Applied Unified Ownership

or

DRF transfer

parallel programming

Unified Ownership

memory management

pool

dependencies
(previous talk)

placement

in pools
(previous talk)

GC

(coming up)

many forms many forms
of ownership of uniqueness

capabilities

Applied Ownership

substructural types behavioural types

regions effects read-only coordination lock-freedom

Ownership Variants

dominators modifiers threads ombudsmen

\/ / ~ — /

Uniqueness Variants “Mix”

classical external local / refined ownership fractional permissions

\

or

/ \/

226 S,
;wwg\

‘ a4
v T])ew,
S
& L .4\

&3

—> > >
normal read-only disallowed

regions

\/

active object isolation

Aq A,

901

effect systems

Static Control of Side-Effects

/

Dynamic Control of Side-Effects

locks or transactions

LN \
5 Y g q
. ‘* \ '
1
q

—>
normal

read-only

>
disallowed access

readers-writer lock

LS |)
L3 |\ q
"\ N= S
’
or p ! 8
] Y 4
q
)\ 4 y
"""" >

read access

Capabilities Replaces References

e Acapability is a token governing access to a particular resource

>1 capability governs access to single resource = aliasing / sharing

e Capabilities control their own flow through a system
Copy semantics : aliasing of resources

Transfer semantics : linear access to resources

e Proliferation of ways in which resources are accessed

Focus on interaction with objects shared across multiple threads of control

Hierarchy of Capabilities for (Non)Sharing

Capability

Exclusive Subordinate

Linear ThreadLocal

Pessimistic Oblivious

NG

m Locked Actor

Read-Only Immutable

Hierarchy of Capabilities for (Non)Sharing

Capability

Exclusive

Shared between

Not shared threads (maybe)

between threads

Coordinates concurrent
accessed by design

Pessimistic Oblivious

Detect conflict Interleave Will not
and roll back accesses change

Hierarchy of Capabilities for (Non)Sharing

Subordinate
Rep and Owner in
Ownership Types
ThreadLocal /

Unique Loci @Thread References

D oD ex

Clojure Ref Clojure Atom Fully sync’d Active Const Value types
Java classes classes

& pointers

Exclusive Capabilities

x =vy.f; // assign from
x.bar(); // dereference
e Denote objects exclusive to a thread y.f = this; // self type

N —

o Linear

Only one active/usable reference to an object at any point in the program

Strong properties (see previous talk)

) Thread-Local

All references to an object are only reachable from one thread

Weaker, but simpler to program with

Shared Capabilities (1/2)

e Denote objects (that can be) shared across multiple threads

; // assign from
; // dereference
his; // self type

Atomic wrap operations in transactions a

X =
e Optimistic — detect conflicts and roll back ; ?a

o= enforce a protocol that gives rise to exclusivity

e Pessimistic — enforce interleaved accesses

THCEER require (some kind of) lock to be acquired before access

Actor only allow asynchronous communication (object processes messages)

Shared Capabilities (2/2)

e Denote objects (that can be) shared across multiple threads

e Oblivious — object cannot change, so sharing is safe (wrt DRF)

LRI a reference that cannot be used to observe/trigger mutation

a reference to an object that cannot change

1 // assign from
(); // dereference
this; // self type

T — —

< X X
N R <

.ba
f

Misc. Capabilities

e Denote objects (that can be) shared across multiple threads

a reference to an object governed by another capability

Inside exclusive or shared — DRF

Inside unsafe — ?

cD

Alt. 1: move coordination to use-site

1 // assign from
(); // dereference
this; // self type

< X X
N R <

.ba
f

F

Alt. 2: escape hatch to allow data races

POlymorphiC Concu rrency Control [workin progress

. require DRF, don’t care how it is achieved

def summarise(es:[safe T]) : int
let
sum = 0
in {
repeat i <- |es|
sum += es|[i].operation();
sum;

}

Some interesting cases involving Pessimistic Oblivious

actors due to changing to async
computations. m @ Locked Read-Only || Immutable

Capability = Trait + Mode

trait Add {
require var first : Link;
require var last : Link;
def prepend(o:T) : void this.first = new Link(o, this.first);
def append(o:T) : void this.last = new Link(o, null);

Linear Atomic Locked Read-Only Subordinate

ThreadLocal Lock-Free Actor Immutable gl Unsafe

class List — (M Add + ...
var first : Link;
var last : Link;

}

Capability = Trait + Mode

trait Add {
require var first : Link;
require var last : Link;
def prepend(o:T) : void this.first = new Link(o, this.first);
def append(o:T) : void this.last = new Link(o, null);

}

Read-Only

Immutable

class List =dd + ...
var first : Link;
var last : Link;

}

Traits Assume Race-Freedom

e Every trait may safely assume race-freedom

How it is achieved is controlled by its mode
e Extending trait reuse to concurrent & parallel programming
Creating classes from the same set of traits with different modes

Cf. ArrayList (unsafe/linear/local) vs. Vector (safe, possibly read-locked) in Java APIs

e Capability composition using ® and ® follow simple rules to exclude races

Classes are Built from Traits

trait Add { trait Remove {
require var first : Link; require var first : Link;
]]
OK!

4

class List = Add ® Remove {

var first : Link;
var last : Link;

}

Classes are Built from Traits

trait Add { trait Remove {
require var first : Link; require var first : Link;
]]

Rejected at compile-time

4

class List = Add ® Remove {

var first : Link;
var last : Link;

}

Classes are Built from Traits

trait Left { trait Right {
require var left : Tree; Tequire var right : Tree;
} }
OK!
class Tree = Left ® Right ® ... {
var left : Tree;

var right : Tree;

T-COMPOSITION

Capability Composition and State Sharing

may-alias(F'd;, Fdy)) =— © = @

=Ky =Ko

k. k(K © Ko)

V Fd; € fields (Kl),FdQE fields (KQ) Fdy © Fds

FKi ® Ko

Fdy ® Fds

C-DETERMINISTIC
stable(t)

valf:t ®@valf :t

C-VAL-VAL
K1 ® Ko

valf : Ky ©® valf : Ko

C-DISJOINT

h#J

mod fi :

t1 © moda fa : to

(sharing fields across traits)

C-NONDETERMINISTIC
safe(t) — stable(t)

valf:t®@valf :t

C-VAR-VAL
1 <: 1o

prevents indirect sharing

¢ s

varf : t; D valf : t

C-DISJUNCTION

modi f :t @ modsy f : t

Constructing A Type: Tree Example

Individual traits (in this example linear), quite possibly "too many”

class Tree = (Left ® Right ® Key ® Value) @ Lookup { .. }

e Possible to operate on left and right subtrees, key and value in parallel
Eg.,, t : Tree allows a : Left + b : Right = t;
e Mediate between mutable (unaliased) and read-only (aliased) views (cf fractional perms.)

E.g., t : Tree allows a: J(Left ® Right ® Key ® Value) + b : Lookup = t;

Jail

Co-Encapsulation

class Tree<K> = (Left<K>® .. ® Value<K>) @ Lookup<K> { .. }

e Exposing nested capabilities in type, allows top-level operations on them
E.g. t : Tree<Person> where Person = Name ® Age allows

1 : Lookup<Person> ® tmp : §(..) = t;
nl : Lookup<Name> & al : Lookup<Age> = 1;
t=nl ® al @ tmp;

e Two forms of unpacking, depending on mode of co-encapsulating capability
readonly Lookup<K> — onlyexternal ops allowed by “reverse borrowing”

class Tree<Person> =
.. linear Lookup<Name> ® linear Lookup<Age> .. —internalops allowed

Unpacking and Packing

(what | omitted on the previous slide)

class List<T> = Take<T> @ Put<T> ® Look<T> {
Link<T> first;

}

List<Pair> a;

Must keep track of

—— §[Take<Pair> @ Put<Pair>| j, Look<Pair> b = consume a;
forgotten parts of type!

j.foo(); // rejected @ CT!
Look<Pair> ¢ = b; // rejected @ CT

Look<Cell> d, e = consume b;

finish {
async { operate on d }
async { operate on e }

}

b =d+ e;
Use *jail” to re-pack type ——»a = b + j;

Structured (Scoped) Equivalent

(logically desugars to the code on the previous slide)

class List<T> = Take<T> @ Put<T> ® Look<T> {
Link<T> first;

}

List<Pair> a;

temporary unpacking —— finish(d, e : Look<Cell> = a) {
async { operate on d }
async { operate on e }

/}

implicit repacking

Unpacking Composite Capabilities

Pair<A ® B>

unpack

\4

Fst<A ® B>
)
Snd<A ® B>

" must not be linear

/

unpack ., .,
»Palr ' <A> ® Pair'
unpack
v
Fst'<A> ® Fst'
unpack

> &
Snd’'<A> ® Snd’'

|Arrays | and (Tuples)

“array of
structures”
unpack & write-protect
[A ® B] pac e-protec >(A) & (B)
split split
[A 2 B] unpack & write-protect (A) z (B)
[A ® B] (A) ® (B)

“structures
ofarrays”

Capabilities are Dominators

Subordinate objects are
dominated by the exclusive
"bridge”

Encapsulation of State under Bridge

not part of not part of
aggregate aggregate

effectively part of effectively part of
the aggregate the aggregate

Aliasing of Bridge Objects

DR(F) under Bridge

only one thread has access interaction serialised

Q

racy

.‘
...
.’ N
.0

(or require sync at use-site)

k.

conflicts rolled-back no mutable state

Identifiable (Non-)Determinism

Deterministic

Ownership & Synchronisation

owners-as-dominators owners-as-coordinators full ownership model

part of the
aggregate

not part of the

aggregate #/

enforces lock
order \

all sharing immediate from code leaked internal pointers become no longer allowed
synchronised

6-S%
%

2 X
Y w&ﬁ \A
[\

R VERITAS |

&3

works for all shared capabilities

sharing less immediate in code

Ownership Variants

dominators modifiers threads ombudsmen

Tq T2

/

\/ /

Uniqueness Variants “Mix”

classical external local / refined ownership fractional permissions

/

AR

Sl \A
RN\
v -k=/

RYERITAS]

23
Z i)
S5
& L .4\

&3

—> > >
normal read-only disallowed

Ownership Variants

dominators modifiers

\/ /

threads ombudsmen

T1 T? j

- CID oD o = o

Uniqueness Variants “Mix”

classical external local / refined ownership

/

fractional permissions

o
@®
or

(/vl*

) T AT
w&@_\
[\

" V/’ (’ 3 . 3

Static Control of Side-Effects >

normal
regions effect systems immutability

\/ / \/ read-only
>

/ disallowed
------- >

access
------- >

read access

Dynamic Control of Side-Effects

active object isolation locks or transactions readers-writer lock

A]_ AZ sss ‘* 1} tog’ ’ Qs * 1} !
A \ S A NS S
(S g 5 d

g ¥ :' ’
yy 4 &
& @ @

o NS

SN
: 77 ‘7
S
& 4

&3

regions

\/i

active object isolation

A1

A,

b T NG
S\

S
$) L .4\

&3

Static Control of Side-Effects

effect systems

/

immutability

\/
/

Immutable

Dynamic Control of Side-Effects

capabilities. ..

locks or transactions

L q
" .E g’
‘ » ‘ 1:,-'
g N
Y q '
1 4

@

A2

>
normal

read-only

>
disallowed

read access

readers-writer lock

s‘§

|
v

5

| |

NS S
1 q
NS |

’

or “ ’
’
4

oD - D

Thank you.
Questions?

