Model Checking of Fault-Tolerant Distributed Algorithms

Part Ill: Parameterized Model Checking of Fault-tolerant Distributed

Algorithms by Abstraction

Annu Gmeiner Igor Konnov Ulrich Schmid Helmut Veith
Josef Widder

for(syte!™ RISE
e cering Rigorous Systems Engineering

SFM-14:ESM. Bertinoro, Italy, EU

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

1/50

Fault-tolerant DAs: Model Checking Challenges

unbounded data types
counting how many messages have been received

parameterization in multiple parameters
among n processes f < t are faulty with n > 3t

contrast to concurrent programs
fault tolerance against adverse environments

degrees of concurrency

many degrees of partial synchrony

@ continuous time
fault-tolerant clock synchronization

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

2 /50

Model checking problem for fault-tolerant DA algorithms

Parameterized model checking problem:
@ given a distributed algorithm and spec. ¢
@ show for all n, t, and f satisfying n >3tAt>f >0
M(n,t,f) = ¢

@ every M(n,t,f) is a system of n — f correct processes

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 3 /50

Model checking problem for fault-tolerant DA algorithms

Parameterized model checking problem:
@ given a distributed algorithm and spec. ¢
@ show for all n, t, and f satisfying resilience condition
M(n,t,f) = ¢
e every M(n,t,f) is a system of N(n,f) correct processes

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 3 /50

Properties in Linear Temporal Logic

Unforgeability (U). If v; = 0 for all correct processes i, then for all correct
processes j, accept; remains 0 forever.

G <(2\I vi=0) =G (:/_\:acceptj = 0))

Completeness (C). If v; =1 for all correct processes 7, then there is a correct
process j that eventually sets accept; to 1.

G ((l:/:\lf vi = 1) —F (n_/facceptj = 1))

j=t

Relay (R). If a correct process i sets accept; to 1, then eventually all correct
processes j set accept; to 1.

n—f n—f
G ((\/ accepti =1) — F (A\ accept; = 1))
i=1 =1

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 4 /50

Properties in Linear Temporal Logic

Unforgeability (U). If v; = 0 for all correct processes i, then for all correct
processes j, accept; remains 0 forever.

G <(n7\f vi=0) =G ("]\f accept; = 0)) Safety
i=1 j=1

Completeness (C). If v; =1 for all correct processes 7, then there is a correct
process j that eventually sets accept; to 1.

G ((n/—\f Vi = 1) — F (n\—/f acCeptj = 1)) LiVeneSS
i=1

j=t

Relay (R). If a correct process i sets accept; to 1, then eventually all correct
processes j set accept; to 1.

n—f n—f
G ((\/ accepti =1) — F (A\ accept; = 1)) Liveness
i=1 Jj=1

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 4 /50

Threshold-guarded

fault-tolerant
distributed algorithms

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 5 /50

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

e Existential Guard
if received m from some process then ...

@ Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 6 /50

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

e Existential Guard
if received m from some process then ...

@ Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur? @

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

6 / 50

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

e Existential Guard
if received m from some process then ...

@ Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way
what if faults might occur? @

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

@ Threshold Guard
if received m from n—t processes then ...

@ (the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 6 /50

Control Flow Automata

Variables of process i
vi: {0, 1} init with 0 or 1
accept;: {0, 1} init with 0

An indivisible step:
if Vi = 1
then send (echo) to all;

if received (echo) from at least
t + 1 distinct processes
and not sent (echo) before
then send (echo) to all;

if received (echo) from at least
n - t distinct processes
then accept; := 1;

n — f copies of the process

Josef Widder (www.forsyte.at)

—(sv = V1)

l
@:sv = SE

—(t+1 < recv)

Checking Fault-Tolerant Distributed Algos

@

recv := z where (recv < z A z < sent + f)

@ sv=VI1

20

inc sent

4

t+1<recv
Y

§

sV =

(o

inc sent

n—t < recv

/ =(n—t < recv)

/ sv:=AC

#

B

gF)« sv:i=SE

SFM, June 18, 2014

7/ 50

Counting argument in threshold-guarded algorithms

t+1

e © ¢ Jec
e (/e

@@@

Correct processes count distinct incoming messages

if received m from t+ 1 processes then ...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 8 /50

Counting argument in threshold-guarded algorithms
t+1
S © e _ |@00
e (D e

@@@

Correct processes count distinct incoming messages

if received m from t+ 1 processes then ...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 8 /50

Counting argument in threshold-guarded algorithms
tf 1
D & . |@ec0e
@ @ at least one non-faulty sent the message
\\/\/‘

P if received m from t+ 1 processes then ...
< &

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 8 /50

[recv 1= z where (recv <z A z < sent + f)}
¥ @ concrete values are not important

e @ thresholds are essential:
0,1, t+1, n—t

@\

t+ 1< recv
A

=(t+1 < recv)

@

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 9 / 50

[recv::zwhere (recv <z A z < sent + f)}

¥ @ concrete values are not important
e @ thresholds are essential:

0,1, t+1, n—t
@ intervals with symbolic boundaries:
= (®]
v :=SE @ °lo ’

(w)ele=st) Lo=[Lt+1)
Ljga=[t+1,n-1t)
In_t =[n—t,00)

t+ 1< recv
A

=(t+1 < recv)

@

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 9 / 50

[recv::zwhere (recv <z A z < sent + f)}

¥ @ concrete values are not important
e @ thresholds are essential:

0,1, t+1, n—t
@ intervals with symbolic boundaries:
I, =[0,1)
v :=SE @ °lo ’

@\ ol =[1,t+1)
o I, =[t+1,n—1)
oI, ,=[n—t,)

t+ 1< recv
A

@ Parameteric Interval Abstraction (PIA)
@ Similar to interval abstraction:
[t + 1, n— t) rather than [4,10).

@ Totalorder: 0 <1< t+1<n—tfor
all parameters satisfying RC:
n>3t,t>f>0.

=(t+1 < recv)

@ -e=s-(®)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 9 / 50

Technical challenges

We have to reduce the verification of an infinite number of instances
where

© the process code is parameterized

@ the number of processes is parameterized

to one finite state model checking instance

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 10 / 50

Technical challenges

We have to reduce the verification of an infinite number of instances

where
© the process code is parameterized

@ the number of processes is parameterized

to one finite state model checking instance

We do that by:
@ PIA data abstraction
@ PIA counter abstraction

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SEM, June 18, 2014

10 / 50

Technical challenges

We have to reduce the verification of an infinite number of instances
where

© the process code is parameterized

@ the number of processes is parameterized

to one finite state model checking instance

We do that by:
@ PIA data abstraction
@ PIA counter abstraction

abstraction is an over approximation = possible abstract behavior that
does not correspond to a concrete behavior.

© Refining spurious counter-examples

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 10 / 50

Abstraction overview

Parameterized family

{Me)=p@) I 1Pe):p < Pec | S
| —-
size(p) processes l
l Parametric Interval Domain D

PARAMETRIC INTERVAL ‘
DATA ABSTRACTION

|

Uniform parameterized family

{M(p): P P, :pePRC} P does not depend on p
size(p) processes
i P simulates P(p)

CHANGE REPRESENTATION

Vector Addition State System

|

PARAMETRIC INTERVAL one abstract system .4, captures for
COUNTER ABSTRACTION all p € Pgc the behavior of M(p)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 11 / 50

Abstraction overview

Parameterized family

{M(p) —P(p) |- || P(p): p € PRC}

size(p) processes

!

PARAMETRIC INTERVAL

EXTRACT
}

Parametric Interval Domain D

DATA ABSTRACTION

|
Uniform parameterized family
{#)= 2118 pcPec
——

size(p) processes

!

CHANGE REPRESENTATION

P does not depend on p

P simulates P(p)

| replay the counter-example

Vector Addition State System

}refine the system

PARAMETRIC INTERVAL
COUNTER ABSTRACTION

Josef Widder (www.forsyte.at)

Checking Fault-Tolerant Distributed Algos

one abstract system .4, captures for
all p € Pgc the behavior of M(p)

finite-state model checking

SFEM, June 18, 2014

11/ 50

Data abstraction

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 12 / 50

[recv::zwhere (recv <z A z < sent + f)}

¥ @ concrete values are not important
e @ thresholds are essential:

0,1, t+1, n—t
@ intervals with symbolic boundaries:
= (®]
v :=SE @ °lo ’

(w)ele=st) Lo=[Lt+1)
Ljga=[t+1,n-1t)
In_t =[n—t,00)

t+ 1< recv
A

=(t+1 < recv)

@

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SEM, June 18, 2014 13 / 50

Abstract operations

0 1 t+1

Concrete: F=)E SE

above

Abstract: Io I;

Concrete t +1 < x

L

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SEM, June 18, 2014

14 / 50

Abstract operations

0 1 t+1 n—t above

Concrete: F=)E) E

Abstract: I I Tiy1 j

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

14 / 50

Abstract operations

0 1 t+1 n—t above

Concrete: F=)E E E

Abstract: I I | P I,_:

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.
Concrete x' = x + 1,

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

14 / 50

Abstract operations

t+1 n—t above

Concrete: [—@ SE SE

Abstract: I I; Tia | P

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.
Concrete x’ = x + 1, is abstracted as:
x=1Ip AX=I;...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

14 / 50

Abstract operations

n—t above

t+1
Concrete: F=JE ; A E

Abstract: Ip I; Tepa I,—:

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.
Concrete x’ = x + 1, is abstracted as:
x=1Ip A X =1
Vx =13 /\(X/:Il \/X,:It+1)"'

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

14 / 50

Abstract operations

0 1 t+1 n—t above

Concrete: F=)E) ;)E

Abstract: I I; L1 | P

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.
Concrete x’ = x + 1, is abstracted as:
x=1Ip A X =1
Vx =13 /\(X/:Il \/X,:It+1)
Vx =T i A(X =Tga VX =15-¢) ...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

14 / 50

Abstract operations

0 1 t+1 above

Concrete: F=)E S E Q

Abstract: I I; Tea | P

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.
Concrete x’ = x + 1, is abstracted as:
x=1Ip A X =1
Vx =13 /\(X/:Il \/X,:It+1)
Vx =Ty g A(X =T VX =1,-4)
Vx =1+ N X' =1,_;

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

14 / 50

Abstract operations

0 1 t+1 n—t above

Concrete: F=)E

Abstract: Io I;

A~ 4

Concrete t + 1 < x is abstracted as x = [;11 Vx =1, ;.
Concrete x’ = x + 1, is abstracted as:
x=1Ip A X =1
Vx =13 /\(X/:Il \/X,:ItJr]_)
Vx =Ty g A(X =T VX =1,-4)
Vx =1+ N X' =1,_;

abstract increase may keep the same value!

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 14 / 50

Abstract CFA

recv := z where (recv < z A z < sent + f)

t+1< rec

sv= V0
inc sent

®

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 15 / 50

Abstract CFA

@®

recv := z where (recv < z A z < sent + f) [recv =To Asent =Ig A (recv’ =To Vrecv' =1;)] V...
()
—(sv = V1) —(sv = VI)

l
(o)

recv =Ipyq Vrecv =1,

v

t+1< rec

sv= V0 sv=\V0
inc sent [sent =1y A (sent’ =T V sent’ =Tpiq)] V...

® [O)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 15 / 50

Abstraction overview

Parameterized family

{Me)=p@) I 1Pe):p < Pec | S
| —-
size(p) processes l
l Parametric Interval Domain D

PARAMETRIC INTERVAL ‘
DATA ABSTRACTION

|

Uniform parameterized family

{M(p): P P, :pePRC} P does not depend on p
size(p) processes
i P simulates P(p)

CHANGE REPRESENTATION

Vector Addition State System

|

PARAMETRIC INTERVAL one abstract system .4, captures for
COUNTER ABSTRACTION all p € Pgc the behavior of M(p)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

16 / 50

Counter abstraction

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 17 / 50

Classic (0, 1, co)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1, co)-counter abstraction:

o finitely many local states,
eg., {N,T,C}.

@ based on counter representation:
for each local states count how many processes are in it

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 18 / 50

Classic (0, 1, co)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1, co)-counter abstraction:

o finitely many local states,
eg., {N,T,C}.

@ based on counter representation:
for each local states count how many processes are in it

@ abstract the number of processes in every state,
eg, K: C—0, T—1 N~ “many”.

o perfectly reflects mutual exclusion properties
eg, G(K(C)=0Vv K(C)=1).

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 18 / 50

Limits of (0, 1, co)-counter abstraction

Our parametric data + counter abstraction:

@ we require finer counting of processes:

e t+ 1 processes in a specific state can force global progress,
e t processes cannot

@ mapping t, t+ 1, and n — t to “many” is too coarse.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

19 / 50

Limits of (0, 1, co)-counter abstraction

Our parametric data + counter abstraction:

@ we require finer counting of processes:

e t+ 1 processes in a specific state can force global progress,
e t processes cannot

@ mapping t, t+ 1, and n — t to “many” is too coarse.

starting point of our approach...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 19 / 50

Data + counter abstraction over parametric intervals

t+1=2,n—t=5 1 process at (accepted, received=5)

nr. processes (counters) 3 processes at (sent, received=3)

2 3 2 3 4

received received

sent accepted

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 20 / 50

Data + counter abstraction over parametric intervals

t+1=2,n—t=5

nr. processes (counters)

3

received

2 3 4

received

sent

Josef Widder (www.forsyte.at)

Checking Fault-Tolerant Distributed Algos

accepted

SFM, June 18, 2014

20 / 50

Data + counter abstraction over parametric intervals

t+1=2,n—t=5

nr. processes (counters)

2 3 2 3 4

received received

sent [accepted

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 20 / 50

Data + counter abstraction over parametric intervals

=06 =1, =1 Parametricintervals:
n>3-tANt>f Ip=1[0,1) I;=[1,t+1)

It+1:[t+1,n—t)

nr. processes (counters)

[t
received

lei1
received

sent [accepted

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 20 / 50

Data + counter abstraction over parametric intervals

Parametricintervals:
n>3-tANt>f I[p=[0,1) I;=[1,t+1)

It+1:[t+1,n—t)

nr. processes (counters)

[t
received

Ty
received

sent [accepted

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 20 / 50

Abstraction refinement

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 21 / 50

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 22 / 50

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

= specs that hold in concrete system may be violated in abstract system
@ spurious counterexamples

@ we have to reduce the behaviors of the abstract system
make it more concrete

@ ...based on the counterexamples = CEGAR

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 22 / 50

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)
= specs that hold in concrete system may be violated in abstract system
@ spurious counterexamples

@ we have to reduce the behaviors of the abstract system
make it more concrete

@ ...based on the counterexamples = CEGAR

We have observed three sources of spurious behavior
@ £ processes decreasing or increasing

@ # messages sent # # processes which have sent a message
@ unfair loops

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 22 / 50

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)
= specs that hold in concrete system may be violated in abstract system
@ spurious counterexamples

@ we have to reduce the behaviors of the abstract system
make it more concrete

@ ...based on the counterexamples = CEGAR

We have observed three sources of spurious behavior

@ £ processes decreasing or increasing

@ # messages sent # # processes which have sent a message
@ unfair loops

...and a new abstraction phenomenon

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 22 / 50

Parametric abst. refinement — uniformly spurious paths

Classic case:

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 23 / 50

Parametric abst. refinement — uniformly spurious paths

PRGN
// A
. N\
Our case: - .
// N
. - \
Classic case: - N
- X, \
P N
-7 o0
A
B
.
.
.
.
//\
// N
. .
N
\
® N
B
.
.
.
.
//\
P N
. .
N
\
N
>
.
Lo
.-
B
Pt
,’,’/’/’/’
_eleleiol
P
PR e
Zol-l-2-

w
Bl

M, June 18, 2014

CEGAR — automated workflow

Model Checking

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 24 / 50

CEGAR — automated workflow

Model Checking correct

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 24 / 50

CEGAR — automated workflow

Abstraction refinement
using SMT

counterexample

Model Checking correct

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 24 / 50

CEGAR — automated workflow

Abstraction refinement CE feasible: bug
using SMT

counterexample

Model Checking correct

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 24 / 50

CEGAR — automated workflow

Abstraction refinement CE feasible: bug
using SMT

CE spurious:

counterexample))
refined abstraction

Model Checking correct

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 24 / 50

What is SMT?

recall SAT:
@ given a Boolean formula, e.g., (maV bV c)A(-aVbVdVe)

@ is there an assignment of TRUE and FALSE to variables a, b, c, d, e
such that the formula evaluates to TRUE?

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 25 / 50

What is SMT?

recall SAT:
@ given a Boolean formula, e.g., (maV bV c)A(-aVbVdVe)

@ is there an assignment of TRUE and FALSE to variables a, b, c, d, e
such that the formula evaluates to TRUE?

Satisfiability Modulo Theories (SMT) :
@ here just linear arithmetics

@ given a formula, e.g.,

x=y ANy=zAu#xAN(x+y<1A2x+y=1)V3x+2y >3

is there an assignment of values to u, x, y, z such that formula
evaluates to TRUE?

(]

practically efficient tools: YICES, Z3

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 25 / 50

Counter example: losing processes

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0
k = {o, o, 0, 0, 3, 0, 0, 0,1, 0, O, O, O, 0, 0, 0O}, nsnt =1
k = {0, 0, 0, 0, 3, 0, O, O, 2, O, O, O, O, O, O, O}, nsnt =2

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 26 / 50

Counter example: losing processes

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0
k = {o, o, 0, 0, 3, 0, 0, 0,1, 0, O, O, O, 0, 0, 0O}, nsnt =1
k = {0, 0, 0, 0, 3, 0, O, O, 2, O, O, O, O, O, O, O}, nsnt =2

encode last state in SMT formula:

Resilience condition n>3tAt>fAf>0
non-zero counters n—t<k[4ANt+1<k[BAk[B] <n—t
zero counters for i€ {0,...15} \ {4,8}: k[i]=0
system size n—f = k[0] + k[1] + - - - + k[15]
msgs sent t+1<nsntAnsnt<n—t

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 26 / 50

Counter example: losing processes

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0
k = {o, o, 0, 0, 3, 0, 0, 0,1, 0, O, O, O, 0, 0, 0O}, nsnt =1
k = {0, 0, 0, 0, 3, 0, O, O, 2, O, O, O, O, O, O, O}, nsnt =2

encode last state in SMT formula:

Resilience condition n>3tAt>fAf>0
non-zero counters n—t<k[4ANt+1<k[BAk[B] <n—t
zero counters for i€ {0,...15} \ {4,8}: k[i]=0
system size n—f = k[0] + k[1] + - - - + k[15]
msgs sent t+1<nsntAnsnt<n—t

This provides one large formula T...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 26 / 50

Remove transitions

@ We ask the SMT solver: is there a satisfiable assignment for T7

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 27 / 50

Remove transitions

@ We ask the SMT solver: is there a satisfiable assignment for T7

o if yes,
then state is OK, may be part of a real counterexample

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 27 / 50

Remove transitions

@ We ask the SMT solver: is there a satisfiable assignment for T7

o if yes,
then state is OK, may be part of a real counterexample

@ if not, then state is spurious

e we can remove transitions to that state in the abstract system

e in fact: unsatisfiable core to remove multiple transitions at once

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 27 / 50

Coming back to our example

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0
k = {o, o, 0, 0, 3, 0, 0, 0,1, 0, O, O, O, 0, 0, 0O}, nsnt =1
k = {0, 0, 0, 0, 3, 0, O, O, 2, O, O, O, O, O, O, O}, nsnt =2

encode last state in SMT formula:

Resilience condition n>3tAt>fAf>0
non-zero counters n—t<k[4ANt+1<k[BAk[B] <n—t
zero counters for i€ {0,...15} \ {4,8}: k[i]=0
system size n—f = k[0] + k[1] + - - - + k[15]
msgs sent t+1<nsntAnsnt<n—t

This provides one large formula T...
contradiction with counters and system size

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SEM, June 18, 2014 28 / 50

Counterexample type: losing messages

k={0, 0,0, 03,0,0 0,0, 0,0, 0,0, o, o 0}, nsnt = 0
k=1{0, 0, 0 0,63 0,0 0 1,0,0,0, 0, 0,0, 0}, nsnt =1
k=1{0,0, 0 0,2, 0,0, 0 2,0, 0,0, 0, 0,0, 0}, nsnt =1

@ no contradiction within a state

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SEM, June 18, 2014 29 / 50

Counterexample type: losing messages

k={0, 0,0, 03,0,0 0,0, 0,0, 0,0, o, o 0}, nsnt = 0
k=1{0, 0, 0 0,63 0,0 0 1,0,0,0, 0, 0,0, 0}, nsnt =1
k=1{0,0, 0 0,2, 0,0, 0 2,0, 0,0, 0, 0,0, 0}, nsnt =1

@ no contradiction within a state

@ when a process sends a message it
e goes to SE

@ increases nsnt

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SEM, June 18, 2014 29 / 50

Counterexample type: losing messages

k = {0, o0, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0
k = {o, o, 0, 0, 3, 0, 0, 0,1, 0, O, O, O, 0, 0, 0}, nsnt =1
k = {0, 0, 0, 0, 2, 0, O, O, 2, O, O, O, O, O, 0, 0}, nsnt =1

@ no contradiction within a state

@ when a process sends a message it
e goes to SE

@ increases nsnt
o the human sees a correlation

e the machine has to reason about steps. ..

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 29 / 50

Encoding a step

step(x, x') =

x=1

X—2

x' =2

X—l

/

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SEM, June 18, 2014

30 / 50

Encoding a step

step(x, x') =
So— 1| (x=0AX=1)

X—2

x' =2

X—l

/

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SEM, June 18, 2014

30 / 50

Encoding a step

step(x, x') =

So— 1| (x=0AX=1)
V

X = 2
(x=1AXx=2)
x'=2
x = 0
x' =1
Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

30 / 50

Encoding a step

et (x=0Ax =1)
=1 =2 V
\ (x=1AXx=2)
V
©) (& (= (x=2nx =0)
=

x' =0
x'/X’O Ii
l,/y’=1—y
(o)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 30 / 50

Encoding a step

x=1

X—2

x' =2

X—l

/

Josef Widder (www.forsyte.at)

Checking Fault-Tolerant Distributed Algos

step(x, x') =
x=0AXx"=1)

—~

1AX' =2)

Ax"'=0)

XSX <K<
Il Il
—)

AX =0Ay =1—y)

SFEM, June 18, 2014

30 / 50

Encoding a step

step(x, x') =

=1 (x=0AX=1)
V

X_2 (x=1AXx=2)
V
(x=2Ax"=0)

x' =2 v
X—0 (x=1AX=0Ay =1-y)
x' —1
...that is a simplification of what is
/ going on in the tool. ..

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 30 / 50

Counterexample type: losing messages

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0

k {o, o, 0, 0, 3, 0, 0, 0, 1, 0, O, O, O, O, O, O}, nsnt =1

k = {0, 0, 0, 0, 2, 0, 0, O, 2, O, O, O, O, 0, 0, 0}, nsnt =1
o check whether (state2(x) A step(x,x’)) — state3(x’) is satisfiable

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 31 /50

Counterexample type: losing messages

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0

k {o, o, 0, 0, 3, 0, 0, 0, 1, 0, O, O, O, O, O, O}, nsnt =1

k = {0, 0, 0, 0, 2, 0, 0, O, 2, O, O, O, O, 0, 0, 0}, nsnt =1
o check whether (state2(x) A step(x,x’)) — state3(x’) is satisfiable

@ surprisingly it is
e the computer cannot disregard it
e and it cannot refine it

e ask the user!

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 31 /50

Counterexample type: losing messages

k = {0, o, 0, 0, 3, 0, O, O, O, O, O, O, O, O, O, O}, nsnt =0
k {o, o, 0, 0, 3, 0, 0, 0, 1, 0, O, O, O, O, O, O}, nsnt =1
k = {0, 0, 0, 0, 2, 0, 0, O, 2, O, O, O, O, 0, 0, 0}, nsnt =1
o check whether (state2(x) A step(x,x’)) — state3(x’) is satisfiable
@ surprisingly it is

e the computer cannot disregard it
e and it cannot refine it

e ask the user!

@ let experts stare at counter examples. . .

@ expert: it is spurious
formula captures local view, not whole execution

@ add global knowledge using invariants.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 31 /50

Invariant candidates — soundness

@ given in invariant candidate inv

@ we want to check whether it is an invariant,
i.e., whether

= ((inv(x) A step(x,x")) = inv(x"))

is satisfiable

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 32 /50

Invariant candidates — soundness

@ given in invariant candidate inv

@ we want to check whether it is an invariant,
i.e., whether

= ((inv(x) A step(x,x")) = inv(x"))
is satisfiable
@ if not: we have an invariant

@ we can add it to the state formula:
(state2(x) A inv(x) A step(x, x")) — (state3(x") A inv(x))

@ and check for satisfiability

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

32 /50

For our example

Counter example: losing messages
k= {0, 0, 0,

0,3, 0,0,0,0,0,0,0,0,0,0,0}, nsnt=020
k = {0, o, 0, 0, 3, 0, 0, 0,1, 0, O, O, O, O, 0, 0}, nsnt =1
k = {0, 0, 0, 0, 2, 0, O, 0, 2, O, O, O, O, O, 0, 0}, nsnt =1

the invariant candidate that was sufficient for refinement:

the number of messages sent

the number of processes who have sent messages

nsnt = k[8] + k[9] + . .. k[15]

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 33 /50

For our example

Counter example: losing messages

k={0, 0, 0,
k={0, 0, 0,
k=1{0, 0, 0

the invariant candidate that was sufficient for refinement:

the number of messages sent

the number of processes who have sent messages

nsnt = k[8] + k[9] + . .. k[15]
a triviality for experts ...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

0,3, 0, 0,0, 0 0, 0, 0, 0, 0, 0}, nsnt =0
0,3, 0,0,0,1, 0, 0, 0, 0, 0, 0, 0}, nsnt =1
0,2, 0, 0, 0, 2 0, 0, 0, 0, 0, 0}, nsnt =1

33 /50

Liveness

distributed algorithm requires reliable communication
every message sent is eventually received

—in_transit = [Vi. recv; > sent]

justice G F —in_transit necessary to verify liveness

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 34 / 50

Liveness

distributed algorithm requires reliable communication
every message sent is eventually received

—in_transit = [Vi. recv; > sent]

justice G F —in_transit necessary to verify liveness

counter example (lasso):

52 s3
in_transit Q—O +++Q in_transit
in_transit

S1 /in_transit
O—O—> ---O— in_transit

Sk

in_transit Q<+—Q= + -+ in_transit

in_transit

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 50

Liveness — justice suppression

S2 53

in_transit OQ—»O— -

/ in_transit
In_transit

Sk

in_transit
in_transit

—Q -

in_transit

in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SEM, June 18, 2014

35 / 50

Liveness — justice suppression

S2 53

in_transit OQ—»O— -

/ in_transit
In_transit

Sk

in_transit
in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to GF —in_transit A GF | \/ -—at(s;)

1<j<k

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

—Q -

in_transit

in_transit

in_transit

SEM, June 18, 2014

35 / 50

Liveness — justice suppression

S2 53

in_transit OQ—»O— -

/ in_transit
In_transit

Sk

in_transit
in_transit

—Q -

in_transit

in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to GF —in_transit A GF | \/ -—at(s;)

1<j<k

...Wwe use unsat cores to refine several loops at once

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SEM, June 18, 2014

35 / 50

the implementation

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 36 / 50

Tool Chain: BYMC

Parametric Promela code —— STATIC ANALYSIS + YICES
Parametric Interval Domain D
PARAMETRIC DATA ABSTRACTION J
WITH YICES

Parametric Promela code

PARAMETRIC COUNTER AB-
STRACTION WITH YICES

normal
SPIN —— counterexample
Promela code l

property holds

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

37 / 50

Tool Chain: BYMC

Parametric Promela code —— STATIC ANALYSIS + YICES
Parametric Interval Domain D
PARAMETRIC DATA ABSTRACTION J
WITH YICES

CONCRETE COUNTER
REPRESENTATION (VASS)

|

SMT formula

Parametric Promela code

PARAMETRIC COUNTER AB-
STRACTION WITH YICES

REFINE «<———F— YICES sat
unsat

normal
SPIN —— counterexample
Promela code l

property holds counterexample feasible

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

37 / 50

Tool Chain: BYMC

Parametric Promela code —— STATIC ANALYSIS + YICES
Parametric Interval Domain D
PARAMETRIC DATA ABSTRACTION J
WITH YICES

CONCRETE COUNTER
REPRESENTATION (VASS)

|

SMT formula

Parametric Promela code

PARAMETRIC COUNTER AB-
STRACTION WITH YICES

invariant candidates (by the user)
|

REFINE «<———F— YICES sat
unsat

normal
SPIN —— counterexample
Promela code l

property holds counterexample feasible

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

37 / 50

Experimental setup

The tool (source code in OCaml),
the code of the distributed algorithms in Parametric Promela,

and a virtual machine with full setup

are available at: http://forsyte.at/software/bymc

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 38 / 50

http://forsyte.at/software/bymc/

Running the tool —concrete case

@ user specifies parameter value

o useful to check whether the code behaves as expected

@ $bymc/verifyco-spin "N=4,T=1,F=1" bcast-byz.pml relay
e model checking problem in directory
“./x/spin-bcast-byz-relay-N=4,T=1,F=1"

e in concrete.prm

@ parameters are replaced by numbers
@ process prototype is replaced with N — F = 3 active processes

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 39 / 50

Running the tool — parameterized model checking

@ PIA data and counter abstraction

o finite-state model checking on abstract model

@ $bymc/verifypa-spin bcast-omit.pml relay
e model checking problem in directory
“./x/bcast-byz-relay-yymmdd-HHMM. x"

e directory contains

abs-interval.prm: result of the data abstraction;
abs-counter.prm: result of the counter abstraction;
abs-vass.prm: auxiliary abstraction for abstraction refinement;
mc.out: the last output by SPIN;

cex.trace: the counterexample (if there is one);

yices.log: communication log with YICES.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

40 / 50

experimental evaluation

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 41 / 50

Concrete vs. parameterized (Byzantine case)

Time to check relay (sec, logscale) Memory to check relay (MB, logscale)

10000 4096

u a
1000 - n 2048 -
100 e 1024 |
¢]
10 - 512 -
1 u 256
0.1 | =1 =1,®) 128
bstract, (R) @D
0.01m . o B
4 5 6 7 8 9 10 4 5 6 7 8 9
number of processes, n number of processes, n

o Parameterized model checking performs well (the red line).

@ Experiments for fixed parameters quickly degrade
(n =9 runs out of memory).

@ We found counter-examples for the cases n = 3t and f > t,
where the resilience condition is violated.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

10

42 / 50

Experimental results at a glance

Algorithm Fault Resilience Property Valid? #Refinements Time
ST87 Byz n> 3t U v 0 4 sec
ST87 Byz n> 3t C v 10 32 sec.
ST87 Byz n> 3t R v 10 24 sec.
ST87 SYMM n>2t U v 0 1 sec
ST87 SYMM n>2t C v 2 3 sec.
ST87 SYMM n> 2t R v 12 16 sec.
ST87 OMIT n> 2t U v 0 1 sec
ST87 OMIT n> 2t C v 5 6 sec.
ST87 OMIT n> 2t R v 5 10 sec.
ST87 CLEAN n>t U v 0 2sec
ST87 CLEAN n>t C v 4 8 sec.
ST87 CLEAN n>t R v 13 31 sec.
CT96 CLEAN n>t U v 0 1 sec
CT96 CLEAN n>t A v 0 1 sec
CT96 CLEAN n>t R v 0 1 sec.
CT96 CLEAN n>t C X 0 1 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 43 / 50

When resilience condition is wrong...

Algorithm Fault Resilience Property Valid? #Refinements Time
ST87 Byz n>3tAf <t+l U X 9 56 sec.
ST87 Byz n>3tAf <t+l C X 11 52 sec.
ST87 Byz n>3tAf <t+l R X 10 17 sec.
ST87 Byz n>3tANf <t U v 0 5 sec.
ST87 Byz n>3tANf <t C v 9 32 sec.
ST87 Byz n>3tANf <t R X 30 78 sec.
ST87 SYMM n>2tAf <t+l U X 0 2 sec.
ST87 SYMM n>2tAf <t+l C X 2 4 sec.
ST87 SYMM n>2tAf <t+l R v 8 12 sec.
ST87 OMIT n>2tAf<t U v 0 1 sec.
ST87 OMIT n>2tANf<t C X 0 2sec.
ST87 OMIT n>2tAf<t R X 0 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

SFEM, June 18, 2014 44 / 50

Summary of results

@ Abstraction tailored for distributed algorithms

o threshold-based
o fault-tolerant
o allows to express different fault assumptions

@ Verification of threshold-based fault-tolerant algorithms

o with threshold guards that are widely used
o Byzantine faults (and other)
o for all system sizes

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 45 / 50

Related work: non-parameterized

Model checking of the small size instances:
@ clock synchronization [Steiner, Rushby, Sorea, Pfeifer 2004]
@ consensus [Tsuchiya, Schiper 2011]

@ asynchronous agreement, folklore broadcast, condition-based
consensus [John, Konnov, Schmid, Veith, Widder 2013]

@ and more...

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 46 / 50

Related work: parameterized case

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

“First-shot” theoretical framework.

No guards like x > t 4+ 1, only x > 1.

No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SEM, June 18, 2014 47 / 50

Related work: parameterized case

Regular model checking of fault-tolerant distributed protocols:
[Fisman, Kupferman, Lustig 2008]
“First-shot” theoretical framework.

No guards like x > t 4+ 1, only x > 1.
No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

@ Implementation.

@ Experiments on Chandra-Toueg 1990.
@ No resilience conditions like n > 3t.
@ Safety only.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SEM, June 18, 2014 47 / 50

Our current work

. Discrete . . Continuous
Discrete . Discrete Continuous .
partially partially
synchronous asynchronous synchronous
synchronous synchronous

one-shot broadcast, c.b.consensus
core of {ST87,

One instance/ BT87, CT96}

finite payload
Inite pay MAO06 (common),

MRO04 (binary)
Many inst./

finite payload

Many inst./
unbounded

payload

Messages with

reals

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 48 / 50

Future work: threshold guards + orthogonal features

. Discrete . . Continuous
Discrete . Discrete Continuous .
partially partially
synchronous asynchronous synchronous
synchronous synchronous
one-shot broadcast, c.b.consensus
core of {ST87,
One instance/
BT87, CT96},
finite payload
MAO06 (common),
MRO04 (binary) lock
. clock sync
Many inst./ CT96 y
. DHM12 FSFK06
finite payload (failure detectg
Many inst./
unbounded ST87 WS09
L98 (Paxos)
payload failure-detectors
Messages with approx. agreement
AKO00 DLPSW86 ST87 (JACM)
reals

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 48 / 50

v

logic n. 1 the science of reasoning.

— ORIGIN from Greek logike tekhné
‘art of reason’.

L J

X X
v

VIENNA Formal
SUMMER Reasoning
~ OF LoGIC In

']
- L

" 201 4 Distributed

Algorithms
. JuLy 9-24
Mathematical Logic http//vs|2014at/fr|da/

Computer Science
Artificial Intelligence

]
gF

hitp/si2014.at

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 49 / 50

http://vsl2014.at/frida/

Thank you!

| http://forsyte.at/software/bymc |

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 50 / 50

http://forsyte.at/software/bymc/

Fairness, Refinement, and Invariants

@ In the Byzantine case we have in_transit : Vi.(recv; > sent) and
G F —in_transit.

@ In this case communication fairness implies computation fairness.

@ But in the abstract version sent can deviate from the number of
processes who sent the echo message.

@ In this case the user formulates a simple state invariant candidate,
e.g., sent = K([sv = SE V sv = AC]) (on the level of the original
concrete system).

@ The tool checks automatically, whether the candidate is actually a
state invariant.

@ After the abstraction the abstract version of the invariant restricts the
behavior of the abstract transition system.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 51 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 52 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

$2 S3
in_transit Q—O— «+-Q in_transit
in_transit

in_transit

in_transit
Sk

in_transit

<«—QO <+ -+ -Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

52 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

S2 53

in_transit Q—O— «+-Q in_transit

/ in_transit
In_transit

in_transit
Sk

<«—QO <+ -+ -Q) in_transit

in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to G F —in_transit A GF | \/ -—at(s;)
1<j<k

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

52 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

$2 S3
in_transit Q—O— «+-Q in_transit
in_transit

in_transit

in_transit
Sk

in_transit

<«—QO <+ -+ -Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to G F —in_transit A GF | \/ -—at(s;)
1<j<k

...Wwe use unsat cores to refine several loops at once
Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

52 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 53 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

$2 S3
in_transit Q—O— «+-Q in_transit
in_transit

in_transit

in_transit
Sk

in_transit

<«—QO <+ -+ -Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

53 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

S2 53

in_transit Q—O— «+-Q in_transit

/ in_transit
In_transit

in_transit
Sk

<«—QO <+ -+ -Q) in_transit

in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to G F —in_transit A GF | \/ -—at(s;)
1<j<k

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

53 / 50

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

$2 S3
in_transit Q—O— «+-Q in_transit
in_transit

in_transit

in_transit
Sk

in_transit

<«—QO <+ -+ -Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to G F —in_transit A GF | \/ -—at(s;)
1<j<k

...Wwe use unsat cores to refine several loops at once
Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014

53 / 50

asynchronous reliable broadcast (srikanth & toueg 1987)

the core of the classic broadcast algorithm from the da literature.
it solves an agreement problem depending on the inputs v;.

Variables of process i

vi: {0, 1} init with 0 or 1
accept;: {0, 1} init with 0

An indivisible step:
if Vi = 1

then send (echo) to all;

if received (echo) from at least
t + 1 distinct processes

and not sent (echo) before
then send (echo) to all;

if received (echo) from at least
n - t distinct processes
then accept; : 1;

)
Josef Widder (www.forsyte.at)

Checking Fault-Tolerant Distributed Algos

SFEM, June 18, 2014

54 / 50

asynchronous reliable broadcast (srikanth & toueg 1987)

the core of the classic broadcast algorithm from the da literature.
it solves an agreement problem depending on the inputs v;.

Variables of process i
vi: {0, 1} init with 0 or 1
accept;: {0, 1} init with 0

An indivisible step:
if Vi = 1
then send (echo) to all;

if received (echo) from at least
t + 1 distinct processes

and not sent (echo) before
then send (echo) to all;

if received (echo) from at least
n - t distinct processes
then accept; := 1;

)
Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

asynchronous

t byzantine faults

correct if n > 3t
resilience condition rc

parameterized process
skeleton p(n, t)

SFEM, June 18, 2014 54 / 50

Abstract CFA

recv := z where (recv < z A z < sent + f)

t+1< rec

sv= V0
inc sent

®

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 55 / 50

Abstract CFA

@®

recv := z where (recv < z A z < sent + f) [recv =To Asent =Ig A (recv’ =To Vrecv' =1;)] V...
()
—(sv = V1) —(sv = VI)

l
(o)

recv =Ipyq Vrecv =1,

v

t+1< rec

sv= V0 sv=\V0
inc sent [sent =1y A (sent’ =T V sent’ =Tpiq)] V...

® [O)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFEM, June 18, 2014 55 / 50

