;
 k := k + 1;
 }

{ z = a^n }

What should be the loop invariant?

EXAMPLE: METHOD POWER

Verification of Concurrent Systems

z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ k ≥ 0

19/06/2014 18

{z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ !(k = n)} z := z * a; k := k + 1 {z = a^k ∧ k ≤ n ∧ a ≥ 0}
{z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ !(k = n)} z := z * a {z = a^(k +1) ∧ k + 1 ≤ n ∧ a ≥ 0 }

EXAMPLE CONTINUED

{a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 } while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}
Pre. Str.
a ≥ 0 ∧ n ≥ 0 ∧ k = 0 ∧ z = 1 ⇒ z = a^k ∧ k ≤ n ∧ a ≥ 0

{z = a^k ∧ k ≤ n ∧ a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^n}
Post. Weak.

{z = a^k ∧ k ≤ n ∧ a ≥ 0} while (!(k = n)) {z := z * a; k := k + 1;} {z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ k = n }
z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ k = n ⇒ z = a^n

Loop
Seq

{z = a^(k + 1) ∧ k + 1 ≤ n ∧ a ≥ 0} k := k + 1 {z = a^k ∧ k ≤ n ∧ a ≥ 0}
Ass

{z*a = a^(k+1) ∧ k + 1 ≤ n ∧ a ≥ 0} z := z * a {z = a^(k +1) ∧ k + 1 ≤ n ∧ a ≥ 0}
z = a^k ∧ k ≤ n ∧ a ≥ 0 ∧ !(k = n) ⇒ z*a = a^(k +1) ∧ a ≥ 0 ∧ k + 1 ≤ n

Ass

Pre. Str.

Verification of Concurrent Systems 19/06/2014 19

TOOL SUPPORT FOR PROGRAM VERIFICATION

Rustan Leino

Verification of Concurrent Systems 19/06/2014 20

Many intermediate predicates can be computed

§  Weakest liberal precondition wp(S,Q)

§  The weakest predicate such that {wp(S,Q)}S{Q}

§  Due to Edsger Dijkstra (1975)

§  Calculus allows to compute weakest
preconditions of sequential code

§  Proof obligations: preconditions imply weakest
liberal preconditions

§  Loop invariants still given explicitly

A CALCULATIONAL APPROACH

1932 -
2002

Verification of Concurrent Systems 19/06/2014 21

Preferably also counter example: why does program not have desired
behaviour

19/06/2014

AUTOMATION

Program with
desired
properties

Apply weakest
precondition

rules

Proof
obligations in
first-order logic

Automatic
first-order

logic provers

√
X

Verification of Concurrent Systems 22

§  Idealised language

§  No side-effects in conditions

§  No pointers

§  No multi-threading

Separation logic

§  Reasoning about pointers

§  Natural extension to multi-threading

LIMITATIONS OF CLASSICAL PROGRAM LOGIC

Verification of Concurrent Systems 19/06/2014 23

SEPARATION LOGIC

John Reynolds
1935 - 2013

Verification of Concurrent Systems 19/06/2014 24

class C {

 D f;
 D g;
}

class D {
 int x := 0;
}

ensures c.g.x = 0;
method m() {
 c := new C;
 d := new D;
 c.f := d;
 c.g := d;
 update_x(c.f, 3);
}

ensures d.x = v;
method update_x(d, v) {
 d.x := v;
}

THE CHALLENGE OF POINTER PROGRAMS

Verification of Concurrent Systems

This should not
be verified!

19/06/2014 25

§  State distinguishes heap and store
§  Heap contains dynamically allocated data that exists during run-time of

program
(Object-oriented program: the objects are stored on the heap)

§  Store (or call stack) contains data related to method call (parameters,
local variables)

§  Heap accessed by pointers
§  Locations on heap can be aliased
§  Main idea: assertions about state can be decomposed into assertions

about disjoint substates

SEPARATION LOGIC

Verification of Concurrent Systems 19/06/2014 26

Syntax extension of predicate logic:

φ ::= e.f → e’ | φ à φ | φ ‒à φ | ...

where e is an expression, and f a field

Meaning:

§  e.f → e’ – heap contains location pointed to by e.f, containing the
value given by the meaning e’

§  φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2,
respectively

§  φ1 ‒à φ2 – if heap extended with part that satisfies φ1, composition
satisfies φ2

Monotone w.r.t. extensions of the heap

INTUITIONISTIC SEPARATION LOGIC

Verification of Concurrent Systems 19/06/2014 27

Suppose x is an object in the store, with
fields f and g

h0 = [s(x.f) : 0] h1 = [s(x.g) : 1]

EXAMPLES INTUITIONISTIC SEPARATION LOGIC

0

1

h0

h1

p s, h |= p p s, h |= p
x.f → 0 x.f → 0 à

(x.f → 0 ∨ x.g → 1)
x.g → 1 (x.f → 0 ∨ x.g → 1) à

(x.f → 0 ∨ x.g → 1)
x.f→ 0 à x.g → 1 x.f → 0 à x.g → 1à

(x.f → 0 ∨ x.g → 1)

x.f → 0 à x.f → 0 x.f → 0 à true
x.f → 0 ∨ x.g → 1

x

h0 ⊆ h

h1 ⊆ h

h0àh1 ⊆ h

false

false
 h0 ⊆ h

 h0 ⊆ h or
h1 ⊆ h

h0àh1 ⊆ h

h0àh1 ⊆ h

x

s h

Verification of Concurrent Systems

f

g

19/06/2014 28

class Box {

int cnts;

requires this.cnts → _;
ensures this.cnts → o;
void set (int o) {

 this.cnts = o;
 return null;

}

requires this.cnts → X;
ensures this.cnts → X ∧ result = X;
int get() {
 return this.cnts;
}

}

EXAMPLE: CLASS BOX

requires P;
ensures Q;
void m(..) { ... }
alternative notation for
{P} method m() {Q}

Verification of Concurrent Systems

Compare with specifications in
classical Hoare logic
requires true;
ensures this.cnts == o;

19/06/2014 29

§  Reasoning about programs with pointers
§  Two interpretations e.f → v

§  Field e.f contains value v

§  Permission to access field e.f

A field can only be accessed or written if e.f → _ holds!
§  Implicit disjointness of parts of the heap allows reasoning about

(absence) of aliasing
 x.f → _ à y.f → _ implicitly says that x and y are not aliases

§  Local reasoning
§  only reason about heap that is actually accessed by code fragment

§  rest of heap is implicitly unaffected: frame rule

ADVANTAGES OF SEPARATION LOGIC

Verification of Concurrent Systems 19/06/2014 30

where X and Y are logical variables

§  For simplicity v is typically assumed to be a simple (unqualified)
expression

§  Any assignment e.f := e’.g can be split up in x := e’.g; e.f := x

UPDATES AND LOOKUP OF THE HEAP

{e.f → _} e.f := v {e.f → v}

{X = e ∧ X.f → Y}v := e.f {X.f → Y ∧ v = Y}

Verification of Concurrent Systems

Logical variables
needed to handle
x := x.f

19/06/2014 31

{x.f → Y}x := x.f {x.f → Y ∧ x = Y} is not correct!

But this is:

{X = e ∧ X.f → Y}v := e.f {X.f → Y ∧ v = Y}

WHY IS THE LOGICAL VARIABLE NEEDED?

Verification of Concurrent Systems

x f x f x f

f

19/06/2014 32

.

where R does not contain any variable that is modified by S.

FRAME RULE

 {P}S{Q}

{P à R}S{Q à R}

Verification of Concurrent Systems 19/06/2014 33

class C {

 D f;
 D g;
}

class D {
 int x := 0;
}

method m() {
 c := new C;
 d := new D;
 c.f := d;
 c.g := d;
 update_x(c.f, 3);
}

ensures d.x = v;
method update_x(d, v) {
 d.x := v;
}

THE CHALLENGE OF POINTER PROGRAMS

Verification of Concurrent Systems

Empty frame

c.f → _ à c.g → _
does not hold

19/06/2014 34

ABSTRACT PREDICATES

Matthew Parkinson

Verification of Concurrent Systems 19/06/2014 35

§  Abstract predicates represent and encapsulate state, with appropriate
operations

§  Abstract predicates are scoped

§  Code verified in scope can use name and body

§  Code verified out of scope can only use name

§  Explicit open/close axiom to open definition of abstract predicate,
provided it is in scope

α(x1, ..,xn) = P in scope |- α(e1, .., en) ⇒ P[x1 := e1,.. xn := en]

SPECIFYING DATA STRUCTURES

⇒

Verification of Concurrent Systems 19/06/2014 36

§  Predicate list

§  pred list (i)= (i = null) ∨ ∃ Node j, int a. i.val → a à i.next → j à list j

recognises list structure

§  Predicate list:

§  pred list (ϵ, i) = (i = null)

§  pred list ((a.α), i) = ∃Node j. i.val → a à i.next → j à list α j

relates list content with abstract list value

§  Operations like append and reverse in specifications can be defined
on abstract type

ABSTRACT PREDICATES ON LIST

Verification of Concurrent Systems

class Node {
 int val;
 Node next;

}

19/06/2014 37

§  tree i = (i = null) ∨ ∃Node j, k. i.left → j à i.right → k à tree j à tree k

recognises tree structure

Is this a tree?

ABSTRACT PREDICATE ON TREES

right

left

YES NO

right

left

left

right

right

right

Verification of Concurrent Systems 19/06/2014 38

CONCURRENCY: THE NEXT CHALLENGE

19/06/2014 Verification of Concurrent Systems 39

Doug Lea

THE FUTURE OF COMPUTING IS MULTICORE

19/06/2014 Verification of Concurrent Systems 40

Multicore Cell
Processor

Multiple threads of execution

Coordination problem shifts
from hardware to software

Single core processors:
The end of Moore’s law

Solution:
Multi-core processors

19/06/2014

MULTIPLE THREADS CAUSE PROBLEMS

shared memory

read v

write v

§  Order?
§  More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

Verification of Concurrent Systems 41

Chalice
Verifast

19/06/2014

VERIFICATION OF MULTITHREADED PROGRAMS

Owicki - Gries

Jones

Concurrency
(multithreading)

VerCors
O’Hearn

2004
separation logic

Floyd - Hoare

Krakatoa

Dijkstra

Verification of Concurrent Systems

Scientific
Organizers

• Marieke Huisman, U Twente
• Einar Johnsen, UiO Oslo

Reliability of Concurrent
and Distributed Software

Workshop: 6 -‐ 9 May 2014, Leiden, the Netherlands

Poster design: SuperNova Studios . NL

The Lorentz Center is an international
center in the sciences. Its aim is to

organize workshops for scientists in an
atmosphere that fosters collaborative

work, discussions and interactions.
For registration see: www.lorentzcenter.nl

42

19/06/2014

OUR APPROACH

Verification of Concurrent Systems 43

requires true

ensures x is the last element in the list

void addToList(Elem x) {

 // code

}

19/06/2014 Verification of Concurrent Systems

SPECIFICATIONS IN A CONCURRENT SETTING

Any other thread
might invalidate
this!

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can
update the list

x

44

SOME HISTORY: REASONING ABOUT THREADS

Susan Owicki

19/06/2014 Verification of Concurrent Systems 45

§  For each thread: give a complete proof outline

§  Verify each thread w.r.t. the proof outline

§  For each annotation in the proof outline, show that it cannot be
invalidated by any other thread: interference freedom

OWICKI-GRIES METHOD (1975)

David Gries

19/06/2014 Verification of Concurrent Systems 46

{x = 0 ∧ y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 ∧ y = 2}

Proven correct by proving correctness of following:

§  proof outlines

§  {x = 0} x := x + 1 {x = 1} x := x + 1 {x = 2}

§  {y = 0} y := y + 1 {y = 1} y := y + 1 {y = 2}

§  interference freedom

§  {x = i ∧ y = j}y := y + 1 {x = i} (for i = 0, 1, 2, j = 0,1)

§  {x = j ∧ y = i}x := x + 1 {y = i} (for i = 0, 1, 2, j = 0,1)

EXAMPLE OWICKI-GRIES

2 x 2 x 3 proof obligations!!

19/06/2014 Verification of Concurrent Systems 47

§  Number of proof obligations easily blows up

§  Non-compositional

§  Proof outlines need to be complete: annotations after each atomic step

§  Sometimes weakening of annotations necessary to be able to prove
interference freeness

DRAWBACKS OWICKI-GRIES

19/06/2014 Verification of Concurrent Systems 48

How to prove correctness of

{x = 0} x := x + 1 || x := x + 2 {x = 3}

(assuming complete assignments are atomic)

Following proof outlines need to be proven

correct and free of interference

§  {x = 0 ∨ x = 2} x := x + 1 {x = 1 ∨ x = 3}

§  {x = 0 ∨ x = 1} x := x + 2 {x = 2 ∨ x = 3}

EXAMPLE WEAKENING OF ASSERTIONS

19/06/2014 Verification of Concurrent Systems 49

{x = a + b & a == 0 & b == 0}

{x == a + b & a == 0} || {x == a + b & b == 0}

<x := x + 1;> || <x := x + 2;>

<a := 1;> // ghost || <b :=2;> //ghost

{x == a + b & a == 1} || {x == a + b & b == 2}

{x == a + b & a == 1 & b == 2}

{x == 3}

ALTERNATIVE APPROACH: WITH GHOST CODE

19/06/2014 Verification of Concurrent Systems 50

§  Jones (1980)

§  Compositional

§  For each thread, specify

§  what it assumes from other threads

§  what it guarantees to other threads

RELY-GUARANTEE METHOD

rely ∨ guar1 ⇒ rely2
rely ∨ guar2 ⇒ rely1

guar1 ∨ guar2 ⇒ guar
〈relyi, guari〉 : {Pi} Si {Qi}, i = 1,2
〈rely, guar〉 : {P} S1 || S2 {Q}

Rely: what transitions may
other threads make
Guarantee: what transitions
may current thread make

19/06/2014 Verification of Concurrent Systems 51

AVOIDING DATA RACES

John Boyland

19/06/2014 Verification of Concurrent Systems 52

§  Separation logic for sequential Java (Parkinson)

§  Concurrent Separation Logic (O’Hearn)

§  Permissions (Boyland)

 Permission-based Separation Logic for Java

Verification of Concurrent Systems

RECIPE FOR REASONING ABOUT JAVA

19/06/2014 53

where no variable free in Pi or Qi is changed in Sj (if i ≠ j)

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT

{P1}S1{Q1} {Pn}Sn{Qn}
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn}

19/06/2014 Verification of Concurrent Systems 54

{x = 0}x := x + 1; x := x + 1{x = 2} {y = 0} y := y + 1; y := y + 1 {y = 2}

{x = 0 à y = 0}x := x + 1; x := x + 1 || y := y + 1; y := y + 1 {x = 2 à y = 2}

EXAMPLE

No interference between the threads

19/06/2014 Verification of Concurrent Systems 55

§  Simultaneous reads not allowed

§  Number of parallel threads is fixed

WHY IS THIS NOT SUFFICIENT?

1. Distinguish between read and write accesses

19/06/2014 Verification of Concurrent Systems 56

§  Permission to access a variable

§  Value between 0 and 1

§  Full permission 1 allows to change the variable

§  Fractional permission in (0, 1) allows to inspect a variable

§  Points-to predicate decorated with a permission

§  Global invariant: for each variable, the sum of all the permissions in
the system is never more than 1

§  Permissions can be split and combined

PERMISSIONS

19/06/2014 Verification of Concurrent Systems 57

Syntax extension of predicate logic:

φ ::= e.f → v | φ à φ | φ ‒à φ | ...

Meaning:

§  e.f → v – e.f contains value v and thread has access right π on e.f

§  φ1 à φ2 – heap can be split in disjoint parts, satisfying φ1 and φ2,
respectively

§  φ1 ‒à φ2 – if heap extended with part that satisfies φ1,
composition satisfies φ2

PERMISSION-BASED SEPARATION LOGIC

π

π

Notation:
e.f → v PointsTo(e.f, π, v)
∃v. e.f → v Perm(e.f, π)

π
π

19/06/2014 Verification of Concurrent Systems 58

{PointsTo(x,1,0) à Perm(n, ½)} {PointsTo(y,1,0) à Perm(n, ½)}
 x := x + n; x := x + n y := y + n; y := y + n

{PointsTo(x,1,2*n) à Perm(n, ½)} {PointsTo(y,1,2*n) à Perm(n, ½)}
{PointsTo(x,1,0) à PointsTo(y,1,0) à Perm(n,1)}

 x := x + n; x := x + n || y := y + n; y := y + n

{PointsTo(x,1,2*n) à PointsTo(y,1,2*n) à Perm(n,1)}}

EXAMPLE

Shared variable is only read
No interference between the threads

Permissions on n equally
distributed over threads

Perm(x,1) = Perm(x, ½) à Perm(x, ½)

19/06/2014 Verification of Concurrent Systems 59

§  Simultaneous reads not allowed

§  Number of parallel threads is fixed

WHY IS THIS NOT SUFFICIENT?

2. Dynamic thread creation

Thread specifications indicate how
permissions should be distributed

1. Distinguish between read and write accesses

19/06/2014 Verification of Concurrent Systems 60

EXAMPLE

t1

x := new List;
x.val := ...;
t2 := new T;
t2.y := x;
fork t2;
read x.val;
...

join t2;
x.val := ...;

run(){
...
read y.val
...
}

val

next

t1.x.val

t2.y.val

t2

11/2

1/2

class List {
 int val; List next;
 ...

}

class T {

 List y;
 void run() { ... }

}

19/06/2014 Verification of Concurrent Systems 61

requires y.val → _ ;
ensures y.val → _ ;
void run() {....}

§  Forking thread has to give up required permissions

§  Joining thread gains back ensured permissions

What happens if run is specified as follows:
requires y.val → _ ;
ensures y.val → _ ;
void run() {....}

SPECIFICATION FOR RUN METHOD IN T2

1/2

1/2

1
1

19/06/2014 Verification of Concurrent Systems 62

EXAMPLE

t1

x := new List;
x.val := ...;
t2 := new T;
t2.y := x;
fork t2();
read x.val;
...

join t2;
read x.val;
x.val := ...;

run(){
...
read y.val
...
}

val

next

t1.x.val

t2.y.val

t2

10

1

class List {
 int val; List next;
 ...

}

class T {

 List y;
 void run() { ... }

}

NOT
ALLOWED!

Now the
permissions
are back

19/06/2014 Verification of Concurrent Systems 63

THREAD TERMINATION

 t

join t

t1

1

1

join t

t2

1/2

1/2

19/06/2014 Verification of Concurrent Systems 64

§  Extension of property language Join(e, π)

§  Permission to pick up fraction π after thread e has terminated

§  Thread that creates thread t obtains Join-permission Join(t, 1)

§  Join-permission treated as any other permission: can be transferred
and split

Join(e, π) à⎯à Join(e, π/2) à Join(e, π/2)

JOIN TOKEN

19/06/2014 Verification of Concurrent Systems 65

§  Precondition fork = precondition run

§  Which permissions are transferred from creating to the newly
created thread

§  Postcondition run = postcondition join

§  Which permissions are released by the terminating thread, and can
be reclaimed by another thread

§  Join only terminates when run has terminated

§  Specification for run final, it can only be changed by extending
definition of predicates preFork and postJoin

RULES FOR FORK AND JOIN

19/06/2014 Verification of Concurrent Systems 66

class Thread {

 pred preFork = true;

 group postJoin<perm p> = true;

 requires preFork;
 ensures postJoin<1>;
 void run() {
 return null
 }

}

FORK, JOIN AND THREAD

{t.preFork} fork t {join(t, 1)}

{join(t, π)} join t {t.postJoin(π)}

19/06/2014 Verification of Concurrent Systems 67

class Fib {
int number;

void init(n) {

 this.number := n;
 }

void run() {

 ..
 }

}

EXAMPLE: CLASS FIB

Leonardo di Pisa/
Fibonacci

19/06/2014 Verification of Concurrent Systems 68

pred preFork = number → _;
group postJoin<perm p> = number → _;

requires preFork;
ensures postJoin<1>;
void run() {

 if (! (this.number < 2))
 { f1 = new Fib; f1.init(number -1);
 f2 = new Fib; f2.init(number - 2);
 fork f1; fork f2; join f1; join f2;

 this.number := f1.number + f2.number }
 else this.number := 1;

}

FIB’S RUN METHOD

1
p

19/06/2014 Verification of Concurrent Systems 69

requires preFork;
void run() {

 if (! (this.number < 2))
 { f1 = new Fib; f1.init(number -1); f2 = new Fib; f2.init(number - 2);
 {Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}
 [fold preFork (2x)]
 {f1.preFork à f2.preFork à Perm(number, 1)}
 fork f1;
 {join(f1, 1) à f2.preFork à Perm(number, 1)}

 fork f2;
 {join(f1, 1) à join(f2, 1) à Perm(number, 1)}

 join f1; join f2;
 {f1.postJoin à f2.postJoin à Perm(number, 1)}
 [unfold postJoin (2x)]
 {Perm(f1.number, 1) à Perm(f2.number, 1) à Perm(number, 1)}

 this.number := f1.number + f2.number
 [close postJoin]
 {this.PostJoin}}
 else this.number := 1;

}
ensures postJoin(1);

PROOF OUTLINE
pred preFork = number → _;
group postJoin<perm p> = number → _;

1
p

19/06/2014 Verification of Concurrent Systems 70

MULTIPLE JOINS: PLOTTER

Sampler

Filter A

Filter B

Plotter
Raw input
data

Sampled
data Filtered data

Print
on

screen

Filter A and Filter B both join Sampler

Plotter joins Filter A and Filter B

19/06/2014 Verification of Concurrent Systems 71

requires … ensures …
void main(MVList lst) {
{S*A*B*P} [abbreviates preFork – joinToken for Sampler, Filter A/B, Plotter]
Sampler<len> smp = new Sampler; smp.init(data); smp.fork();
{ Join(smp,1) * A * B * P }
AFilter<len> af = new AFilter; af.init(data, smp); af.fork();
{ Join(smp,1/2) * Join(af,1) * B * P }
BFilter<len> bf = new BFilter; bf.init(data, smp); bf.fork();
{ Join(af,1) * Join(bf,1) * P }
Plotter<len> plt = new Plotter; plt.init(data,af,bf); plt.fork();
{ Join(plt,1) }
plt.join();
{ plt.postJoin<1> }
} }

MAIN METHOD OF PLOTTER APPLICATION

19/06/2014 Verification of Concurrent Systems 72

REASONING ABOUT LOCKS

Clément Hurlin

19/06/2014 Verification of Concurrent Systems 73

§  Lock x acquired and released with lock x and unlock x

§  Each lock has associated resource invariant

§  Lock acquired resource invariant lend to thread

§  Lock released resource invariant taken back from thread

§  Class Object contains predicate

pred inv = true;

§  In rules: if I is resource invariant of x

{true} lock x {I}

{I}unlock x{true}

§  This is sound only for single-entrant locks

RESOURCE INVARIANT – CLASSICAL APPROACH

{true}
lock x;
{I}
lock x;
{I à I}
...

Resource I has
been duplicated!

19/06/2014 Verification of Concurrent Systems 74

§  Add extra predicates to logic

§  φ ::= e.f → v | φ à φ | φ ‒à φ |

 Lockset(S) | S contains e

§  Lockset (S) - S is the multiset of locks held by current thread

§  S contains E - multiset S contains e

EXTRA PREDICATES

π

Multiset: set where you count the number of
occurrences of each element
For multiset S: x.x.S ≠ x.S

19/06/2014 Verification of Concurrent Systems 75

{Lockset(S) à ¬(S contains u) à u.initialized}
lock u

{Lockset(u.S) à u.inv}

{Lockset(u.S) }lock u{Lockset(u.u.S)}

RULES FOR LOCKING

Will be
explained

19/06/2014 Verification of Concurrent Systems 76

RULES FOR UNLOCKING

{Lockset(u.S) à u.inv}unlock u{Lockset(S)}

{Lockset(u.u.S) }unlock u{Lockset(u.S)}

19/06/2014 Verification of Concurrent Systems 77

class Account {
int balance;
pred inv = this.balance → _ ;

requires initialized à unlocked(S); ensures Lockset(S);
void deposit(int x) {

 {initialized à unlocked(S)}
 lock this;
 {Lockset(S · this) à inv}
 this.balance := this.balance + x;
 {Lockset(S · this) à inv}
 unlock this;
 {Lockset(S)}

}

EXAMPLE

1

e.unlocked(e′) = Lockset(e′) à ¬ (e′ contains e)

open and close of
predicate

19/06/2014 Verification of Concurrent Systems 78

Specification for method run becomes:

requires preFork à Lockset(nil);
ensures postJoin<1>;

 method run() {
 return null;
 }

NEW THREADS HAVE EMPTY LOCKSET

Empty multiset

19/06/2014 Verification of Concurrent Systems 79

requires Lockset(S) à S contains this à inv;
ensures Lockset(S) à inv;
void wait();

requires Lockset(S) à S contains this;
ensures Lockset(S);
void notify();

SPECIFICATIONS FOR WAIT AND NOTIFY

19/06/2014 Verification of Concurrent Systems 80

§  Locks created dynamically

§  Initialisation of resource invariant necessary

§  Object can only be used as lock when its resource invariant has been
initialised

§  Special annotation command commit to mark that resource invariant is
initialised

§  Default position for commit: end of constructor

LOCK INITIALISATION

19/06/2014 Verification of Concurrent Systems 81

§  Class ThreadPool contains Vector v to store threads

§  Construction of ThreadPool gives Perm(v, 1)

§  Resource invariant inv = Perm(v, 1)

§  Constructor body:

§  Initialise v to empty Vector

§  commit: Perm(v, 1) stored inside lock

§  Now lock on ThreadPool can be acquired and released by threads, to
add and remove threads to threadpool

§  Only when thread has lock on ThreadPool, does it have permission to
access v

LOCK INITIALISATION EXAMPLE

19/06/2014 Verification of Concurrent Systems 82

§  Add extra predicates to logic

§  φ ::= e.f → v | φ à φ | φ ‒à φ |

 Lockset(S) | S contains e | e.fresh | e.initialized

§  Lockset (S) - S is the multiset of locks held by current thread

§  S contains e - multiset S contains e

§  e.fresh - e’s resource invariant not yet initialized

§  e.initialized - e’s resource invariant initialized

Some of these atomic propositions can be freely duplicated, some cannot

EXTRA PREDICATES

π

19/06/2014 Verification of Concurrent Systems 83

§  Copyable properties: persistent state properties

Once established, they hold forever

§  Non-copyable properties: transient state properties

Properties that hold temporarily

§  Axiom for copyable properties (to use in proofs):

(G ∧ F) ‒à (G à F)

§  This implies

F ‒à (F à F)

i.e., formula can be duplicated freely

COPYABLE VERSUS NON-COPYABLE

19/06/2014 Verification of Concurrent Systems 84

§  Lockset (S) -

§  S contains e -

§  e.fresh -

§  e.initialized -

COPYABLE VERSUS NON-COPYABLE

 non-copyable

 non-copyable

 copyable

 copyable

19/06/2014 Verification of Concurrent Systems 85

Now we can formulate the rules for new and commit

RULES FOR LOCK CREATION AND COMMIT

{true}
v := new C

{∃X.v → X à X.f1 → null à ... àX.fn → à v.fresh}

{Lockset(S) à u.inv à u.fresh}
commit u

{Lockset(S) à ¬(S contains u) à u.initialized}

19/06/2014 Verification of Concurrent Systems 86

WORK IN PROGRESS

FUNCTIONAL VERIFICATION OF CONCURRENT
PROGRAMS

19/06/2014 Verification of Concurrent Systems 87

Marina Zaharieva –
Stojanovski

How to prove:

{x == 0}

<x := x + 1;> || <x := x + 1;>

{x == 2}

Problem:

{x == 0}

< x := x + 1;>

{x == 1}

unstable: assertions can be made invalid by other threads

EXAMPLE: PARALLEL INCREASE

19/06/2014 Verification of Concurrent Systems 88

Ghost code solution:
{x = a + b & a == 0 & b == 0}

{x == a + b & a == 0} || {x == a + b & b == 0}
<x := x + 1;> || <x := x + 1;>
<a := 1;> // ghost || <b :=1;> //ghost
{x == a + b & a == 1} || {x == a + b & b == 1}

{x == a + b & a == 1 & b == 1}
{x == 2}

Our approach:
Maintain abstract history of updates

class Counter{
 int data;
 Lock l;

 resource_inv = exists v. PointsTo(data, 1, v);

requires true;
ensures true;
void increase(){
 l.lock(); // obtain PointsTo(data, 1, v);
 data ++;
 l.unlock(); // loose PointsTo(data, 1, v + 1);
 // now we don’t know anything about data anymore
 }
}

Verification of Concurrent Systems

AS A JAVA-LIKE PROGRAM

Client:

 c = new Counter(0);
 fork t1; //t1 calls c.increase();
 fork t2; //t2 calls c.increase();
 join t1;
 join t2;

 // Is c.data == 2 ?

Permission to
read and update
data

Needed:
A specification of
increase that
records the update

19/06/2014 89

§  Perm(x,1) - permission to access x

§  Init(x, {v}) - initial value of x

§  Hist(x, 1, H) - history of all updates/actions to x

Verification of Concurrent Systems

SEPARATE PERMISSION AND VALUE

[Separation Rule]
PointsTo(x, 1, v) *-* Perm(x, 1) * Init(x, {v}) * Hist(x, 1, {});

19/06/2014 90

History H is process algebra term composed of user-defined actions
(use ACP)

Examples

action a<int x>(int k) = \old(x) + k;

action b<list l>(int e) = cons(\old(l), e);

action c<int k>(int w) = w;

Verification of Concurrent Systems

A HISTORY OF ACTIONS

19/06/2014 91

class Counter {
 int data;
 Lock l;

 //resource_inv = Perm(data, 1);

 //action a<int x> () = \old(x) + 1;

requires Hist(data, p, H);
ensures Hist(data, p, H.a);
void increase(){
 l.lock(); /* start a */ data ++; /* record a */ l.unlock();

 }
}
 Verification of Concurrent Systems

COUNTER SPECIFICATION

Record LOCAL
changes in the history

19/06/2014 92

Verification of Concurrent Systems

HISTORY MANIPULATION

[SplitHist Rule]
Hist(x, p, H) *-* Hist(x, p/2, H1) * Hist(x, p/2, H2);
 H = H1 || H2

§  Forking a thread: mark with special synchronisation action (s, s)
 H = H.s || s

§  Current thread: H.s
§  New thread: s

§  Joining a thread: continue with the parallel composition of the local
histories

19/06/2014 93

To reason about the value in data, we need:
§  Init(data, V) predicate
§  Full Hist(data, 1, H) token

After the client of the Counter joins both threads, we can

reinitialize the History:
Init(data, {0}) * Hist(data, 1, st1. st2 || st1. a() || st2. a()) *-*

 Init(data, {2}) * Hist(data, 1, {})

Verification of Concurrent Systems

CLIENT-SIDE REASONING

The only possible value for data is 2

19/06/2014 94

class Counter{
//action a<int x> (int n) = \old(x) + n;
//action b<int x> (int n) = \old(x) * n;
requires Hist(data, p, H);
ensures Hist(data, p, H.a(n));
void increase(int n){
 l.lock(); data = data + n; l.unlock();
 }
requires Hist(data, p, H);
ensures Hist(data, p, H.b(m));
void increase(int m){
 l.lock(); data = data * m; l.unlock();
 }
}
 Verification of Concurrent Systems

NON-DETERMINISTIC BEHAVIOUR

Client:

 c = new Counter(0);
 fork t1; //t1: c.increase(4);
 fork t2; //t2: c.multiply(4);
 join t1;
 join t2;

 // What is c.data?

19/06/2014 95

Reinitialisation of the History:
Init(data, {0}) * Hist(data, 1, st1. st2 || st1. a(4) || st2. b(4)) *-*

Init(data, {0}) * Hist(data, 1, a(4).b(4) + b(4).a(4)) *-*
Init(data, {4,16}) * Hist(data, 1, {})

Extensions

§  Histories for multiple variables
§  Data structures

Verification of Concurrent Systems

COMPUTING POSSIBLE VALUES

19/06/2014 96

§  Class invariant: property about reachable object state

§  Typical: relation between object’s fields

§  In sequential setting: breaking allowed within method boundaries

§  In concurrent setting: breaking allowed when violation cannot be
observed

§  Explicit pack and unpack operations

19/06/2014 Verification of Concurrent Systems 97

CLASS INVARIANTS IN CONCURRENT SETTING

{holds(v.I, 1)} unpack(v.I){unpacked(v.I, 1) ∗ v.I}

{v ̸= null ∗ PointsTo(v.f,1,w) ∗ \forall∗ (I∈inv(V),v.f∈fp(v.I). unpacked(v.I,π))}
v.f = w;

{PointsTo(v.f,1,w) ∗ \forall∗ (I∈inv(V),v.f∈fp(v.I). unpacked(v.I,π))}

{unpacked(v.I, 1) ∗ v.I} pack(v.I) {holds(v.I, 1)}
Usage:

{holds(v.I, π) ∗ v.I} c {F }
{holds(v.I, π)} c {F }

19/06/2014 Verification of Concurrent Systems 98

REASONING ABOUT GPU PROGRAMS

§  Originally for graphics

§  More and more used also for other applications

§  Single-Instruction-Multiple-Thread model (similar to Vector machines)

§  Host (typically CPU) invokes kernel on separate device

§  Kernel:

§  Many threads

§  Execute all same code

§  But on different data

§  OpenCL: extended subset of C, platform-independent

GPU KERNELS

19/06/2014 Verification of Concurrent Systems 99

_kernel void square(_global float* input,

 _global float* output) {

 int i = get_global_id(0);

 output[i] = input[i] * input[i];

}

VECTOR ADDITION AS OPENCL KERNEL

__global
Where are the
arrays stored

Verification of Concurrent Systems 19/06/2014 100

§  Barrier: all threads block until all threads have reached (the same)
barrier

§  This is the only moment where you can make an assumption about the
state of another thread

§  Main problem: barrier divergence

§  Example of possible barrier divergence:

if b

 BARRIER(…);

else

 BARRIER(…);

SYNCHRONISATION WITHIN A KERNEL

Only okay if
all threads satisfy
b or not b

Verification of Concurrent Systems 19/06/2014 101

_kernel void square(_global float* input, _global float* output) {

 int i = get_global_id(0);

 output[i] = input[i] * input[i];

 barrier(CLK_GLOBAL_MEM_FENCE);

 output[(i+1)%wg_size]=output[(i+1)%wg_size] * input[i];

}

BARRIER EXAMPLE

Verification of Concurrent Systems 19/06/2014 102

§  What happens when host invokes a kernel?

§  Relation between kernel and thread

§  What happens at the barrier?

§  What should be specified?

§  What should be verified?

Verification of Concurrent Systems

REASONING ABOUT KERNELS

19/06/2014 103

Kernel Specification:
Global Memory Resources:

Write permission on all entries of output
Read permission on all entries of input

Shared Memory Resources: -
Thread Specification:

Resources:
Perm(output[i], 1) ★ Perm(input[i], π)

Precondition: -
Postcondition:

output[(i + 1) % wg_size] = input[i] * input[(i + 1) % wg_size]^2

EXAMPLE SPECIFICATION

 _kernel void square(_global float* input,
 _global float* output) {
 int i = get_global_id(0);

 output[i] = input[i] * input[i];
 barrier(CLK_GLOBAL_MEM_FENCE);
 output[(i+1)%wg_size]=
 output[(i+1)%wg_size] * input[i];

 }

Verification of Concurrent Systems

Provided by host

Global proof obligation:
All threads together use no
more resources than
available in the kernel

19/06/2014 104

Kernel Specification:
Global Memory Resources:

Write permission on all entries of output
Read permission on all entries of output

Shared Memory Resources: -

Barrier Specification:
Resources:

Exchange write permission on output [i] for

 write permission on output[(i+1) % wg_size]

Keep read permission on input[i]

Precondition: output[i] = input[i] * input[i]

Postcondition: output[(i + 1)%wg_size] = input[(i + 1)%wg_size]^2

EXAMPLE
BARRIER SPECIFICATION

Verification of Concurrent Systems

Global proof obligation:
All permissions available in kernel

 _kernel void square(_global float* input,
 _global float* output) {
 int i = get_global_id(0);

 output[i] = input[i] * input[i];
 barrier(CLK_GLOBAL_MEM_FENCE);
 output[(i+1)%wg_size]=
 output[(i+1)%wg_size] * input[i];

 }

Global proof obligation:
Barriers correctly
transfer knowledge
about state

19/06/2014 105

§  Threads respects their thread specification

§  Kernel resources are sufficient to provide each thread necessary
global resources

§  Local resources are properly distributed over threads

§  Kernel precondition implies universal quantification of thread
precondition

§  Barriers only redistribute permissions that are in the kernel

§  Universal quantification of barrier precondition implies universal
quantification of barrier postcondition

§  Universal quantification of thread postcondition implies kernel
postcondition

Verification of Concurrent Systems

PROOF OBLIGATIONS

Extra layer:
workinggroup specifications

19/06/2014 106

ACKNOWLEDGEMENTS

19/06/2014 Verification of Concurrent Systems 107

Saeed Darabi, Wojciech Mostowski,
Marina Zaharieva-Stojanovski,
Stefan Blom, Afshin Amighi

§  Software quality remains a challenge

§  Classical Hoare logic-based techniques are becoming more and more
powerful

§  Next challenge: verification of concurrent software

§  Separation logic and permissions

§  Permission transfer whenever threads synchronise

§  Verification of functional properties

§  Also applicable to other concurrent programming paradigms

SUMMARY

19/06/2014 Verification of Concurrent Systems 108

More information?
Want to try it out yourself?
Go to: http://www.utwente.nl/vercors

