Ownership Application 14 - Memory Management

When deallocating object o, we would like to deallocate all the
objects in o’s box. This is safe, if we know that any path that
leads to an object inside o's box, will go through o.

In other words, we need to know that o dominates all the
objects in its box.

Bertinoro Summer School Ownership Types page 1 out of 17

In other words, we want to
have that
owners are dominators.

In the diagram, blue arrows
are legal, and grey arrows
are illegal.

Advanced issues in object oriented Programming

Ownership Types

page 2 out of 17

Owners as Dominators
Paths

Definition: At certain time of execution, characterized by heap x,
there is a path («<a_1,.. a_k>) from object a_1 to object a_k, iff
a_i has some field pointing to object a_i+1, for all i=1,.. k-1.

X(a)(f)=d

X F a <«a,a>»a

X Fa l<«al,.. ak»>alk X a_k <«a_Kk,..,a k+tm>» a_k+m
X Fa l «al,. ak,ak+l .. a k+m> a_k+m

Bertinoro Summer School Ownership Types page 3 out of 17

1: Object

— 2: Object

3: Slist

S

a:stink Y 5:siink ") 6: Slink

7: Student\

8: Student'\ 9: Student

Eg x F3 <«.>» 8, but x# 5 <«.>»7,

Obviously, path-relationship changes with execution, i.e. possible that

e, X ~e, xand x —a <« ..>» a

Advanced issues in object oriented Programming

but x W a <« .. > da.

Ownership Types

page 4 out of 17

Object dominating another Object
Assume a fixed root object a_r.

Definition: At certain time of execution, characterized by heap ¥,
object a dominates object a', iff all paths from a_r to a’ lead
through g, ie

X +a a
iff
X Fa.r <«ar,. ak»ad = a=a_i forsomeie{l.k}
* TIsthe relationship transitive?
* Does x Fa a implythat x Fa«.» ad?
e Does x +a a, x Fa a" imply that a =a™?

e Does x +d a, x —a" a imply that a =a"?

Bertinoro Summer School Ownership Types page 5 out of 17

Example

for a state x 1. the relationship is:

a_7 a_7

What about a 6?

Advanced issues in object oriented Programming Ownership Types page 6 out of 17

Therefore, a a almost guarantees that a' cannot be
accessed from an object “outside” a, unless it "goes

through” a. ...
© © O

However, program execution may create new objects, may
create new paths, and may destroy other paths ..., eg ..

Bertinoro Summer School Ownership Types page 7 out of 17

later on, for a state x_2: the relationship is:

a_r a_r
a_l > a_l >
a_2

a_3 a_5

a_’/ a_8

What happened to a_4, a_6?

Advanced issues in object oriented Programming Ownership Types page 8 out of 17

Therefore, the relationship is not invariant with program
execution. In other words, it is possible to have e, x ~ €', '

and X + a a but x H a a.

® 6 6

We will use a mapping from objects to objects which is invariant
with program execution, and which, in a type correct program, will
imply the relationship:

We already have such an invariant mapping from object to

object...
© © ©

Bertinoro Summer School Ownership Types page 9 out of 17

Owners as dominators

The ownership mapping, owner, respects the relationship at a
certain time of program execution iff the owners of all objects
dominate them.

Definition
owner — x ¢ iff foralla: x + owner(a) a

* The owner mapping is independent of state x.

e The relationship is derived from the state x.
* We expect, that execution of a well typed program will
preserve respect for , ie:
e well typedand e, x ~ v, x'and owner + x ¢
=

ownher x ¢

Advanced issues in object oriented Programming Ownership Types page 10 out of 17

Consider a mapping ol(a_1)=a_r, ol(a_2)=a_1, ol(a_3)=a_2,
0l(a_4)=a_2, 0l(a_b)=a_2, 01(a_7)=a_1. Thus:

for x_1I: for x_2:
a_r a_r
a_l >
|
ar2
a_3

a_4% l{ /

ol x 190 ol—x 2°9¢

Bertinoro Summer School Ownership Types page 11 out of 17

Notes

* The ownership boxes and the relationship are not part of
the explicit state, however the paths are.

* During program execution, "new boxes" may be created

* Access "to the inside of the box" is only allowed from the
direct owner of the box.

* We can formalize the above requirement through

owner +— x ¢ iff

Vaa: xFa<«aa>»a = 3k owner(a)= owner(a)
ie, a reference from a to a is only legal if a, or one of the
owners of a is the owner of a (Proof?).

Above does not hold for paths, ie
X Fa<«.>»a does notimply 3k owner®(a)= owner(a')

Advanced issues in object oriented Programming Ownership Types page 12 out of 17

Blue arrows legal, grey dotted arrows are illegal.

Bertinoro Summer School Ownership Types page 13 out of 17

Advanced issues in object oriented Programming Ownership Types page 14 out of 17

For the type SList<o02,01>

and type SList<o2,02>:

1: Object l-'.:~~~
s IS
L} L 3
1 4
. ' +
— 2:Object ~ ~~ 7 “‘
¢(1
v 4 1
3:Slist [
I' !
R,
4:SLink 5:Slink 1 6:Slink N
/ /
4
7:Student 8:Student 9:Student

== -,
1: Object pmm = w Y
« N S
A IS S
1y N “
. 1 A ‘
—] 2:Object 7 %
_ Y
Sy ')
1
4 N 1
“& 1 1
3:Slist ‘I I 1
|
’ |
\ ’ ’ 1
¢]
4:SLink : Y 5:Slink 1 6:Slink N '
7
‘D
7 / .4
7:Student 8:Student 9:Student

Thus, e

3 “controls” 4,5 & 6,
2 “controls” 3,
1 “controls" 2,7,8, 9.

Thus, e 3 "controls” 4,5 & 6,
e 2 "controls" 3,7,8, 9.

Bertinoro Summer School

Ownership Types

page 15 out of 17

Sufficient condition to statically ensure
Owners as Dominators:

Consider the type
ClassId<rl,...rn>

Advanced issues in object oriented Programming Ownership Types page 16 out of 17

Summary

* Ownership of objects characterizes the "location” of an object.
* Ownership is a relation across objects, not across classes.

* Privacy of members (eg C++) restricts scoping, but not aliasing,
privacy is a relationship across classes.

* Many applications of ownership.

* Ownership types falvours have been incorporated into Scala, Rust,
and X10 (for parallelism and concurrency), and into Real Time and
Safety Critical Java (for memory management).

* In the next two talks we will discuss applications of ownership
types to the actor paradigm, and to garbage collection.

Bertinoro Summer School Ownership Types page 17 out of 17

