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Distributed Systems
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No. . . some failing systems

Therac-25 (1985)

radiation therapy machine
gave massive overdoses, e.g., due to race conditions

Quantas Airbus in-flight Learmonth upset (2008)

1 out of 3 replicated components failed
computer initiated dangerous altitude drop

Ariane 501 maiden flight (1996)

Netflix outages due to Amazon’s cloud (ongoing)
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Why do they fail?

faults at design/implementation phase

approach:
find and fix faults before operation
⇒ model checking

faults at runtime

outside of control of designer/developer
power outage, hardware faults

approach:
keep system operational despite faults
⇒ fault-tolerant distributed algorithms

Driscoll (Honeywell)
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Bringing both together

Goal: automatically verified fault-tolerant distributed algorithms

model checking FTDAs is a research challenge:

computers run independently at different speeds

exchange messages with uncertain delays

faults

parameterization

. . . fault-tolerance makes model checking harder
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Lecture overview

Part I: Fault-tolerant distributed algorithms

introduction to distributed algorithms

details of our case study algorithm

motivation why model checking is cool

Part II: Modeling fault-tolerant distributed algorithms

model checking challenges in distributed algorithms

Promela, control flow automata, etc.

model checking of small instances with Spin

Part III: Parameterized model checking

parametric interval abstraction (PIA)

PIA data and counter abstraction

counterexample-guided abstraction refinement (CEGAR)
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Part I: Fault-tolerant Distributed
Algorithms
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Distributed Systems are everywhere

What they allow to do

share resources

communicate

increase performance

speed

fault tolerance

Difference to centralized systems

independent activities (concurrency)

inherent uncertainty
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Application areas

buzzwords from the 60ies

operating systems

(distributed) data base systems

communication networks

multiprocessor architectures

control systems

New buzzwords

cloud computing

social networks

multi core

cyber-physical systems
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Major challenge

Uncertainty

computers run independently at different speeds

exchange messages with (unknown) delays

faults

challenge in design of distributed algorithms

no global view available in parts of the system

challenge in proving them correct

large degree of non-determinism
⇒ large execution and state space
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From dependability to a distributed system — Consistency

P

P1 P2

P3

replication P P

P

consistency

We thus discuss

consistency in distributed systems in the presence of failures

how to define
how to achieve

what are the problems posed by distribution

asynchrony
failures
how to they play against us

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 11 / 43



From dependability to a distributed system — Consistency

P
P1 P2

P3

replication

P P

P

consistency

We thus discuss

consistency in distributed systems in the presence of failures

how to define
how to achieve

what are the problems posed by distribution

asynchrony
failures
how to they play against us

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 11 / 43



From dependability to a distributed system — Consistency

P
P1 P2

P3

replication P P

P

consistency

We thus discuss

consistency in distributed systems in the presence of failures

how to define
how to achieve

what are the problems posed by distribution

asynchrony
failures
how to they play against us

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 11 / 43



From dependability to a distributed system — Consistency

P
P1 P2

P3

replication P P

P

consistency

We thus discuss

consistency in distributed systems in the presence of failures

how to define
how to achieve

what are the problems posed by distribution

asynchrony
failures
how to they play against us

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 11 / 43



From dependability to a distributed system — Consistency

P
P1 P2

P3

replication P P

P

consistency

We thus discuss

consistency in distributed systems in the presence of failures

how to define
how to achieve

what are the problems posed by distribution

asynchrony
failures
how to they play against us

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 11 / 43



Replication — distributed systems

P
P1 P2

P3

replication
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Distributed message passing system

multiple distributed processes pi

pi send receive internal

s ji s j+1
i s j+2

i s j+3
i
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Distributed systems

non-empty set P = {p1, · · · pn} of n processes

each process pi has

a set of states Si (subset initial states)

variables

a set of actions Ai

sending of a unique message
receive of a message
internal

transition relation Si × Ai : which actions can execute from a given
state

transition function Ti : Si × Ai → Si
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Types of Distributed Algorithms sync. vs. async

Synchronous

all processes move in lock-step

rounds

a message sent in a round is received in the round

idealized view

impossible or expensive to implement

Asynchronous

only one process moves at a time

arbitrary interleavings of steps

a message sent is received eventually

important problems not solvable (FLP85)!
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Synchronous system

idealized view on organizing computations in rounds

p send receive

sr−1 sr
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Lock-step synchronous system

p4
t

p3

p2

p1

sr−1 sr
receivesend

sr−1 sr
receivesend

sr−1 sr
receivesend

with Byzantine process faults:

every correct process receives all messages sent by correct processes in
the round they were sent.
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Where we stand

P
P1 P2

P3

replication
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What we still need. . .

P1 P2

P3

P P

P

consistency
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Fault tolerance – The Byzantine generals problem

Wiktionary:
Byzantine: adj. of a devious, usually stealthy manner, of practice.
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Fault tolerance – The Byzantine generals problem

Lamport (this year’s Turing laureate), Shostak, and Pease wrote in their
Dijkstra Prize in Distributed Computing winning paper (LSP82):

[. . .] several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. [. . .]
However, some of the generals may be traitors [. . .]

if the divisions of loyal generals attack together, the city falls

if only some loyal generals attack, their armies fall

generals communicate by messengers

How to agree in the presence of traitors who can send different messages
to different loyal generals?
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Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages
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Fault models — abstractions of reality

clean crashes:
faulty processes prematurely halt after/before “send to all”

crash faults:
faulty processes prematurely halt (also) in the middle of “send to all”

omission faults:
faulty processes follow the algorithm, but some messages sent by them

might be lost

symmetric faults:
faulty processes send arbitrarily to all or nobody

Byzantine faults:
faulty processes can do anything
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Fault models — the ugly truth

A photo of a Byzantine fault:

photo by Driscoll (Honeywell)
he reports Byzantine behavior on the Space Shuttle computer network

other sources of faults: bit-flips in memory, power outage, disconnection
from the network, etc.
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Defining consistency — e.g., binary consensus

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.
either all attack or no-one

validity. If all correct processes have the same initial value v , then v
is the only possible decision value
the attack must be based on the will of one loyal general

termination. Every correct process eventually decides.
at some point negotiations must be over

satisfying only two properties?
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Solving consensus

A system solves consensus if
each process’s initial states are partitioned into ones that represent initial
value 0 and 1. (e.g., with a binary variable input)

each process’s states are partitioned into sets representing

undecided

0-decided

1-decided

(e.g., with a variable output initially set to ⊥)

All runs “satisfy” the properties of consensus.

e.g. irrevocability: if in some run a process pi ’s state s ji is a v -decided
state then for all successor states, ski is a v -decided state

let’s try to solve it. . .
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Our case study. . .
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In this lecture: asynchronous FTDA

Still, problems that are solvable

relaxations of consensus:

reliable broadcast. relaxed termination

condition-based consensus properties required only in runs from
specific initial states

The Paxos idea fault-tolerant distributed algorithms that are safe and
make progress only if you are “lucky”

adding information to the system

failure detector based atomic commitment. distributed databases

failure detector based consensus. and atomic broadcast
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Our case-study problem

Unforgeability. If vi = false for all correct processes i , then for all correct
processes j , acceptj remains false forever.

if no loyal general wants to attack, then traitors should not
be able to force one.

Completeness. If vi = true for all correct processes i , then there is a
correct process j that eventually sets acceptj to true.

If all loyal generals want to attack, there shall be an attack.

Relay. If a correct process i sets accepti to true, then eventually all
correct processes j set acceptj to true.

If one loyal general attacks, then all loyal generals should attack.

difference to consensus?
can be formalized in LTL
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Asynchronous Reliable Broadcast (Srikanth & Toueg, 87)

The core of the classic broadcast algorithm from the DA literature.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

asynchronous

t Byzantine faults

correct if n > 3t
resilience condition RC
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6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

asynchronous

t Byzantine faults

correct if n > 3t
resilience condition RC
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Basic mechanisms used by the algorithm

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages
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Classic correctness argument—
hand-written proofs
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Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send ( echo ) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

Because n > 3t, that means
messages by at n − 2t correct
processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 43



Proof: Completeness

If vi = true for all correct processes i , then there is a correct process j
that eventually sets acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
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8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

all, i.e., at least n − t correct
processes execute line 7

by reliable communication all
correct processes receive all
messages sent by correct
processes

Thus, a correct process receives
n − t (echo) messages

Thus, a correct process executes
line 16
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Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
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11 and not sent ( echo ) be f o r e
12 then send ( echo ) to all ;
13

14 i f received ( echo ) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16
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Problems with hand-written proofs

code inspection becomes confusing for larger algorithms

hidden assumptions

resilience condition

reliable communication (fairness)

non-masquerading

failure model

re-using proofs if one of the ingredients changes?

if I cannot prove it correct, that does not mean the algorithm is wrong
. . . how to come up with counterexamples?

ultimate goal: verify the actual source code.
. . . it is not realistic that developers do mathematical proofs.
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Bracha & Toueg’s algorithm (JACM 1985)
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Condition-based consensus
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We have convinced a human, . . .

. . . why should we convince a computer?

it is easy to make mistakes in proofs

it is easier to overlook mistakes in proofs

distributed algorithms require “non-centralized thinking”
(untypical for the human mind)

many issues to consider at the same time
(interleaving of steps, faults, timing assumptions)

people who tried to convince computers found bugs in published. . .

Byzantine agreement algorithm (LR93)

clock synchronization algorithm (MS06)
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End of Part I
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