
Model Checking of Fault-Tolerant Distributed Algorithms

Part II: Modeling Fault-tolerant Distributed Algorithms

Annu Gmeiner Igor Konnov Ulrich Schmid Helmut Veith

Josef Widder

SFM-14:ESM. Bertinoro, Italy, EU

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 1 / 51

Why Model Checking?

an alternative proof approach

useful counter-examples

ability to vary assumptions about the system and see why it breaks

closer to code level (code generation?)

good degree of automation

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 2 / 51

Distributed Algorithms: Model Checking Challenges

degrees of concurrency

many degrees of partial synchrony

unbounded data types

unbounded number of rounds (round numbers part of messages)

parameterization in multiple parameters

among n processes f ≤ t are faulty with n > 3t

contrast to concurrent programs

diverse fault models (adverse environments)

continuous time

fault-tolerant clock synchronization

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 3 / 51

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 4 / 51

Fault-tolerant distributed algorithms

n

?
?

?
t

f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 4 / 51

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 4 / 51

Challenge #1: fault models

clean crashes:
faulty processes prematurely halt after/before “send to all”

crash faults:
faulty processes prematurely halt (also) in the middle of “send to all”

omission faults:
faulty processes follow the algorithm, but some messages sent by them

might be lost

symmetric faults:
faulty processes send arbitrarily to all or nobody

Byzantine faults:
faulty processes can do anything

hybrid models:
combinations of the above

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 5 / 51

Typical Structure of a Computation Step

receive messages

compute using

messages and local variables

(implicit control flow

& explicit local data)

send messages

atomic

im
pli
cit

ps
eu
do
-c
od
e

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 6 / 51

Typical Structure of a Computation Step

receive messages

compute using

messages and local variables

(implicit control flow

& explicit local data)

send messages

atomic

im
pli
cit

ps
eu
do
-c
od
e

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 6 / 51

Asynchronous Reliable Broadcast (Srikanth & Toueg, 87)

The core of the classic broadcast algorithm from the DA literature.
It solves an agreement problem depending on the inputs vi .

Variables of process i
vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:
i f vi = 1
then send (echo) to all ;

i f received (echo) from at l e a s t
t + 1 distinct p r o c e s s e s
and not sent (echo) be f o r e

then send (echo) to all ;

i f received (echo) from at l e a s t
n - t distinct p r o c e s s e s

then accepti := 1 ;

asynchronous

t Byzantine faults

correct if n > 3t
resilience condition RC

parameterized process
skeleton P(n, t)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 7 / 51

Asynchronous Reliable Broadcast (Srikanth & Toueg, 87)

The core of the classic broadcast algorithm from the DA literature.
It solves an agreement problem depending on the inputs vi .

Variables of process i
vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:
i f vi = 1
then send (echo) to all ;

i f received (echo) from at l e a s t
t + 1 distinct p r o c e s s e s
and not sent (echo) be f o r e

then send (echo) to all ;

i f received (echo) from at l e a s t
n - t distinct p r o c e s s e s

then accepti := 1 ;

asynchronous

t Byzantine faults

correct if n > 3t
resilience condition RC

parameterized process
skeleton P(n, t)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 7 / 51

Challenges #2 & #3: Pseudo-code and Communication

Translate pseudo-code to a formal description

that allows us to verify the algorithm

and does not oversimplify the original algorithm.

Assumptions about the communication medium

are usually written in plain English,

spread across research papers,

constitute folklore knowledge.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 8 / 51

Challenge #4: Parameterized Model Checking

Parameterized model checking problem:

given a parameterized family {M(n, t, f)},
resilience condition RC : n > 3t ∧ t ≥ f ≥ 0,
justice constraints Φ,
and an LTL-X formula ϕ

show for all n, t, and f satisfying RC

M(n, t, f) |= (Φ→ ϕ)

n

?
?

?
t

n

?
?

?
t f

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 9 / 51

Challenge #5: Liveness in Distributed Algorithms

Interplay of safety and liveness is a central challenge in DAs

achieving safety and liveness is non-trivial

asynchrony and faults lead to impossibility results

Rich literature to verify safety (e.g. in concurrent systems)

Distributed algorithms perspective:

“doing nothing is always safe”

“tools verify algorithms that actually might do nothing”

Verification efforts often have to simplify assumptions

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 10 / 51

Challenge #5: Liveness in Distributed Algorithms

Interplay of safety and liveness is a central challenge in DAs

achieving safety and liveness is non-trivial

asynchrony and faults lead to impossibility results

Rich literature to verify safety (e.g. in concurrent systems)

Distributed algorithms perspective:

“doing nothing is always safe”

“tools verify algorithms that actually might do nothing”

Verification efforts often have to simplify assumptions

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 10 / 51

Summary

We have to model:
faults,

communication medium captured in English,

algorithms written in pseudo-code.

and check:
safety and liveness

of parameterized systems

with unbounded types,

non-standard fairness constraints,

and maybe real-time.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 11 / 51

Existing formalization frameworks

TLA+/PlusCal

Design & Specification

Concurrent Alg.
Proving/

TLC

(Timed) IOA

Asynchronous DA
Proving/

UPPAAL ?
(Parameterized)

Model Checking

of FTDAs

DISTAL

Simulation

PBFT

Implementation
Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 12 / 51

Properties of verification frameworks

TLA (temporal logic of actions):

used to design (distributed) algorithms by refinement of the spec

verification with proof assistants (low degree of automation)

Encodings of DA in proof assistant PVS (e.g., by Rushby):

ad-hoc encoding

found a bug in a published algorithm

I/O-Automata:

originally design to write clearer hand-written proofs

several implementations in proof assistants

suitable for asynchronous distributed algorithms

proof assistants are very general, but with low automation degree
“everything is possible, but nothing is easy”

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 13 / 51

Properties of verification frameworks

TLA (temporal logic of actions):

used to design (distributed) algorithms by refinement of the spec

verification with proof assistants (low degree of automation)

Encodings of DA in proof assistant PVS (e.g., by Rushby):

ad-hoc encoding

found a bug in a published algorithm

I/O-Automata:

originally design to write clearer hand-written proofs

several implementations in proof assistants

suitable for asynchronous distributed algorithms

proof assistants are very general, but with low automation degree
“everything is possible, but nothing is easy”

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 13 / 51

In this part

We introduce efficient encoding in Promela.

Verify safety and liveness of fault-tolerant algorithms (fixed parameters).

Find counterexamples for parameters known from the literature.

This proves adequacy of our modeling.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 14 / 51

Preliminaries:
Promela

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 15 / 51

Promela

Promela ≡ PROcess MEta LAnguage

SPIN ≡ Simple Promela INterpreter

(not that simple any more)

Here we give a short introduction and cover only
the features important to our work.

Detailed documentation, tutorials, and books on:
http://spinroot.com Gerard Holzmann

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 16 / 51

http://spinroot.com

Top-level: global variables and processes

/∗ g l o b a l d e c l a r a t i o n s v i s i b l e t o a l l p r o c e s s e s ∗/
int x; /∗ a g l o b a l i n t e g e r (as in C) ∗/

mtype = { X, Y }; /∗ c on s t an t message t y p e s ∗/
/∗ a channe l w i t h a t most 2 messages o f t y p e mtype ∗/
chan c = [2] of { mtype };

active [2] proctype ProcA() { Two processes are created at
the initial state...

}

proctype ProcB () { Processes can be created
later using: run ProcB()...

}

init { A special process, use to cre-
ate other processesrun ProcB (); run ProcB ();

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 17 / 51

One process: Basics

int x, y;

active proctype ProcA() {

int z; Declare a local variable

z = x; Assignment

x > y; Block until the expression is evaluated to true

true; What is it doing?

z++;

skip; same as true
}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 18 / 51

One process: Control flow

int x, y;

active proctype P() {

main:

if A guarded command
:: x == 0 -> x = 1;

:: y == 0 -> y = 1;
non-deterministically selects an option whose
first expression is not blocked.:: x == 1 && y == 1

-> x = 0; y = 0;

fi; continues executing the rest of the option
step-by-step.goto main;

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 19 / 51

One process: Control flow (cont.)

int x = 0, y = 0;

active

proctype P() {

main:

if

:: x == 0 -> x = 1;

:: y == 0 -> y = 1;

:: x == 1 && y == 1

-> x = 0; y = 0;

fi;

goto main;

}

Run 1 Run 2 Run 3

x=0,y=0 x=0,y=0 x=0,y=0

x=1,y=0 x=0,y=1 x=1,y=0

x=1,y=1 x=1,y=1 x=1,y=1

x=0,y=0 x=0,y=0 x=0,y=0

x=0,y=1 x=1,y=0 x=1,y=1

x=1,y=1 x=1,y=1 x=1,y=1

x=0,y=0 x=0,y=0 x=0,y=0

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 20 / 51

One process: Loops

int x;

active proctype P() {

do a do..od loop
:: x == 10 -> x = 0;

:: x == 10 -> break;

:: x < 10 -> x++;

od;

A:

if is it equivalent to do..od?
:: x == 10 -> x = 0;

:: x == 10 -> goto B;

:: x < 10 -> x++;

fi;

goto A;

B:

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 21 / 51

Many Processes: Interleavings

Pure interleaving semantics

Every statement is executed
atomically

int x = 0, y = 1;

active [2] proctype A() {

x = 1 - x;

y = 1 - y;

}

A[1]A[0]

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 22 / 51

Many Processes: Atomics

use atomic { ... } to make
execution of a sequence indivisible.

non-deterministic choice with
if..fi is still allowed!

int x = 0, y = 1;

active [2] proctype A() {

atomic {

x = 1 - x;

y = 1 - y;

}

}

A[1]A[0]

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 23 / 51

Example: Semaphore

#define N 0

#define T 1

#define C 2

int x = 1;

active proctype P() {

int sv = N;

do

:: sv == N -> sv = N;

:: sv == N -> sv = T;

:: sv == C -> /∗ do c r i t i c a l s t u f f ∗/;
:: sv == C -> sv = N; x++;

:: atomic {

sv == T && x < 1

-> x--; sv = C;

}

od;

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 24 / 51

(Asynchronous) message passing

mtype = { A, B };

chan to = [1] of { mtype };

chan from = [1] of { mtype };

active proctype Ping() {

to!A; insert A to “to”
do

:: from?B -> to!A;

od;
when B is on the top of “to”,
receive it and insert A to
“from”}

active proctype Pong() {

do

:: to?A -> from!B;

od;

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 25 / 51

Blocking send

mtype = { A, B };

chan to = [1] of { mtype };

chan from = [1] of { mtype };

active proctype Ping() {

to!A;

do

:: from?B -> to!A; to!A; what happens here?
od;

}

active proctype Pong() {

do

:: to?A -> from!B;

od;

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 26 / 51

Blocking receive

mtype = { A, B };

chan to = [1] of { mtype };

chan from = [1] of { mtype };

active proctype Ping() {

to!A;

do

:: from?B -> to!A;

od;

}

active proctype Pong() {

do

:: to?A; to?A; -> from!B; what happens here?
od;

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 27 / 51

Promela vs. C

Promela looks like C

But it is not!

Non-determinism in the if statements (internal non-determinism)

Non-determinstic scheduler (external non-determinism)

Atomic statements

Message passing

Promela is a modeling language

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 28 / 51

Preliminaries:
Control Flow Automata (CFA)

Kripke Structures
Linear Temporal Logic (LTL)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 29 / 51

CFA: Intermediate representation

Intermediate representation of a loop
iteration: a path from qI to qF

encodes one iteration.

Every variable is assigned at most
once (SSA).

active proctype P() {

int x, y;

do

:: x == 0 -> x = 1;

:: x == 1 -> x = 2;

:: x == 2 -> x = 0;

:: x == 1

-> x = 0; y = 1 - y;

od;

}

qI

q0 q1 q2 q3

q4

qF

x = 0

x = 1
x = 1

x = 2

x ′ = 1

x ′ = 2
x ′ = 0

x ′ = 0

y ′ = 1− y

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 30 / 51

Kripke structures

The way to express semantics

A Kripke structure is a
M = (S ,S0,R,AP, L), where:

S is a finite set of states,

S0 ⊆ S is the set of initial
states,

R ⊆ S × S is a transition
relation,

AP is a set of atomic
propositions,

L : S → 2AP is a state-labeling
function.

s4 : {g}

s1 : {y} s2 : {y}
s3 : {r , y , g}

s0 : {r}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 31 / 51

Linear Temporal Logic

The way to write specifications:

An LTL formula is defined inductively w.r.t.
atomic propositions AP:

(base) p ∈ AP is an LTL formula,

if ϕ and ψ are LTL formulas, then the
following expressions are LTL formulas:

Nexttime: Xϕ,
Eventually: Fϕ,
Globally: Gϕ,
Until: ψUϕ.
Boolean combinations:
ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.

s0 s2 s3 s4s1

s ′0 s ′1 s ′2 s ′4s ′3

s ′′0 s ′′1 s ′′2 s ′′3 s ′′4

s ′′′0

ψ

s ′′′1

ψ

s ′′′2

ϕ

s ′′′3 s ′′′4

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 32 / 51

Model Checking Problems

Consider PN as interleaving of N processes of type P.

Finite-state MC

Input:

a process template P (a Kripke structure),

an LTL formula ϕ,

the number of processes N ≥ 1.

Problem: check, whether PN |= ϕ.

Parameterized MC

Input:

a process template P (a Kripke structure),

an (indexed) LTL formula φ,

Problem: check, whether ∀N ≥ 1. PN |= φ(N).

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 33 / 51

Model Checking

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 34 / 51

Specification of ST87

Unforgeability. If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
((n−f∧

i=1

vi = 0
)
→ G

(n−f∧
j=1

acceptj = 0
))

Safety

Completeness. If vi = 1 for all correct processes i , then there is a correct process
j that eventually sets acceptj to 1.

G
((n−f∧

i=1

vi = 1
)
→ F

(n−f∨
j=1

acceptj = 1
))

Liveness

Relay. If a correct process i sets accepti to 1, then eventually all correct
processes j set acceptj to 1.

G
((n−f∨

i=1

accepti = 1
)
→ F

(n−f∧
j=1

acceptj = 1
))

Liveness

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 35 / 51

Case Studies

Our running example ST87 for

Byzantine faults (Byz)

omission faults (Omit)

symmetric faults (Symm)

clean crashes (Clean).

Forklore reliable broadcast for clean crashes [Chandra & Toueg 96, CT96].

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 36 / 51

Case Studies (cont.): Larger Algorithms

more involved algorithms in the purely asynchronous setting:

Asynchronous Byzantine Agreement (Bracha & Toueg 85, BT85)

Byzantine faults
two phases and two message types
five status values
properties: unforgeability, correctness (liveness), agreement (liveness)

Condition-based Consensus (Mostéfaoui et al. 01, MRRR01)

crash faults
two phases and four message types
nine status variables
properties: validity, agreement, termination (liveness)

Fast Byzantine Consensus: common case (Martin, Alvisi 06, MA06)

the core part of the algorithm
no cryptography

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 37 / 51

Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

ST87 Byz n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
ST87 Byz n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
ST87 Byz n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

ST87 Omit n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
ST87 Omit n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

ST87 Symm n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
ST87 Symm n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

ST87 Clean n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

CT96 Crash n = 2 — U, C, R 1 sec.

BT85 Byz n = 5, t = 1, f = 1 n > 3t R 131 sec.
BT85 Byz n = 5, t = 1, f = 2 n > 3t R 1 sec.
BT85 Byz n = 5, t = 2, f = 2 n > 3t R 1 sec.

MRRR01 Crash n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
MRRR01 Crash n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 3 hrs.

MA06 Byz
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 14 min.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 38 / 51

Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

ST87 Byz n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
ST87 Byz n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
ST87 Byz n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

ST87 Omit n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
ST87 Omit n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

ST87 Symm n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
ST87 Symm n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

ST87 Clean n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

CT96 Crash n = 2 — U, C, R 1 sec.

BT85 Byz n = 5, t = 1, f = 1 n > 3t R 131 sec.
BT85 Byz n = 5, t = 1, f = 2 n > 3t R 1 sec.
BT85 Byz n = 5, t = 2, f = 2 n > 3t R 1 sec.

MRRR01 Crash n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
MRRR01 Crash n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 3 hrs.

MA06 Byz
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 14 min.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 38 / 51

Experimental Results at Glance
Algorithm Fault Parameters Resilience Properties Time

ST87 Byz n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
ST87 Byz n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
ST87 Byz n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

ST87 Omit n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
ST87 Omit n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

ST87 Symm n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
ST87 Symm n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

ST87 Clean n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

CT96 Crash n = 2 — U, C, R 1 sec.

BT85 Byz n = 5, t = 1, f = 1 n > 3t R 131 sec.
BT85 Byz n = 5, t = 1, f = 2 n > 3t R 1 sec.
BT85 Byz n = 5, t = 2, f = 2 n > 3t R 1 sec.

MRRR01 Crash n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
MRRR01 Crash n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 3 hrs.

MA06 Byz
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 14 min.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 38 / 51

Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

ST87 Byz n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
ST87 Byz n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
ST87 Byz n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

ST87 Omit n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
ST87 Omit n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

ST87 Symm n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
ST87 Symm n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

ST87 Clean n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

CT96 Crash n = 2 — U, C, R 1 sec.

BT85 Byz n = 5, t = 1, f = 1 n > 3t R 131 sec.
BT85 Byz n = 5, t = 1, f = 2 n > 3t R 1 sec.
BT85 Byz n = 5, t = 2, f = 2 n > 3t R 1 sec.

MRRR01 Crash n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
MRRR01 Crash n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 3 hrs.

MA06 Byz
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 14 min.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 38 / 51

Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

ST87 Byz n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
ST87 Byz n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
ST87 Byz n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

ST87 Omit n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
ST87 Omit n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

ST87 Symm n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
ST87 Symm n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

ST87 Clean n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

CT96 Crash n = 2 — U, C, R 1 sec.

BT85 Byz n = 5, t = 1, f = 1 n > 3t R 131 sec.
BT85 Byz n = 5, t = 1, f = 2 n > 3t R 1 sec.
BT85 Byz n = 5, t = 2, f = 2 n > 3t R 1 sec.

MRRR01 Crash n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
MRRR01 Crash n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 3 hrs.

MA06 Byz
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 14 min.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 38 / 51

Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

ST87 Byz n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
ST87 Byz n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
ST87 Byz n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.

ST87 Omit n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
ST87 Omit n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.

ST87 Symm n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
ST87 Symm n = 5, t = 2, fp = 3, fs = 1 n > 2t U, C, R 1 sec.

ST87 Clean n = 3, t = 2, fc = 2, fnc = 0 n > t U, C, R 1 sec.

CT96 Crash n = 2 — U, C, R 1 sec.

BT85 Byz n = 5, t = 1, f = 1 n > 3t R 131 sec.
BT85 Byz n = 5, t = 1, f = 2 n > 3t R 1 sec.
BT85 Byz n = 5, t = 2, f = 2 n > 3t R 1 sec.

MRRR01 Crash n = 3, t = 1, f = 1 n > 2t V0, V1, A, T 1 sec.
MRRR01 Crash n = 3, t = 1, f = 2 n > 2t V0, V1, A, T 1 sec.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1,f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 3 hrs.

MA06 Byz
p = 4,a = 5,l = 4,
t = 1, f = 1

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 14 min.

MA06 Byz
p = 4,a = 6,l = 4,
t = 1, f = 2

p > 3t, a > 5t, l > 3t CS1, CS3, CL1, CL2 2 sec.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 38 / 51

Experimental Results: on ST87, the Byzantine Case

Time (sec, logscale)

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7 8 9

ti
m

e,
 s

ec
 (

lo
gs

ca
le

)

number of processes, N

Memory (MB, logscale)

 128

 256

 512

1024

2048

4096

8192

3 4 5 6 7 8 9

m
em

or
y,

 M
B

 (
lo

gs
ca

le
)

number of processes, N

t=2, f=0, (u)

t=2, f=0, (c)

t=2, f=0, (r)

t=2, f=2, (u)

t=2, f=2, (c)

t=2, f=2, (r)

We can check the properties up to nine processes (f = 2)
and up to seven processes (no faults)

We found counter-examples for the cases n = 3t and f > t,
where the resilience condition is violated.

(June 12, 2013: somebody wrote on Wikipedia that n = 3t should work :-)
Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 39 / 51

To achieve verification. . .

We introduce efficient encoding in Promela

Verify safety and liveness of fault-tolerant algorithms (fixed parameters).

Find counterexamples for parameters known from the literature.

This proves adequacy of our modeling.

We can do that, because we look at:

1 central feature of the algorithms
(message counting);

2 specific message passing
(we do not need to know who sent but how many of them sent messages);

3 the way faults affect messages
(again, counting messages).

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 40 / 51

To achieve verification. . .

We introduce efficient encoding in Promela

Verify safety and liveness of fault-tolerant algorithms (fixed parameters).

Find counterexamples for parameters known from the literature.

This proves adequacy of our modeling.

We can do that, because we look at:

1 central feature of the algorithms
(message counting);

2 specific message passing
(we do not need to know who sent but how many of them sent messages);

3 the way faults affect messages
(again, counting messages).

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 40 / 51

Counting Argument in Threshold-Guarded Algorithms

n

t f

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 41 / 51

Counting Argument in Threshold-Guarded Algorithms

n

t f

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 41 / 51

Counting Argument in Threshold-Guarded Algorithms

n

t f

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 41 / 51

What shall we model?

As we have pseudo-code on input,

we have to decide on how to encode:

send to all and receive

counting expressions “received <m> from n − t distinct processes”

faults

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 42 / 51

Message Passing

Classic reliable asynchronous message passing as in [FLP85]
has the characteristics:

non-blocking communication,

if a message is in the buffer, it may be received later,

every sent message is eventually received

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 43 / 51

Message Passing using Promela channels

A straightforward encoding using message channels:

mtype = { ECHO };

chan p2p[NxN] = [1] of { mtype };

bit rx[NxN];

Sending a message to all processes:

for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 44 / 51

Message Passing (cont.)

Receiving and counting messages from distinct processes

(no faults yet):

int nrcvd = 0;

...

i = 0;

do :: (i < N) && nempty(p2p[i * N + _pid]) ->

p2p[i * N + _pid]?ECHO;

if

:: !rx[i * N + _pid] ->

rx[i * N + _pid] = 1;

nrcvd ++; break;

:: rx[i * N + _pid];

fi; i++;

:: (i < N) -> i++;

:: i == N -> break;

od

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 45 / 51

Shared Variables

Keeping the number of messages sent by (correct) processes:

int nsnt;

Sending a message to all:

nsnt ++;

Receiving and counting messages from distinct processes (no faults):

if

:: (next_nrcvd < nsnt) ->

next_nrcvd = nrcvd + 1; /∗ one more message ∗/
:: next_nrcvd = nrcvd; /∗ or no t h i n g ∗/

fi;

Reliable communication as a fairness property:

G F¬[∃i .nrcvdi < nsnt]

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 46 / 51

Byzantine Processes

Pease, Shostak, Lamport 1980: “...a bad processor might report one value
to a given processor and another value to some other processors”

Explicit modeling:

active[F] proctype Byz() {

step:

atomic {

i = 0;

do

:: i < N -> sendTo(i); i++;

:: i < N -> i++; /∗ some ∗/
:: i == N -> break;

od

};

goto step;

}

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 47 / 51

Injecting Faults into Message Counters

Creating only n − f correct processes.

But the correct processes may receive up to f messages from the f faulty
processes:

if

:: (next_nrcvd < nsnt + f) ->

next_nrcvd = nrcvd + 1; /∗ one more message ∗/
:: next_nrcvd = nrcvd; /∗ or no t h i n g ∗/

fi;

Still, we guarantee to receive up to nsnt messages:

G F¬[∃i .nrcvdi < nsnt]

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 48 / 51

Experiments: Channels + Explicit Faults
vs. Shared Memory + Fault Injection

States (logscale)

10

100

1000

10000

100000

1e+06

1e+07

1e+08

3 4 5 6 7 8

st
at

es
 (

lo
gs

ca
le

)

number of processes, N

Memory (MB, logscale, limit of 12 GB)

100

1000

10000

3 4 5 6 7 8

m
em

or
y,

 M
B

 (
lo

gs
ca

le
)

number of processes, N

Channels + explicit Byzantine processes (blue)

vs. shared variables + fault injection (red)

in the presence of one Byzantine faulty process

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 49 / 51

Our Lessons about Modeling Fault-Tolerant DAs

They have their own specific features and assumptions.

It takes some efforts to adequately formalize them.

It is essential to have the experts in these algorithms in
the loop.

Standard model checkers are not well tuned up to FTDAs.

Straightforward modeling does not work well.

Thinking in terms of the parameterized model checking
problem gives interesting insights.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 50 / 51

Thank you!

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 51 / 51

decidability?

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 52 / 51

Decidability and Undecidability in Retrospect

Apt & Kozen 1986
one process P(n) with a parameterized loop bound n,
P(n) simulates n steps of a TM, non-halting is undecidable,
so does PMC for n non-communicating processes Pn(n).

Suzuki 1988
one fixed process P independent of n,
Pn is a ring, processes communicate by rendezvous,
Pn simulates n steps of a TM.

German & Sistla 1992
stars C ‖ Un,
C and U communicate by rendezvous,
∀n ≥ 1. (C ‖ Un) |= f simulates a 2CM.

Results for Petri Nets, e.g., Esparza 1997
checking a linear µ-calculus formula against a Petri net simulates a

2CM.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 53 / 51

Decidability and Undecidability in Retrospect

Apt & Kozen 1986
one process P(n) with a parameterized loop bound n,
P(n) simulates n steps of a TM, non-halting is undecidable,
so does PMC for n non-communicating processes Pn(n).

Suzuki 1988
one fixed process P independent of n,
Pn is a ring, processes communicate by rendezvous,
Pn simulates n steps of a TM.

German & Sistla 1992
stars C ‖ Un,
C and U communicate by rendezvous,
∀n ≥ 1. (C ‖ Un) |= f simulates a 2CM.

Results for Petri Nets, e.g., Esparza 1997
checking a linear µ-calculus formula against a Petri net simulates a

2CM.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 53 / 51

Decidability and Undecidability in Retrospect

Apt & Kozen 1986
one process P(n) with a parameterized loop bound n,
P(n) simulates n steps of a TM, non-halting is undecidable,
so does PMC for n non-communicating processes Pn(n).

Suzuki 1988
one fixed process P independent of n,
Pn is a ring, processes communicate by rendezvous,
Pn simulates n steps of a TM.

German & Sistla 1992
stars C ‖ Un,
C and U communicate by rendezvous,
∀n ≥ 1. (C ‖ Un) |= f simulates a 2CM.

Results for Petri Nets, e.g., Esparza 1997
checking a linear µ-calculus formula against a Petri net simulates a

2CM.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 53 / 51

Decidability and Undecidability in Retrospect

Apt & Kozen 1986
one process P(n) with a parameterized loop bound n,
P(n) simulates n steps of a TM, non-halting is undecidable,
so does PMC for n non-communicating processes Pn(n).

Suzuki 1988
one fixed process P independent of n,
Pn is a ring, processes communicate by rendezvous,
Pn simulates n steps of a TM.

German & Sistla 1992
stars C ‖ Un,
C and U communicate by rendezvous,
∀n ≥ 1. (C ‖ Un) |= f simulates a 2CM.

Results for Petri Nets, e.g., Esparza 1997
checking a linear µ-calculus formula against a Petri net simulates a

2CM.

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 53 / 51

Two Counter Machines

A machine composed of the following commands

`i : inc C(`i); goto `j

`i : if C(`i) = 0 then goto `j

else dec C(`i); goto `k

`m : halt

over two counters C(`i) ∈ {B,C}.

The halting (as well as non-halting) problem is well-known to be
undecidable [Minsky1967].

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 54 / 51

Simulating 2CM

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD capacity D

inc B

dec B
inc C

dec C

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 55 / 51

Simulating 2CM

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD capacity D

inc B

dec B
inc C

dec C

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 55 / 51

Simulating 2CM

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD capacity D

inc B

dec B
inc C

dec C

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 55 / 51

Simulating 2CM

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD capacity D

inc B

dec B

inc C
dec C

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 55 / 51

Simulating 2CM

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD capacity D

inc B

dec B

inc C

dec C

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 55 / 51

Simulating 2CM

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD capacity D

inc B

dec B
inc C

dec C

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 55 / 51

Enforcing Test for Zero & Handshake via Specifications

Note that our atomic propositions have the form [∃i . f (i)] and [∀i . f (i)].

Thus, we can enforce test for zero as follows:

[∃k.svk = (`i , `j ,SynC)]→ ¬[∃k.svk = (C(`i), C(`i), IdlD)]

Handshake is more complicated (it encodes 7 steps):

[∃k .svk = (x , y ,SynD)]→[∃k .svk = (v ,w ,SynC)]∧
[∃k.svk = (x , y ,AckD)]→¬[∃k.svk = (x , y ,SynD)]∧
[∃k.svk = (x , y ,AckD)]→[∃k .svk = (v ,w ,AckC)]∧

[∃k.svk = (w ,w , IdlC]→(¬[∃k .svk = (x , y ,SynD)]∧
¬[∃k.svk = (x , y ,AckD)])

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 56 / 51

Enforcing Test for Zero & Handshake via Specifications

Note that our atomic propositions have the form [∃i . f (i)] and [∀i . f (i)].

Thus, we can enforce test for zero as follows:

[∃k.svk = (`i , `j ,SynC)]→ ¬[∃k.svk = (C(`i), C(`i), IdlD)]

Handshake is more complicated (it encodes 7 steps):

[∃k .svk = (x , y ,SynD)]→[∃k .svk = (v ,w ,SynC)]∧
[∃k.svk = (x , y ,AckD)]→¬[∃k.svk = (x , y , SynD)]∧
[∃k.svk = (x , y ,AckD)]→[∃k .svk = (v ,w ,AckC)]∧

[∃k.svk = (w ,w , IdlC]→(¬[∃k .svk = (x , y ,SynD)]∧
¬[∃k.svk = (x , y ,AckD)])

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 56 / 51

Undecidability for Threshold-based FTDAs

Theorem

Let M be a two counter machine, and (RC , size) be a natural pair of
resilience condition and system size function. One can efficiently construct
a non-communicating CFA A(M) and an LTL-X property ϕnonhalt(M)
such that the following two statements are equivalent:

M does not halt.

∀p ∈ PRC , M(p) |=∅ ϕnonhalt(M).

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 57 / 51

Folklore Reliable Broadcast (e.g., Chandra & Toueg, 96)

Correct processes agree on value vi in the presence of crash faults.

Variables of process i

vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:

i f (vi = 1 or received <echo> from some proce s s)
and accepti = 0

then begin
send <echo> to all ;

/* when crashing it sends to a subset of processes */

accepti := 1 ;

/* it can also crash here */

end

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 58 / 51

Folklore Reliable Broadcast (e.g., Chandra & Toueg, 96)

Correct processes agree on value vi in the presence of crash faults.

Variables of process i

vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:

i f (vi = 1 or received <echo> from some proce s s)
and accepti = 0

then begin
send <echo> to all ;

/* when crashing it sends to a subset of processes */
accepti := 1 ; /* it can also crash here */

end

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 58 / 51

Verification Problem as in Distributed Computing

Given a distributed algorithm A and specifications ϕU , ϕC , ϕR ,

Fix n and t with n > 3t,

show that every execution of A(n, t) satisfies ϕU , ϕC , ϕR .

In every execution:
the number of faulty processes is restricted, i.e., f ≤ t;
processes can use n and t in the code, but not f ;
f is constant
(if a process fails late, its “correct” behavior was a Byzantine trick).

A distributed
system A(n, t)

f = 0

. . .

f = t

Counterexamples when f > t?

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 59 / 51

Verification Problem as in Distributed Computing

Given a distributed algorithm A and specifications ϕU , ϕC , ϕR ,

Fix n and t with n > 3t,

show that every execution of A(n, t) satisfies ϕU , ϕC , ϕR .

In every execution:
the number of faulty processes is restricted, i.e., f ≤ t;
processes can use n and t in the code, but not f ;
f is constant
(if a process fails late, its “correct” behavior was a Byzantine trick).

A distributed
system A(n, t)

f = 0

. . .

f = t

Counterexamples when f > t?

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 59 / 51

Verification Problem as in Distributed Computing

Given a distributed algorithm A and specifications ϕU , ϕC , ϕR ,

Fix n and t with n > 3t,

show that every execution of A(n, t) satisfies ϕU , ϕC , ϕR .

In every execution:
the number of faulty processes is restricted, i.e., f ≤ t;
processes can use n and t in the code, but not f ;
f is constant
(if a process fails late, its “correct” behavior was a Byzantine trick).

A distributed
system A(n, t)

f = 0

. . .

f = t

Counterexamples when f > t?

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 59 / 51

Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 60 / 51

Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 60 / 51

Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 60 / 51

Experiments: Channels vs. Shared Variables

enumerating reachable states in Spin with POR and state compression

States (logscale)

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

3 4 5 6 7 8

st
at

es
 (

lo
gs

ca
le

)

number of processes, N

Memory (MB, logscale, limit of 12 GB)

100

1000

10000

3 4 5 6 7 8
m

em
or

y,
 M

B
 (

lo
gs

ca
le

)
number of processes, N

Josef Widder (www.forsyte.at) Checking Fault-Tolerant Distributed Algos SFM, June 18, 2014 61 / 51

