Parallel Objects for Multicores
A Glimpse at the Parallel Language Encore

Dave Clarke & Tobias Wrigstad
Uppsala University

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 1

Overview

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Tutorial Overview

Background and Motivation

Language Design Inversion
Encore Language Design (5 Inversions)

(Exercise Session)

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 3

Motivation

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Background

In the early 2000’s hardware hit a wall

- “Too much power used too inefficiently”

- CPU temperature approaching sun’s surface

- Adding 2x transistors yields 2% speedup

Solution: multi- and manycore machines

- Use 2x transistors to build 2x cores

- 200% speedup — in theory

Essentially pushes the problem over to software

- “No one’ knows how to program these machines”

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Object-Oriented Parallel Programming

Combining object-orientation and parallelism is hard

- Aliasing make reasoning about efficient parallelism difficult

- Abstract dynamic structures stress memory bottlenecks

- Compositionality of concurrency control...

One root cause: classical languages evolved in a predominantly sequential setting

- Support for concurrency & parallelism as an afterthought
- Thread libraries are easily integrated, but hard to use
- Essentially pushes the problem over to application programmers

- “No one’ knows how to program with lots of threads”

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 6

Aliasing Problem: Shared Mutable State

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 7

Aliasing Problem: Shared Mutable State

even worse with concurrency/parallelism

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 8

Locks

i write

read

Must acquire a lock before accessing a certain resource

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 9

Locking Too Little

i write

read

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 10

Locking Too Much

i read

read

force interleaved access even for commuting operations

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 11

Compositionality of Locks

acquire B, A;

2

acquire A, B;

2

deadlock

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 12

Locks are Good, Locks are Bad

Threads and locks are easy to add to a programming language with minimal changes

Place burden on programmer instead of programming language designer

Code that requires synchronisation is indistinguishable from code that does not

Locks perform quite well quite often
Uncontended locks are cheap

Highly contended locks are expensive

Coarse-grained locking is simpler but reduces parallelism

Fine-grained locking allows parallelism, but is harder (e.g. deadlocks)

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 13

Rethink object-oriented programming languages

- Remove sequential bias in classical languages
- Keep a sufficiently object-oriented programming model

- Save industry investments in OOSD

End goal: make massively parallel programming in
OO0-languages possible & affordable |mper|a| College
London

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 14

Language Design
Inversion

Inversion

Most modern languages are designed first for sequential programming, with parallel
programming constructs tacked on — Erlang is one exception.

Mutability, possibly data dependencies, shared state, poor locality etc all limit possible
parallelism and scalability.

Inversion = adopt defaults that favours parallelism and scalability.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 16

Inversion in design of Encore

Concurrent-by-default Linear-by-default
(Data)Parallel-by-default Immutable-by-default
Data-race-free-by-default Local-by-default
Isolated-by-default Multi-object-by-default

Asynchronous-by-default

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 17

... by-default

Defaults can be overridden
— additional code overhead.

Some defaults are conflicting
— need to be addressed.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 18

Concurrent-by-Detault

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Concurrency-by-Default

Java objects were designed for sequential access.

Threads trample over objects.

Locks/monitors added to protect objects.

Erlang has concurrency by default (actors), but it is not object-oriented.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 20

Actors/Active Objects

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Active Object Characteristics

Mailbox

Single thread of control
Isolation

Asynchronous communication

— Saturation of asynchronous operations on different object enables efficient use of
parallel machines

Method suites defined in classes + usually OO

Return values handled using futures

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 22

Actor Characteristics

not allowed . .
Active Obj. A Active Obj. B

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 23

Actor Characteristics

waiting running Aw finished
run ml status value

action |zrun mode
Active Obj. A A Active Obj. B

/a.mz()
Y 1 ®

\4
status value

action | run mode

VAR SN

run) byrecv. byanyone

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 24

A

)
asynchronous

synchronous

> single
thread of

control

Active Object-based Parallelism

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

25

BIG JOB
TO DO

57

< >

synchronous

single
thread of
control

asynchronous

Active Object-based Parallelism

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

26

BIG JOB
TO DO

A

Fork multiple actors

¢ 4.9.

)
s

903

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 27

Thread Ring Example (A Litte Bit Boring)

class Main class Worker
def main(): void id : int
let next : Worker
index =1
first = new Worker(index) def init(id : int): void
next = null : Worker this.id = id
nhops = 50 000 000
ring_size = 503 def setNext(next: Worker): void
current = first this.next = next
in {
while (index < ring size) { def run(n : int): void
index = index + 1; if (n > 0)
next = new Worker(index); then this.next!run(n-1)
current ! setNext(next); else print(this.id)
current = next;
¥

current ! setNext(first):
first ! run(nhops);

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 28

Threadrings Benchmark [pl shootout bench]

Tested on a 4 core laptop Note: higher is better

100 1

—
O

Speedup Normalised on Ruby

Go Clojure Racket C OCaml Java C++ Ruby Encore

OO Languages

Tobias Wrigstad (UU) Brussels 26.02.15

29

Sieve of Eratosthenes

2 3 4 5 6 / 8 9 10
12 13 14 15 10 17 18 19 20

22 23 24 25 20 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 50 57 58 59 60
61 62 63 04 69 60 6/ 63 69 70
71 /2 /3 74 I6S /0 [/ /8 /9 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 90 97 93 99 100

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 30

Sieve of Eratosthenes

2 3 4 5 6 / 8 9 10
11 12 13 14 15 10 17 18 19 20

21 22 23 24 25 20 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 50 57 58 59 60
61 62 63 04 69 60 6/ 63 69 70
/1 /2 /3 74 I6S /0 [/ /8 /9 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 90 97 93 99 100

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 31

Sieve of Eratosthenes

123 56789

32

Bertinoro/SFM

Dave Clarke/Tobias Wrigstad (UU)

Sieve of Eratosthenes

- - - T T T’ *T T T
- N MO T 0O O N~ 0 O

33

Bertinoro/SFM

Dave Clarke/Tobias Wrigstad (UU)

Sieve of Eratosthenes

—L
O

N
(@)

oo N
o O

~N
©

K

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 34

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 35

Sieve of Eratosthenes

-- 2 ----- . -
----- L ---

-- 53 ----- so_[1608
----- g ---

-- s ----- oo [S608

+ SRS SN s [SEN o SRS 1o

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 36

Sieve of Eratosthenes
KRN KN BE | B0
B 0 EA BN
-- 23 ----- o[G08
----- v [v
s | EA EN

-- 53 ----- so_[1608
----- g ---

-- s ----- oo [S608

+ SRS SN s [SEN o SRS 1o

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 37

Sieve of Eratosthenes

o R R RN

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 38

Sieve of Eratosthenes

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 39

Parallel Sieve of Eratosthenes

2 3 4 5 0 / 38 9 10
W1

Source

11 12 13 14 15 16 17 18 19 20
2 m . 5 %7 B2 W

W3

W4

o @ e e %5 e o e @ 0

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 40

Prime Sieve Benchmark
~ 200 LOC Encore + 130 LOC from libraries

m : Main
Active Object
f1: Filter ~----I:List
. b:Bitset
Sending buffer
f2: Filter ---1:List f3: Filter ---|:List
b : Bitset b Bitset

\

Primes for each filter

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 41

Parallel Prime Sieve in a Nutshell
~ 200 LOC Encore + 130 LOC from libraries

Active Object

v

679- 5341-
/ \ / Found primes send to children
1345- 3343- 6007- 8005-
/ \ / \ (rest omitted)
2011- 2677- 4009- 4675-

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 42

Parallel Prime Sieve in a Nutshell

Scans vector of numbers linearly to find primes

Forwards each prime P to its immediate children

Cancels all multiples of P in their range

Forwards each prime P to its immediate children

(omitted rest)

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 43

Parallel Prime Sieve in a Nutshell

50847534!

Aggregate result with children, display

D=A+B+C

i —— Aggregate result with children, send to parent
e.q., A primes found”

(omitted rest)

When done, send result to parent

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

44

Strong Scala blllty (Normalised on 1, calculating 1.6B primes)

JO0 X ool
0.3 seconds

30x

10 x

1 3 7 15 31 64 127

actors mapped onto 1-64 cores

45

Back to the Futures

A future is a placeholder for a value

Asynchronous methods return futures ...

... when the method is complete, its result is assigned to the future — the future is fulfilled.

waiting ~ running suspended finished

N\

status value

action | run mode
A

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 46

Accessing a future: get

get :: Fut t -> t

returns the value associated with a future, if available, otherwise blocks current active
object untilitis

get immediately after a call ~ synchronous call

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 47

x ! foo()

synchronous

single
thread of
control

write return
value

read from
future

903

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 48

synchronous

Sequential chain

p = b.loadPageSource();

i = p.loadImages();
display.render(p, 1i);

x ! foo()

<]

903

Dave Clarke/Tobias Wrigstad (UU)

single
thread of
control

get f

hopetully, fis fulfilled
before this happens

Bertinoro/SFM

49

x ! foo()

<]

synchronous

single
thread of
control

Sequential chain

p = get b.loadPageSource();
i = get p.loadImages();
display.render(p, 1i);

get f

hopetully, fis fulfilled
before this happens

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 50

x ! foo()

<]

synchronous

single
thread of
control

"Fork—join”

i = p.loadImages();
a = b.loadAds();
display.render(get i, get a);

get f

hopetully, fis fulfilled
before this happens

903

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 51

Operations on Futures

await :: Fut t > t
— like get, but relinquishes control of the active object until a value in future is available,
then returns that value

poll :: Fut t -> Bool
- checks whether the future has been fulfilled

+ chaining (next slide)

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 52

chain :: Fut t -> (t -> t') -> Fut t’
— apply a function asynchronously to the result of
future, returning a future for the result

x ! foo()

A

synchronous

single
thread of
control

Sequential chain

b.loadPageSource() ~~>
A p —> p.searchAdwWords() ~~>

A w -> getAds(w); '
g (w) creates a "workflow” that is

\ disconnected from A — avoids

blocking A

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

53

chain :: Fut t -> (t -> t') -> Fut t’
— apply a function asynchronously to the result of
future, returning a future for the result

x ! foo()
A
> single
thread of
control

(get £)

synchronous

Sequential chain

b.loadPageSource() ~~>
A p —> p.searchAdwWords() ~~>

A w -> getAds(w); '
g (w) creates a "workflow” that is

\ disconnected from A — avoids

blocking A

903

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

54

A e Two “run modes” depending on how
environment is captured

x !foo() Detached mode — closure is “self-

contained” and can be run by any
: ; | thread

Attached mode — closure captures
(mutable) local state and must be run
by its creator

creates a "workflow” that is

\ disconnected from A — avoids

blocking A

synchronous

Sequential chain

b.loadPageSource() ~~>
A p —> p.searchAdwWords() ~~>
A w -> getAds(w);

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 55

Cooperative Multi-Tasking

e await (Fut t -> t) — like get butit relinquishes control of the active object to process
another message (if there is one), if the future has not been fulfilled

e suspend relinquishes control of active object to process another message
e Both require active object to reestablish its class invariants before relinquishing control

Essentially the aliasing problem, but without the concurrency

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 56

Comparison

e get and await are costly as they require copying and storing the current calling context
(stack), when the future has not been fulfilled

e chainingis cheaper, but eventually a get is needed if you need the value

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 57

Data-race-free-by-Default
and
Isolation-by-Default

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Passive Objects

Not all objects need their own (logical) thread of control

Synchronous communication, ”borrows” the thread of control of the caller

Sharing passive objects across active objects is unsafe, so must be isolated
Passive objects act as regular objects ...

... without synchronisation overhead.

...possible to reason about how their state changes during an operation

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 59

Gradual Sharing?

Explain DRF here

1. Isolation (so trivially race-free)

2. Sharing, but sharing in race-free manner

3. Sharing with races

e Who controls race-freedom?

Guaranteed by system (enforced at declaration-site)

Guaranteed by programmer (enforced at use-site | not at all)

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 60

Basic Isolation

Fields can only be accessed by their active object.

But what about objects in fields?
Isolation by enforcing copying values across active objects

...by using powerful type system to enable transfer, cooperation, read-sharing, etc.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 61

Benefits & Costs of Isolation

Benefits

Per Active Object GC — without synchronisation!

Single Thread of Control abstraction inside each active object

Costs
Cloning is expensive

No sharing of mutable state

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 62

Data-race Freedom

Data-race freedom is achieved because there is only one thread of control per active object

Fields and passive objects are only accessed by one thread, under the control of the active
object’s concurrency control

Thus no data races
Of course, DRF does not imply determinism

Order of messages in queues are non-deterministic

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 63

(Data)Parallel-by-Default

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

(Data)Parallel-by-default

Most languages are sequential by default, adding constructs for parallelism on top.

Encore explores parallel-by-default by integrating parallel computation as a first-class
entity.

Parallel computations are manipulated by parallel combinators.

Work in progress

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 65

Futures are a handle on
one parallel computation.

Generalise to support
many parallel computations.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 66

Parallel Types and Combinators

Parallel combinators express parallelism within an active object (and beyond)

Typed, higher-order, and functional — inspired by Haskell, Orc, LINQ, and others

Recall — Fut t = a handle to just one parallel computation

Par t = handle to parallel computation producing multiple t-typed values

Analogy: Par t = [Fut t]

Except that Par t is an abstract type (don’t want to rely on orderings, etc.)

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

67

Parallel Combinators:
Interaction with Active Objects |

By analogy, [01.m1(), 02.m2(), 03.m3()] :: [Fut a]isa parallel value

In Encore, par(ol.m1(), o02.m2(), 03.m3()) :: Par a

each :: [a] -> Par a— convert listinto parallel value

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 68

Parallel Combinators:
Interaction with Active Objects Il

”Big variables” — multi-association between classes suggests parallelism

Bank

H*

b.getCustomers() ::

Dave Clarke/Tobias Wrigstad (UU)

Customer

H*

Account

balance:int

Par Customer

Bertinoro/SFM

69

Parallel Combinators: Example

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

class Main
customers:Person*

def main(): void
let
sum = this.customers . get_accounts . get_balance . (filter > 9900) . sum
in
print("Total: {}\n", sum)

Tacconts W olnce B cice: B on

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 70

Parallel Combinators: Example

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

class Main
customers:Person*

def main(): void
this.customers

~~> bindp get_accounts -- flatten accounts

~~> pmap get_balance -- get balance per account
~~> filter (\ x:int -> x > 9900) -- filter accounts

~~> sum -- reduce operation

~~> (\sum:int print("Total: {}\n”, sum))

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 71

Parallel Combinators: Example

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

class Main
def main(): void

let
customers = get_customers() -~ get customers id
par = each(customers) - List t -> Par t

in

{
par = bindp(par, get_accounts); -- flatten accounts
par = pmap(par, get_balance); -- get balance per account
par = filter(par, \(x: int) -> { x > 9900 }); -- filter accounts
print("Total: {}\n", sum(par)); -- reduce operation

|

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 72

Parallel Combinators: Example

”Sum up the total value of all accounts in the bank with more than 9900 Euro”

filter

filter

filter

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 73

Parallel Combinators (More Examples)

bindp :: Par a -> (a -> Par b) -> Par b

generalises monadic bind = map, then flatten

otherwise :: Par a -> (() -> Par a) -> Par a

if first parallel value is empty, return the value of the second argument

filter :: Par a -> (a -> Bool) -> Par a

keeps values matching predicate.

select :: Par a -> Fut (Maybe a)

returns the first finished result, if there is one.

selectAndKill :: Par a -> Maybe a

sazaeturns the first finished result, if there is one and Kills all remaining

é‘i
1% 275
A)

()
~HVERITAS H
5\

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 74

Parallel Combinators:
From Parallel Types to Regular Values

Synchronisation

sync :: Par t -> [t] — synchronises a parallel value, giving list of results
Reduction
sum :: Par Int -> Int — performs parallel sum of result of parallel integer-valued

computation

Many such functions exist.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 75

Parallel Combinators: Challenges

* Integration with OO fragment

Capabilities handle race conditions — ”if you have a reference, you can use it fully”

e Optimisation

Parallel semantics by default opens door to many optimisations and scheduling
strategies

e Program Methodology

Case studies shall reveal design patterns for using parallel combinators and active
objects in unison

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 76

Unique-by-default

SFM Summer School
Bertinoro, June, 2015

SEVENTH FR;\M EWORK
\ PROGRAMME

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 77

Alias Freedom is a Strong and Useful Property

e Strong updates

Change type of object (e.g., typestate, verification)
e Optimisations

Explode the object into registers, no need to synch with main memory
® Reasoning

Sequential reasoning, pre/postconditions, no need for taking locks
e Ownership transfer

E.g. enable object transfer through pointer swizzle

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 78

e Mainstream OOPLs make sharing default

Benefit: keeps things simple for the programmer (cf. Rust)

Price: hard to establish (and maintain) actual uniqueness

e Analysis of object-oriented code shows that:
Most variables are never null
Most objects are not shared across threads
Most objects are not aliased on the heap

However — most mainstream programming languages do not capture that

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 79

Normal OOP

X : Foo

Encore

X : Foo

Exclusive
S @& S,

s\

LV ERITAS |

S

&3

Safe

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 80

Normal OOP

X : Foo

Encore

X : Foo

%3288,

’ N
AU
eSO\

L ERITAS O

S

&3

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 81

Normal OOP Separate Thread
e
X : Foo Foo
Separate Thread
Encore or Active Obj.
/ : Foo

X : Foo

Dave Clarke/Tobias Wrigstad (UU)

Bertinoro/SFM

82

Normal OOP Separate Thread

X : Foo

Separate Thread
or Active Ob.

X : Bar

Encore

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 83

Normal OOP Separate Thread

/ T~
x : Foo y : FoO
Separate Thread
Encore or Active Obj.

y : Frob

Z

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 84

Normal OOP Separate Thread

/ 4 \
X : Foo y : Foo

Separate Thread
or Active Ob.

Encore

y : Foo
X : Foo

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

85

Weak pair » class Pair = Cell ® Cell { ..}

Strong pair » class Pair = Cell @ Cell { ..}

Two-faced Stream linear trait Put {
def yield(Object o) : void ..
]

readonly trait Take {

def read() : Object .

def next() : Take ..
]

class TwoFacedStream = Put ® Take { .. }

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 86

consumerl : Take consumerN : Take

|

Take

consumer?2 :

linear trait Put {

}

readonly trait Take {
def read() : Object .
def next() : Take ..

producer : Put }

Dave Clarke/Tobias Wrigstad (UU)

def yield(Object o) : void ..

(SPMCQ)

class TwoFacedStream = Put ® Take { .. }

Bertinoro/SFM

87

consumerl : Take consumerN : Take

|

consumer? : Take

linear trait Put {

}

linear trait Take {
def read() : Object .
def next() : Take ..

producer : Put }

Dave Clarke/Tobias Wrigstad (UU)

def yield(Object o) : void ..

(SPSCQ)

class TwoFacedStream = Put ® Take { .. }

Bertinoro/SFM

88

Not All Aliasing is Evil

next

head tail

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 89

Not All Aliasing is Evil

next

head tail

Possibility 1: next and tail reference different parts of the object

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 90

Not All Aliasing is Evil

locked capability

next

head tail

Possibility 2: list is constructed from parts that may be freely aliased

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 91

Not All Aliasing is Evil

Programmer may only
Link = Hd Vv Tl dereference Hd or T1, never both

next : Hd
/\

l
head : Hd tail : T1

Possibility 3: introduce

aliasing in a tractable way if head I tail

then tail VvV tail.next = new Link(..)
else ..

T — e —

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 92

Unique-as-Default

e Slightly more tricky programming

Intentional sharing incurs syntactic cost, becomes clearly visible

Need to work harder in some cases to maintain uniqueness

e Sometimes, type system is not strong enough to track uniqueness
Thread-locality gives many similar guarantees modulo transfer
Use capabilities that protect against data races

Will be revisited in the talk on ownership types soon

Dave Clarke/Tobias Wrigstad (UU)

Bertinoro/SFM

93

Locality-by-default

SFM Summer School
Bertinoro, June, 2015

SEVENTH FR;\M EWORK
\ PROGRAMME

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 94

Encore Memory Management

Wﬂ_.g Programmer’s mind

Reality

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 95

Encore Memory Management

OceQseQeeQoo

Projecting the list onto an array

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 96

Problem: Bad Memory Efficiency

el e2 e3

*= aligned with cache line start

cache line size

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 98

el

e2

def maybe_inc(e:element) : void
if (e.f1) e.f2++

repeat 1 <- 1024
maybe_inc(elements[i])

each e.fl access

cache line size

Dave Clarke/Tobias Wrigstad (UU)

III!%%HIIIIM%%HI*__—§§\\\\\

~40% waste

1024 accesses

Assume e not in cache, cost of e.f1 = 100 cycles
Access e.f2 will be a hit, cost = 1 cycle

= 102400 units = 41370 units of waste

» Each turn in the loop will stall!

(modulo misalignment and prefetching)

Bertinoro/SFM

99

def maybe_inc(e:element) : void

if (e.f1) e.f2++

repeat 1 <- 1024
maybe_inc(elements|

first e.f1 access

€ 6‘.
V

)
s

903

cache line size

Dave Clarke/Tobias Wrigstad (UU)

first e.f2 access

»

1024 accesses

First access to e.f1 a miss = 100 cycles
2 subsequent items hits = 2 cycles

As soon as we have more than

~0% waste

At most 1/3 elements will stall

40% fewer memory accesses — faster program!

Bertinoro/SFM

100

Encore Memory Management

e [ocality-by-default

Allocate objects building up large structures from the same memory pool

Locality requires different placement strategy for different data structures (e.g.,
hierarchical for trees, linear for linked lists)

e Structure splitting

Especially good for performing many similar operations on part of a big structure (e.g.,
column-wise accesses, vectorisation)

”Small updates” may cause more writes to disjoint locations = more invalidation, i.e.,
not a silver bullet

”Maximal splitting” seems to work well in the general case, but grouping certain
substructures may be an optimisation

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 101

Ordering Data in Pools

e Linked/array-like structures are simple to organise in memory

* No "best” organisation strategy — dependent on data structure definition and use

For example, consider a binary tree

e —)

Which one is best?

(Hierarchical copy\ 4 In order copy)

r41r51 9\ r11r2\ 3

LIJLlJIJ xl;;l)[l]
' N[NN '4\f5\

\J_/\J_/

S

e e

L

(10](11](12] [10]

\LIJLIJLI y g _ny

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 102

Data Representation (of a simple pair)

Embed none

Embed both

Embed one Externalise: Make it possible to

change between these
possibilities at use-site, without

touching the “business logic” of

the pair

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 103

Linked Pools

e Thereis a deception in the linked list example: commonly, the list does not embed its
elements, rather they are stored in the list by pointer only

If element objects are spread across more than one pool, little is accomplished
If element objects are mixed with link objects, less locality

Optimal case: element objects in a single pool (modulo splitting) and order in element
poolis linked to the order in the link pool

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 104

Linked Pool Example

Pool 1 :
G > Links
Ordering dependency a
Pool 2
Elements
Pool 3 _
Links

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 105

The Case for Object-Relative Addressing

vl

V2

copy
V3

VL4

vh

V6

Copy:
All object-relative addresses on A’s heap are valid when copied to B’s heap.
Hence, copying N links can be reduced to a ’memcpy” of start-end addresses.

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 106

The Case for Object-Relative Addressing

vl

V2

copy
V3

VL4

vh

V6

Example win:
Can fit 32 pointers in a single cache line as opposed to 8 — can store many small subtrees
in a single cache line in the tree hierarchy example

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 107

Exerclises

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM

Design Exercises

“Implement” the system described in the handout using ideas from Encore.

Which objects should be active? Which passive?

How is data distributed among the active objects?

What is the amount of data passed between active objects?
What are the dependencies?

What is the degree of parallelism? Locality?

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 110

Crowd Simulation

-

Parallel Object-Oriented Programming s

e The Encore programming language

Make the design defaults give good properties "for free” (focus on parallelism)
e Starting with active objects and futures as the vanilla model
® “Secret sauces”
Parallel combinators, fancy capability-based types, modular layout specification, ...
e Alot of what | have shown you is in some incomplete state of implementation
e We are looking for collaborators at any level

e We are also looking for users that can tell us what their pains are

Thanks for listening!

Dave Clarke/Tobias Wrigstad (UU) Bertinoro/SFM 112

