
Bertinoro Summer School Ownership Types page 1 out of 17

Ownership Application 14 – Memory Management
When deallocating object o, we would like to deallocate all the
objects in o’s box. This is safe, if we know that any path that
leads to an object inside o’s box, will go through o.

In other words, we need to know that o dominates all the
objects in its box.

Advanced issues in object oriented Programming Ownership Types page 2 out of 17

In other words, we want to
have that
owners are dominators.

In the diagram, blue arrows
are legal, and grey arrows
are illegal.

a_1

a_4

a_5

a_3

a_6

a_2

a_7 a_8

a_9

Bertinoro Summer School Ownership Types page 3 out of 17

Owners as Dominators

Paths

Definition: At certain time of execution, characterized by heap χ,
there is a path (<<a_1,… a_k>>) from object a_1 to object a_k, iff
a_i has some field pointing to object a_i+1, for all i=1,…k-1.

 χ(a)(f) = a’ _

χ ⊢ a <<a, a’>> a’

χ ⊢ a_1 <<a_1,…, a_k>> a_k χ⊢ a_k <<a_k,…, a_k+m>> a_k+m

χ ⊢ a_1 <<a_1,…, a_k, a_k+1 … a_k+m >> a_k+m

Advanced issues in object oriented Programming Ownership Types page 4 out of 17

3:Slist

4: SLink

1 : Object

6: Slink5: Slink

2: Object

7: Student 8: Student 9: Student

Eg χ ⊢ 3 << … >> 8, but χ ⊬ 5 << … >> 7.

Obviously, path-relationship changes with execution, i.e. possible that
e, χ ↝ e’, χ’ and χ ⊢ a << … >> a’ but χ’ ⊬ a << … >> a’.

Bertinoro Summer School Ownership Types page 5 out of 17

Object dominating another Object
Assume a fixed root object a_r.
Definition: At certain time of execution, characterized by heap χ,
object a dominates object a’, iff all paths from a_r to a’ lead
through a, ie

χ ⊢ a dom a’
iff

χ ⊢ a_r <<a_r,…, a_k>> a’ ⇒ a = a_i for some i∈{ 1…k}

• Is the dom relationship transitive?
• Does χ ⊢ a dom a’ imply that χ ⊢ a << … >> a’ ?
• Does χ ⊢ a dom a’, χ ⊢ a dom a’’ imply that a’ = a’’?
• Does χ ⊢ a’ dom a, χ ⊢ a’’ dom a imply that a’ = a’’?

Advanced issues in object oriented Programming Ownership Types page 6 out of 17

Example
for a state χ_1:

the dom relationship is:

What about a_6?

a_r

a_1

a_2

a_4 a_5a_3

a_7

a_6

a_r

a_1

a_2

a_4 a_5a_3

a_7

a_6

Bertinoro Summer School Ownership Types page 7 out of 17

Therefore, a dom a’ almost guarantees that a’ cannot be
accessed from an object “outside” a, unless it “goes
through” a. ….

J J J

However, program execution may create new objects, may
create new paths, and may destroy other paths …, eg …

Advanced issues in object oriented Programming Ownership Types page 8 out of 17

later on, for a state χ_2:

What happened to a_4, a_6?

the dom relationship is:

a_r

a_1

a_2

a_5a_3

a_7 a_8

a_r

a_1

a_2

a_5a_3

a_7 a_8

Bertinoro Summer School Ownership Types page 9 out of 17

Therefore, the dom relationship is not invariant with program
execution. In other words, it is possible to have e, χ ↝ e’, χ’
and χ ⊢ a dom a’ but χ’ ⊬ a dom a’.

L L L

We will use a mapping from objects to objects which is invariant
with program execution, and which, in a type correct program, will
imply the dom relationship:

 J
We already have such an invariant mapping from object to
object…

 J J J

Advanced issues in object oriented Programming Ownership Types page 10 out of 17

Owners as dominators

The ownership mapping, owner, respects the dom relationship at a
certain time of program execution iff the owners of all objects
dominate them.

Definition
 owner ⊢ χ ◊ iff for all a: χ ⊢ owner(a) dom a

• The owner mapping is independent of state χ.
• The dom relationship is derived from the state χ.
• We expect, that execution of a well typed program will

preserve respect for dom, ie:
e well typed and e, χ ↝ v, χ’ and owner ⊢ χ ◊

 ⇒
owner ⊢ χ’ ◊

Bertinoro Summer School Ownership Types page 11 out of 17

Consider a mapping o1(a_1)=a_r, o1(a_2)=a_1, o1(a_3)=a_2,
o1(a_4)=a_2, o1(a_5)=a_2, o1(a_7)=a_1. Thus:

for χ_1: for χ_2:

o1 ⊢ χ_1 ◊

o1 ⊢ χ_2 ◊

a_r

a_1

a_2

a_4 a_5a_3

a_7

a_r

a_1

a_2

a_5a_3

a_7

a_8

Advanced issues in object oriented Programming Ownership Types page 12 out of 17

Notes
• The ownership boxes and the dom relationship are not part of

the explicit state, however the paths are.
• During program execution, “new boxes” may be created
• Access “to the inside of the box” is only allowed from the

direct owner of the box.
• We can formalize the above requirement through

 owner ⊢ χ ◊ iff
 ∀a,a’: χ ⊢ a <<a,a’>> a’ ⇒ ∃k ownerk(a)= owner(a’)

ie, a reference from a to a’ is only legal if a, or one of the
owners of a is the owner of a’ (Proof?).

• Above does not hold for paths, ie
 χ ⊢ a <<….>> a’ does not imply ∃k ownerk(a)= owner(a’)

Bertinoro Summer School Ownership Types page 13 out of 17

Blue arrows legal, grey dotted arrows are illegal.

a_1

a_4

a_5

a_3

a_6

a_2

a_7 a_8

a_9

Advanced issues in object oriented Programming Ownership Types page 14 out of 17

Bertinoro Summer School Ownership Types page 15 out of 17

For the type SList<o2,o1> and type SList<o2,o2>:

3:Slist

4:SLink

1: Object

6:Slink5:Slink

2:Object

7:Student 8:Student 9:Student

3:Slist

4:SLink

1: Object

6:Slink5:Slink

2:Object

7:Student 8:Student 9:Student

Thus, ∙ 3 “controls” 4, 5 & 6,
 ∙ 2 “controls” 3,
 ∙ 1 “controls” 2, 7, 8, 9.

Thus, ∙ 3 “controls” 4, 5 & 6,
 ∙ 2 “controls” 3, 7, 8, 9.

Advanced issues in object oriented Programming Ownership Types page 16 out of 17

Sufficient condition to statically ensure
Owners as Dominators:

Consider the type
 ClassId<r1,….rn>

Bertinoro Summer School Ownership Types page 17 out of 17

Summary
• Ownership of objects characterizes the “location” of an object.

• Ownership is a relation across objects, not across classes.

• Privacy of members (eg C++) restricts scoping, but not aliasing,
privacy is a relationship across classes.

• Many applications of ownership.

• Ownership types falvours have been incorporated into Scala, Rust,
and X10 (for parallelism and concurrency), and into Real Time and
Safety Critical Java (for memory management).

• In the next two talks we will discuss applications of ownership
types to the actor paradigm, and to garbage collection.

