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Constant propagation

A simple, and innocuous, optimisation:

x = 14
Source code y = 7 - x / 2
X = 14

Optimised code

o
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Shared memory concurrency

Shared memory

x =y =20
x =1 1f (x == 1) {
Thread 1 if (v == 1) x = 0 Thread 2
print x y =1}
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Shared memory concurrency

Shared memory

x =y =20
x =1 1f (x == 1) {
Thread 1 if (v == 1) x = 0 Thread 2
print x y =1}

Intuitively this program always prints O
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Shared memory concurrency
But if the compiler propagates the constant x = 1...
Xx =y =20
x =1

if (y == 1)
print X

Thread 1
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Shared memory concurrency

But if the compiler propagates the constant x = 1...

x =y =20
x = 1 1f (x == 1) {
Thread 1 if (y == 1) x = 0 Thread 2
Pprint—x y =1}
print 1

...the program always writes 1 rather than O.
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Shared memory concurrency

But if the compiler propagates the constant x = 1...

x =y =20
|

An optimising compiler can break your code

...the program always writes 1 rather than O.
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LCIZ)’ iniﬁCIIiSCIﬁOn (even an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never used
(e.g. device drivers code). Compare:

int X = computeInitValue(); // eager initialization
// clients refer to x

with:

int xValue() {
static int X = computeInitValue(); // lazy initialization

return X;
}o... // clients refer to xValue()
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The singleton pattern

Lazy initialisation is a pattern commonly used. In C++ you would write:

class Singleton {

public:
static Singleton *instance (void) {
if (instance == NULL)
instance = new Singleton;
return instance_;
}
// other methods omitted
private:
static Singleton *instance ; // other fields omitted
}i

Singleton::instance () -> method ();

But this code is not thread safe! Why?
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Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
static Singleton *instance (void) {
Guard<Mutex> guard (lock ); // only one thread at a time

if (instance == NULL)
instance = new Singleton;
return instance_;
}
private:

static Mutex lock ;
static Singleton *instance ;

}i

Every call to instance must acquire and release the lock: excessive overhead.
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Obvious (broken) optimisation

class Singleton {

public:
static Singleton *instance (void) {
if (instance == NULL) {
Guard<Mutex> guard (lock ); // lock only if unitialised
instance = new Singleton; }
return instance_;
}
private:

static Mutex lock ;
static Singleton *instance ;

}i
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Clever programmers use double-check

class Singleton {
public:
static Singleton *instance (void) {
// First check
1f (instance == NULL) {
// Ensure serialization
Guard<Mutex> guard (lock );
// Double check

1f (instance == NULL)
instance = new Singleton;
}
return instance ;
}
private: [..]

}i

Idea: re-check that the Singleton has not been created after acquiring the lock.

Wednesday 17 June 15
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Double-check locking: clever but broken

instance = new Singleton;

does three things:

1) allocate memory
2) construct the object

3) assign to instance_the address of the memory

Not necessarily in this order! For example:

instance = // 3
operator new(sizeof(Singleton)); // 1
new (instance ) Singleton // 2

If this code is generated, the order is 1,3,2.
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Broken...

if (instance == NULL) { // Line 1
Guard<Mutex> guard (lock );
1f (instance == NULL) {
instance =
operator new(sizeof(Singleton)); // Line 2

new (instance ) Singleton; }}

Thread 1:
executes through Line 2 and is suspended; at this point,
instance_is non-NULL, but no singleton has been constructed.

Thread 2:
executes Line 1, sees instance as non-NULL, returns, and
dereferences the pointer returned by Singleton (i.e., instance ).

Wednesday 17 June 15 12



Broken...
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Problem

instance = // 3
operator new(sizeof(Singleton)); // 1
new (instance ) Singleton // 2

We need a way to specify that step 3 come after steps 1 and 2.

There is no way to specify this in C++

Similar examples can be built for any programming language...
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That pesky hardware (1)

Consider misaligned 4-byte accesses:

int32 t a = 0

a = 0x44332211 1f (a == 0x00002211)
print "error”

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

® n-bytes on an n-byte boundary (n =1,2,4,16)

® P6 or later: ... or if unaligned but within a cache line

Question: what about multi-word high-level language values?
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That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread O Thread 1
x =1 y = 1
print y print x
Thread coe Thread

At the end of some executions: |
0 0 = =
is printed on the screen, o o
& &

both on x86 and Power/ARM

- {

L

Shared Memory
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That pesky hardware (2)

...and differ between architectures...

Thread 0 Thread 1
x =1 print y
y =1 print x

Thread,

At the end of some executions:

is printed on the screen
on Power/ARM but not on x86.
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The fundamental problem

The programmer wants
to understand the code
he writes
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The fundamental problem

Which are the valid optimisations that the compiler or the hardware can
perform without breaking the expected semantics of a concurrent program?

Which is the semantics of a concurrent program?¢

The programmer wants
to understand the code
he writes

Wednesday 17 June 15
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- and the hardware -
try hard to optimise it
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0. Concurrency and optimisations, not so simple
1) The simplest model
2) Data-race freedom (aka. the layman semantics)

3) How to design a programming language

4) The design of the C11/C++11 languages

5) Escape lanes are a Pandora’s box

6) Exploring alternative models
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World of optimisations

A typical compiler performs many optimisations.

gcc 4.4.1. with -O2 option goes through 147 compilation passes.

computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

Wednesday 17 June 15
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World of optimisations

A typical compiler performs many optimisations.

— Common subexpression elimination
(copy propagation, partial redundancy elimination, value numbering)

— (conditional) constant propagation
— dead code elimination
— loop optimisations
(loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
— vectorisation
— peephole optimisations
— tail duplication removal
— building graph representations/graph linearisation
— register allocation
— call inlining
— local memory to registers promotion
— spilling
— instruction scheduling

Wednesday 17 June 15

22



World of optimisations

However only some optimisations change shared-memory traces:

— Common subexpression elimination
(copy propagation, partial redundancy elimination, value numbering)

— (conditional) constant propagation
— dead code elimination
— loop optimisations
(loop invariant code motion, loop splitting/peeling, loop unrolling, etc.)
— vectorisation
— peephole optimisations
— tail duplication removal
— building graph representations/graph linearisation
— register allocation
— call inlining
— local memory to registers promotion
— spilling
— instruction scheduling
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What is an optimisation?

Compiler Writer

Semanticist

V|
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What is an optimisation?

Compiler Writer Semanticist

| ‘ I h ’ | ‘)K : "
Sophisticated program analyses ) N ra

Fancy algorithms | 1
Source code or IR

Operations on AST
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What is an optimisation?

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

for (int i=0; i<2; i++) {
z = 1;
x[i] +=Y+1;

}

Semanticist
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What is an optimisation?

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

X[1] +=tmp ;

}

' r
j <
, : pu
' .
" . »
I = >
N 2
\ .

Semanticist
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What is an optimisation?

Compiler Writer Semanticist
N L T
Flimination of run-time events

Reordering of run-time events
ntroduction of run-time events

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

Operations on sets of events

tmp =y+1 ;
for (int 1=0; 1<2; 1i++) {
zZ = 1;

x[1] +=tmp ;

}
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What is an optimisation?

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

X[1] +=tmp ;

}

!4‘

Se'manticist
(| ‘i

Climination of run-time events
Reordering of run-time events
ntroduction of run-time events

Operations on sets of events

Store z 0
Load y 42
Store x[0] 43
Store z 1
Load y 42
Store x[1] 43
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What is an optimisation?

Compiler Writer

Sophisticated program analyses
Fancy algorithms
Source code or IR

Operations on AST

tmp =y+1 ;
for (int 1=0; 1<2; 1++) {
zZ = 1;

X[1] +=tmp ;

}

!4‘

Se'manticist
(| ‘i

Climination of run-time events
Reordering of run-time events
ntroduction of run-time events

Operations on sets of events

Load y 42
Store z 0

Store x[0] 43
Store z 1

Store x[1] 43
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Eliminations

This includes common subexpression elimination, dead read
elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination:

r=*x; C »> C
where r IS not free In C.

Redundant read after read elimination:

rl=*x; r2=*x »> rl=*x; r2=rl

Redundant read after write elimination:

*x=rl; r2=*x > *x=rl; r2=rl

Wednesday 17 June 15
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Reordering

Common subexpression elimination, some loop optimisations, code
motion.

Normal memory access reordering:
rl=*x; r2=*y > r2=*y; rl=*x
*x=rl; *y=r2 - *y=r2; *x=rl

rl=*x; *y=r2 & *y=r2; rl=*x

Roach motel reordering:

memop; lock m -» lock m; memop
unlock m; memop -» memop; unlock m

where memop IS *x=rl Or rl=*x

Wednesday 17 June 15
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Memory access introduction

Can an optimisation introduce memory accesses?

Yes:

1 = 0; 1 = 0;
e N .
while (1 != 0) { tmp = *Xx;
J = *x + 1; while (1 != 0) {
1= 1-11} j = tmp + 1;
i=1i-1 }

Note that the loop body Is not executed.

Wednesday 17 June 15



Memory access introduction

Can an optimisation introduce memory accesses?

Back to our question now:

Which is the semantics of a concurrent program?

Note that the loop body Is not executed.
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The simplest memory model

sequential consistency
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Sequential consistency

...the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program...

Lamport, 1979.
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Compilers, programmers & sequential

Compilers

Principles, Techniques,
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Compilers, programmers & sequential

ompilers

Principles, Techniques,

Alfred V. AP;)
RaviSethi £
Jeffrey D. Ullman

Simple and intuitive
programming model
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Compilers, programmers & sequential

Compllers

Principles, Te(hmqucs, |

Simple and intuitive
programming model

Expensive
to iImplement
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A Case for an SC-Preserving Compiler

Daniel Marino’  Abhayendra Singh*  Todd MillsteinT  Madanlal Musuvathi*  Satish Narayanasamy*
I'University of California, Los Angeles “University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.
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A Case for an SC-Preserving Compiler

Daniel Marino!  Abhayendra Singh*  Todd Millstein|  Madanlal Musuvathi*  Satish Narayanasamy*

I'University of California, Los Angeles “University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a
maximum slowdown of 34% on a set of 30
programs from the SPLASH-2, PARSEC,
and SPEC CINT2006 benchmark suites.

EXCESSIVE
OVERHEAD

This study assumes that the hardware is SC:
these numbers are optimistic lower bounds.
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A Case for an SC-Preserving Compiler

Daniel Marino!  Abhayendra Singh*  Todd Millstein|  Madanlal Musuvathi*  Satish Narayanasamy*
TUniversity of California, Los Angeles “University of Michigan, Ann Arbor *Microsoft Research, Redmond

An SC-preserving compiler, obtained by
restricting the optimization phases 1n
LLVM, a state-of-the-art C/C++ compiler,
incurs an average slowdown of 3.8% and a ’ ’
maximum slowdown of 34% on a set of 30

e

What is an SC-preserving compiler?

When is a compiler correct?
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When is a compiler correct?

A compiler is correct if any behaviour of the compiled
program could be exhibited by the original program.

i.e. for any execution of the compiled program, there is an execution of
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces, where
the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of
external actions.

Wednesday 17 June 15
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Exercise

rl = *x; r2 = *x;
Pr=x*xx =1 . . .
if r1=r2 then print 1 else print 2
1 = %x; r2 = ri;
Py—wx = 1| TLT X T2 =l |
if rl=r2 then print 1 else print 2

Is the transformation from P1 to P2 correct (in an SC semantics)?

Wednesday 17 June 15
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Exercise

rl = ¥x; r2 = *x;

if r1=r2 then print 1 else print 2

rl = *x; r2 = ri;

if r1=r2 then print 1 else print 2

Wednesday 17 June 15
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Exercise

rl = *x; r2 = *x;
Pr=*x =1

if r1=r2 then print 1 else print 2
Py—wx = 1| 17T T2 =l |

if r1=r2 then print 1 else print 2

Executions of P1:

-

v U

W, z=1,R, z=1,R;, z=1,P
Qtz =0, th r=1, Rt2 r=1,P,,
Rt, =0, Ry, z=0, W, z=1,P,
?t2 .’E:O, Rtg I:O, Pl.2 1, th Izl

U

1
2
1
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Exercise

rl

e
|
*
>
I
-

rl

Executions of P1:

W, z=1,R, z=1,R,, z=1
Ry, v=0,W, z=1,R, z=1

Qtz CEZO, th 37:0, th :U::
?t2 .’E:O, Rtg I:O, Pl.2 1, th Izl

)

?

p)

{

2
2

v U

U

L2

-

1
2
1

¥X; Ir2 = *X;

if r1=r2 then print 1 else print 2

*xX; r2 = 1rl;

if r1=r2 then print 1 else print 2

Executions of P2:

W, z=1,R,, z=1,P, 1
Rt2 Q?ZO, th :E:]., Pfg

th CL':O, Pl‘g ]., th r—1
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Exercise

rl = *x; r2 = *x;
Pp=%x =1
if r1=r2 then print 1 else print 2
Py—wx = 1| 17T T2 =l |
if r1=r2 then print 1 else print 2
Executions of P1: Executions of P2:

W, z=1,R, z=1,R;, z=1,P

Ry, =0,W, z=1,R, z=1,P,
Rt, T=0, tha: 0,W; z=1,P, 1
Ry, =0, Ry, =0,P, 1,W, z=1

W, z=1,R,, z=1,P, 1
Ry, 2=0,W, z=1,P, 1
Rt2 CIJ‘=0, Pl‘g 17Wt1 r=1

N

Behaviours of P1: P ; 1], [P[_z 2] Behaviours of P2: :P,,Z 1]
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Exercise

rl = *x; r2 = *x;
Py=»xx=11" . .
if rl=r2 then print 1 else print 2
rl = xx; r2 = ri;
Ppo=*x =11 i o .
if rl=r2 then print 1 else print 2
O inne nnf D1 - Executione of P2

It is correct to rewrite P1 into P2, but not the opposite!

Behaviours of P1: [P, 11, P, 2] Behaviours of P2: P, 1]
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Another exercise

*x = 1; Xy = 1;
rl = %y r2 = *X;
print ril print r2

rl = xy
*x = 1;
print ril

xy = 1;
r2 = *x;
print r2

Wednesday 17 June 15
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Another exercise

*x = 1; Xy = 1;
rl = %y r2 = *X;
print ril print r2

:Ptl 07 Ptz 1:

Py, 1P, 0

Py 1Py 1

rl = *y xy = 1,
xx = 1; r2 = *x;

print ril print r2

:Ptl 07 Pt2 1:
Py, 1,P, 0
Py, 1Py, 1
:Ptl 0, Ptz O:

Wednesday 17 June 15
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Another exercise

Again, the transformed program exhibits a new behaviour

:Ptl O> Ptg 1: :Ptl 07 Ptz 1:
:Ptl 1, Ptg O: :Ptl 1, Ptz O:
:Ptl 1, Ptg 1: :Ptl 1, Ptz 1:

:Ptl O’ Pt2 O
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Elimination of adjacent accesses

Some optimisations are correct under SC.

For example it is correct to rewrite:
rl = xx; r2 = *x o rl = *x; r2 = ril

The basic idea: whenever we perform the read r1 = *x in the
optimised program, we perfom both reads in the source program.

Wednesday 17 June 15

38



Elimination of adjacent accesses

Some optimisations are correct under SC.

Not really satisfying... Can we define a model that:

1) enables more optimisations than SC, and
2) retains the simplicity of SC¢

The basic idea: whenever we perform the read r1 = *x in the
optimised program, we perfom both reads in the source program.
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The layman solution 2
orbid data-races -
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Data-race freedom

Thread O Thread 1
Our examples again: xy = 1 if *x ==
*x = 1 then print *y

® the problematic transformations
(e.g. swapping the two writes in

Observable behaviour: 0

thread 0) do not change the meaning of single-threaded programs

® the problematic transformations are detectable only by code that
allows two threads to access the same data simultaneously in
conflicting ways (e.g. one thread writes the datas read by the other).

Wednesday 17 June 15
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Data-race freedom

Thread O Thread 1

e | u e |

...intuition...

Programming languages provide
synchronisation mechanisms

if these are used (and implemented) correctly,
we might avoid the issues above...

contlicting ways (e.g. one thread writes the datas read by the other).
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The basic solution

Prohibit data races

Defined as follows:

Thread 0O Thread 1
*Y = 1] if *w ==
*x =1 then print *y

Observable behaviour: 0

® two memory operations conflict if they access the same memory
location and at least one is a store operation;

® 2 SC execution (interleaving) contains a data race if two conflicting
operations corresponding to different threads are adjacent (maybe

executed concurrently).

Example: a data race in the example above:

W, y=1,W, z=1,R, z=1,R;, y=1,P, 1

Wednesday 17 June 15
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The basic solution I S

*Y= 1f *x == 1

Prohibit data races N

1
1

then print *y

Observable behaviour: 0

Defined as follows:

The definition of data race quantifies only

over the sequential consistent executions

executed concurrently).

Example: a data race in the example above:

th yzl, Wfl (I:1, sz :L':l, th yzl, Ptg 1
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HOW dO we GVOid dqtq I'CICGS? (high-level languages)

® Locks

No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l)
calls from other threads balance.

* Atomic variables
Allow concurrent access “exempt” from data races (called volatile in Java).

Example:

Thread O Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x =1 unlock();

unlock();

if tmp =1
then print *y

Wednesday 17 June 15
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HOW dO we GVOid dqtq I'CICGS? (high-level languages)

Thread O Thread 1
*y = 1 lock();
lock(); tmp = *Xx;
*x =1 unlock();
unlock(); if tmp = 1
then print *y

This program is data-race free:

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); 1f tmp=1 then print *y

1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
I

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1
lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1;unlock();

lock();tmp = *x;unlock(); *y = 1; 1f tmp=1; lock(); *x = 1; unlock();
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HOW dO we GVOid dqtq I'CICGS? (high-level languages)

®lock(),unlock() are opaque for the compiler: viewed as
potentially modifying any location, memory operations cannot be
moved past them

®lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); 1f tmp=1 then print *y

1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
I

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1
lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1;unlock();

lock();tmp = *x;unlock(); *y = 1; 1f tmp=1; lock(); *x = 1; unlock();
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S | || | -

. . vages)
Compiler/hardware can continue to reorder accesses )

Intuition:
compiler/hardware do not know about threads
but only racing threads can tell the difference! be

®lock(), unlock() contain "sufficient fences" to prevent hardware
reordering across them and global orderering

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); 1f tmp=1 then print *y

1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1

*
<
I

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock();
lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); 1f tmp=1
lock(); tmp = *x; unlock(); i1f tmp=1; *y = 1; lock();*x = 1;unlock();

lock();tmp = *x;unlock(); *y = 1; 1f tmp=1; lock(); *x = 1; unlock();
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Validity of compiler optimisations,

Transformation SC DRF
Memory trace preserving transformations v v
Redundant read after read elimination 7 v
Redundant read after write elimination e v
Irrelevant read elimination v v
Redundant write before write elimination 7 v
Redundant write after read elimination e v
Irrelevant read introduction v X
Normal memory accesses reordering X v
Roach-motel reordering x (v for locks) v
External action reordering X v

* Optimisations legal only on adjacent statements.
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Validity of compiler optimisations,

Transformation SC

Memory trace preserving transformations v

Jaroslav Sevcik

Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011

Roach-motel reordering X (v'Tor locks

\

External action reordering X
* Optimisations legal only on adjacent statements.
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Compilers, programmers & data-race

Compilers

& L 22, Principles, Techniques,
maw e e, and Tools = ({33

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman
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Compilers, programmers & data-race

Principles, Techniques,

Compllers

Can be implemented
efficiently
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Compilers, programmers & data-race

Compllers

Principles, Te(hmques, |

Intuitive programming
model (but detecting
races is tricky!)

Can be implemented
efficiently
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Another example of DRF program

Exercise: is this program DRF?

Thread 0O Thread 1

1f *x == 1 1if *xy == 1

then *y =1 then *x = 1
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Another example of DRF program

Exercise: is this program DRF?

Answer: yes!

The writes cannot be executed in any SC execution, so they cannot

Thread O

Thread 1

if *x == 1

then *y =1

1f *Y == ]

then *x =

1

participate in a data race.
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Another example of DRF program

Exercise: is this program DRF?

Data-race freedom is not the ultimate panacea

- the absence of data-races is hard to verify / test (undecidable)
- imagine debugging...

my program ended with a wrong result:
my program has a bug OR it has a data-race

my program ended with a correct result:
my program is correct OR it has a data-race
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Option 1

Don't.

No concurrency.

Implemented by highly-successful programming languages (OCaml)

Poor match for current trends

Wednesday 17 June 15

48



Option 2

Don't.

No shared memory

A good match for some problems (see Erlang, MPI, ...)
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Option 3

Don't.

But language ensures data-race freedom

Possible:
- syntactically ensuring data accesses protected by associated locks

- fancy effect type systems (don’t miss Pottier’s lecture on Friday)

Not suitable for general purpose programming.

Wednesday 17 June 15

50



Option 4

Don't.

Leave it (sort of) up to the hardware

Example:

MLton, a high performance ML-to-x86 compiler with concurrency
extensions

Accesses to ML refs exhibit the underlying x86-TSO behaviour
(atomicity is guaranteed though)
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Option 5

Do.

Use data race freedom as a definition

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way

Sarita Adve & Mark Hill, 1990

e/
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Option 5

Do.

Use data race freedom as a definition

Pro:
- simple
- strong guarantees for most code
- allows lots of freedom for compiler and hardware optimisations

Cons:
- undecidable premise
- can't write racy programs (escape mechanisms?)
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Ada 83

[ANSI-STD-1815A-1983, 9.11] For the actions performed by a program that uses shared

variables, the following assumptions can always be made:

* If between two synchronization points in a task, this task reads a shared variable
whose type is a scalar or access type, then the variable is not updated by any other
task at any time between these two points.

* If between two synchronization points in a task, this task updates a shared variable
whose task type is a scalar or access type, then the variable is neither read nor
updated by any other task at any time between these two points.

The execution of the program is erroneous if any of these assumptions is violated.

Data-races are errors
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Posix Threads Specification

[IEEE 1003.12008, Base Definitions 4.11] Applications shall ensure that access to any
memory location by more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modity a memory location while
another thread of control may be modifying it.

Data-races are errors
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C++ 2011 / Clx

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a
data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results

in undefined behavior.

Data-races are errors
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C++ 2011 / Clx

[C++ 2011 FDIS (WG21/N3290) 1.10p21] The execution of a program contains a
data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results

in undefined behavior.

How to use C/C++ to implement
low-level system code?

Data-races are errors

56
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Escape lanes
for expert programmers




Low-level atomics in C11/C++11

std: :atomic<int> flag@(@),flagl(@),turn(d);
void lock(unsigned index) { \
1f (0 == index) { . . .
flag0.store(l, std::memory_order_relaxed); Atomic variable declaration

turn.exchange(l, std::memory_order_acq_rel);

while (flagl.load(std: :memory_order_acquire)
& 1 == turn.load(std: :memory_order_relaxed))
std: :this_thread: :yield(Q);
} else {

flagl.store(1l, std::memory_order_relaxed); New s)lnl'qx
turn.exchange(@, std::memory_order_acq_rel);

for memory accesses
while (flag@.load(std: :memory_order_acquire)
&& 0 == turn.load(std: :memory_order_relaxed))

std: :this_thread: :yield();
}
}

void unlock(unsigned index) { Qualiﬁer
1f (@ == 1index) {
flag@.store(@, std::memory_order_release);
} else {

flagl.store(@, std::memory_order_release);

h
¥
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The qualifiers

MO SEQ CST

MO RELEASE / MO _ACQUIRE

MO RELEASE / MO CONSUME

MO RELAXED

LESS RELAXED

MORE RELAXED
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The qualifiers

MO SEQ CST

MO RELEASE / MO _ACQUIRE

MO RELEASE / MO CONSUME

MO RELAXED

LESS RELAXED

Sequential consistent accesses

MORE RELAXED
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The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

MO RELEASE / MO CONSUME

MO RELAXED
MORE RELAXED
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The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

MO RELAXED

MORE RELAXED
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The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

MO_RELAX| No synchronisation; direct access to hardware I

MORE RELAXED
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MO_SEQ_CST

The compiler must ensure that MO SEQ CST accesses have
seguentially consistent semantics.

Thread O Thread 1

X.store(1l,MO SEQ CST) y.store(1l,MO SEQ CST)
rl = y.load(MO SEQ CST) | r2 = x.load(MO SEQ CST)

The program above cannot end withrl = r2 = 0.
Sample compilation on x86: Sample compilation on Power:
store: MOV; MFENCE store: HWSYNC; ST

load: MOV load: HWSYNC; LD: CMP; BC:; ISYNC
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MO_RELAXED

MO_RELAXED accesses can be reordered by compiler/hardware

Thread O

Thread 1

X.store(1l,MO RELAXED)
rl = y.load (MO RELAXED)

y.store(1l,MO RELAXED)

r2 =

x.load (MO RELAXED)

The program above canend withrl = r2 = 0.

Sample compilation on x86:  Sample compilation on Power:
store: MOV store: ST
load: MOV load: LD
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MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread O Thread 1

Xx.store(1l,MO RELAXED) rl = y.load(MO ACQUIRE)
y.store(1l,MO RELEASE) r2 X.load (MO RELAXED)

The program above cannotend withrl = 1 and r2 = 0.
Accesses to the data structure can be reordered/optimised (MO RELAXED,).

Sample compilation on x86: Sample compilation on Power:

store: MOV store: LWSYNC; ST
load: MOV load: LD; CMP; BC; ISYNC
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MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread O Thread 1

X.store(1,MO RELAXED) 1 rl = y.load(x,MO CONSUME)
y.store(&x,MO RELEASE) r2 = (*rl).load(MO RELAXED)

The program above cannotend withrl = 1 and r2 = 0.

The two loads have an address dependency, Power won't reorder them.

Sample compilation on x86: Sample compilation on Power:

store: MOV store: LWSYNC; ST
load; MOV load: LD
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Escape lanes pitfalls

v 47 :
: " ‘l§ -
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The qualifiers

LESS RELAXED

MO SEQ CST Sequential consistent accesses

MO_RELEASE Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

MO_RELAX| No synchronisation; direct access to hardware I

MORE RELAXED
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The qualifiers

LESS RELAXED

MO antial consistent accesses

REASONABLE

MO | on of message passing

Efficicient implementation of message passing on ARM/Power

MO_RELAX| No synchronisation; direct access to hardware l

MORE RELAXED
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The qualifiers

LESS RELAXED

MO antial consistent accesses

REASONABLE

MO | on of message passing

HARD TO IMPLEMENT passing on ARM/Power

MO_RELAX| No synchronisation; direct access to hardware l

MORE RELAXED
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The qualifiers

LESS RELAXED

antial consistent accesses

REASONABLE

on of message passing

MO RELAX

HARD TO IMPLEMENT

passing on ARM/Power

No s Let’s focus on these...
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Memory access synchronisation

x =y =20
Thread 1

y =1 if (x.load(MO ACQUIRE)

X.store(1l,MO RELEASE) r2 =y

Thread 2

== 1)
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Memory access synchronisation

x =y =20
Thread 1 Thread 2
vy = 1 if (x.load(MO ACQUIRE) == 1)
A y \
X.store(1l,MO RELEASE) r2 =y

happens-before

> =

( sequenced—befors ) synchronizes—w:'tﬁ i+

Non-atomic loads must return the most recent write
in the happens-before order
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Understanding MO_RELAXED

x =y =20
Thread 1

y = 1 if (x.load(MO RELAXED)
X.store(1l,MO RELAXED) r2 =y

Thread 2

== 1)
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Understanding MO_RELAXED

x =y =20

Thread 1 Thread 2

y = 1‘\j': (Xx.load (MO RELAXED) == 1)
X.store(1l,MO RELAXED) r2 =y

DATA RACE

Two conflicting accesses not related by happens-before
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Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2
y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)
x.store(1,MO RELAXED) r2 = y.load (MO RELAXED)

WELL DEFINED

but r2 = 0 is possible
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Understanding MO_RELAXED

x =y =20
Thread 1 Thread 2

y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)

x.store(1,MO RELAXED) r2 = y.load(MO RELAXED)

Allow a RELAXED load to see any store that:

- does not happens-after it

- is not hidden by an intervening store hb-ordered between them
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Intuition
the compiler (or hardware) can reorder independent accesses

Thread 1 Thread 2

y.store(1,MO RELAXED) if (x.load(MO RELAXED) == 1)

x.store(1,MO RELAXED) r2 = y.load(MO RELAXED)

Allow a RELAXED load to see any store that:

- does not happens-after it

- is not hidden by an intervening store hb-ordered between them
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Shorthand

from now on, all the memory accesses are
atomic with MO_RELAXED semantics
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Out of thin-air reads
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Out-of-thin-air

Thread 1

Thread 2

Wednesday 17 June 15

71



Out-of-thin-air

Thread 1

rl r2

|
»3

r1 =r2 =42

Is a valid execution.

Rx42 —_ i Ry42
o
Wy 42 W x 42

|l
o

Thread 2
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Intuition
the compiler (or hardware) can reorder independent accesses

Thread 1 Thread 2

rl

|
»3
X
|
e

r1 =r2 =42

Is a valid execution.
Rx42 — i Ry42
| P
Wy 42 W x 42
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Out-of-thin-air reads

Thread 1

Thread 2

Wednesday 17 June 15

72



Out-of-thin-air reads

Thread 1

rl r2

|
P4
|
s

r1 =r2 =427

Is also an allowed execution

Rx 42 —_ i Ry42
o
Wy 42 W x 42

Thread 2
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the value 42 appears out-of-thin-air

Thread 1 Thread 2

r1 =r2 =427

Is also an allowed execution
Rx42 — iRy 42
| P
Wy 42 W x 42
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Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

;= 42 initially x = y = 0

if (rl = 42) y = rl; « y - ri X := 12
rint ril print r2

print ril
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Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

;= 42 initially x = y = 0

if (rl = 42) y = rl; « y - ri X := 12
rint ril print r2

print ril

It does not happen in practice... even if it might!
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struct foo {

atomic<struct foo *> next;

}

struct foo *a;

Thread 1
rl = a->next
rl->next = a
a next

\

next
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struct foo {
atomic<struct foo *> next;

}

struct foo *a;

Thread 1

rl = a->next

rl->next = a

a

\\\\\\$next next
>

\

N
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struct foo {

atomic<struct foo *> next;

}

struct foo *a,

Thread 1

*b;

rl = a->next

rl->next

a

Thread 2
r2 = b->next
r2->next = b
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struct foo {
atomic<struct foo *> next;

}

struct foo *a, *b;

Thread 1 Thread 2
rl = a->next r2 = b->next
rl->next = a r2->next = b

If a and b initially reference disjoint data-structures

we expect a and b to remain disjoint

Wednesday 17 June 15



struct foo {

atomic<struct foo *> next;

}

struct foo *a,

Thread 1

rl =

rl->next

a

a->next

a

next

next

\
\

Thread 2
r2 = b->next
r2->next = b

next
>
next
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If the compiler speculates r1=b and r2=a, then
the store r1->next=a justifies r2=b->next assigning r2=a

(and symmetrically to justify r1=Db)

Thread 1 Thread 2
rl = a->next r2 = b->next
rl->next = a r2->next = b

a

next next

b

\
\ next next
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If the compiler speculates r1=b and r2=a, then
the store r1->next=a justifies r2=b->next assigning r2=a

(and symmetrically to justify r1=Db)

Thread 1 Thread 2
rl = a->next r2 = b->next
rl->next = a r2->next = b

a

next next

b

\
\ next next
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If the compiler speculates r1=b and r2=a, then

the store r1->next=a justifies r2=b->next assigning r2=a

(and symmetrically to justify r1=Db)

Break our basic intuitions

about memory and sharing!

a next next

\
b \\\\\\$next z;;g next
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Common compiler optimisations
are unsound in C11
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1f (x.load(rlx)==42)
y.write(42,rlx)

1f

(y.load(rlx)==42)

1f

Q
|
o

(a==1)

X.write(42,rlx)
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o
|
N

1f (x.load(rlx)==42)| 1f

y.write(42,rlx)

(y.load(rlx)==42)

1f

Q
|
o

(a==1)

X.write(42,rlx)

Remark 1

This code is not racy!

There is no consistent execution in which

the read of a occurs.
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1f (x.load(rlx)==42)| 1f

y.write(42,rlx)

(y.load(rlx)==42)

1f

(a==1)

X.write(42,rlx)

Remark 2

a=1Ax=y=0

is the only possible final state
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1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)

Consider sequentialisation:
C|ID = C;D

(ought to be correct)
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1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)

'

a = 1
1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)
X.write(42,rlx)
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1f (x.load(rlx)==42)
y.write(42,rlx)

1f

(y.load(rlx)==42)
1f (a==1)
X.write(42,rl1x)
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a =1
1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)
X.write(42,rl1x)

- T a=1
Wha(a, 1) Rex (v, 1)
o oy _ v —
R ) < W1 X=y =42
. o s also possible
Rna(a, 1) - - rf
D
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1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)

y.write(42,rlx) 1f (a==1)

X.write(42,rl1x)

Break common source-to-source
(or LLVM IR - to - LLVM IR)

compiler optimisations

including expression linearisation and roach-motel reorderings
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Thread O Thread 1
rl = X r2 =y
y = rl X = 42
Thread O Thread 1
rl = X r2 =y
y = rl X = r2

Rx42 T Ry42
N >< E
Wy 42 W x 42

Rx42 f_ Ry42
N >< E
Wy 42 W X 42
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Thread O Thread T

rl = X r2 =y l ><

y = rl X = 42

r1 =r2=42. (Can you spot the difference”

Thread 0 Thread 1 Rx42 - T Ry42
_ , sbl >< lsb
S ey Wy 42 W X 42

y = rl X = r2
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Thread O Thread T
rl = X r2 =y
y = rl X = 42

Rx42 T Ry42
N >< E
Wy 42 W x 42

Thread O Thread 1
rl = X r2 =y
y = rl X = r2

The “bad” example has a cycle of dependencies.

Rx42 f_ Ry42
sbl >< lsb
Wy 42 W x 42
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Solution 1.

Prohibit executions with dependency cycles

The “bad” example has a cycle of dependencies.

Thread 0 Thread 1 Rx42 - T Ry42
_ , sbl >< lsb
S e Wy 42 W x 42

y = rl X = r2
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Compiler writers
do not want to track all dependencies
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Compiler writers
do not want to track all dependencies

1f (x)
af[i1++]

else
af[i1++]

Does the store to i depend on the load of x?
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Solution 2. Brute force

Disallow cycles altogether

Rx42 — i i Ry42
| P
Wy 42 W x 42

acyclicchb U {(a,b) | 7f(b) = a})
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Allows all source-to-source optimisations

(except for r/w reordering on atomics)
but expensive on ARM and GPUs

Disallow cycles altogether

acyclicchb U {(a,b) | rf(b) = a})
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Solution 3. less brute force

Allow cycles but make this racy

by allowing a to read 1

Q
|l
-

1f (x.load(rlx)==42)| 1f (y.load(rlx)==42)
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)
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Efficient implementation of atomics on ARM/GPUs

but all R/W reorderings are unsound

Allow cycles but make this racy

by allowing a to read 1

|l
-

1f (x.load(rlx)==42)| 1f (y.load(rlx)==42) | a
y.write(42,rlx) 1f (a==1)

X.write(42,rlx)
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State of the art

“Implementations should ensure
that no “out-of-thin-air” values are
computed that circularly depend

on their own computation.”

Current proposal for C++14
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= \‘LS'\“,“

Currently, there is no really satisfactory proposal
for the semantics of a general-purpose
shared-memory concurrent programming language.
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iy . \2-\-:“

Currently, there is no really satisfactory proposal
for the semantics of a general-purpose
shared-memory concurrent programming language.

Remarkable and disturbing.
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The memory models of modern
hardware are better understood

Programming languages attempt
to specify and implement
reasonable memory models.

Researchers and programmers
are now interested in these
problems.
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
0,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
0,

Thread 2

b = 42;
printf("%d\n", b);

Wednesday 17 June 15

92



Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s'=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

Thread 2 is not affected by Thread 1 and vice-versa
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s!=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

Thread 1 returns without modifying b

Thread 2 is not affected by Thread 1 and vice-versa

C11 states that this program must print 42
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

Thread 1

int s;

for (s=0; s!=4; s++) {
1f (a==1)

return NULL;

1nt a
int b

for (b=0; b>=26; ++b)

)

1;
9,

Thread 2

b = 42;
printf("%d\n", b);
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
int s; b = 42;
for (s=0; s'=4; s++) { printf("%d\n", b);

1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

gcc 4.7 -O2

...sometimes we get @ on the screen
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int s;
for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

gcc 4.7 -O2
¥

The outer loop can be (and is) optimised away

movl Db(%rip), %ebx # load b into ebx

testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2

movl %ebx, b(%rip) # store ebx into b
xorl %eax, %eax # store 0 into eax

ret # return
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 7 jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H %
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H Sk
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int s;
for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

b

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
xorl S%eax, %eax
ret

H* H Ik
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The compiled code saves and restores b

Correct result in a sequential setting

movl a(%rip), %eax # load a into eax
movl Db(%rip), %ebx # load b into ebx
testl %eax, %eax # if a==

jne L2 # jump to .L2
movl $0, b(%rip)

ret

L2:

store ebx into b
store 0 into eax
return

movl $%$ebx, b(%rip)
Xorl %eax, %eax
ret

H* H Sk
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n"

, b);
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

Wednesday 17 June 15

95



Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax
- Read b (@) into ebx
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip) ,%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

- Read b (@) into ebx
- Store 42 into b
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Shared memory

int a = 1;
int b = 0;
Thread 1 Thread 2
movl a(%rip),%eax b = 42;
movl  b(%rip),%ebx printf("%d\n", b);
testl %eax, %eax
jne L2
movl  $0, b(%rip)
ret
L2: - Read a (1) into eax
movl  %ebx, b(krip) - Read b (@) into ebx
)r'(ce)zl reax, %eax - Store 42 into b

- Store ebx (@) into b
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Thread 1

mov L
mov L
testl
jne
mov L
ret
L2:
mov L
xorl
ret

Shared memory

a(%rip),%eax
b(%rip),%ebx
%eax, %eax
L2

$0, b(%rip)

%ebx, b(%rip)
%eax, %eax

1nt a =
1nt b =

Thread 2

b = 42;
printf("%d\n", b);

- Read a (1) into eax

- Read b (@) into ebx

- Store 42 into b

- Store ebx (@) into b
- Print b: @ is printed
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The horror, the horror... a subtle compiler bug!
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random %
Generator

C prong\

clang -03

w)lts l

- e
< — vote
ﬁ majority

minority
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random @

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

vidllig “Vv vidilyg Vo ses

w)lts 1 /

a e
ﬁ< — vote
majority

minority
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Compiler testing: state of the art
Yang, Chen, Eide, Regehr - PLDI 2011

Random (@Q

Reported hundreds of bugs

Cannot catch
concurrency compiler bugs

"=

«—vote ————
majority minority

— s - N
< O
O\ _ y
A O
0 t " >
J l N
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Hunting concurrency compiler bugs?

How to deal with hon-determinism?

How to generate non-racy interesting programs¢

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours:

how to test for correctness?
limit case: two compilers generate correct code with disjoint final states
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ldea

C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

\

C/C++ compilers can only apply transformations sound
with respect to an arbitrary non-racy concurrent context

Hunt concurrency compiler bugs

search for transformations of sequential code
not sound in an arbitrary non-racy context
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Random % SEQUENTIAL

—>
Generator PROGRAM

optimising
compiler
under test

reference

semantics
EXECUTABLE
tracing
REFERENCE
MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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Soundness of compiler optimisations
the C11/C++11 memory model
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Elimination of overwritten writes

b l Under which conditions is it
correct to eliminate the first store?

Store g 2
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A same-thread release-acquire pair is a pair of
a release action followed by an acquire action
in program order.

An action is a release if it is a possible source of a synchronisation

unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation

lock mutex, acquire or seq_cst atomic read
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Elimination of overwritten writes

Store g 1 It is safe to eliminate the first store
sb l if there are:

no access to g
1. no Intervening accesses to g

2. no intervening
© 1 same-thread release-acquire pair

no st rel/acq pair

Store g 2
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1
g =1;
fl.store(1,RELEASE);

while(f2.1load(ACQUIRE)==0);
g = Z;
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 candidate overwritten write
g =1;

fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);

g = Z;
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The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 candidate overwritten write
g = 1;
fl.store(1,RELEASE); <

while(f2.load(ACQUIRE)=
g = 2,

0 same-thread release-acquire pair
=4);
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2
g =1;

fl.store(1,RELEASE);
while(f2.1load(ACQUIRE)==0);
g = Z;

while(fl.1load(ACQUIRE)==0);
printf(“%d”, g);
fZ2.store(1,RELEASE);
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° / ) ,
f1:StOFe<1,RELEASE), printf(“%d”, g);

f2.store(1,RELEASE);

Thread 2 is non-racy

Wednesday 17 June 15 106



The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

9 = 0 SNC__, while(f1.10ad(ACQUIRE)==0);
f1.store(1,RELEASED; ( (ACQUIRE)==0);

f2.store(1,RELEASE);

Thread 2 is non-racy
The program should only print 1
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g=1; synS_, while(f1.10ad(ACQUIRE)==0):
fl.StOFG(l,RELEASE); printf(“%d” g).

Thread 2 is non-racy
The program should only print 1

If we perform overwritten write elimination it prints @
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The soundness condition

Shared memory

g = 0; atomic fl = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° / ) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

While(fZ.load(ACQUIRE)==®); fZ.StOFQCl,RELEASE);
g = Z;
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The soundness condition

Shared memory

g = 0; atomic f1l = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° / ) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

, fZ2.store(1,RELEASE);
g = ¢,
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The soundness condition

Shared memory

g = 0; atomic f1 = f2 = 0;

Thread 1 Thread 2

g =1; SyNe while(f1.1load(ACQUIRE)==0):
° / ) ,
fl.StOFG(l,RELEASE), printf(“%d”, g);

2 Jata race f2.store(1,RELEASE);
g = 2;

If only a release (or acquire) is present, then
all discriminating contexts are racy.
It is sound to optimise the overwritten write.
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Eliminations: bestiary

Store g vi Store g vi Store g v Read g v

NN

no access to g no access to g no access to g no access to g no access to g

no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair

L ]

Store g vz Store g w1 Read g v Read g v Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).
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Also correctness statements for

reorderings, merging, and introductions of events.

Store g vi Store g vi Store g v Read g v
sb l Sbl sb sbl sbl
\
no access to g no access to g no access to g no access to g no access to g
no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair no rel/acq pair
sb l sbl sbl sbl sbl

Store g vz Store g w1 Read g v Read g v Store g v

Overwritten-Write Write-after-Write Read-after-Read Read-after-Write Write-after-Read

Reads which are not used (via data or control dependencies) to decide a
write or synchronisation event are also eliminable (irrelevant reads).
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From theory to the Cmmtest tool




Random % SEQUENTIAL

—>
Generator PROGRAM

optimising
compiler
under test

reference

semantics
EXECUTABLE
tracing
REFERENCE
MEMORY p > MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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CSmith
extended with locks
and atomics

SEQUENTIAL

PROGRAM o
optimising

compiler
under test

reference

semantics

EXECUTABLE

tracing

REFERENCE

MEMORY —> MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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extend(écstlr:/]\j??h locks SEQUENTIAL
: PROGRAM o
and atomics optimising
compiler

under test

reference

semantics

EXECUTABLE

binary
Instrumentation
REFERENCE

MEMORY — MEMORY
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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extend(écstlrc\;t?h locks SEQUENTIAL
: PROGRAM o
and atomics optimising
compiler

under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary . |
instrumentation | binary |
INnstrumentation

REFERENCE

MEMORY MEMORY

M
TRACE TRACE

Check: only transformations sound
In any concurrent non-racy context
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CSmith
. SEQUENTIAL
extended W|th locks |m—p PROGRAM o
and atomics optimising
compiler

under test

gcc/clang -O0

EXECUTABLE EXECUTABLE
binary .
instrumentation | binary | |
Instrumentation

REFERENCE

MEMORY MEMORY

TRACE E 3 TRACE
OCaml tool

1. analyse the traces to detect eliminable actions
2. match reference and optimised traces
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const unsigned int g3 = QUL;
long long g4 = 0Ox1;

int go = 6L;

volatile unsigned int g5 = 1UL;

void func_1(void){
int *18 = &gob;
int 136 = Ox5E9DO70OFL;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
gS5++;
int *1102 = &136;
for (g6 = 4; g6 < (-3); g6 += 1);
1102 = &gb6;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

Start with a randomly generated well-defined program
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const unsigned int g3 = @QUL; void func_1(void){

long long g4 = Ox1; int *18 = &go;

int gb = oL; int 136 = Ox5E9DO70OFL;

volatile unsigned int g5 = 1UL; unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
go++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));
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void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70OFL ;
FTP 9 unsigned int 1107 = OxAA37C3ACL;
Init g5 1 g4 &= g3;
Init g6 6 g5++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));
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void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70OFL ;
FTP 9 unsigned int 1107 = OxAA37C3ACL;
Init g5 1 g4 &= g3;
Init g6 6 g5++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

reference ¥
semantics

Load g4 1
Store g4 0
Load g5 1
Store g5 /2
Store go 4
Load ¢gob 4
Load ¢gob 4
Load ¢gob 4
Store go 1
Load g4 0
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reference
semantics

Load

Store
Load

Store
Store
_oad
_oad
_oad

Store
Load

g4
g4
g>

S e e i i I B S

void func_1(void){
int *18 = &gob;
int 136 = Ox5E9DO70OFL ;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
g5++;
int *1102 = &136;
for (go = 4; g6 < (-3); gb += 1);
1102 = &go;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

h
‘{”,ff”’~\\‘\\\\§‘gcc—CIZrnenumyfnace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0
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reference
semantics

RaW*
RaW*

~OW*

t» RaW*
:'.l'v RAR*
x RaR*

RaW*

Load

Store
Load

Store
Store
_oad
_oad
_oad
Store
Load

g4
g4
g>

S e e i i I B S

void func_1(void){
int *18 = &gob;
int 136 = Ox5E9DO70OFL ;
unsigned int 1107 = OxAA37C3ACL;
g4 &= g3;
g5++;
int *1102 = &136;
for (go = 4; g6 < (-3); gb += 1);
1102 = &go;
*¥1102 = ((*18) && (1107 << 7)*(*1102));

h
‘{”,ff”’~\\‘\\\\§‘gcc—CIZrnenumyfnace

Load g5 1
Store g4 0
Store go 1
Store g5 2
Load g4 0
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void func_1(void){

Init g3 0 int *18 = &g6;
Init a4 1 int 136 = Ox5E9DO70OFL ;
FTP 9 unsigned int 1107 = OxAA37C3ACL;
Init g5 1 g4 &= g3;
Init g6 6 g5++;

int *1102 = &136;

for (gbo = 4; g6 < (-3); go += 1);

1102 = &go;

*¥1102 = ((*18) && (1107 << 7)*(*1102));

reference }
semantics gcc -O2 memory trace

—RaW*—tLoad—gé4—1
Store g4 0 >

RaW* Load g5 1 Load g5 1

Store g5 2 Store g4 0

~OW*—Store—g64—— Store go 1

érRaWi—Eeeé——g64 Store g5 2

' RaR* Load 564 Load g4 0
* RoR* _Load—_g6_4
Store go 1

RaW* Load g4 0
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void func_1(void){
Init g3 0 int *18 = &g6;

Can match applying
only correct eliminations and reorderings

b

reference }
semantics gcc -O2 memory trace

—RaW*—tLoad—gé4—1
Store g4 0 >

RaW* Load g5 1 Load g5 1

Store g5 2 Store g4 0

~OW:—Store—g64—— >tore go 1

o RaW*Load—g6-4 Store g5 2

' RaR* Load 564 Load g4 0
" RaR*_Load 6.4
Store go 1

RaW* Load g4 0
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int a = int s;
int b = 0; for (s=0; s'!'=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

=

If we focus on the miscompiled initial example...
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int a = int s;
int b = 0; for (s=0; s!=4; s++) {
1f (a==1)
return NULL;
for (b=0; b>=26; ++b)

)

=
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int a = 1; int s;
int b = 0; for (s=0; s'!'=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
}
reference
semantics

Load a 1
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int a = 1; int s;
int b = 0; for (s=0; s'!'=4; s++) {
if (a==1)
return NULL;
for (b=0; b>=26; ++b)
¥
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load b O

Store b 0
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Cannot match some events — detect compiler bug

}
reference gcc -O2 memory trace
semantics
Load a 1 Ioad a 1
Load Db 0

Store b 0
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Applications
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1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found
in the latest version of GCC.

Store introductions performed by loop invariant motion or
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.
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2. Checking compiler invariants

GCC internal invariant: never reorder with an atomic access

Baked this invariant into the tool and found a counterexample...

atomic_uint a;

int32_t gl, gZ;

AlL.oad
AlL.oad
Load

Store

a
a
gl
g2

o O O O

...not a bug, but fixed anyway

int main (int, char *[]) {
a.load() & a.load Q);

g2 =gl '= 0;
¥
O--___ _ _o Load gl O
°‘~f2r’j§‘"° Aload a 0
- ~T--0 ALoad a 0
O-——=—-=—===- -0 Store g2 O
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3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); —> g=0;

Correct or not?

Wednesday 17 June 15

117



3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); —> g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0 ) : ( Store g 0

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.
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3. Detecting unexpected behaviours

uintlo_t g uintlo_t g

for (; g==0; g--); —> g=0;

If g is initialised with @, a load gets replaced by a store:

?
Load g 0 ) : ( Store g 0

False positives in Thread Sanitizer
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The formalisation of the C11 memory model
enables compiler testing... what else?
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Proving the correctness of mappings for atomics
hitps://www.cl.cam.ac.uk/ ™ pes20/cpp/cppOxmappings.html

C/C++11 Operation

ARM implementation

Load Relaxed:

Idr

Load Consume:

Idr + preserve dependencies until next kill_dependency
OR

Idr; teq; beq; isb

OR

Idr; dmb

Load Acquire:

1dr; teq; beq; isb
OR
Idr; dmb

Load Seq Cst:

Idr; dmb

Store Relaxed:

str

Store Release:

dmb:; str

Store Seq Cst:

dmb; str; dmb

Cmpxchg Relaxed (32 bit):

_loop: ldrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop

Cmpxchg Acquire (32 bit):

_loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; isb

Cmpxchg Release (32 bit):

dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop;

Cmpxchg AcgqRel (32 bit):

dmb; _loop: Idrex roldval, [rptr]; mov rres, 0; teq roldval, rold; strexeq rres, mewval, [rptr]; teq rres, 0; bne _loop; isb |

Cmpxchg SeqCst (32 bit):

dmb; _loop: Idrex roldval, [rptr]; mov rres, O; teq roldval, rold; strexeq rres, rnewval, [rptr]; teq rres, O; bne _loop; dmb

Acquire Fence:

dmb

Release Fence:

dmb

AcqRel Fence:

dmb

SeqCst Fence:

dmb
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Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

' G
while (flag.load(acquire)) BN m “ a

1}

’

. Loop
ldr ro, [ri]
dmb 1sh

bnz .loop

4‘.100p

ldr ro, [ri]

bnz .loop
dmb 1sh
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Inform new optimisations

e.g. the work by Robin Morisset on the Arm LLVM backend

U ,

bnz .loop
dmb 1sh
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Inform new optimisations

e.g. the work by Robin Morisset on the Arm LLVM backend

U ,

bnz .loop
dmb 1sh
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Thank you! Questions?
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