
Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Upscale:
From Inherent Concurrency to Massive Parallelism

through Type-based Optimizations
Project Overview

Frank de Boer

Upscale Year 1 Project Review

Brussels, Feb. 26, 2015

http://www.upscale-project.eu

Frank de Boer (CWI) Project Overview Brussels, 26.02.15 0 / 0

SFM Summer School
Bertinoro, June, 2015

Parallel Objects for Multicores
A Glimpse at the Parallel Language Encore

Dave Clarke & Tobias Wrigstad
Uppsala University

1

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Overview

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Tutorial Overview

Background and Motivation

Language Design Inversion

Encore Language Design (5 Inversions)

(Exercise Session)

3

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Motivation

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 5

In the early 2000’s hardware hit a wall

– “Too much power used too inefficiently”
– CPU temperature approaching sun’s surface
– Adding 2x transistors yields 2% speedup

Solution: multi- and manycore machines

– Use 2x transistors to build 2x cores
– 200% speedup — in theory
– Essentially pushes the problem over to software
– “‘No one’ knows how to program these machines”

Background

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 6

Combining object-orientation and parallelism is hard

– Aliasing make reasoning about efficient parallelism difficult
– Abstract dynamic structures stress memory bottlenecks
– Compositionality of concurrency control…

One root cause: classical languages evolved in a predominantly sequential setting

– Support for concurrency & parallelism as an afterthought
– Thread libraries are easily integrated, but hard to use
– Essentially pushes the problem over to application programmers
– “‘No one’ knows how to program with lots of threads”

Object-Oriented Parallel Programming

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Aliasing Problem: Shared Mutable State

7

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Aliasing Problem: Shared Mutable State

8

even worse with concurrency/parallelism

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Locks

9

Must acquire a lock before accessing a certain resource

write

read

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Locking Too Little

10

write

read

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Locking Too Much

11

force interleaved access even for commuting operations

read

read

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Compositionality of Locks

12

B

deadlock

A

acquire A, B; acquire B, A;

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Locks are Good, Locks are Bad

Threads and locks are easy to add to a programming language with minimal changes

Place burden on programmer instead of programming language designer

Code that requires synchronisation is indistinguishable from code that does not

Locks perform quite well quite often

Uncontended locks are cheap

Highly contended locks are expensive

 Coarse-grained locking is simpler but reduces parallelism

 Fine-grained locking allows parallelism, but is harder (e.g. deadlocks)

13

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 14

Rethink object-oriented programming languages

– Remove sequential bias in classical languages
– Keep a sufficiently object-oriented programming model
– Save industry investments in OOSD

End goal: make massively parallel programming in
 OO-languages possible & affordable

Language Design
Inversion

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Inversion

Most modern languages are designed first for sequential programming, with parallel
programming constructs tacked on — Erlang is one exception.

Mutability, possibly data dependencies, shared state, poor locality etc all limit possible
parallelism and scalability.

Inversion = adopt defaults that favours parallelism and scalability.

16

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Inversion in design of Encore

Concurrent-by-default

(Data)Parallel-by-default

Data-race-free-by-default

Isolated-by-default

Asynchronous-by-default

Linear-by-default

Immutable-by-default

Local-by-default

Multi-object-by-default

…

17

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

… by-default

Defaults can be overridden  
— additional code overhead.

Some defaults are conflicting  
— need to be addressed.

18

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Concurrent-by-Default

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Concurrency-by-Default

Java objects were designed for sequential access.

Threads trample over objects.

Locks/monitors added to protect objects.

Erlang has concurrency by default (actors), but it is not object-oriented.

20

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Actors/Active Objects

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Active Object Characteristics

Mailbox

Single thread of control

Isolation

Asynchronous communication

– Saturation of asynchronous operations on different object enables efficient use of 
 parallel machines

Method suites defined in classes + usually OO

Return values handled using futures

22

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Actor Characteristics

23

Active Obj. A

m1

m2

Active Obj. B
not allowed

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Actor Characteristics

24

Active Obj. A

m1

m2

Active Obj. B
a.m2()

status value
action run mode

status value
action run mode

Q

by recv. by anyone

run m1

waiting running suspended finished

… …

run l

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 25

synchronous

asynchronous
single

thread of
control

Active Object-based Parallelism

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 26

synchronous

asynchronous
single

thread of
control

Active Object-based Parallelism

BIG JOB
TO DO

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 27

BIG JOB
TO DO

Fork multiple actors

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Thread Ring Example (A Litte Bit Boring)

28

class Main
 def main(): void
 let
 index = 1
 first = new Worker(index)
 next = null : Worker
 nhops = 50 000 000
 ring_size = 503
 current = first
 in {
 while (index < ring_size) {
 index = index + 1;
 next = new Worker(index);
 current ! setNext(next);
 current = next;
 };
 current ! setNext(first);
 first ! run(nhops);
 }

class Worker
 id : int
 next : Worker

 def init(id : int): void
 this.id = id

 def setNext(next: Worker): void
 this.next = next

 def run(n : int): void
 if (n > 0)
 then this.next!run(n-1)
 else print(this.id)

Tobias Wrigstad (UU) Brussels 26.02.15

Threadrings Benchmark [pl shootout bench]

29

Sp
ee

du
p

No
rm

al
ise

d
on

 R
ub

y

1

10

100

Go Clojure Racket C OCaml Java C++ Ruby Encore

OO Languages

51x

Tested on a 4 core laptop Note: higher is better

PonyRT
inside!

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 30

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 31

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 32

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 33

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 34

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 35

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 36

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 37

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 38

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 39

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 40

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Parallel Sieve of Eratosthenes

Source
W1

W2

W3

W4

W5

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Prime Sieve Benchmark

Primes for each filter

Sending buffer

~ 200 LOC Encore + 130 LOC from libraries

41

Active Object

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 42

3–√N

679– 5341–

1345–

2011– 2677–

3343–

4009– 4675–

6007– 8005–

(rest omitted)

Parallel Prime Sieve in a Nutshell

Active Object

Found primes send to children

~ 200 LOC Encore + 130 LOC from libraries

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 43

3–√N

679– 5341–

1345–

2011– 2677–

3343–

4009– 4675–

6007– 8005–

33

3

3

Scans vector of numbers linearly to find primes

Forwards each prime P to its immediate children

Cancels all multiples of P in their range

Forwards each prime P to its immediate children3 3 3

3 3 3
(omitted rest)

Parallel Prime Sieve in a Nutshell

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 44

…

… C

…

… …

…

… …

A B

D

Aggregate result with children, display

D = A + B + C

Aggregate result with children, send to parent

e.g., ”A primes found”A B

(omitted rest)

Parallel Prime Sieve in a Nutshell

When done, send result to parent

50847534!

Strong Scalability (Normalised on 1, calculating 1.6B primes)

45

10 x

100 x

actors mapped onto 1–64 cores

1 3 7 15 31 64 127

 0.3 seconds

30x

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Back to the Futures

A future is a placeholder for a value

Asynchronous methods return futures …

… when the method is complete, its result is assigned to the future — the future is fulfilled.

46

m1

m2

status value
action run mode

Q

run m1

waiting running suspended finished

…

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Accessing a future: get

get :: Fut t -> t  
 
returns the value associated with a future, if available, otherwise blocks current active
object until it is

get immediately after a call ~ synchronous call

47

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

read from
future

write return
value

48

synchronous

x ! foo()

single
thread of

control

A B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 49

synchronous

x ! foo()

single
thread of

control

get f

A B

hopefully, f is fulfilled
before this happens

p = b.loadPageSource();
i = p.loadImages();
display.render(p, i);

Sequential chain

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 50

synchronous

x ! foo()

single
thread of

control

get f

A B

hopefully, f is fulfilled
before this happens

p = get b.loadPageSource();
i = get p.loadImages();
display.render(p, i);

Sequential chain

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 51

synchronous

x ! foo()

single
thread of

control

get f

A B

hopefully, f is fulfilled
before this happens

i = p.loadImages();
a = b.loadAds();
display.render(get i, get a);

”Fork—join”

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Operations on Futures

await :: Fut t -> t  
– like get, but relinquishes control of the active object until a value in future is available,
then returns that value

poll :: Fut t -> Bool  
– checks whether the future has been fulfilled

+ chaining (next slide)

52

A
Q

B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 53

synchronous

x ! foo()

single
thread of

control

A

creates a ”workflow” that is
disconnected from A — avoids

blocking A

b.loadPageSource() ~~>
 l p —> p.searchAdWords() ~~>
 l w -> getAds(w);

Sequential chain

chain :: Fut t -> (t -> t’) -> Fut t’  
– apply a function asynchronously to the result of
future, returning a future for the result

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 54

synchronous

x ! foo()

single
thread of

control

~~>

A

creates a ”workflow” that is
disconnected from A — avoids

blocking A

b.loadPageSource() ~~>
 l p —> p.searchAdWords() ~~>
 l w -> getAds(w);

Sequential chain ~~>

(get f)

chain :: Fut t -> (t -> t’) -> Fut t’  
– apply a function asynchronously to the result of
future, returning a future for the result

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 55

synchronous

x ! foo()

~~>

A

creates a ”workflow” that is
disconnected from A — avoids

blocking A

b.loadPageSource() ~~>
 l p —> p.searchAdWords() ~~>
 l w -> getAds(w);

Sequential chain ~~>

• Two “run modes” depending on how
environment is captured

Detached mode — closure is “self-
contained” and can be run by any
thread

Attached mode — closure captures
(mutable) local state and must be run
by its creator

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Cooperative Multi-Tasking

• await (Fut t -> t) — like get but it relinquishes control of the active object to process
another message (if there is one), if the future has not been fulfilled

• suspend relinquishes control of active object to process another message

• Both require active object to reestablish its class invariants before relinquishing control

Essentially the aliasing problem, but without the concurrency

56

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Comparison

• get and await are costly as they require copying and storing the current calling context
(stack), when the future has not been fulfilled

• chaining is cheaper, but eventually a get is needed if you need the value

57

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Data-race-free-by-Default
and  

Isolation-by-Default

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Passive Objects

Not all objects need their own (logical) thread of control

Synchronous communication, ”borrows” the thread of control of the caller

Sharing passive objects across active objects is unsafe, so must be isolated

Passive objects act as regular objects …

… without synchronisation overhead.

…possible to reason about how their state changes during an operation

59

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Gradual Sharing?

1. Isolation (so trivially race-free)

2. Sharing, but sharing in race-free manner

3. Sharing with races

• Who controls race-freedom?

Guaranteed by system (enforced at declaration-site)

Guaranteed by programmer (enforced at use-site | not at all)

60

Explain DRF here

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Basic Isolation

Fields can only be accessed by their active object.

But what about objects in fields?

Isolation by enforcing copying values across active objects

…by using powerful type system to enable transfer, cooperation, read-sharing, etc.

61

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Benefits & Costs of Isolation

Benefits

Per Active Object GC — without synchronisation!

Single Thread of Control abstraction inside each active object

Costs

Cloning is expensive

No sharing of mutable state

62

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Data-race Freedom

Data-race freedom is achieved because there is only one thread of control per active object

Fields and passive objects are only accessed by one thread, under the control of the active
object’s concurrency control

Thus no data races

Of course, DRF does not imply determinism

Order of messages in queues are non-deterministic

63

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

(Data)Parallel-by-Default

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

(Data)Parallel-by-default

Most languages are sequential by default, adding constructs for parallelism on top.

Encore explores parallel-by-default by integrating parallel computation as a first-class
entity.

Parallel computations are manipulated by parallel combinators.

Work in progress

65

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 66

Futures are a handle on
one parallel computation.

Generalise to support
many parallel computations.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Types and Combinators

Parallel combinators express parallelism within an active object (and beyond)

Typed, higher-order, and functional — inspired by Haskell, Orc, LINQ, and others

Recall — Fut t = a handle to just one parallel computation

Par t = handle to parallel computation producing multiple t-typed values

Analogy: Par t ≈ [Fut t]

Except that Par t is an abstract type (don’t want to rely on orderings, etc.)

67

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators:
Interaction with Active Objects I

By analogy, [o1.m1(), o2.m2(), o3.m3()] :: [Fut a] is a parallel value

In Encore, par(o1.m1(), o2.m2(), o3.m3()) :: Par a

each :: [a] -> Par a — convert list into parallel value

68

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators:
Interaction with Active Objects II

”Big variables” — multi-association between classes suggests parallelism

69

Associations between classes

I Multi-associations between classes suggest parallelism

Bank �!⇤ Customer �!⇤ Account

... ... balance:int

...

I Queries (à la OCL/Linq) are naturally parallel

bank.customers.accounts.balance

⌘
(each(bank.customers) >c>

each(c.accounts) >a>

a.balance) :: Par int

I Parallelism by default

preduce (+) 0 bank.customers.accounts.balance

15 / 20

b.getCustomers() :: Par Customer

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators: Example

70

class Main
 customers:Person*

 def main(): void
 let
 sum = this.customers . get_accounts . get_balance . (filter > 9900) . sum
 in
 print("Total: {}\n", sum)

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

each accounts balance filter sum

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators: Example

71

class Main
 customers:Person*

 def main(): void
 this.customers
 ~~> bindp get_accounts -- flatten accounts
 ~~> pmap get_balance -- get balance per account
 ~~> filter (\ x:int -> x > 9900) -- filter accounts
 ~~> sum -- reduce operation
 ~~> (\sum:int print("Total: {}\n”, sum))

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

each bindp pmap filter sum

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators: Example

72

class Main
 def main(): void
 let
 customers = get_customers() -- get customers id
 par = each(customers) -- List t -> Par t
 in
 {
 par = bindp(par, get_accounts); -- flatten accounts
 par = pmap(par, get_balance); -- get balance per account
 par = filter(par, \(x: int) -> { x > 9900 }); -- filter accounts
 print("Total: {}\n", sum(par)); -- reduce operation
 }

each bindp pmap filter sum

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

}
Parallel Combinators: Example

73

each bindp pmap filter sum
bindp pmap filter
bindp pmap filter
bindp pmap filter
bindp pmap filter

bindp pmap filter

…

?

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators (More Examples)

bindp :: Par a -> (a -> Par b) -> Par b
generalises monadic bind = map, then flatten

otherwise :: Par a -> (() -> Par a) -> Par a
if first parallel value is empty, return the value of the second argument

filter :: Par a -> (a -> Bool) -> Par a
keeps values matching predicate.

select :: Par a -> Fut (Maybe a)
returns the first finished result, if there is one.

selectAndKill :: Par a -> Maybe a

returns the first finished result, if there is one and kills all remaining

74

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators:
From Parallel Types to Regular Values

Synchronisation

sync :: Par t -> [t] — synchronises a parallel value, giving list of results

Reduction

sum :: Par Int -> Int — performs parallel sum of result of parallel integer-valued
computation

Many such functions exist.

75

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Combinators: Challenges

• Integration with OO fragment

Capabilities handle race conditions — ”if you have a reference, you can use it fully”

• Optimisation

Parallel semantics by default opens door to many optimisations and scheduling
strategies

• Program Methodology

Case studies shall reveal design patterns for using parallel combinators and active
objects in unison

76

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Upscale:
From Inherent Concurrency to Massive Parallelism

through Type-based Optimizations
Project Overview

Frank de Boer

Upscale Year 1 Project Review

Brussels, Feb. 26, 2015

http://www.upscale-project.eu

Frank de Boer (CWI) Project Overview Brussels, 26.02.15 0 / 0

SFM Summer School
Bertinoro, June, 2015

Unique-by-default

77

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Alias Freedom is a Strong and Useful Property

• Strong updates

Change type of object (e.g., typestate, verification)

• Optimisations

Explode the object into registers, no need to synch with main memory

• Reasoning

Sequential reasoning, pre/postconditions, no need for taking locks

• Ownership transfer

E.g. enable object transfer through pointer swizzle

78

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

• Mainstream OOPLs make sharing default

Benefit: keeps things simple for the programmer (cf. Rust)

Price: hard to establish (and maintain) actual uniqueness

• Analysis of object-oriented code shows that:

Most variables are never null

Most objects are not shared across threads

Most objects are not aliased on the heap

However — most mainstream programming languages do not capture that

79

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 80

Normal OOP

Encore

?x : Foo

x : Foo

Exclusive

Safe

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 81

Normal OOP

Encore

?x : Foo

x : Foo

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 82

Normal OOP

Encore

?x : Foo

x : Foo y : Foo

y : Foo

Separate Thread

Separate Thread
or Active Obj.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 83

Normal OOP

Encore

?x : Foo

x : Bar y : Bar

Separate Thread

Separate Thread
or Active Obj.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 84

Normal OOP

Encore

?x : Foo

x : Baz y : Frob

y : Foo

Separate Thread

z : Quux

Separate Thread
or Active Obj.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 85

Normal OOP

Encore

?x : Foo

x : Foo y : Foo

y : Foo

Separate Thread

Separate Thread
or Active Obj.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Strong pair

Two-faced Stream

class Pair = Cell ⨂ Cell { … }

class Pair = Cell ⨁ Cell { … }

linear trait Put {
 def yield(Object o) : void …
}

readonly trait Take {
 def read() : Object …
 def next() : Take …
}

class TwoFacedStream = Put ⨂ Take { … }

Weak pair

86

Linear

ReadOnly

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 87

producer : Put

consumer1 : Take

consumer2 : Take

consumerN : Take

class TwoFacedStream = Put ⨂ Take { … }

(SPMCQ)

linear trait Put {
 def yield(Object o) : void …
}

readonly trait Take {
 def read() : Object …
 def next() : Take …
}

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 88

producer : Put

consumer1 : Take

consumer2 : Take

consumerN : Take

class TwoFacedStream = Put ⨂ Take { … }

(SPSCQ)

linear trait Put {
 def yield(Object o) : void …
}

linear trait Take {
 def read() : Object …
 def next() : Take …
}

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 89

head tail

next

Not All Aliasing is Evil

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 90

head tail

next

Not All Aliasing is Evil

Possibility 1: next and tail reference different parts of the object

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 91

head tail

next

Not All Aliasing is Evil

Possibility 2: list is constructed from parts that may be freely aliased

locked capability

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 92

head : Hd tail : Tl

next : Hd

Not All Aliasing is Evil

Possibility 3: introduce
aliasing in a tractable way

Link = Hd ⋁ Tl
Programmer may only

dereference Hd or Tl, never both

if head != tail
then tail ⋁ tail.next = new Link(…)
else …

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Unique-as-Default

• Slightly more tricky programming

Intentional sharing incurs syntactic cost, becomes clearly visible

Need to work harder in some cases to maintain uniqueness

• Sometimes, type system is not strong enough to track uniqueness

Thread-locality gives many similar guarantees modulo transfer

Use capabilities that protect against data races

Will be revisited in the talk on ownership types soon

93

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Upscale:
From Inherent Concurrency to Massive Parallelism

through Type-based Optimizations
Project Overview

Frank de Boer

Upscale Year 1 Project Review

Brussels, Feb. 26, 2015

http://www.upscale-project.eu

Frank de Boer (CWI) Project Overview Brussels, 26.02.15 0 / 0

SFM Summer School
Bertinoro, June, 2015

Locality-by-default

94

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Encore Memory Management

95

LH

L1 L3 L4L2 L5 Programmer’s mind

Reality

LH

L1

L3L4

L2

L5

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Encore Memory Management

96

Projecting the list onto an array

LH

L1 L3 L4L2 L5

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

{ Problem: Bad Memory Efficiency

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

e1 { {
…

e2 e3

f1* f1 f1 f2* f2 f2 f3* f3 f3 f4* f4 f4……… …

cache line size

* = aligned with cache line start

98

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

{

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

e1 { {
…

e2 e3

used waste

cache line size

each e.f1 access
{ ~40% waste

def maybe_inc(e:element) : void
 if (e.f1) e.f2++

repeat i <- 1024
 maybe_inc(elements[i])

1024 accesses

Assume e not in cache, cost of e.f1 ≈ 100 cycles

Access e.f2 will be a hit, cost ≈ 1 cycle

= 102400 units = 41370 units of waste

Each turn in the loop will stall!

(modulo misalignment and prefetching)

99

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

cache line size

first e.f1 access
{

1024 accesses

First access to e.f1 a miss ≈ 100 cycles

2 subsequent items hits ≈ 2 cycles

As soon as we have more than

~0% waste

At most 1/3 elements will stall

40% fewer memory accesses — faster program!

f1* f1 f1 f2* f2 f2 f3* f3 f3 f4* f4 f4……… …

used (100%) used (100%) never loaded! never loaded!

first e.f2 access
{

def maybe_inc(e:element) : void
 if (e.f1) e.f2++

repeat i <- 1024
 maybe_inc(elements[i])

100

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Encore Memory Management

• Locality–by–default

Allocate objects building up large structures from the same memory pool

Locality requires different placement strategy for different data structures (e.g.,
hierarchical for trees, linear for linked lists)

• Structure splitting

Especially good for performing many similar operations on part of a big structure (e.g.,
column-wise accesses, vectorisation)

”Small updates” may cause more writes to disjoint locations = more invalidation, i.e.,
not a silver bullet

”Maximal splitting” seems to work well in the general case, but grouping certain
substructures may be an optimisation

101

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Ordering Data in Pools

• Linked/array-like structures are simple to organise in memory

• No ”best” organisation strategy — dependent on data structure definition and use

For example, consider a binary tree

102

Figure 16: An in order representation of a binary search tree, compared to a
hierarchical representation of the same tree.

The utilization would still be poor, only five out of 32 of the indexes in each
subtree would be used in a lookup, since a balanced binary search tree with 32
nodes has a depth of five. But when using other ways of storing trees it is not
unlikely that every lookup is a cache miss, and in that context it is a substantial
improvement. Even if the improvement is dependent upon first performing a
garbage collection.

36

Figure 16: An in order representation of a binary search tree, compared to a
hierarchical representation of the same tree.

The utilization would still be poor, only five out of 32 of the indexes in each
subtree would be used in a lookup, since a balanced binary search tree with 32
nodes has a depth of five. But when using other ways of storing trees it is not
unlikely that every lookup is a cache miss, and in that context it is a substantial
improvement. Even if the improvement is dependent upon first performing a
garbage collection.

36

Figure 16: An in order representation of a binary search tree, compared to a
hierarchical representation of the same tree.

The utilization would still be poor, only five out of 32 of the indexes in each
subtree would be used in a lookup, since a balanced binary search tree with 32
nodes has a depth of five. But when using other ways of storing trees it is not
unlikely that every lookup is a cache miss, and in that context it is a substantial
improvement. Even if the improvement is dependent upon first performing a
garbage collection.

36

Which one is best?

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Data Representation (of a simple pair)

fst

snd

fst

snd

snd

fst

Embed both

Embed one

Embed none

Externalise: Make it possible to
change between these
possibilities at use-site, without
touching the ”business logic” of
the pair

103

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Linked Pools

• There is a deception in the linked list example: commonly, the list does not embed its
elements, rather they are stored in the list by pointer only

If element objects are spread across more than one pool, little is accomplished

If element objects are mixed with link objects, less locality

Optimal case: element objects in a single pool (modulo splitting) and order in element
pool is linked to the order in the link pool

104

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Linked Pool Example

105

L1 L3 L4L2 L5

L1 L3 L4L2 L5

Pool 1

Pool 2

Pool 3

Links

Elements

Links

Ordering dependency

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

The Case for Object-Relative Addressing

106

A

B

 copy

Copy:
All object-relative addresses on A’s heap are valid when copied to B’s heap.
Hence, copying N links can be reduced to a ”memcpy” of start–end addresses.

v1 +4

v2 +4

v3 +8

v4 +8

v5 −4

v6 null

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

The Case for Object-Relative Addressing

107

A

B

 copy

Example win:
Can fit 32 pointers in a single cache line as opposed to 8 — can store many small subtrees
in a single cache line in the tree hierarchy example

v1 +4

v2 +4

v3 +8

v4 +8

v5 −4

v6 null

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Exercises

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Design Exercises

“Implement” the system described in the handout using ideas from Encore.

Which objects should be active? Which passive?

How is data distributed among the active objects?

What is the amount of data passed between active objects?

What are the dependencies?

What is the degree of parallelism? Locality?

110

Crowd Simulation

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Parallel Object-Oriented Programming

• The Encore programming language

Make the design defaults give good properties ”for free” (focus on parallelism)

• Starting with active objects and futures as the vanilla model

• ”Secret sauces”

Parallel combinators, fancy capability-based types, modular layout specification, …

• A lot of what I have shown you is in some incomplete state of implementation

• We are looking for collaborators at any level

• We are also looking for users that can tell us what their pains are

112

Thanks for listening!

