
The Design and Engineering of
Concurrency Libraries

Doug Lea
SUNY Oswego

Outline

Overview of Java concurrency support

java.util.concurrent

Some APIs, usages, and underlying algorithms for:

Task-based parallelism

Executors, Futures, ForkJoinTasks

Implementation using weak memory idioms

Synchronization

Queues

Other Collections, Sets, and Maps

With occasional code walk-throughs

See
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

Developing Libraries

Potentially rapid and wide adoption

Trying new library easier than new language

Support best ideas for structuring programs

Improve developer productivity, application quality

Drive new ideas

Continuous evaluation

Developer feedback on functionality, usability, bugs

Ongoing software engineering, quality assurance

Explore edges among compilers, runtimes,
applications

Can be messy, hacky

Diversity

Parallel and concurrent programming have many roots

Functional, Object-oriented, and ADT-based
procedural patterns are all well-represented;
including:

Parallel (function) evaluation

Bulk operations on aggregates (map, reduce etc)

Shared resources (shared registries, transactions)

Sending messages and events among objects

But none map uniformly to platforms

Beliefs that any are most fundamental are delusional

Arguments that any are “best” are silly

Libraries should support multiple styles

Avoiding policy issues when possible

Core Java 1.x Concurrency Support

Built-in language features:

synchronized keyword

“monitors” part of the object model

volatile modifier

Roughly, reads and writes act as if in synchronized blocks

Core library support:

Thread class methods

start, sleep, yield, isAlive, getID, interrupt,
isInterrupted, interrupted, ...

Object methods:

wait, notify, notifyAll

java.util.concurrent V5

Executor framework

ThreadPools, Futures, CompletionService

Atomic vars (java.util.concurrent.atomic)

JVM support for compareAndSet (CAS) operations

Lock framework (java.util.concurrent.locks)

Including Conditions & ReadWriteLocks

Queue framework

Queues & blocking queues

Concurrent collections

Lists, Sets, Maps geared for concurrent use

Synchronizers

Semaphores, Barriers, Exchangers, CountDownLatches

Main j.u.c components

LinkedQ

void lock()
void unlock()
boolean trylock()
newCondition()

void await()
void signal()
...

boolean add(E x)
E poll() ...

void put(E x)
E take(); ...

void execute(Runnable r)

LinkedBQArrayBQ

Executor

ReentrantLock BlockingQueue<E>

Queue<E>

Collection<E>ConditionLock

...

...

ThreadPoolExecutor

T get()
boolean cancel()
...

Future<T>

ReadWriteLock

Semaphore

CyclicBarrier

...
ScheduledExecutor

AtomicInteger

locks

atomic

...

java.util.concurrent V6-V8

More Executors

ForkJoinPool; support for parallel java.util.Streams

More Queues

LinkedTransferQueue, ConcurrentLinkedDeque

More Collections

ConcurrentSkipList{Map, Set}, ConcurrentSets

More Atomics

Weak access methods, LongAdder

More Synchronizers

Phasers, StampedLocks

More Futures

ForkJoinTask, CompletableFuture

Engineering j.u.c

Main goals

Scalability – work well on big SMPs

Overhead – work well with few threads or processors

Generality – no niche algorithms with odd limitations

Flexibility – clients choose policies whenever possible

Manage Risk – gather experience before incorporating

Adapting best known algorithms; continually improving them

LinkedQueue based on M. Michael and M. Scott lock-free queue

LinkedBlockingQueue is (was) an extension of two-lock queue

ArrayBlockingQueue adapts classic monitor-based algorithm

Leveraging Java features to invent new ones

GC, OOP, dynamic compilation etc

Focus on nonblocking techniques

SynchronousQueue, Exchanger, AQS, SkipLists ...

Exposing Parallelism

Old Elitism: Hide from most programmers

“Programmers think sequentially”

“Only an expert should try to write a <X>”

“<Y> is a kewl hack but too weird to export”

End of an Era

Few remaining hide-able speedups (Amdahls law)

Hiding is impossible with multicores, GPUs, FPGAs

New Populism: Embrace and rationalize

Must integrate with defensible programming models,
language support, and APIs

Some residual quirkiness is inevitable

Parallelizing Arbitrary Expressions

Instruction-level parallelism doesn't scale well

But can use similar ideas on multicores

With similar benefits and issues

Example: val e = f(a, b) op g(c, d) // scala

Easiest if rely on shallow dependency analysis

Methods f and g are pure, independent functions

Can exploit commutativity and/or associativity

Other cases require harder work

To find smaller-granularity independence properties

For example, parallel sorting, graph algorithms

Harder work → more bugs; sometimes more payoff

Limits of Parallel Evaluation

Why can't we always parallelize to turn any O(N)
problem into O(N / #processors)?

Sequential dependencies and resource bottlenecks

For program with serial time S, and parallelizable
fraction f, max speedup regardless of #proc is
1 / ((1 – f) + f / S)

Can also express
in terms of
critical paths or
tree depths

Wikipedia

Task-Based Parallel Evaluation

Programs can be broken into tasks

Under some appropriate level of granularity

Workers/Cores continually run tasks

Sub-computations are forked as subtask objects

Sometimes need to wait for subtasks

Joining (or Futures) controls dependencies

Worker

task task

Pool

Worker

WorkerWork queue(s)f() = {
 split;
 fork;
 join;
 reduce;
}

Executors

A GOF-ish pattern with a single method interface
 interface Executor { void execute(Runnable w); }

Separate work from workers (what vs how)

ex.execute(work), not new Thread(..).start()

The “work” is a passive closure-like action object

Executors implement execution policies

Might not apply well if execution policy depends on action

Can lose context, locality, dependency information

Reduces active objects to very simple forms

Base interface allows trivial implementations like
work.run()or new Thread(work).start()

Normally use group of threads: ExecutorService

Executor Framework

Standardizes asynchronous task invocation

Use anExecutor.execute(aRunnable)

Not: new Thread(aRunnable).start()

Two styles – non-result-bearing and result-bearing:

Runnables/Callables; FJ Actions vs Tasks

A small framework, including:

Executor – something that can execute tasks

ExecutorService extension – shutdown support etc

Executors utility class – configuration, conversion

ThreadPoolExecutor, ForkJoinPool – implementation

ScheduledExecutor for time-delayed tasks

ExecutorCompletionService – hold completed tasks

ExecutorServices

 interface ExecutorService extends Executor { // adds lifecycle ctl
 void shutdown();
 List<Runnable> shutdownNow();
 boolean isShutdown();
 boolean isTerminated();
 boolean awaitTermination(long to, TimeUnit unit);
}

Two main implementations

ThreadPoolExecutor (also via Executors factory methods)

Single (use-supplied) BlockingQueue for tasks

Tunable target and max threads, saturation policy, etc

Interception points before/after running tasks

ForkJoinPool

Distributed work-stealing queues

Internally tracks joins to control scheduling

Assumes tasks do not block on IO or other sync

Executor Example

 class Server {
 public static void main(String[] args) throws Exception {
 Executor pool = Executors.newFixedThreadPool(3);
 ServerSocket socket = new ServerSocket(9999);
 for (;;) {
 final Socket connection = socket.accept();
 pool.execute(new Runnable() {
 public void run() {
 new Handler().process(connection);
 }});
 }
 }
 static class Handler { void process(Socket s); }
}

client

client

client

Server

Worker

task task

Pool

Worker

WorkerWork queue

Futures

Encapsulates waiting for the result of an
asynchronous computation

The callback is encapsulated by the Future object

Usage pattern

Client initiates asynchronous computation

Client receives a “handle” to the result: a Future

Client performs additional tasks prior to using result

Client requests result from Future, blocking if necessary
until result is available

Client uses result

Main implementations

FutureTask<V>, ForkJoinTask<V>

Methods on Futures

V get()

Retrieves the result held in this Future object, blocking if
necessary until the result is available

Timed version throws TimeoutException

If cancelled then CancelledException thrown

If computation fails throws ExecutionException

boolean cancel(boolean mayInterrupt)

Attempts to cancel computation of the result

Returns true if successful

Returns false if already complete, already cancelled or
couldn’t cancel for some other reason

Parameter determines whether cancel should interrupt the
thread doing the computation

Only the implementation of Future can access the thread

Futures and Executors

<T> Future<T> submit(Callable<T> task)

Submit the task for execution and return a Future
representing the pending result

Future<?> submit(Runnable task)

Use isDone() to query completion

<T> Future<T> submit(Runnable task, T result)

Submit the task and return a Future that wraps the given
result object

<T> List<Future<T>>
 invokeAll(Collection<Callable<T>> tasks)

Executes the given tasks and returns a list of Futures
containing the results

Timed version too

Future Example

 class ImageRenderer { Image render(byte[] raw); }

class App { // ...
 ExecutorService exec = ...; // any executor
 ImageRenderer renderer = new ImageRenderer();
 public void display(final byte[] rawimage) {
 try {
 Future<Image> image = exec.submit(new Callable(){
 public Object call() {
 return renderer.render(rawImage);
 }});

 drawBorders(); // do other things while executing
 drawCaption();

 drawImage(image.get()); // use future
 }
 catch (Exception ex) {
 cleanup();
 }
 }
}

ForkJoinTasks extend Futures

V join()

Same semantics as get, but no checked exceptions

Usually appropriate when computationally based

If not, users can rethrow as RuntimeException

void fork()

Submits task to the same executor as caller is running
under

void invoke()

Same semantics as { t.fork(); t.join; }

Similarly for invokeAll

Plus many small utilities

Parallel Recursive Decomposition

Typical algorithm

 Result solve(Param problem) {
 if (problem.size <= THRESHOLD)
 return directlySolve(problem);
 else {
 in-parallel {
 Result l = solve(leftHalf(problem));
 Result r = solve(rightHalf(problem));
 }
 return combine(l, r);
 }
 }

To use FJ, must convert method to task object

“in-parallel” can translate to invokeAll(leftTask, rightTask)

The algorithm itself drives the scheduling

Many variants and extensions

Implementing ForkJoin Tasks

Queuing: Work-stealing

Each worker forks to own deque; but steals from others or
accepts new submission when no work

Scheduling: Locally LIFO, random-steals FIFO

Cilk-style: Optimal for divide-and-conquer

Ignores locality: Cannot tell if better to use another core on
same processor, or a different processor

Joining: Helping and/or pseudo-continuations

Try to steal a child of stolen task; if none, block but (re)start
a spare thread to maintain parallelism

Overhead: Task object with one 32-bit int status

Payoff after ~100-1000 instructions per task body

 class SortTask extends RecursiveAction {
 final long[] array;
 final int lo; final int hi;

 SortTask(long[] array, int lo, int hi) {
 this.array = array;
 this.lo = lo; this.hi = hi;
 }

 protected void compute() {
 if (hi - lo < THRESHOLD)
 sequentiallySort(array, lo, hi);
 else {
 int m = (lo + hi) >>> 1;
 SortTask r = new SortTask(array, m, hi);
 r.fork();
 new SortTask(array, lo, m).compute();
 r.join();
 merge(array, lo, mid, hi);
 }
 }
 // …
}

Popping

Stealing

TopBase

Deque

Pushing

ForkJoin Sort (Java)

Speedups on 32way Sparc

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

35

Speedups

Ideal
Fib
Micro
Integ
MM
LU
Jacobi
Sort

Threads

S
pe

ed
up

s

Granularity Effects

Recursive Fibonacci(42) running on Niagara2
compute() {
if (n <= Threshold) seqFib(n);
else invoke(new Fib(n-1), new Fib(n-2)); ...}

When do you bottom out parallel decomposition?

A common initial complaint but usually easy decision

Very shallow sensitivity curves near optimal choices

And usually easy to automate – except for problems so
small that they shouldn't divide at all

0 5 10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

14

16

Threshold

T
im

e
 (

s
ec

)

Why Work-Stealing

Portable scalability

Programs work well with any number of processors/cores

15+ years of experience (most notably in Cilk)

Load-balancing

Keeps processors busy, improves throughput

Robustness

Can afford to use small tasks (as few as 100 instructions)

But not a silver bullet – need to overcome / avoid ...

Basic versions ignore processor memory affinities

Task propagation delays can hurt for loop constructions

Overly fine granularities can hit big overhead wall

Restricted sync restricts range of applicability

Sizing/Scaling issues past a few hundred processors

Computation Trees and Deques

s(0,n)

s(0,n/2) s(n/2,n)

s(0,n/4) s(n/4,n/2) s(n/2,n/2+n/4) s(n/2+n/4,n)

q[base]

q[base+1]

root

For recursive decomposition, deques arrange tasks
with the most work to be stolen first. (See Blelloch et
al for alternatives)

Example: method s operating on array elems 0 ... n:

Blocking

The cause of many high-variance slowdowns

More cores → more slowdowns and more variance

Blocking Garbage Collection accentuates impact

Reducing blocking

Help perform prerequisite action rather than waiting for it

Use finer-grained sync to decrease likelihood of blocking

Use finer-grained actions, transforming ...
From: Block existing actions until they can continue
To: Trigger new actions when they are enabled

Seen at instruction, data structure, task, IO levels

Lead to new JVM, language, library challenges

Memory models, non-blocking algorithms, IO APIs

IO

Long-standing design and API tradeoff:

Blocking: suspend current thread awaiting IO (or sync)

Completions: Arrange IO and a completion (callback) action

Neither always best in practice

Blocking often preferable on uniprocessors if OS/VM must
reschedule anyway

Completions can be dynamically composed and executed

But require overhead to represent actions (not just stack-frame)

And internal policies and management to run async
completions on threads. (How many OS threads? Etc)

Some components only work in one mode

Ideally support both when applicable

Completion-based support problematic in pre-JDK8 Java

Unstructured APIs lead to “callback hell”

Blocking vs Completions in Futures

Java.util.concurrent Futures hit similar tradeoffs

Completion support hindered by expressibility

Initially skirted “callback hell” by not supporting any callbacks.
But led to incompatible 3rd party frameworks

JDK8 lambdas and functional interfaces enabled
introduction of CompletableFutures (CF)

CF supports fluent dynamic composition
CompletableFuture.supplyAsync(()->generateStuff()).
 thenApply(stuff->reduce(stuff)).thenApplyAsync(x->f(x)).
 thenAccept(result->print(result)); // add .join() to wait

Plus methods for ANDed, ORed, and flattened combinations

 In principle, CF alone suffices to write any concurrent program

Not fully integrated with JDK IO and synchronization APIs

Adaptors usually easy to write but hard to standardize

Tools/languages could translate into CFs (as in C# async/await)

Using Weak Idioms

Want good performance for core libraries and
runtime systems

Internally use some common non-SC-looking idioms

Most can be seen as manual “optimizations” that have no
impact on user-level consistency

But leaks can show up as API usage rules

Example: cannot fork a task more than once

Used extensively in implementing FJ

Consistency

Processors do not intrinsically guarantee much
about memory access orderings

Neither do most compiler optimizations

Except for classic data and control dependencies

Not a bug

Globally ordering all program accesses can eliminate
parallelism and optimization → unhappy programmers

Need memory model to specify guarantees and how
to get them when you need them

Initial Java Memory Model broken

JSR133 overhauled specs but still needs some work

Memory Models

Distinguish sync accesses (locks, volatiles, atomics)
from normal accesses (reads, writes)

Require strong ordering properties among sync

Usually “strong” means Sequentially Consistent

Allow as-if-sequential reorderings among normal

Usually means: obey seq data/control dependencies

Restrict reorderings between sync vs normal

Rules usually not obvious or intuitive

Special rules for cases like final fields

There's probably a better way to go about all this

JSR-133 Main Rule

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything
before the
unlock on M ...

... visible to
everything
after the
lock on M

Happens-Before

Underlying relationship between reads and writes of
variables

Specifies the possible values of a read of a variable

For a given variable:

If a write of the value v1 happens-before the write of a value
v2, and the write of v2 happens-before a read, then that read
may not return v1

Properly ordered reads and writes ensure a read can only
return the most recently written value

If an action A synchronizes-with an action B then A
happens-before B

So correct use of synchronization ensures a read can only
return the most recently written value

Additional JSR-133 Rules

Variants of lock rule apply to volatile fields and
thread control

Writing a volatile has same memory effects as unlock

Reading a volatile has same memory effects as lock

Similarly for thread start and termination

Final fields

All threads read final value so long as assigned before the
object is visible to other threads. So DON'T write:
 class Stupid implements Runnable {
 final int id;
 Stupid(int i) { new Thread(this).start(); id = i; }
 public void run() { System.out.println(id); }
 }

Extremely weak rules for unsynchronized, non-
volatile, non-final reads and writes

Atomic Variables

Classes representing scalars supporting
 boolean compareAndSet(expectedValue, newValue)

Atomically set to newValue if currently hold
expectedValue

Also support variant: weakCompareAndSet

May be faster, but may spuriously fail (as in LL/SC)

Classes: { int, long, reference } X { value, field,
array } plus boolean value

Plus AtomicMarkableReference, AtomicStampedReference

(emulated by boxing in J2SE1.5)

JVMs can use best construct available on a given
platform

Compare-and-swap, Load-linked/Store-conditional, Locks

Enhanced Volatiles (and Atomics)

Support extended atomic access primitives

CompareAndSet (CAS), getAndSet, getAndAdd, ...

Provide intermediate ordering control

May significantly improve performance

Reducing fences also narrows CAS windows, reducing retries

Useful in some common constructions

Publish (release) → acquire

No need for StoreLoad fence if only owner may modify

Create (once) → use

No need for LoadLoad fence on use because of intrinsic
dependency when dereferencing a fresh pointer

Interactions with plain access can be surprising

Most usage is idiomatic, limited to known patterns

Resulting program need not be sequentially consistent

Expressing Atomics

C++/C11: standardized access methods and modes

Java: JVM “internal” intrinsics and wrappers

Not specified in JSR-133 memory model, even though some
were introduced internally in same release (JDK5)

Ideally, a bytecode for each mode of (load, store, CAS)

Would fit with No L-values (addresses) Java rules

Instead, intrinsics take object + field offset arguments

Establish on class initialization, then use in Unsafe API calls

Non-public; truly “unsafe” since offset args can't be checked

Can be used outside of JDK using odd hacks if no security mgr

j.u.c supplies public wrappers that interpose (slow) checks

JEP 188 and 193 (targeting JDK9) will provide first-
class specs, and improved APIs

Example: AtomicInteger

 class AtomicInteger {
 AtomicInteger(int initialValue);
 int get();
 void set(int newValue);
 int getAndSet(int newValue);
 boolean compareAndSet(int expected, int newVal);
 boolean weakCompareAndSet(int expected, int newVal);
 // prefetch postfetch
 int getAndIncrement(); int incrementAndGet();
 int getAndDecrement(); int decrementAndGet();
 int getAndAadd(int x); int addAndGet(int x);
}

Integrated with JSR133 semantics for volatile

get acts as volatile-read

set acts as volatile-write

compareAndSet acts as volatile-read and volatile-write

weakCompareAndSet ordered wrt accesses to same var

Class X { int field; X(int f) { field = f; } }

For shared var v (other vars thread-local):

P: p.field = e; v = p; || C: c = v; f = c.field;

Weaker protocols avoid more invalidation

Use weakest that ensures that C:f is usable,
considering:

“Usable” can be algorithm- and API-dependent

Is write to v final? including:

Write Once (null → x), Consume Once (x → null)

Is write to x.field final?

Is there a unique uninitialized value for field

Are reads validated?

Consistency with reads/writes of other shared vars

Publication and Transfers

Example: Transferring Tasks

Work-stealing Queues perform ownership transfer

Push: make task available for stealing or popping

Needs release fence (weaker, thus faster than full volatile)

Pop, steal: make task unavailable to others, then run

Needs CAS with at least acquire-mode

T1: push(w) --
w.state = 17;
slot = q;

T2: steal() --
w = slot;
if (CAS(slot, w, null))
 s = w.state; ...

Task w
Int state;

consumepublish
Require: s == 17

Queue slot

Store-release
(putOrdered)

Task Deque Algorithms

Deque ops (esp push, pop) must be very fast/simple

One atomic op per push+{pop/steal}

This is minimal unless allow duplicate execs or arbitrary
postponement (See Maged Michael et al PPoPP 09)

Competitive with procedure call stack push/pop

Less than 5X cost for empty fork+join vs empty method

Uses (circular) array with base and top indices

Push(t): storeFence; array[top++] = t;

Pop(t): if (CAS(array[top-1], t, null)) --top;

Steal(t): if (CAS(array[base], t, null)) ++base;

NOT strictly non-blocking but probabilistically so

A stalled ++base precludes other steals

But if so, stealers try elsewhere (randomized selection)

Example: ConcurrentLinkedQueue

Extend Michael & Scott Queue (PODC 1996)

CASes on different vars (head, tail) for put vs poll

If CAS of tail from t to x on put fails, others try to help

By checking consistency during put or take

Restart at head on seeing self-link

Poll head tail

h n

Put x head tail

t

1: CAS head
 from h to n

x

1: CAS t.next
from null to x

2: CAS tail
from t to x

2: self-link h (relaxed store)

Synchronizers

Shared-memory sync support

Queues, Futures, Locks, Barriers, etc

Shared is faster than unshared messaging

But can be less scalable for point-to-point

Provides stronger guarantees: Cache coherence

Can be more error-prone: Aliasing, races, visibility

Exposing benefits vs complexity is policy issue

Support Actors, Messages, Events

Supply mechanism, not policy

Builtin Synchronization

Every Java object has lock acquired via:

synchronized statements
 synchronized(foo){
 // execute code while holding foo’s lock
}

synchronized methods
 public synchronized void op1(){
 // execute op1 while holding ‘this’ lock
}

Only one thread can hold a lock at a time

If the lock is unavailable the thread is blocked

Locks are granted per- thread

So called reentrant or recursive locks

Locking and unlocking are automatic

Can’t forget to release a lock

Locks are released when a block goes out of scope

Synchronizer Framework

Any of: Locks, RW locks, semaphores, futures,
handoffs, etc., could be to build others

But shouldn't: Overhead, complexity, ugliness

Class AbstractQueuedSynchronizer (AQS) provides
common underlying functionality

Expressed in terms of acquire/release operations

Implements a concrete synch scheme

Structured using a variant of GoF template-method pattern

Synchronizer classes define only the code expressing rules for
when it is permitted to acquire and release.

Doesn't try to work for all possible synchronizers,
but enough to be both efficient and widely useful

Phasers, Exchangers don't use AQS

Synchronizer Class Example

 class Mutex {

 private class Sync
 extends AbstractQueuedSynchronizer {

 public boolean tryAcquire(int ignore) {
 return compareAndSetState(0, 1);
 }
 public boolean tryRelease(int ignore) {
 setState(0); return true;
 }
 }

 private final Sync sync = new Sync();

 public void lock() { sync.acquire(0); }
 public void unlock() { sync.release(0); }
}

Lock APIs

java.util.concurrent.locks.Lock

Allows user-defined classes to implement locking
abstractions with different properties

Main implementation is AQS-based ReentrantLock

lock() and unlock() can occur in different scopes

Unlocking is no longer automatic

Use try/finally

Lock acquisition can be interrupted or allowed to
time-out

lockInterruptibly(), boolean tryLock(),
boolean tryLock(long time, TimeUnit unit)

Supports multiple Condition objects

Acquire:
while (synchronization state does not allow acquire) {
 enqueue current thread if not already queued;
 possibly block current thread;
 }
 dequeue current thread if it was queued;

Release:
 update synchronization state;
 if (state may permit a blocked thread to acquire)
 unblock one or more queued threads;

AQS atomically maintains synchronization state

An int representing e.g., whether lock is in locked state

Blocks and unblocks threads

Using LockSupport.park/unpark

Maintains queues

AQS Acquire/Release Support

AQS Queuing

An extension CLH locks

Single-CAS insertion using explicit pred pointers

Modified as blocking lock, not spin lock

Acquirability based on sync state, not node state

Signal status information for a node held in its predecessor

Add timeout, interrupt, fairness, exclusive vs shared modes

Also next-pointers to enable signalling (unpark)

Wake up successor (if needed) upon release

Not atomically assigned; Use pred ptrs as backup

Lock Conditions use same rep, different queues

Condition signalling via queue transfer

Queuing Mechanics

head

head Status: signalme, cancellation, condition

hd first tail
next

CASpred

head

tail

initial

enqueue

enqueue

dequeue

hd tail

hd

head

tail
CAS

Assign after CAS

release
unpark

FIFO with Barging

Incoming threads and unparked first thread may race
to acquire

Reduces the expected time that a lock (etc) is needed,
available, but not yet acquired.

FIFOness avoids most unproductive contention

Disable barging by coding tryAcquire to fail if current
thread is not first queued thread

Worthwhile for preventing starvation only when hold times
long and contention high

first

queued threads

barging thread

tryAcquire

...

Performance

Uncontended overhead (ns/lock)
Machine Builtin Mutex Reentrant Fair

1P 18 9 31 37
2P 58 71 77 81
2A 13 21 31 30
4P 116 95 109 117
1U 90 40 58 67
4U 122 82 100 115
8U 160 83 103 123
24U 161 84 108 119

On saturation FIFO-with-Barging keeps locks busy
Machine Builtin Mutex Reentrant Fair

1P 521 46 67 8327
2P 930 108 132 14967
2A 748 79 84 33910
4P 1146 188 247 15328
1U 879 153 177 41394
4U 2590 347 368 30004
8U 1274 157 174 31084

24U 1983 160 182 32291

Throughput under Contention

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sparc Uniprocessor

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g2

 S
lo

w
do

w
n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

10
0

1

2

3

4

5

6

Dual hyperthread Xeon / linux

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g2

 S
lo

w
do

w
n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

10

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

Dual P3/linux

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

L
o

g
2

 S
lo

w
d

o
w

n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

24way Ultrasparc 3

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g2

 S
lo

w
do

w
n

Background: Interrupts

void Thread.interrupt()

NOT asynchronous!

Sets the interrupt state of the thread to true

Flag can be tested and an InterruptedException thrown

Used to tell a thread that it should cancel what it is doing:

May or may not lead to thread termination

What could test for interruption?

Methods that throw InterruptedException

sleep, join, wait, various library methods

I/O operations that throw IOException

But this is broken

By convention, most methods that throw an interrupt
related exception clear the interrupt state first.

Checking for Interrupts

static boolean Thread.interrupted()

Returns true if the current thread has been interrupted

Clears the interrupt state

boolean Thread.isInterrupted()

Returns true if the specified thread has been interrupted

Does not clear the interrupt state

Library code never hides fact an interrupt occurred

Either re-throw the interrupt related exception, or

Re-assert the interrupt state:

Thread.currentThread().interrupt();

Responding to Interruptions

Early return

Exit without producing or signalling errors

Callers can poll cancellation status if necessary

May require rollback or recovery

Continuation (ignoring cancellation status)

When partial actions cannot be backed out

When it doesn’t matter

Re-throwing InterruptedException

When callers must be alerted on method return

Throwing a general failure Exception

When interruption is one of many reasons method can fail

Queues

Can act as synchronizers, collections, or both

As channels, may support:

Always available to insert without blocking: add(x)

Fallible add: boolean offer(x)

Non-blocking attempt to remove: poll()

Block on empty: take()

Block on full: put()

Block until received: transfer();

Versions with timeouts

Queue APIs

 interface Queue<E> extends Collection<E> { // ...
 boolean offer(E x);
 E poll();
 E peek();
}
interface BlockingQueue<E> extends Queue<E> { // ...
 void put(E x) throws InterruptedException;
 E take() throws InterruptedException;
 boolean offer(E x, long timeout, TimeUnit unit);
 E poll(long timeout, TimeUnit unit);
}
interface TransferQueue<E> extends BlockingQueue<E> {
 void transfer(E x) throws InterruptedException; // ...
}

Collection already supports lots of methods

iterators, remove(x), etc.

These can be more challenging to implement than the queue
methods. People rarely use them, but sometimes
desperately need them.

Using BlockingQueues

class LogWriter {
 private BlockingQueue<String> msgQ =
 new LinkedBlockingQueue<String>();

 public void writeMessage(String msg) throws IE {
 msgQ.put(msg);
 }

 // run in background thread
 public void logServer() {
 try {
 for(;;) {
 System.out.println(msqQ.take());
 }
 }
 catch(InterruptedException ie) { ... }
 }
}

No-API Queues

Nearly any array or linked list can be used as queue

Often the case when array or links needed anyway

Common inside other j.u.c. code (like ForkJoin)

Avoids a layer of wrapping

Avoids overhead of supporting unneeded methods

Example: Treiber Stacks

Simplest CAS-based Linked “queue”

LIFO ordering

Work-Stealing deques are array-based example

Treiber Stack

interface LIFO<E> { void push(E x); E pop(); }

class TreiberStack<E> implements LIFO<E> {
static class Node<E> {
 volatile Node<E> next;
 final E item;
 Node(E x) { item = x; }
}

 final AtomicReference<Node<E>> head =
 new AtomicReference<Node<E>>();

 public void push(E item) {
 Node<E> newHead = new Node<E>(item);
 Node<E> oldHead;
 do {
 oldHead = head.get();
 newHead.next = oldHead;
 } while (!head.compareAndSet(oldHead, newHead));
}

TreiberStack(2)

 public E pop() {
 Node<E> oldHead;
 Node<E> newHead;
 do {
 oldHead = head.get();
 if (oldHead == null) return null;
 newHead = oldHead.next;
 } while (!head.compareAndSet(oldHead,newHead));

 return oldHead.item;
 }

}

ConcurrentLinkedQueue

Michael & Scott Queue (PODC 1996)

Use retriable CAS (not lock)

CASes on different vars (head, tail) for put vs poll

If CAS of tail from t to x on put fails, others try to help

By checking consistency during put or take

Poll head tail

h n

Put x head tail

t

CAS head
 from h to n;
return h.item

x

1: CAS t.next
from null to x

2: CAS tail
from t to x

Classic Monitor-Based Queues

class BoundedBuffer<E> implements Queue<E> { // ...
 Lock lock = new ReentrantLock();
 Condition notFull = lock.newCondition();
 Condition notEmpty = lock.newCondition();
 Object[] items = new Object[100];
 int putptr, takeptr, count;
 public void put(E x)throws IE {
 lock.lock(); try {
 while (count == items.length)notFull.await();
 items[putptr] = x;
 if (++putptr == items.length) putptr = 0;
 ++count;
 notEmpty.signal();
 } finally { lock.unlock(); }
 }
 public E take() throws IE {
 lock.lock(); try {
 while (count == 0) notEmpty.await();
 Object x = items[takeptr];
 if (++takeptr == items.length) takeptr = 0;
 --count;
 notFull.signal();
 return (E)x;
 } finally { lock.unlock(); }
} } // j.u.c.ArrayBlockingQueue class is along these lines

SynchronousQueues

Tightly coupled communication channels

Producer awaits consumer and vice versa

Seen throughout theory and practice of concurrency

Implementation of language primitives

CSP handoff, Ada rendezvous

Message passing software

Handoffs

Java.util.concurrent.ThreadPoolExecutor

Historically, expensive to implement

But lockless mostly nonblocking approach very effective

Dual SynchronousQueue Derivation

Treiber
Stack

Dual
Stack

Unfair
SQ

M&S
Queue

Dual
Queue

Fair
SQ

Base
Algorithm

Consumer
Blocking

Producer
Blocking,
Timeout,
Cleanup

Fair mode Unfair mode

Illustrated
next. See
paper/code
for others {

M&S Queue: Enqueue

Queue

Dummy Data DataData Data Data

E1

E2Queue

DataData Data Data

Head Tail

TailHead

Dummy Data

M&S Queue: Dequeue

Queue

Dummy Data Data Data Data

Queue

Old
Dummy

New
Dummy Data Data

D1

D2

Head

Head

Tail

Data

Tail

Dual M&S Queues

Separate data, request nodes (flag bit)

Queue always all-data or all-requests

Same behavior as M&S queue for data

Reservations are antisymmetric to data

dequeue enqueues a reservation node

enqueue satisfies oldest reservation

Tricky consistency checks needed

Dummy node can be datum or reservation

Extra state to watch out for (more corner cases)

DQ: Enqueue item when requests exist

Queue

Dummy Res. Res. Res. Res.

Head Tail

E1

E2

E3

Read dummy’s next ptr

CAS reservation’s data ptr from null to item

Update head ptr

E1

E2

E3

DQ: Enqueue (2)

Queue

Dummy Res. Res. Res. Res.

Head Tail

E1

E2

E3

Read dummy’s next ptr

CAS reservation’s data ptr from null to item

Update head ptr

E3

Item
E2

DQ: Enqueue (3)

Queue

Res. Res. Res.

Tail

E1

E2

E3

Read dummy’s next ptr

CAS reservation’s data ptr from null to item

Update head ptr

E3

Item

Old
Dummy

New
Dummy

Head

Synchronous Dual Queue

Implementation extends dual queue

Consumers already block for producers

Add blocking for the “other direction”

Add item ptr to data nodes

Consumers CAS from null to “satisfying request”

Once non-null, any thread can update head ptr

Timeout support

Producer CAS from null back to self to indicate unusable

Node reclaimed when it reaches head of queue: seen as fulfilled
node

See the paper and code for details

Consistency issues are intrinsic to event systems

Example: vars x,y initially 0 → events x, y unseen

Node A: send x = 1; // (multicast send)

Node B: send y = 1;

Node C: receive x; receive y; // see x=1, y=0

Node D: receive y; receive x; // see y=1, x=0

On shared memory, can guarantee agreement

JMM: declare x, y as volatile

Remote consistency is expensive

Atomic multicast, distributed transactions; failure models

Usually, weaker consistency is good enough

Example: Per-producer FIFO

Queues, Events and Consistency

Collections

Multiple roles

Representing ADTs

Shared communication media

An increasing common focus

Transactionality

Isolation

Bulk parallel operations

Semi-Transactional ADTs

Explicitly concurrent objects used as resources

Support conventional APIs (Collections, Maps)

Examples: Registries, directories, message queues

Programmed in low-level JVMese – compareAndSet (CAS)

Often vastly more efficient than alternatives

Roots in ADTs and Transactions

ADT: Opaque, self-contained, limited extensibility

Transactional: All-or-nothing methods

Atomicity limitations; no transactional removeAll etc

But usually can support non-transactional bulk parallel ops

(Need for transactional parallel bulk ops is unclear)

Possibly only transiently concurrent

Example: Shared outputs for bulk parallel operations

Concurrent Collections

Non-blocking data structures rely on simplest form
of hardware transactions

CAS (or LL/SC) tries to commit a single variable

Frameworks layered on CAS-based data structures can be
used to support larger-grained transactions

HTM (or multiple-variable CAS) would be nicer

But not a magic bullet

Evade most hard issues in general transactions

Contention, overhead, space bloat, side-effect rollback, etc

But special cases of these issues still present

Complicates implementation: Hard to see Michael & Scott
algorithm hiding in LinkedTransferQueue

Collection Usage

Large APIs, but what do people do with them?

Informal workload survey using pre-1.5 collections

Operations:

About 83% read, 16% insert/modify, <1% delete

Sizes:

Medians less than 10, very long tails

Concurrently accessed collections usually larger than others

Concurrency:

Vast majority only ever accessed by one thread

But many apps use lock-based collections anyway
Others contended enough to be serious bottlenecks

Not very many in-between

Contention in Shared Data Structures

Mostly-Write

Most producer-
consumer exchanges

Apply combinations of a
small set of ideas

Use non-blocking sync via
compareAndSet (CAS)

Reduce point-wise
contention

Arrange that threads help
each other make progress

Mostly-Read

Most Maps & Sets

Structure to maximize
concurrent readability

Without locking, readers
see legal (ideally,
linearizable) values

Often, using immutable
copy-on-write internals

Apply write-contention
techniques from there

Collections Design Options

Large design space, including

Locks: Coarse-grained, fine-grained, ReadWrite locks

Concurrently readable – reads never block, updates use locks

Optimistic – never block but may spin

Lock-free – concurrently readable and updatable

Rough guide to tradeoffs for typical implementations

Read overhead Read scaling Write overhead Write scaling
Coarse-grained locks Medium Worst Medium Worst
Fine-grained locks Worst Medium Worst OK
ReadWrite locks Medium Soso Medium Bad
Concurrently readable Best Very good Medium Notsobad
Optimistic Good Good Best Risky
Lock-free Good Best OK Best

Linear Sorted Lists

Linking a new object can be cheaper/better than marking a pointer

Less traversal overhead but need to traverse at least 1 more node
during search; also can add GC overhead if overused

Can apply to M. Michael's sorted lists, using deletion marker nodes

Maintains property that ptr from deleted node is changed

In turn apply to ConcurrentSkipListMaps

A B C D

A B C D

A C D

mark
CAS

CAS

Delete B

ConcurrentSkipListMap

Each node has random number of index levels

Each index a separate node, not array element

Each level on average twice as sparse

Base list uses sorted list insertion and removal
algorithm

Index nodes use cheaper variant because OK if
(rarely) lost

A B C D

Level 1

Level 2

Level 1

Level 2

Level 1

Bulk Operations

SIMD: Apply operation to all elements of a collection

Procedures: Color all my squares red

Mappings: Map these student IDs to their grades

Reductions: Calculate the sum of these numbers

A special case of basic parallel evaluation

Any number of components; same operation on
each

Same independence issues

Can arrange processing
in task trees/dags

Array Sum:

s(0,n)

s(0,n/2) s(n/2,n)

s(0,n/4) s(n/4,n/2) s(n/2,n/2+n/4) s(n/2+n/4,n)

q[base]

q[base+1]

root

 QoS and Memory Management

GC can be ill-suited for stream-like processing:

Repeat: Allocate → read → process → forget

RTSJ Scoped memory

Overhead, run-time exceptions (vs static assurance)

Off-heap memory

Direct-allocated ByteBuffers hold data

Emulation of data structures inside byte buffers

Manual storage management (pooling etc)

Manual synchronization control

Manual marshalling/unmarshalling/layout

Project Panama will enable declarative layout control

Alternatives?

Memory Placement

Memory contention, false-sharing, NUMA, etc can
have huge impact

Reduce parallel progress to memory system rates

JDK8 @sun.misc.Contended allows pointwise manual tweaks

Some GC mechanics worsen impact; esp card marks

When writing a reference, JVM also writes a bit/byte in a table
indicating that one or more objects in its address range (often
512bytes wide) may need GC scanning

The card table can become highly contended

Yang et al (ISMM 2012) report 378X slowdown

JVMs cannot allow precise object placement control

But can support custom layouts of plain bits (struct-like)

JEP for Value-types (Valhalla) + Panama address most cases?

JVMs oblivious to higher-level locality constraints

Including “ThreadLocal”!

Randomization

Common components inject algorithmic randomness

Hashing, skip lists, crypto, numerics, etc

Fun fact: The Mark I (1949) had hw random number generator

Visible effects; e.g., on collection traversal order

API specs do not promise deterministic traversal order

Bugs when users don't accommodate

Can be even more useful in concurrency

Fight async and system non-determinism with algorithmic
non-determinism

Hashed striping, backoffs, work-stealing, etc

Implicit hope that central limit theorem applies

Combining many allegedly random effects → lower variance

Often appears to work, but almost never provably

Formal intractability is an impediment for some real-time use

Postscript: Developing Libraries

Design is a social process

Single visions are good, those that pass review better

Specification and documentation require broad review

Even so, by far most submitted j.u.c bugs are spec bugs

Release engineering requires perfectionism

Lots of QA: tests, reviews. Still not enough

Widespread adoption requires standardization

JCP both a technical and political body

Need tutorials, examples, etc written at many different levels

Users won't read academic papers to figure out how/why to use

Creating new components leads to new developer problems

Example: New bug patterns for findBugs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

