
Automated Inference of Atomic Sets for Safe
Concurrent Execution

Gul Agha
University of Illinois at Urbana-Champaign

Joint work with Peter Dinges and Karl Palmskog

Gul Agha Automated Inference of Atomic Sets 1 / 100

Introduction

Part I: Concurrency and Synchronization

Gul Agha Automated Inference of Atomic Sets 2 / 100

Introduction

Introduction

Concurrency is about interaction between parties:

by synchronous “handshakes”, or
by asynchronous message passing

Concurrent parties can interact:

directly with each other
indirectly via “passive” shared data store

Gul Agha Automated Inference of Atomic Sets 3 / 100

Introduction

Unsafe Concurrent Behavior

Order of interactions is not generally predetermined

Many bugs arise from unexpected interleavings of actions:

data races
deadlocks
unintended order of operations

Gul Agha Automated Inference of Atomic Sets 4 / 100

Introduction Threads

Refresher on Threads

Multiple threads of control share a memory space

Supported natively in most general-purpose languages

Java, C++, Python, ...

Scheduler decisions on interleaving generally unknown

For safety, programmers need thread noninterference

Gul Agha Automated Inference of Atomic Sets 5 / 100

Introduction Threads

A High-level Data Race

Thread A Shared Memory Thread B
write list

read size of list

size of list

write size of list

read list

list

Gul Agha Automated Inference of Atomic Sets 6 / 100

Introduction Classic Synchronization Primitives for Threads

Classic Control-centric Synchronization Primitives

Semaphores (Dijkstra, 1962/1963)

A data type used for synchronizing threads, associated with a counter and
two operations:

wait: decrements the counter if it is nonnegative; otherwise, blocks
thread until this can be done

signal: increments the counter by one

Still used in lower-level code such as operating systems

Useful for resource pools with mutually exclusive access

Gul Agha Automated Inference of Atomic Sets 7 / 100

Introduction Classic Synchronization Primitives for Threads

Classic Control-centric Synchronization Primitives

Semaphores (Dijkstra, 1962/1963)

A data type used for synchronizing threads, associated with a counter and
two operations:

wait: decrements the counter if it is nonnegative; otherwise, blocks
thread until this can be done

signal: increments the counter by one

Still used in lower-level code such as operating systems

Useful for resource pools with mutually exclusive access

Gul Agha Automated Inference of Atomic Sets 7 / 100

Introduction Classic Synchronization Primitives for Threads

Classic Control-centric Synchronization Primitives

Monitors (Hoare & Brinch-Hansen, 1974)

A collection of data and procedures (e.g., object) such that:

at most one thread can be executing a procedure at any time

procedure-calling threads are blocked if another thread is already
executing

a blocking thread is woken up when execution finishes

Theoretically equivalent to semaphores

Overwhelmingly most-used synchronization primitive in real-world
concurrent Java programs1

1Torres et al. (2011)

Gul Agha Automated Inference of Atomic Sets 8 / 100

Introduction Classic Synchronization Primitives for Threads

Classic Control-centric Synchronization Primitives

Monitors (Hoare & Brinch-Hansen, 1974)

A collection of data and procedures (e.g., object) such that:

at most one thread can be executing a procedure at any time

procedure-calling threads are blocked if another thread is already
executing

a blocking thread is woken up when execution finishes

Theoretically equivalent to semaphores

Overwhelmingly most-used synchronization primitive in real-world
concurrent Java programs1

1Torres et al. (2011)
Gul Agha Automated Inference of Atomic Sets 8 / 100

Introduction Classic Synchronization Primitives for Threads

Java Monitors and Threads

public class SynchronizedInteger {
private int value;
public synchronized int get() { return value; }
public synchronized void set(int value) { this.value = value; }

}
public class Setter extends Thread {
private SynchronizedInteger synInt;
/* ... */
public void run() {
while (true) { synInt.set((int)(Math.random()*100)); }

}
}
public class GetSetter extends Thread {
private SynchronizedInteger synInt;
/* ... */
public void run() {
while (true) {
synchronized(synInt) { if (synInt.get() != 0) synInt.set(0); }

}
}

}

Gul Agha Automated Inference of Atomic Sets 9 / 100

Introduction Actors

Actors: Scalable Concurrency

Large-scale concurrent systems such as Twitter, LinkedIn, Facebook Chat
are written in actor languages and frameworks.

Facebook

“[T]he actor model has worked really well for us, and we
wouldn’t have been able to pull that off in C++ or Java. Several
of us are big fans of Python and I personally like Haskell for a lot
of tasks, but the bottom line is that, while those languages are
great general purpose languages, none of them were designed
with the actor model at heart.” –Facebook Engineering 2

2https://www.facebook.com/notes/facebook-engineering/
chat-stability-and-scalability/51412338919

Gul Agha Automated Inference of Atomic Sets 10 / 100

https://www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919
https://www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919

Introduction Actors

Actors: Scalable Concurrency II

Large-scale concurrent systems such as Twitter, LinkedIn, Facebook Chat
are written in actor languages and frameworks.

Twitter

“When people read about Scala, it’s almost always in the
context of concurrency. Concurrency can be solved by a good
programmer in many languages, but it’s a tough problem to
solve. Scala has an Actor library that is commonly used to solve
concurrency problems, and it makes that problem a lot easier to
solve.” – Alex Payne, “How and Why Twitter Uses Scala”3

3http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_
uses_scala.html

Gul Agha Automated Inference of Atomic Sets 11 / 100

http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html
http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html

Introduction Actors

Some Actor Languages and Frameworks

Erlang: web services, telecom, Cloud Computing

E-on-Lisp, E-on-Java: P2P systems

SALSA (UIUC/RPI), Charm++ (UIUC): scientific computing

Ptolemy (UCB): real-time systems

ActorNet (UIUC): sensor networks

Scala (EPFL; Typesafe): multicore, web, banking..

Kilim (Cambridge): multicore and network programming

Orleans; Asynchronous Agents Library (Microsoft): multicore
programming, Cloud Computing

DART (Google): Cloud Computing

Gul Agha Automated Inference of Atomic Sets 12 / 100

Introduction Actors

Actor Model of Computation

An actor is an autonomous, concurrent agent which responds to messages.

Actors operate asynchronously, potentially in parallel with each other.

Actors do not share state

Each actor has a unique name (address) which cannot be guessed.

Actor names may be communicated.

Actors interact by sending messages which are by default
asynchronous (and may be delivered out-of-order).

Gul Agha Automated Inference of Atomic Sets 13 / 100

Introduction Actors

Actor Behavior

Upon receipt of a message, an actor may:

create a new actor with a unique name (address).

use the content of the message or perform some computation and to
change state.

send a message to another actor.

Gul Agha Automated Inference of Atomic Sets 14 / 100

Introduction Actors

Actor Implementation in Threaded Languages

An actor may be implemented as a concurrent object. Each actor:

has a system-wide unique name (mailbox address);

has an independent thread of control; and

has a message queue and processes one message at a time.

thread

procedures

state

mailbox

thread

procedures

state

mailbox

thread

procedures

state

mailbox

outgoing messages

incoming messages

Gul Agha Automated Inference of Atomic Sets 15 / 100

Introduction Actor Synchronization and Coordination

Actor Synchronization Constraints

Constrain the local order of processing messages

Function of local state and message contents

Delay semantics: disabled messages are buffered (ActorFoundry4)

Disabling semantics: pattern matching (Erlang5, Akka6)

Goals

Eliminate problematic schedules

Ensure harmonic interaction (coordination)

4http://osl.cs.illinois.edu/software/actor-foundry/
5http://www.erlang.org
6http://akka.io

Gul Agha Automated Inference of Atomic Sets 16 / 100

Introduction Actor Synchronization and Coordination

Actor Synchronization Constraints

Constrain the local order of processing messages

Function of local state and message contents

Delay semantics: disabled messages are buffered (ActorFoundry4)

Disabling semantics: pattern matching (Erlang5, Akka6)

Goals

Eliminate problematic schedules

Ensure harmonic interaction (coordination)

4http://osl.cs.illinois.edu/software/actor-foundry/
5http://www.erlang.org
6http://akka.io

Gul Agha Automated Inference of Atomic Sets 16 / 100

Introduction Actor Synchronization and Coordination

Synchronization Constraints Control Concurrency

Concurrent Execution

Many execution (message) schedules, some problematic

Eliminate problematic schedules with constraints

Example: Dining Philosophers

Philosophers need left and right chopstick to eat

Potential deadlock: everyone picks left chopstick first

Constraint: Always deliver a philosopher’s pick up requests at the
same time (all or nothing)

Gul Agha Automated Inference of Atomic Sets 17 / 100

Introduction Actor Synchronization and Coordination

Synchronization Constraints Control Concurrency

Concurrent Execution

Many execution (message) schedules, some problematic

Eliminate problematic schedules with constraints

Example: Dining Philosophers

Philosophers need left and right chopstick to eat

Potential deadlock: everyone picks left chopstick first

Constraint: Always deliver a philosopher’s pick up requests at the
same time (all or nothing)

Gul Agha Automated Inference of Atomic Sets 17 / 100

Introduction Actor Synchronization and Coordination

Actor Synchronizers

AllocationPolicy
Synchronizer

request DVD
Pool

Disk
Pool

Disk
Pool

A

B status

reset
reset

C

ResetSynchronizer

Atomicity constraint

Disabling constraint Synchronizers (Frølund & Agha, 1993)

Synchronization constraints for groups
of Actors

Affect all incoming messages (global
scope)

Disabling constraints prevent handling
of messages matching a pattern

Atomicity constraints bundle
messages into indivisible sets

Gul Agha Automated Inference of Atomic Sets 18 / 100

Introduction Actor Synchronization and Coordination

Actor Synchronizers

AllocationPolicy
Synchronizer

request DVD
Pool

Disk
Pool

Disk
Pool

A

B status

reset
reset

C

ResetSynchronizer

Atomicity constraint

Disabling constraint Synchronizers (Frølund & Agha, 1993)

Synchronization constraints for groups
of Actors

Affect all incoming messages (global
scope)

Disabling constraints prevent handling
of messages matching a pattern

Atomicity constraints bundle
messages into indivisible sets

Gul Agha Automated Inference of Atomic Sets 18 / 100

Introduction Actor Synchronization and Coordination

Example: Coordinated Resource Administrators

Scenario

Connect DVD drives and hard disks over the network

Total bandwidth is limited: allocate at most max drives

Synchronizer to coordinate resource administrators:

AllocationPolicy(dvds, disks, max) {
init alloc := 0
alloc >= max disables (dvds.request or disks.request)
(dvds.request or disks.request) updates alloc := alloc + 1,
(dvds.release or disks.release) updates alloc := alloc - 1

}

Gul Agha Automated Inference of Atomic Sets 19 / 100

Introduction Actor Synchronization and Coordination

Synchronizer Use Cases and Applications

Middleware coordination

Web applications

Quality of Service and multimedia applications

Gul Agha Automated Inference of Atomic Sets 20 / 100

Program Invariants and Atomicity Data Structure Invariants

Data Structure Invariants

Data structures are usually associated with invariants, non-trivial logical
properties that hold in all visible states, e.g.:

an array that is sorted

a priority queue with a topmost element

a queue with FIFO ordering

Gul Agha Automated Inference of Atomic Sets 21 / 100

Program Invariants and Atomicity Data Structure Invariants

Data Structure Invariants

While data structures are updated, invariants may not hold

In sequential code with a single control, this is not a problem

In concurrent code, programmers must ensure atomic access to
mutable data structures using synchronization primitives

Simply introducing locks around all data fields is not enough, since
invariants can reference many variables7

7Artho et al. (2003)
Gul Agha Automated Inference of Atomic Sets 22 / 100

Program Invariants and Atomicity Data Structure Invariants

Data Structure Invariants

A study8 of real-world concurrency bugs concluded that:

around half of such bugs are related to atomicity

when excluding deadlocks, atomicity bugs rise to nearly 70%

almost all (96%) bugs required only two threads to manifest

2/3 of non-deadlock bugs involved access to multiple variables

8Lu et al. (2008)
Gul Agha Automated Inference of Atomic Sets 23 / 100

Program Invariants and Atomicity Specifying Invariants

Specifying Invariants

In object-oriented programs, data structure invariants are usually given as
class invariants, which:

concern class fields (data encapsulated by instances)

are established by all constructors in the class

are preserved by all (non-helper) instance methods in the class

Gul Agha Automated Inference of Atomic Sets 24 / 100

Program Invariants and Atomicity Specifying Invariants

Specifying Invariants in Java

Java Modeling Language9 (JML) allows specifying as comments:

class invariants, //@ invariant ...

method preconditions, //@ requires ..

method postconditions, //@ ensures ..

loop invariants, //@ loop_invariant ...

9http://www.jmlspecs.org
Gul Agha Automated Inference of Atomic Sets 25 / 100

Program Invariants and Atomicity Specifying Invariants

Classic Java Wallet Class

public class Wallet {
public static final int MAX_BALANCE;
private int balance;

/* ... */

public int debit(int amount) {
/* ... */

}
}

Gul Agha Automated Inference of Atomic Sets 26 / 100

Program Invariants and Atomicity Specifying Invariants

Classic Java Wallet Class with JML Annotations

public class Wallet {
public static final int MAX_BALANCE;
private int balance;
//@ invariant 0 <= balance & balance <= MAX_BALANCE;
/* ... */
//@ requires amount >= 0;
//@ ensures balance == \old(balance) - amount & \result == balance;
public int debit(int amount) {

/* ... */
}

}

Gul Agha Automated Inference of Atomic Sets 27 / 100

Program Invariants and Atomicity Specifying Invariants

Benefits of JML-like Annotations

Better documentation than simple comments

Potentially deep specification of class and method behavior

Via tools, annotations can be checked statically or dynamically

Verification conditions can be extracted and proved formally

Provides contracts to consumers of libraries

Gul Agha Automated Inference of Atomic Sets 28 / 100

Program Invariants and Atomicity Specifying Invariants

Array-based Priority Queue

public class PriorityQueue {
private int[] pq;
private int size;
/* ... */
public int delMax() {

/* ... */
}
public void insert(int item) {

/* ... */
}
public int size() {

/* ... */
}
public static void main(String[] args) {

PriorityQueue q = new PriorityQueue();
q.insert(10);
q.insert(17);
q.insert(15);
System.out.println(q.delMax()); // prints 17

}
}

Gul Agha Automated Inference of Atomic Sets 29 / 100

Program Invariants and Atomicity Specifying Invariants

Array-based Priority Queue Rationale

Heap property: nodes are greater than or equal to their children

12

7 10

3 6 5 9

pq

0

12 1

7 2

10 3

3 4

6 5

5 6

9 7

size

7

Gul Agha Automated Inference of Atomic Sets 30 / 100

Program Invariants and Atomicity Specifying Invariants

Array-based Priority Queue with Comments

public class PriorityQueue {
private int[] pq; // have pq[i] >= pq[2*i] and pq[i] >= pq[2*i+1]
private int size; // must be < pq.length

/* ... */

// swap out pq[1], decrease size, bubble down
public int delMax() {

/* ... */
}
// put item at pq[size + 1], increase size, bubble up
public void insert(int item) {

/* ... */
}
// just return size
public int size() {

/* ... */
}

}

Gul Agha Automated Inference of Atomic Sets 31 / 100

Program Invariants and Atomicity Specifying Invariants

Array-based Priority Queue with JML Annotations

public class PriorityQueue {
private int[] pq;
private int size;
//@ invariant pq != null;
//@ invariant 0 <= size & size < pq.length;
//@ invariant (\forall int i; 1 < i & i <= size ==> pq[i/2]>=pq[i]);
/* ... */
//@ requires size > 0;
//@ ensures size == \old(size) - 1 & \result == \old(pq[1]);
public int delMax() {

/* ... */
}
//@ ensures size == \old(size) + 1 & (\exists int i; pq[i] == item);
public void insert(int item) {

/* ... */
}
//@ ensures \result == size;
public int size() {

/* ... */
}

}

Gul Agha Automated Inference of Atomic Sets 32 / 100

Program Invariants and Atomicity Specifying Invariants

JML-style Annotation Issues

Difficult and time-consuming to do non-trivial annotations

Tool support10 is lacking, in particular for Java 8

Semantics of, e.g., Java and C is not canonically formalized

10http://openjml.org
Gul Agha Automated Inference of Atomic Sets 33 / 100

Program Invariants and Atomicity Threads, Invariants, and Atomicity

Threads, Invariants, and Atomicity

Without synchronization, invariants will not hold in presence of
multiple threads

Knowing where to use synchronization primitives is hard, but
invariants can be a guide

All public methods for a class need to be considered

Gul Agha Automated Inference of Atomic Sets 34 / 100

Program Invariants and Atomicity Threads, Invariants, and Atomicity

Thread Safe Array-based Priority Queue using Monitors

public class PriorityQueue {
private int[] pq;
private int size;

/* ... */

public synchronized int delMax() {
/* ... */

}

public synchronized void insert(int item) {
/* ... */

}

public synchronized int size() {
/* ... */

}
}

Gul Agha Automated Inference of Atomic Sets 35 / 100

Program Invariants and Atomicity Threads, Invariants, and Atomicity

Invariants and Atomicity

Java synchronization is control-centric

primitives are related to methods and statements
programmer must consider possible thread control flows

If an isEmpty() or peekMax() method is added, more synchronization is
needed

Easy to forget synchronized keyword and cause data races

Gul Agha Automated Inference of Atomic Sets 36 / 100

Program Invariants and Atomicity Threads, Invariants, and Atomicity

Atomicity with Actors using Java and Akka11

public class PriorityQueue extends UntypedActor {
private int[] pq;
private int size;
/* ... */
public void onReceive(Object message) {

// check message type, pass to method, return result as message
}

private int delMax() {
/* ... */

}

private void insert(int item) {
/* ... */

}

private int size() {
/* ... */

}
}

11http://doc.akka.io/docs/akka/2.0/java/untyped-actors.html
Gul Agha Automated Inference of Atomic Sets 37 / 100

Data-centric Synchronization

Part II: Data-centric Synchronization

Gul Agha Automated Inference of Atomic Sets 38 / 100

Data-centric Synchronization Pluggable Type Systems

Pluggable Type Systems

Type qualifiers can be “plugged” into existing programs

Pluggable type systems12 are orthogonal to underlying types

Examples: non-nullness, immutability, information flow, ...

Qualifiers may be written before types, e.g., @NonNull String

Included in Java 8 (JSR 308: “Type Annotations”)

12Papi et al. (2008)
Gul Agha Automated Inference of Atomic Sets 39 / 100

Data-centric Synchronization Pluggable Type Systems

Data-centric Synchronization

Analysing thread control flow is hard!

A promising alternative is to focus on the data structures

If the existence of an object field invariant is made explicit,
synchronization can become implicit for methods

This data-centric synchronization approach can be expressed as a
pluggable type system

We will use the original syntax (not JSR 308 annotations)

Gul Agha Automated Inference of Atomic Sets 40 / 100

Data-centric Synchronization Pluggable Type Systems

Timeline of Data-centric Synchronization

2006 First proposed (Vaziri et al.)

2008 Used for finding concurrency bugs (Hammer et al.)

2012 Definition of AJ dialect of Java (Dolby et al.)

2012 Static inference of AJ annotations (Huang & Milanova)

2013 Deadlock checking of AJ programs (Marino et al.)

2013 Dynamic inference of AJ annotations (Dinges et al.)

2015 Dynamic probabilistic annotation inference (Dinges et al.13)

13Tech report to appear at http://osl.cs.illinois.edu
Gul Agha Automated Inference of Atomic Sets 41 / 100

Data-centric Synchronization Atomic Sets and Units of Work

Priority Queue with Data-centric Synchronization in AJ

public class PriorityQueue {
atomicset Q;
private atomic(Q) int[] pq;
private atomic(Q) int size;
/* ... */
public int delMax() {
/* ... */

}
public void insert(int item) {
/* ... */

}
public int size() {
/* ... */

}
}

Gul Agha Automated Inference of Atomic Sets 42 / 100

Data-centric Synchronization Atomic Sets and Units of Work

Thread Safe Sorted List using Priority Queue

public class SortableList {
atomicset L;
private atomic(L) int[] a;
private atomic(L) int size;
private PriorityQueue q|Q=this.L|;

/* ... */

public void sort() {
for (int i = 0; i < size; i++) {
q.insert(a[i]);

}
for (int i = 0; i < size; i++) {
int k = q.delMax();
a[size - 1 - i] = k;

}
}

public void addAllSorted(unitfor(L) SortedList other) {
/* ... */

}

}
Gul Agha Automated Inference of Atomic Sets 43 / 100

Data-centric Synchronization Atomic Sets and Units of Work

Elements of Data-centric Synchronization

Atomic Set

Group of fields in a class
connected by a consistency
invariant

Unit of Work

Method that preserves the
invariant when executed
sequentially

Alias

Combines atomic sets

Example

In the PriorityQueue class:

Invariant:

pq non-null,
0 <= size < pq.length, and
for all i, 1 < i <= size implies
pq[i/2] >= pq[i]

Atomic set:
Q = { pq, size }

Gul Agha Automated Inference of Atomic Sets 44 / 100

Data-centric Synchronization Atomic Sets and Units of Work

Elements of Data-centric Synchronization

Atomic Set

Group of fields in a class
connected by a consistency
invariant

Unit of Work

Method that preserves the
invariant when executed
sequentially

Alias

Combines atomic sets

Example

In the PriorityQueue class:

Instance methods delMax(),
insert(), and size() are units of
work for the atomic set Q

In the SortableList class:

addAllSorted() is a unit of work for
the other list’s atomic set L

Gul Agha Automated Inference of Atomic Sets 44 / 100

Data-centric Synchronization Atomic Sets and Units of Work

Elements of Data-centric Synchronization

Atomic Set

Group of fields in a class
connected by a consistency
invariant

Unit of Work

Method that preserves the
invariant when executed
sequentially

Alias

Combines atomic sets

Example

Class SortableList with field q and
atomic set L

Field declaration:
PriorityQueue q|Q=this.L|

Atomic set L now contains q.size

and q.pq

Gul Agha Automated Inference of Atomic Sets 44 / 100

Data-centric Synchronization Atomic Sets and Units of Work

Intuitive Semantics of Atomic Sets

Every object has a lock for each of its atomic sets

All related atomic set locks must be held to execute methods

An alias permanently merges atomic set locks in two objects

unitfor declarations merge locks only for execution of methods

Gul Agha Automated Inference of Atomic Sets 45 / 100

Data-centric Synchronization Annotating Java Programs with Data-centric Primitives

Benefits of Atomic Set Annotations

Documents invariants without requiring formal specification

Defers synchronization details and optimization to compiler

Annotated programs can be checked statically for deadlocks14

Normally, no additional annotations needed for new methods

14Marino et al. (2013)
Gul Agha Automated Inference of Atomic Sets 46 / 100

Data-centric Synchronization Annotating Java Programs with Data-centric Primitives

Annotating Java Programs with Data-centric Primitives

New programs can be structured to use atomic sets

Legacy programs using monitors must be converted

Advanced, fine-grained locking may not be gainful to convert

Conversion requires understanding:

data invariants
existing synchronization

Conversion Experience of Dolby et al. (2012)

Takes several hours for rather simple programs

2 out of 6 programs lack synchronization of some classes

2 out of 6 programs accidentally introduced global locks

Gul Agha Automated Inference of Atomic Sets 47 / 100

Data-centric Synchronization Annotating Java Programs with Data-centric Primitives

Annotating Java Programs with Data-centric Primitives

New programs can be structured to use atomic sets

Legacy programs using monitors must be converted

Advanced, fine-grained locking may not be gainful to convert

Conversion requires understanding:

data invariants
existing synchronization

Conversion Experience of Dolby et al. (2012)

Takes several hours for rather simple programs

2 out of 6 programs lack synchronization of some classes

2 out of 6 programs accidentally introduced global locks

Gul Agha Automated Inference of Atomic Sets 47 / 100

Data-centric Synchronization Annotating Java Programs with Data-centric Primitives

Part III: Inference of Atomic Sets and Applications

Gul Agha Automated Inference of Atomic Sets 48 / 100

Inference of Atomic Sets Static Analysis

Static Analysis

Static analysis methods for inference of atomic sets:

do not generally need input beyond program code

are good at propagating initial annotations15

can guarantee soundness

can have difficulties in finding aliases and unitfor annotations

15Huang & Milanova (2012)
Gul Agha Automated Inference of Atomic Sets 49 / 100

Inference of Atomic Sets Dynamic Inference

Dynamic Analysis

Dynamic methods for inference of atomic sets:

bases analysis on program traces

requires trace generation, e.g., by test suites or fuzzers

enables inferring deeper program properties

generally cannot alone guarantee soundness

Gul Agha Automated Inference of Atomic Sets 50 / 100

Inference of Atomic Sets Dynamic Inference

Previous Work on Dynamic Inference (Dinges et al., 2013)

Proposed dynamic inference algorithm:

records field accesses and data races between threads

uses simple set membership criteria for classification

infers atomic sets, aliases, and units of work

evaluated qualitatively on preexisting AJ corpus

Gul Agha Automated Inference of Atomic Sets 51 / 100

Inference of Atomic Sets Dynamic Inference

AJ Corpus of Dolby et al. (2012)

Program Description kLoC Cls.
collections OpenJDK collections 11.1 171
elevator Elevator simulation 0.3 6
jcurzez1 Console window library 2.7 78
jcurzez2 Console window library 2.8 79
tsp2 Traveling salesman 0.5 6
weblech Web site crawler 1.3 12

Gul Agha Automated Inference of Atomic Sets 52 / 100

Inference of Atomic Sets Dynamic Inference

Evaluation Results

Atomic Sets

Inferred annotations missing an atomic set for only two classes

one missing atomic set highlights faulty collections annotation

Additional atomic sets are inferred for 24 classes

in three classes, they prevent inadvertent data races

Aliases

Fails to infer aliases for three classes in total

in two classes, due to jcurzez data races

New aliases added to 15 classes

one race condition prevented in tsp2

Gul Agha Automated Inference of Atomic Sets 53 / 100

Inference of Atomic Sets Dynamic Inference

Evaluation Results

Units of Work

One class lacks an incorrect unit of work declaration

Additional unit of work declarations added to 13 classes

Discovered Issues with Algorithm

highly dependent on trace exhaustiveness w.r.t. behavior

brittleness, inference affected by small perturbations in traces

algorithm does not scale to long executions

algorithm does not consider distance between field accesses

Gul Agha Automated Inference of Atomic Sets 54 / 100

Inference of Atomic Sets Dynamic Inference

Evaluation Results

Units of Work

One class lacks an incorrect unit of work declaration

Additional unit of work declarations added to 13 classes

Discovered Issues with Algorithm

highly dependent on trace exhaustiveness w.r.t. behavior

brittleness, inference affected by small perturbations in traces

algorithm does not scale to long executions

algorithm does not consider distance between field accesses

Gul Agha Automated Inference of Atomic Sets 54 / 100

Inference of Atomic Sets Bayesian Inference

Bayesian Dynamic Analysis

Using Bayesian probabilistic methods16, inference can be made robust
against outlier observations

New evidence is incorporated into existing knowledge in a structured
way

Rare spurious behavior is weighed against preponderance of contrary
evidence and ultimately ignored

16Pearl (1988)
Gul Agha Automated Inference of Atomic Sets 55 / 100

Inference of Atomic Sets Bayesian Inference

Bayes’s Inversion Formula

Bayesian Inference Variables

H: “f and g are connected through an invariant” [Hypothesis]
ek : “f , g accessed (non-)atomically with distance dk” [evidence]

Consider a sequence of observations e1, . . . , en w.r.t. f and g . Want to
know probability that H holds given e1, . . . , en, i.e.,

P(H|e1, . . . , en) =
P(e1, . . . , en|H)P(H)

P(e1, . . . , en)

Gul Agha Automated Inference of Atomic Sets 56 / 100

Inference of Atomic Sets Bayesian Inference

Likelihood Ratios and Belief Updating

P(H|e1, . . . , en)

P(¬H|e1, . . . , en)
=

P(e1, . . . , en|H)

P(e1, . . . , en|¬H)
× P(H)

P(¬H)

updated info = info from observations × original info

posterior odds = likelihood ratio × prior odds

O(H|e1, . . . , en) = L(e1, . . . , en|H) × O(H)

Gul Agha Automated Inference of Atomic Sets 57 / 100

Inference of Atomic Sets Bayesian Inference

Conditional Independence

If e1, . . . , en are conditionally independent given H, we can write

P(e1, . . . , en|H) =
n∏

k=1

P(ek |H)

and similarly for ¬H, whereby

O(H|e1, . . . , en) = O(H)
n∏

k=1

L(ek |H)

Adding one more piece of evidence en+1, we get

O(H|e1, . . . , en, en+1) = L(en+1|H)O(H|e1, . . . , en)

Hence, if we have independence, know O(H), and can compute L(ek |H),
we can update odds on-the-fly when observing!

Gul Agha Automated Inference of Atomic Sets 58 / 100

Inference of Atomic Sets Bayesian Inference

Conditional Independence

Coarse-grained hypothesis space: H ∪ ¬H
With conditional independence, e1, . . . , en should depend only on
hypothesis, not on systematic external influence

However, we have at least the following external factors:

workload
scheduler

Mitigating Dependencies

Working assumption: good workload and long executions minimize
external influence

Safe to include f , g in atomic set when there is no invariant...

...but may result in coarser-grained concurrency

Gul Agha Automated Inference of Atomic Sets 59 / 100

Inference of Atomic Sets Bayesian Inference

Conditional Independence

Coarse-grained hypothesis space: H ∪ ¬H
With conditional independence, e1, . . . , en should depend only on
hypothesis, not on systematic external influence

However, we have at least the following external factors:

workload
scheduler

Mitigating Dependencies

Working assumption: good workload and long executions minimize
external influence

Safe to include f , g in atomic set when there is no invariant...

...but may result in coarser-grained concurrency

Gul Agha Automated Inference of Atomic Sets 59 / 100

Inference of Atomic Sets Algorithm

Synopsis of an Algorithm for Probabilistically
Inferring Atomic Sets, Aliases, and Units of Work

Assumptions about Input Programs

Methods perform meaningful operations (convey intent)

Fields that a method accesses are likely connected by invariant

Algorithm Idea

Observe which pairs of fields a method accesses atomically and their
distance in terms of basic operations

This is (Bayesian) evidence that fields are connected through an
invariant

Store current beliefs for all field pairs in affinity matrices

Gul Agha Automated Inference of Atomic Sets 60 / 100

Inference of Atomic Sets Algorithm

Synopsis of an Algorithm for Probabilistically
Inferring Atomic Sets, Aliases, and Units of Work

Assumptions about Input Programs

Methods perform meaningful operations (convey intent)

Fields that a method accesses are likely connected by invariant

Algorithm Idea

Observe which pairs of fields a method accesses atomically and their
distance in terms of basic operations

This is (Bayesian) evidence that fields are connected through an
invariant

Store current beliefs for all field pairs in affinity matrices

Gul Agha Automated Inference of Atomic Sets 60 / 100

Inference of Atomic Sets Algorithm

Affinity Matrix Example

pq size a
pq * 1528.3 0.015

size 1528.3 * 1
a 0.015 1 *

Gul Agha Automated Inference of Atomic Sets 61 / 100

Inference of Atomic Sets Algorithm

Analysis Supports Indirect Field Access and Access Paths

Indirect Access and Distance

High-level semantic operations use low-level operations

E.g., get() might call getSize() instead of accessing field size

Propagate observed access to caller’s scope

Quantify directness of access as distance

Access Paths

Methods traverse the object graph

Track access paths instead of field names

Example: this.urls.size

Gul Agha Automated Inference of Atomic Sets 62 / 100

Inference of Atomic Sets Algorithm

Analysis Supports Indirect Field Access and Access Paths

Indirect Access and Distance

High-level semantic operations use low-level operations

E.g., get() might call getSize() instead of accessing field size

Propagate observed access to caller’s scope

Quantify directness of access as distance

Access Paths

Methods traverse the object graph

Track access paths instead of field names

Example: this.urls.size

Gul Agha Automated Inference of Atomic Sets 62 / 100

Inference of Atomic Sets Algorithm

Mapping Observations to Likelihoods

Given access observation ek for fields f and g with operation distance
dk , need to compute L(ek |H)

L(ek |H) should increase as dk decreases up to some maximum, after
which it is flat

L(ek |H) should decrease as dk increases down to some minimum,
after which it is flat

Result is a logistic curve

distance

lik
el

ih
o

o
d

ra
ti

o

Gul Agha Automated Inference of Atomic Sets 63 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Field Access Events

Definition

A field access event e, captured from a program trace in the scope of a
specific method call and thread, is a tuple

(f , g , d , a) ∈ Fd× Fd× N×At

where

Fd is the set of all fields in the program

d is the access distance between f and g as a natural number

At = {atomic, interleaved}

Gul Agha Automated Inference of Atomic Sets 64 / 100

Inference of Atomic Sets Algorithm

Algorithm Details: Likelihood Ratio for Field Access Event

Definition

Let e = (f , g , d , a) be a field access event. Let `(d) be the real value
defined by the logistic curve for distance d . Let p be the (real-valued,
negative) data race penalty to likelihoods.

Then, the likelihood ratio for e is defined as

`(d , a) =

{
`(d) if a = atomic;

p if a = interleaved.

Gul Agha Automated Inference of Atomic Sets 65 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Affinity Matrices

Definition

An affinity matrix A is a symmetric map from pairs of fields in the
program to real numbers.

A[(f , g) 7→ x] is A augmented with the mapping of (f , g) to x .

Example

Let A′ = A[(pq, size) 7→ 1.23] for some affinity matrix A. Then

A′(pq, size) = A′(size,pq) = 1.23

Definition

In an initial affinity matrix Ainit, it holds that Ainit(f , g) = 1, for all
(f , g) ∈ Fd× Fd.

Gul Agha Automated Inference of Atomic Sets 66 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Affinity Matrices

Definition

An affinity matrix A is a symmetric map from pairs of fields in the
program to real numbers.

A[(f , g) 7→ x] is A augmented with the mapping of (f , g) to x .

Example

Let A′ = A[(pq, size) 7→ 1.23] for some affinity matrix A. Then

A′(pq, size) = A′(size,pq) = 1.23

Definition

In an initial affinity matrix Ainit, it holds that Ainit(f , g) = 1, for all
(f , g) ∈ Fd× Fd.

Gul Agha Automated Inference of Atomic Sets 66 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Affinity Matrices

Definition

An affinity matrix A is a symmetric map from pairs of fields in the
program to real numbers.

A[(f , g) 7→ x] is A augmented with the mapping of (f , g) to x .

Example

Let A′ = A[(pq, size) 7→ 1.23] for some affinity matrix A. Then

A′(pq, size) = A′(size,pq) = 1.23

Definition

In an initial affinity matrix Ainit, it holds that Ainit(f , g) = 1, for all
(f , g) ∈ Fd× Fd.

Gul Agha Automated Inference of Atomic Sets 66 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Belief Configurations

Definition

A belief configuration B ∈ Config is a map from methods to affinity
matrices, such that B contains a matrix Am for each method m in the
program.

B[m 7→ A′] is B augmented with the mapping of m to A′.

Definition

In an initial belief configuration B init, it holds that, for all methods m,
B init(m) = Ainit.

Gul Agha Automated Inference of Atomic Sets 67 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Belief Configurations

Definition

A belief configuration B ∈ Config is a map from methods to affinity
matrices, such that B contains a matrix Am for each method m in the
program.

B[m 7→ A′] is B augmented with the mapping of m to A′.

Definition

In an initial belief configuration B init, it holds that, for all methods m,
B init(m) = Ainit.

Gul Agha Automated Inference of Atomic Sets 67 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Configuration Transition Function

Definition

Let e = (f , g , d , a) be a field access event for a thread t and method m.
The transition function for belief configurations

δt,m : Config × Fd× Fd× N×At→ Config

is defined as
δt,m

(
B, f , g , d , a

)
= B[m 7→ A′

m]

where
A′
m = Am

[
(f , g) 7→ `(d , a) · Am(f , g)

]
.

Gul Agha Automated Inference of Atomic Sets 68 / 100

Inference of Atomic Sets Algorithm

Algorithm in Detail: Final Belief Configuration

Definition

Let e1, . . . , en be all field access events in a trace for the thread t and
method m. Then, the algorithm’s final belief configuration for t and m
is defined as

δt,m(· · · δt,m(B init, e1) · · · , en)

Gul Agha Automated Inference of Atomic Sets 69 / 100

Inference of Atomic Sets Algorithm

Algorithm Properties

Likelihoods incorporate scope and distance of observations

Beliefs are revised by new evidence, i.e., can improve over time

Analysis becomes robust and insensitive to outlier observations

Observation data in codebase size, not trace size

Complements static analysis with unitfor and aliases

Gul Agha Automated Inference of Atomic Sets 70 / 100

Inference of Atomic Sets Algorithm

Inference Example

public class List {
private int size;
private Object[] elements;

public int size() {
return size;

}

public Object get(int i) {
if (0 <= i && i < size)
return elements[i];

else
return null;

}
/* ... */

}

public class DownloadManager {
private List urls;

public boolean hasNextURL() {
return urls.size() > 0;

}
public URL getNextURL() {
if (urls.size() == 0)
return null;

URL url = (URL) urls.get(0);
urls.remove(0);
announceStartInGUI(url);
return url;

}
/* ... */

}

Gul Agha Automated Inference of Atomic Sets 71 / 100

Inference of Atomic Sets Algorithm

Inference Example

public class DownloadThread extends Thread {
private DownloadManager manager;

public void run() {
while (true) {
URL url;
synchronized(manager) {
if (!manager.hasNextURL())
break;

url = manager.getNextURL();
}
download(url); // Blocks while waiting for data

}
}
/* ... */

}

Gul Agha Automated Inference of Atomic Sets 72 / 100

Inference of Atomic Sets Algorithm

Inference Example Driver Code

public class Download {
public static void main(String[] args) {
DownloadManager manager = new DownloadManager();
for (int i = 0; i < 128; i++) {
manager.addURL(new URL("http://www.example.com/f" + i));

}
DownloadThread t1 = new DownloadThread(manager);
DownloadThread t2 = new DownloadThread(manager);
DownloadThread t3 = new DownloadThread(manager);
t1.start();
t2.start();
t3.start();

}
}

Gul Agha Automated Inference of Atomic Sets 73 / 100

Inference of Atomic Sets Algorithm

Gul Agha Automated Inference of Atomic Sets 74 / 100

Inference of Atomic Sets Algorithm

Inference Example Results

public class List {
atomicset L;
private atomic(L) int size;
private atomic(L) Object[]

elements;

public int size() {
return size;

}

public Object get(int i) {
if (0 <= i && i < size)
return elements[i];

else
return null;

}
/* ... */

}

public class DownloadManager {
atomicset U;
private List urls|L=this.U|;

public boolean hasNextURL() {
return urls.size() > 0;

}

public URL getNextURL() {
if (urls.size() == 0)
return null;

URL url = (URL) urls.get(0);
urls.remove(0);
announceStartInGUI(url);
return url;

}
/* ... */

}

Gul Agha Automated Inference of Atomic Sets 75 / 100

Inference of Atomic Sets Algorithm

Inference Example After Removal of Monitors

public class DownloadThread extends Thread {
private DownloadManager manager;

public void run() {
while (true) {
URL url;
if (!manager.hasNextURL())
break;

url = manager.getNextURL();
download(url); // Blocks while waiting for data

}
}
/* ... */

}

Gul Agha Automated Inference of Atomic Sets 76 / 100

Inference of Atomic Sets Algorithm

Inferring Aliases Can Unduly Constrain Concurrency

Aliases can introduce global locks!

Assume an atomic set T is added to DownloadThread

Assume T is aliased to U in DownloadManager

run() is then unit of work for atomic set spanning threads

Heuristic is used to avoid inferring such aliases

Gul Agha Automated Inference of Atomic Sets 77 / 100

Inference of Atomic Sets Algorithm

Gul Agha Automated Inference of Atomic Sets 78 / 100

Inference of Atomic Sets Implementation

Implementation

Our proof-of-concept algorithm implementation consists of:

a byte code instrumenter using WALA’s17 Shrike library

an inferencer

17http://wala.sf.net
Gul Agha Automated Inference of Atomic Sets 79 / 100

Inference of Atomic Sets Implementation

Data-Centric Synchronization Implementation Toolchain

Programstart

Instr. Bytecode Affinity matrices

Workload

Atomic sets

Aliases

Gul Agha Automated Inference of Atomic Sets 80 / 100

Inference of Atomic Sets Implementation

Algorithm Parameter Tuning

Many tool parameters must be tuned in practice:

penalty for data races

distance for language constructs

logistic function exponent

odds cutoff point for adding atomic sets

Gul Agha Automated Inference of Atomic Sets 81 / 100

Inference of Atomic Sets Implementation

Evaluation Results

Inference scales in codebase size; collections inference finishes in less
than one minute on Intel Core i5 laptop

Overall, inferred annotations mostly agree with the manual
annotations from corpus, and add more annotations that document
behavior

Gul Agha Automated Inference of Atomic Sets 82 / 100

Inference of Atomic Sets Implementation

Evaluation Results

collections Tool infers almost all atomic sets. Some fields are missing in
sets due to workload issues; one omitted field avoids a global
lock. Almost all units of work inferred, with missing units
mostly due to fuzzer.

elevator Tool does not infer manual units of work, but these
annotations do not conform to AJ specification. One alias is
missing. Several atomic sets and units of work added that
document behavior.

tsp2 Tool infers all manual annotations, while adding atomic sets
and aliases that document existing behavior.

Gul Agha Automated Inference of Atomic Sets 83 / 100

Inference of Atomic Sets Implementation

Evaluation Results

jcurzez1 Tool correctly infers all manually added atomic sets for all
but one class, where one set is missing a field due to a
conservative choice of alias inference parameters. One new
atomic set and one unit of work are added that prevent
inadvertent races. Some manual units of work annotations
are not inferred due to incomplete workloads.

jcurzez2 Tool infers all manually added atomic sets for all but one
class, as for jcurzez1, while adding atomic sets and aliases
that document behavior. Some manual units of work
annotations are not inferred due to incomplete workloads.
Two added units of work prevent inadvertent races.

weblech Tool infers all manual annotations, while adding atomic sets
and aliases that document behavior.

Gul Agha Automated Inference of Atomic Sets 84 / 100

Applications Actorization

Actorizing Programs Annotated with Atomic Sets

Key property: messages to actors are processed one at a time

Fields in one atomic set should not span two actors at runtime

An actor encapsulates one or more objects with atomic sets

Actor-wrapped objects must be accessed through interfaces

Akka’s Typed Actors for Java

Akka allows mixing objects and actors through Typed Actors18

Method calls to actors automatically translates to messages

Arguments in messages should be actor refs or immutable!

18http://doc.akka.io/docs/akka/2.0/java/typed-actors.html

Gul Agha Automated Inference of Atomic Sets 85 / 100

Applications Actorization

Actorizing Programs Annotated with Atomic Sets

Key property: messages to actors are processed one at a time

Fields in one atomic set should not span two actors at runtime

An actor encapsulates one or more objects with atomic sets

Actor-wrapped objects must be accessed through interfaces

Akka’s Typed Actors for Java

Akka allows mixing objects and actors through Typed Actors18

Method calls to actors automatically translates to messages

Arguments in messages should be actor refs or immutable!

18http://doc.akka.io/docs/akka/2.0/java/typed-actors.html
Gul Agha Automated Inference of Atomic Sets 85 / 100

Applications Actorization

Actorizing Programs Annotated with Atomic Sets

When object instances are created:

instances of class Thread end up in separate actor
instances with non-aliased atomic sets end up in separate actor
instances with aliased atomic sets end up inside same actor

Explicit synchronization (e.g., two-phase commit) needed to handle
some unitfor declarations!

Gul Agha Automated Inference of Atomic Sets 86 / 100

Applications Actorization

Conversion Approach in Practice

Program Annotations

Annotated

Program

Actor

Program

Program Using

Actor Library

tool

Gul Agha Automated Inference of Atomic Sets 87 / 100

Applications Actorization

Conversion Example

public class List {
atomicset L;
private atomic(L) int size;
private atomic(L) Object[]

elements;

public int size() {
return size;

}

public Object get(int i) {
if (0 <= i && i < size)
return elements[i];

else
return null;

}
/* ... */

}

public class DownloadManager {
atomicset U;
private List urls|L=this.U|;

public boolean hasNextURL() {
return urls.size() > 0;

}

public URL getNextURL() {
if (urls.size() == 0)
return null;

URL url = (URL) urls.get(0);
urls.remove(0);
announceStartInGUI(url);
return url;

}
/* ... */

}

Gul Agha Automated Inference of Atomic Sets 88 / 100

Applications Actorization

public class DownloadThread extends Thread {
private DownloadManager manager;
public void run() {
while (true) {
URL url;
if (!manager.hasNextURL()) break;
url = manager.getNextURL();
download(url);

}
}
/* ... */

}
public class Download {
public static void main(String[] args) {
DownloadManager manager = new DownloadManager();
for (int i = 0; i < 128; i++) {
manager.addURL(new URL("http://www.example.com/f" + i));

}
DownloadThread t1 = new DownloadThread(manager);
DownloadThread t2 = new DownloadThread(manager);
t1.start();
t2.start();
}

}

Gul Agha Automated Inference of Atomic Sets 89 / 100

Applications Actorization

Conversion Rationale

DownloadManager instance has atomic set, becomes actor in main() –
interface must be extracted

List instance is aliased, does not become actor in DownloadManager

DownloadThread is a subclass of Thread, instances become actors in
main() – interface must be extracted

Gul Agha Automated Inference of Atomic Sets 90 / 100

Applications Actorization

Conversion Results

public class List {
private int size;
private Object[] elements;

public int size() {
return size;

}

public Object get(int i) {
if (0 <= i && i < size)
return elements[i];

else
return null;

}
/* ... */

}

public class DownloadManager
implements IDownloadManager {

private List urls;

public boolean hasNextURL() {
return urls.size() > 0;

}

public URL getNextURL() {
if (urls.size() == 0)
return null;

URL url = (URL) urls.get(0);
urls.remove(0);
announceStartInGUI(url);
return url;

}
/* ... */

}

Gul Agha Automated Inference of Atomic Sets 91 / 100

Applications Actorization

public class DownloadThread extends Thread implements IDownloadThread {
private IDownloadManager manager;
public void run() {
while (true) {
URL url;
if (!manager.hasNextURL()) break;
url = manager.getNextURL();
download(url);

}
}
/* ... */

}
public class Download {
public static void main(String[] args) {
IDownloadManager manager = new actor DownloadManager();
for (int i = 0; i < 128; i++) {
manager.addURL(new URL("http://www.example.com/f" + i));

}
IDownloadThread t1 = new actor DownloadThread(manager);
IDownloadThread t2 = new actor DownloadThread(manager);
t1.start();
t2.start();
}

}

Gul Agha Automated Inference of Atomic Sets 92 / 100

Applications Actorization

public class Download {
public static void main(String[] args) {
final IDownloadManager manager =

create(IDownloadManager.class,
new Creator<IDownloadManager>() {
@Override
public IDownloadManager create() throws Exception {
return new DownloadManager();

}
});

for (int i = 0; i < 128; i++) {
manager.addURL(new URL("http://www.example.com/f" + i));

}
IDownloadThread t1 =

create(IDownloadThread.class,
new Creator<IDownloadThread>() {
@Override
public IDownloadThread create() throws Exception {
return new DownloadThread(manager);

}
});

/* ... */
}

}

Gul Agha Automated Inference of Atomic Sets 93 / 100

Applications Actorization

Atomic Sets for Objects vs. Synchronizers for Actors

Atomic sets

provide spatial atomicity

support transitive extensions of atomicity via aliases

prevents interleaved access to shared data

Synchronizers

can provide temporal atomicity (messages arrive together)

do not directly support transitive extension similar to aliases

cannot easily express non-interleaving of message sequences

Gul Agha Automated Inference of Atomic Sets 94 / 100

Future Work

Ongoing and Planned Future Work

Public software release of probabilistic inference tool

Actor implementation of unitfor using two-phase commits

Code refactorings for atomic sets and better actorization

Tuning and evaluation of actorization via atomic set inference

Integration of monitoring, static & dynamic inference, and synthesis
into a feedback loop for program adaptation

Adaptive ProgramsMonitoring

Inference

Properties

Synthesis & Verification

Gul Agha Automated Inference of Atomic Sets 95 / 100

Future Work

Needed: Robust, Standalone AJ-to-locks Compiler

Most straightforwardly, a Java source-to-source translation

Old compiler relied on Eclipse, new should be standalone

Several atomic sets can be implemented by single lock

Initial version suitable as master’s level project

Gul Agha Automated Inference of Atomic Sets 96 / 100

Future Work

Acknowledgements

This research has been funded in part by:

NSF grant number CCF-1438982

AFOSR contract FA 9750-11-2-0084

Gul Agha Automated Inference of Atomic Sets 97 / 100

Bibliography

Bibliography I

Cyrille Artho, Klaus Havelund, and Armin Biere.
High-level data races.
In NDDL ’03, pages 82–93. ICEIS Press, 2003.

Peter Dinges, Minas Charalambides, and Gul Agha.
Automated inference of atomic sets for safe concurrent execution.
In PASTE ’13, pages 1–8, 2013.

Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and Jan
Vitek.
A data-centric approach to synchronization.
ACM TOPLAS, 34(1):4, 2012.

Svend Frølund and Gul Agha.
A language framework for multi-object coordination.
In ECOOP ’93, pages 346–360. Springer, 1993.

Christian Hammer, Julian Dolby, Mandana Vaziri, and Frank Tip.
Dynamic detection of atomic-set-serializability violations.
In ICSE ’08, pages 231–240, 2008.

Gul Agha Automated Inference of Atomic Sets 98 / 100

Bibliography

Bibliography II

C. A. R. Hoare.
Monitors: An operating system structuring concept.
Commun. ACM, 17(10):549–557, 1974.

Wei Huang and Ana Milanova.
Inferring AJ types for concurrent libraries.
In FOOL ’12, pages 82–88, 2012.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real world concurrency bug
characteristics.
In ASPLOS ’08, pages 329–339. ACM, 2008.

Daniel Marino, Christian Hammer, Julian Dolby, Mandana Vaziri, Frank Tip, and Jan
Vitek.
Detecting deadlock in programs with data-centric synchronization.
In ICSE ’13, pages 322–331, 2013.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins, and Michael D.
Ernst.
Practical pluggable types for Java.
In ISSTA ’08, pages 201–212, 2008.

Gul Agha Automated Inference of Atomic Sets 99 / 100

Bibliography

Bibliography III

Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., 1988.

Weslley Torres, Gustavo Pinto, Benito Fernandes, João Paulo Oliveira, Filipe Alencar
Ximenes, and Fernando Castor.
Are Java programmers transitioning to multicore?: A large scale study of Java FLOSS.
In SPLASH ’11 Workshops, pages 123–128, 2011.

Mandana Vaziri, Frank Tip, and Julian Dolby.
Associating synchronization constraints with data in an object-oriented language.
In POPL ’06, pages 334–345, 2006.

Gul Agha Automated Inference of Atomic Sets 100 / 100

	Introduction
	Threads
	Classic Synchronization Primitives for Threads
	Actors
	Actors
	Actor Synchronization and Coordination

	Program Invariants and Atomicity
	Data Structure Invariants
	Specifying Invariants
	Threads, Invariants, and Atomicity

	Data-centric Synchronization
	Pluggable Type Systems
	Atomic Sets and Units of Work
	Annotating Java Programs with Data-centric Primitives

	Inference of Atomic Sets
	Static Analysis
	Dynamic Inference
	Bayesian Inference
	Algorithm
	Implementation

	Applications
	Actorization

	Future Work
	Bibliography

