
Francesco Zappa Nardelli

Inria, France

Languages 
and 

concurrency

a thorny relationship

Based on work done by or with

 Batty, Balabonski, Chakraborty, Memariam, Morisset, Owens, Sevcik, Sewell, Vafeiadis
U. Cambridge, U. Kent, MPI-SWS and Inria

1Wednesday 17 June 15



Imagine an ideal world

2Wednesday 17 June 15



Imagine an ideal world

Programmers and compilers cooperate 
to make great software

2Wednesday 17 June 15



A simple, and innocuous, optimisation:

Constant propagation

x = 14
y = 7 - x / 2

x = 14
y = 7 - 14 / 2  

Source code

Optimised code
x = 14
y = 0

3Wednesday 17 June 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

Thread 1 Thread 2

Shared memory

4Wednesday 17 June 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

Intuitively this program always prints 0

Thread 1 Thread 2

Shared memory

4Wednesday 17 June 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

  
Thread 1 Thread 2

  

5Wednesday 17 June 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

...the program always writes 1 rather than 0.

  print 1  

  
Thread 1 Thread 2

5Wednesday 17 June 15



Shared memory concurrency

x = y = 0x = y = 0

 x = 1
 if (y == 1)
   print x

 if (x == 1) {
   x = 0
   y = 1 }

But if the compiler propagates the constant x = 1...

...the program always writes 1 rather than 0.

  print 1  

  
Thread 1 Thread 2

An optimising compiler can break your code

5Wednesday 17 June 15



Lazy initialisation (even an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never used 
(e.g. device drivers code).  Compare:

 int x = computeInitValue();  // eager initialization 
 …                            // clients refer to x 

with:

int xValue() {
  static int x = computeInitValue(); // lazy initialization 
  return x;
} ...                          // clients refer to xValue() 

6Wednesday 17 June 15



The singleton pattern

Lazy initialisation is a pattern commonly used.  In C++ you would write:

  class Singleton {
  public:
    static Singleton *instance (void) {
!     if (instance_ == NULL)
! !   !instance_ = new Singleton;
!   ! return instance_;
    }
! …                               // other methods omitted
  private:
!   static Singleton *instance_;  // other fields omitted
  };

  … 
  Singleton::instance () -> method ();

But this code is not thread safe! Why?

7Wednesday 17 June 15



Making the singleton pattern thread safe

A simple thread safe version:

class Singleton {
public:
! static Singleton *instance (void) {
! ! Guard<Mutex> guard (lock_); // only one thread at a time
! ! if (instance_ == NULL)
! ! ! instance_ = new Singleton;
! ! return instance_;
! }!
private:
! static Mutex lock_;
! static Singleton *instance_; 
};

Every call to instance must acquire and release the lock: excessive overhead.

8Wednesday 17 June 15



Obvious (broken) optimisation

class Singleton {
public:
! static Singleton *instance (void) {
! ! if (instance_ == NULL) {
! ! ! Guard<Mutex> guard (lock_); // lock only if unitialised 
! !   instance_ = new Singleton; }
! ! return instance_;
! }
!
private:
! static Mutex lock_;
! static Singleton *instance_; 
};

9Wednesday 17 June 15



Clever programmers use double-check 
class Singleton {
public:
! static Singleton *instance (void) {
! ! // First check
! ! if (instance_ == NULL) {
! ! ! // Ensure serialization 
! ! ! Guard<Mutex> guard (lock_);
! ! ! // Double check
! ! ! if (instance_ == NULL)
! ! ! ! instance_ = new Singleton;
! ! }
! ! return instance_;
! }
private: [..]
};

Idea: re-check that the Singleton has not been created after acquiring the lock.

10Wednesday 17 June 15



Double-check locking: clever but broken

instance_ = new Singleton; 

does three things:

1) allocate memory
2) construct the object
3) assign to instance_ the address of the memory

Not necessarily in this order!  For example:

instance_ =                        // 3
  operator new(sizeof(Singleton)); // 1 
new (instance_) Singleton          // 2 

If this code is generated, the order is 1,3,2.

11Wednesday 17 June 15



Broken…

    if (instance_ == NULL) {               // Line 1
      Guard<Mutex> guard (lock_);
      if (instance_ == NULL) {
        instance_ =                        
           operator new(sizeof(Singleton));   // Line 2 
        new (instance_) Singleton; }} 

Thread 1:
executes through Line 2 and is suspended; at this point, 
instance_ is non-NULL, but no singleton has been constructed.

Thread 2:
executes Line 1, sees instance_ as non-NULL, returns, and 
dereferences the pointer returned by Singleton (i.e., instance_).

12Wednesday 17 June 15



Broken…

12Wednesday 17 June 15



Problem

instance_ =                        // 3
  operator new(sizeof(Singleton)); // 1 
new (instance_) Singleton          // 2

We need a way to specify that step 3 come after steps 1 and 2.

There is no way to specify this in C++

Similar examples can be built for any programming language…

13Wednesday 17 June 15



That pesky hardware (1)

Consider misaligned 4-byte accesses:

(Disclaimer: compiler will normally ensure alignment)

Intel SDM x86 atomic accesses:

• n-bytes on an n-byte boundary (n = 1,2,4,16)

• P6 or later: … or if unaligned but within a cache line

Question: what about multi-word high-level language values?

int32_t a = 0int32_t a = 0

a = 0x44332211 if (a == 0x00002211)
print "error"

14Wednesday 17 June 15



That pesky hardware (2)

Hardware optimisations can be observed by concurrent code:

Thread 0 Thread 1

x = 1 y = 1

print y print x

At the end of some executions:

 0   0

is printed on the screen, 

both on x86 and Power/ARM

15Wednesday 17 June 15



That pesky hardware (2)

...and differ between architectures...

At the end of some executions:

 1   0

is printed on the screen 
on Power/ARM but not on x86.

Thread 0 Thread 1

x = 1 print y

y = 1 print x

16Wednesday 17 June 15



17Wednesday 17 June 15



The fundamental problem

18Wednesday 17 June 15



The fundamental problem

The programmer wants 
to understand the code 

he writes

18Wednesday 17 June 15



The fundamental problem

The programmer wants 
to understand the code 

he writes

The compiler 
- and the hardware - 
try hard to optimise it

18Wednesday 17 June 15



The fundamental problem

The programmer wants 
to understand the code 

he writes

The compiler 
- and the hardware - 
try hard to optimise it

Which are the valid optimisations that the compiler or the hardware can 
perform without breaking the expected semantics of a concurrent program?

Which is the semantics of a concurrent program?

18Wednesday 17 June 15



  4) The design of the C11/C++11 languages

  5) Escape lanes are a Pandora’s box

  6) Exploring alternative models

  0. Concurrency and optimisations, not so simple

  1) The simplest model

  2) Data-race freedom (aka. the layman semantics)

  3) How to design a programming language

  7) Hope

19Wednesday 17 June 15



A brief tour of compiler optimisations

20Wednesday 17 June 15



World of optimisations

         A typical compiler performs many optimisations.

gcc 4.4.1. with -O2 option goes through 147 compilation passes. 

computed using -fdump-tree-all and -fdump-rtl-all

Sun Hotspot Server JVM has 18 high-level passes with each pass 
composed of one or more smaller passes.

http://www.azulsystems.com/blog/cliff-click/2009-04-14-odds-ends

21Wednesday 17 June 15

http://www.azulsystems.com/blog/cliff-click/2009-04-
http://www.azulsystems.com/blog/cliff-click/2009-04-


World of optimisations

A typical compiler performs many optimisations.

– Common subexpression elimination 
       (copy propagation, partial redundancy elimination, value numbering) 
– (conditional) constant propagation 
– dead code elimination
– loop optimisations 
       (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.) 
– vectorisation 
– peephole optimisations 
– tail duplication removal
– building graph representations/graph linearisation 
– register allocation 
– call inlining 
– local memory to registers promotion
– spilling 
– instruction scheduling

22Wednesday 17 June 15



World of optimisations

However only some optimisations change shared-memory traces:

– Common subexpression elimination 
       (copy propagation, partial redundancy elimination, value numbering) 
– (conditional) constant propagation 
– dead code elimination
– loop optimisations 
       (loop invariant code motion, loop splitting/peeling, loop unrolling, etc.) 
– vectorisation 
– peephole optimisations 
– tail duplication removal
– building graph representations/graph linearisation 
– register allocation 
– call inlining 
– local memory to registers promotion
– spilling 
– instruction scheduling

  

  

  

  
  

23Wednesday 17 June 15



What is an optimisation?

Compiler Writer Semanticist

24Wednesday 17 June 15



What is an optimisation?

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

24Wednesday 17 June 15



What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

24Wednesday 17 June 15



tmp

What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

Compiler Writer Semanticist

24Wednesday 17 June 15



tmp

What is an optimisation?

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

24Wednesday 17 June 15



tmp

What is an optimisation?

...assuming initially y=42... 

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ; Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

24Wednesday 17 June 15



tmp

What is an optimisation?

...assuming initially y=42... 

Store z 0

Store x[0] 43
Store z 1
Load y 42
Store x[1] 43

for (int i=0; i<2; i++) {
  z = i;
  x[i] +=    ;
}

y+1tmp =    ;

Load y 42

 Sophisticated program analyses
 Fancy algorithms
 Source code or IR

 Operations on AST

 Elimination of run-time events
 Reordering of run-time events
 Introduction of run-time events

 Operations on sets of events

Compiler Writer Semanticist

24Wednesday 17 June 15



Eliminations

This includes common subexpression elimination, dead read 
elimination, overwritten write elimination, redundant write elimination.

Irrelevant read elimination: 
r=*x; C ! C

where r is not free in C. 

Redundant read after read elimination:
r1=*x; r2=*x ! r1=*x; r2=r1

Redundant read after write elimination:
*x=r1; r2=*x ! *x=r1; r2=r1

25Wednesday 17 June 15



Reordering

Common subexpression elimination, some loop optimisations, code 
motion.

Normal memory access reordering:
r1=*x; r2=*y ! r2=*y; r1=*x
*x=r1; *y=r2 ! *y=r2; *x=r1 
r1=*x; *y=r2 ⇄ *y=r2; r1=*x

Roach motel reordering: 
memop; lock m ! lock m; memop

unlock m; memop ! memop; unlock m 
where memop is *x=r1 or r1=*x

26Wednesday 17 June 15



Memory access introduction

Can an optimisation introduce memory accesses? 

Yes:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
   j = *x + 1; 
   i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
   j = tmp + 1; 
   i = i-1 }

→

27Wednesday 17 June 15



Memory access introduction

Can an optimisation introduce memory accesses? 

Yes:

Note that the loop body is not executed.

i = 0;
...
while (i != 0) {
   j = *x + 1; 
   i = i-1 }

i = 0;
…
tmp = *x;
while (i != 0) {
   j = tmp + 1; 
   i = i-1 }

→  Back to our question now:

Which is the semantics of a concurrent program?

27Wednesday 17 June 15



The simplest memory model

sequential consistency

28Wednesday 17 June 15



Lamport, 1979.

Sequential consistency

...the result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 

order specified by its program...

29Wednesday 17 June 15



Compilers, programmers & sequential 

30Wednesday 17 June 15



Compilers, programmers & sequential 

Simple and intuitive 
programming model

30Wednesday 17 June 15



Compilers, programmers & sequential 

Simple and intuitive 
programming model

Expensive 
to implement

30Wednesday 17 June 15



An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

  
  

  

4% ?

31Wednesday 17 June 15



EXCESSIVE 
OVERHEAD

An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

This study assumes that the hardware is SC:
these numbers are optimistic lower bounds.

  
  

  

32Wednesday 17 June 15



EXCESSIVE 
OVERHEAD

An SC-preserving compiler, obtained by 
restricting the optimization phases in 
LLVM, a state-of-the-art C/C++ compiler, 
incurs an average slowdown of 3.8% and a 
maximum slowdown of 34% on a set of 30 
programs from the SPLASH-2, PARSEC, 
and SPEC CINT2006 benchmark suites.

This study assumes that the hardware is SC:
these numbers are optimistic lower bounds.

  
  

  

What is an SC-preserving compiler?

When is a compiler correct?

32Wednesday 17 June 15



When is a compiler correct?	

i.e. for any execution of the compiled program, there is an execution of 
the source program with the same observable behaviour.

Intuition: we represent programs as sets of memory action traces, where 
the trace is a sequence of memory actions of a single thread.

Intuition: the observable behaviour of an execution is the subtrace of 
external actions.

A compiler is correct if any behaviour of the compiled 
program could be exhibited by the original program.

33Wednesday 17 June 15



Exercise

Is the transformation from P1 to P2 correct (in an SC semantics)?

34Wednesday 17 June 15



Exercise

35Wednesday 17 June 15



Exercise

Executions of P1:

35Wednesday 17 June 15



Exercise

Executions of P1: Executions of P2:

35Wednesday 17 June 15



Exercise

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

35Wednesday 17 June 15



Exercise

Executions of P1: Executions of P2:

Behaviours of P1: Behaviours of P2:

It is correct to rewrite P1 into P2, but not the opposite!

36Wednesday 17 June 15



Another exercise

37Wednesday 17 June 15



Another exercise

37Wednesday 17 June 15



Another exercise

 Again, the transformed program exhibits a new behaviour

37Wednesday 17 June 15



Elimination of adjacent accesses

Some optimisations are correct under SC.

For example it is correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the 
optimised program, we perfom both reads in the source program.

38Wednesday 17 June 15



Elimination of adjacent accesses

Some optimisations are correct under SC.

For example it is correct to rewrite:

The basic idea: whenever we perform the read r1 = *x in the 
optimised program, we perfom both reads in the source program.

Not really satisfying...  Can we define a model that:
  1) enables more optimisations than SC, and
  2) retains the simplicity of SC?

38Wednesday 17 June 15



The layman solution
forbid data-races

39Wednesday 17 June 15



Data-race freedom

Our examples again:

• the problematic transformations 
   (e.g. swapping the two writes in  
   thread 0) do not change the meaning of single-threaded programs

• the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

40Wednesday 17 June 15



Data-race freedom

Our examples again:

• the problematic transformations 
   (e.g. swapping the two writes in  
   thread 0) do not change the meaning of single-threaded programs

• the problematic transformations are detectable only by code that 
allows two threads to access the same data simultaneously in 
conflicting ways (e.g. one thread writes the datas read by the other).

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0
...intuition...

Programming languages provide 
synchronisation mechanisms

if these are used (and implemented) correctly, 
we might avoid the issues above...

40Wednesday 17 June 15



      Prohibit data races

Defined as follows:

• two memory operations conflict if they access the same memory 
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently).

Example: a data race in the example above:

The basic solution Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

41Wednesday 17 June 15



      Prohibit data races

Defined as follows:

• two memory operations conflict if they access the same memory 
location and at least one is a store operation;

•a SC execution (interleaving) contains a data race if two conflicting 
operations corresponding to different threads are adjacent (maybe 
executed concurrently).

Example: a data race in the example above:

The basic solution

The definition of data race quantifies only 

over the sequential consistent executions

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

Observable behaviour: 0

41Wednesday 17 June 15



How do we avoid data races? (high-level languages)

•Locks
No lock(l) can appear in the interleaving unless prior lock(l) and unlock(l) 
calls from other threads balance.

•Atomic variables
  Allow concurrent access “exempt” from data races (called volatile in Java).

Example: 

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

42Wednesday 17 June 15



This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();
43Wednesday 17 June 15



This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering

43Wednesday 17 June 15



This program is data-race free:

Thread 0 Thread 1

*y = 1 lock();
lock(); tmp = *x;
*x = 1 unlock();
unlock(); if tmp = 1

then print *y

*y = 1; lock();*x = 1;unlock(); lock();tmp = *x;unlock(); if tmp=1 then print *y

How do we avoid data races? (high-level languages)

*y = 1; lock(); tmp = *x; unlock(); lock(); *x = 1; unlock(); if tmp=1 

lock();tmp = *x;unlock(); *y = 1; lock(); *x = 1; unlock(); if tmp=1

lock(); tmp = *x; unlock(); if tmp=1; *y = 1; lock();*x = 1;unlock();

*y = 1; lock(); tmp = *x; unlock(); if tmp=1; lock(); *x = 1; unlock(); 

lock();tmp = *x;unlock(); *y = 1; if tmp=1; lock(); *x = 1; unlock();

•lock(), unlock() are opaque for the compiler: viewed as 
potentially modifying any location, memory operations cannot be 
moved past them

•lock(), unlock() contain "sufficient fences" to prevent hardware 
reordering across them and global orderering

Compiler/hardware can continue to reorder accesses  

Intuition: 
compiler/hardware do not know about threads
but only racing threads can tell the difference!

43Wednesday 17 June 15



Validity of compiler optimisations, 

44Wednesday 17 June 15



Validity of compiler optimisations, 

  Jaroslav Sevcik

  Safe Optimisations for Shared-Memory Concurrent Programs

PLDI 2011  

44Wednesday 17 June 15



Compilers, programmers & data-race 

45Wednesday 17 June 15



Compilers, programmers & data-race 

Can be implemented 
efficiently

45Wednesday 17 June 15



Compilers, programmers & data-race 

Intuitive programming 
model (but detecting 

races is tricky!)

Can be implemented 
efficiently

45Wednesday 17 June 15



Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

46Wednesday 17 June 15



Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!  

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.

46Wednesday 17 June 15



Another example of DRF program

Exercise: is this program DRF?

Thread 0 Thread 1

if *x == 1 if *y == 1

then *y = 1 then *x = 1

Answer: yes!  

The writes cannot be executed in any SC execution, so they cannot 
participate in a data race.

Data-race freedom is not the ultimate panacea 

  - the absence of data-races is hard to verify / test (undecidable)

  - imagine debugging...

      my program ended with a wrong result:
         my program has a bug OR it has a data-race

      my program ended with a correct result:
         my program is correct OR it has a data-race

46Wednesday 17 June 15



Defining programming language memory models

47Wednesday 17 June 15



Option 1

Don't.

No concurrency.

Implemented by highly-successful programming languages (OCaml)

Poor match for current trends

48Wednesday 17 June 15



Option 2

Don't.

No shared memory
  

A good match for some problems (see Erlang, MPI, …)

49Wednesday 17 June 15



Option 3

Don't.

But language ensures data-race freedom
  

Possible:

- syntactically ensuring data accesses protected by associated locks

- fancy effect type systems (don’t miss Pottier’s lecture on Friday)

Not suitable for general purpose programming.

50Wednesday 17 June 15



Option 4

Don't.

Leave it (sort of) up to the hardware
  

Example: 

MLton, a high performance ML-to-x86 compiler with concurrency 
extensions 

Accesses to ML refs exhibit the underlying x86-TSO behaviour 
(atomicity is guaranteed though)

51Wednesday 17 June 15



Option 5

Do.

Use data race freedom as a definition
  

1. Programs that race-free have only sequentially consistent behaviours

2. Programs that have a race in some execution can behave in any way
                      Sarita Adve & Mark Hill, 1990

52Wednesday 17 June 15



Option 5

Do.

Use data race freedom as a definition
Pro: 
   - simple
   - strong guarantees for most code
   - allows lots of freedom for compiler and hardware optimisations

Cons:
   - undecidable premise
   - can't write racy programs (escape mechanisms?)

53Wednesday 17 June 15



Data-races are errors

54Wednesday 17 June 15



Data-races are errors

55Wednesday 17 June 15



Les data-races sont des erreursData-races are errors

56Wednesday 17 June 15



Les data-races sont des erreursData-races are errors

How to use C/C++ to implement 
low-level system code?

56Wednesday 17 June 15



Escape lanes 
for expert programmers

57Wednesday 17 June 15



Low-level atomics in C11/C++11
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
    if (0 == index) {
        flag0.store(1, std::memory_order_relaxed);
        turn.exchange(1, std::memory_order_acq_rel);

        while (flag1.load(std::memory_order_acquire)
            && 1 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    } else {
        flag1.store(1, std::memory_order_relaxed);
        turn.exchange(0, std::memory_order_acq_rel);

        while (flag0.load(std::memory_order_acquire)
            && 0 == turn.load(std::memory_order_relaxed))
            std::this_thread::yield();
    }
}

void unlock(unsigned index) {
    if (0 == index) {
        flag0.store(0, std::memory_order_release);
    } else {
        flag1.store(0, std::memory_order_release);
    }
}

Atomic variable declaration

New syntax 
for memory accesses

Qualifier

58Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

59Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

59Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

59Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

59Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

59Wednesday 17 June 15



MO_SEQ_CST

The compiler must ensure that MO_SEQ_CST accesses have 
sequentially consistent semantics.

Thread 0 Thread 1

x.store(1,MO_SEQ_CST) y.store(1,MO_SEQ_CST)

r1 = y.load(MO_SEQ_CST) r2 = x.load(MO_SEQ_CST)

The program above cannot end with r1 = r2 = 0.

Sample compilation on x86: 
store: MOV; MFENCE
load: MOV

Sample compilation on Power: 
store: HWSYNC; ST
load: HWSYNC; LD; CMP; BC; ISYNC

60Wednesday 17 June 15



MO_RELAXED

MO_RELAXED accesses can be reordered by compiler/hardware

Thread 0 Thread 1

x.store(1,MO_RELAXED) y.store(1,MO_RELAXED)

r1 = y.load(MO_RELAXED) r2 = x.load(MO_RELAXED)

The program above can end with r1 = r2 = 0.

Sample compilation on x86: 
store: MOV
load: MOV

Sample compilation on Power: 
store: ST
load: LD

61Wednesday 17 June 15



MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(MO_ACQUIRE)

y.store(1,MO_RELEASE) r2 = x.load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86: 
store: MOV
load: MOV

Sample compilation on Power: 
store: LWSYNC; ST
load: LD; CMP; BC; ISYNC

Accesses to the data structure can be reordered/optimised (MO_RELAXED).

62Wednesday 17 June 15



MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(x,MO_CONSUME)

y.store(&x,MO_RELEASE) r2 = (*r1).load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86: 
store: MOV
load: MOV

Sample compilation on Power: 
store: LWSYNC; ST
load: LD

The two loads have an address dependency, Power won't reorder them.

63Wednesday 17 June 15



Escape lanes pitfalls

64Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

65Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

REASONABLE

65Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

REASONABLE

HARD TO IMPLEMENT

65Wednesday 17 June 15



The qualifiers

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE 

MO_RELEASE / MO_CONSUME 

LESS RELAXED

MORE RELAXED

Sequential consistent accesses

Efficient implementation of message passing

Efficicient implementation of message passing on ARM/Power

No synchronisation; direct access to hardware

REASONABLE

HARD TO IMPLEMENT

Let’s focus on these...

65Wednesday 17 June 15



Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE)     r2 = y

x = y = 0

66Wednesday 17 June 15



Memory access synchronisation

Thread 1 Thread 2

y = 1 if (x.load(MO_ACQUIRE) == 1)

x.store(1,MO_RELEASE)     r2 = y

Non-atomic loads must return the most recent write 
in the happens-before order

x = y = 0

66Wednesday 17 June 15



Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y

x = y = 0

67Wednesday 17 June 15



Understanding MO_RELAXED

Thread 1 Thread 2

y = 1 if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y

DATA RACE

Two conflicting accesses not related by happens-before

x = y = 0

67Wednesday 17 June 15



Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

x = y = 0

68Wednesday 17 June 15



Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

 Allow a RELAXED load to see any store that:

   - does not happens-after it

   - is not hidden by an intervening store hb-ordered between them

x = y = 0

68Wednesday 17 June 15



Understanding MO_RELAXED

Thread 1 Thread 2

y.store(1,MO_RELAXED) if (x.load(MO_RELAXED) == 1)

x.store(1,MO_RELAXED)     r2 = y.load(MO_RELAXED)

WELL DEFINED

but r2 = 0 is possible

 Allow a RELAXED load to see any store that:

   - does not happens-after it

   - is not hidden by an intervening store hb-ordered between them

x = y = 0

Intuition
the compiler (or hardware) can reorder independent accesses

68Wednesday 17 June 15



Shorthand

 from now on, all the memory accesses are

atomic with MO_RELAXED semantics

69Wednesday 17 June 15



Out of thin-air reads

70Wednesday 17 June 15



Out-of-thin-air

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

x = y = 0

71Wednesday 17 June 15



Out-of-thin-air

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

r1 = r2 = 42
is a valid execution.

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0

71Wednesday 17 June 15



Out-of-thin-air

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = 42

r1 = r2 = 42
is a valid execution.

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

Intuition
the compiler (or hardware) can reorder independent accesses

x = y = 0

71Wednesday 17 June 15



Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

x = y = 0

  

72Wednesday 17 June 15



Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

x = y = 0

  

72Wednesday 17 June 15



Out-of-thin-air reads

Thread 1 Thread 2

r1 = x r2 = y

y = r1 x = r2

r1 = r2 = 42
is also an allowed execution

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

the value 42 appears out-of-thin-air

x = y = 0

  

72Wednesday 17 June 15



Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

73Wednesday 17 June 15



Speculation can justify out-of-thin-air reads

If the compiler states that x is likely to hold 42...

It does not happen in practice...  even if it might!

73Wednesday 17 June 15



Consequences of out-of-thin-air reads

74Wednesday 17 June 15



Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a;

a nextnext

75Wednesday 17 June 15



Thread 1 Thread 1

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a;

a nextnext

75Wednesday 17 June 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

76Wednesday 17 June 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

If a and b initially reference disjoint data-structures
we expect a and b to remain disjoint

76Wednesday 17 June 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

77Wednesday 17 June 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

  If the compiler speculates r1=b and r2=a, then
    the store r1->next=a justifies r2=b->next assigning r2=a 
    (and symmetrically to justify r1=b)

77Wednesday 17 June 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

  If the compiler speculates r1=b and r2=a, then
    the store r1->next=a justifies r2=b->next assigning r2=a 
    (and symmetrically to justify r1=b)

77Wednesday 17 June 15



Thread 1 Thread 2

r1 = a->next r2 = b->next

r1->next = a r2->next = b

struct foo { 
  atomic<struct foo *> next;
}
struct foo *a, *b;

a nextnext

b nextnext

Break our basic intuitions
about memory and sharing!

  If the compiler speculates r1=b and r2=a, then
    the store r1->next=a justifies r2=b->next assigning r2=a 
    (and symmetrically to justify r1=b)

77Wednesday 17 June 15



Common compiler optimisations 
are unsound in C11 

Breaking news

78Wednesday 17 June 15



if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

x = y = a = 0

79Wednesday 17 June 15



x = y = a = 0

Remark 1

This code is not racy!

There is no consistent execution in which 
the read of a occurs.

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

80Wednesday 17 June 15



x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

81Wednesday 17 June 15



x = y = a = 0

Remark 2

a = 1 ⋀ x = y = 0

is the only possible final state

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

Consider sequentialisation:
C || D   ⟹  C ; D

(ought to be correct)

81Wednesday 17 June 15



x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

82Wednesday 17 June 15



x = y = a = 0

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

82Wednesday 17 June 15



a = 1 
x = y = 42
is also possible

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

x = y = a = 0

83Wednesday 17 June 15



a = 1 
x = y = 42
is also possible

Break common source-to-source
(or LLVM IR - to - LLVM IR) 

compiler optimisations
including expression linearisation and roach-motel reorderings

 a = 1

if (x.load(rlx)==42) if (y.load(rlx)==42)

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

x = y = a = 0

83Wednesday 17 June 15



Are there any solutions?

84Wednesday 17 June 15



Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

85Wednesday 17 June 15



Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

r1 = r2 = 42.     Can you spot the difference?

85Wednesday 17 June 15



Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

r1 = r2 = 42.     Can you spot the difference?
The “bad” example has a cycle of dependencies.

85Wednesday 17 June 15



Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = r2

Thread 0 Thread 1

r1 = x r2 = y

y = r1 x = 42

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

R x 42

W y 42
sb

R y 42

W x 42
sb

rfrf

r1 = r2 = 42.     Can you spot the difference?
The “bad” example has a cycle of dependencies.

Solution 1.
Prohibit executions with dependency cycles

85Wednesday 17 June 15



Compiler writers
do not want to track all dependencies

86Wednesday 17 June 15



if (x) 
  a[i++] = 1;
else 
  a[i++] = 2;

Does the store to i depend on the load of x?

Compiler writers
do not want to track all dependencies

86Wednesday 17 June 15



Solution 2. Brute force

Disallow cycles altogether

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

87Wednesday 17 June 15



Solution 2. Brute force

Disallow cycles altogether

Allows all source-to-source optimisations

(except for r/w reordering on atomics)

but expensive on ARM and GPUs 

R x 42 R y 42

W y 42 W x 42
sb sb

rfrf

87Wednesday 17 June 15



Solution 3. less brute force

Allow cycles but make this racy
by allowing a to read 1

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

88Wednesday 17 June 15



Solution 3. less brute force

Allow cycles but make this racy
by allowing a to read 1

Efficient implementation of atomics on ARM/GPUs

but all R/W reorderings are unsound

if (x.load(rlx)==42) if (y.load(rlx)==42) a = 1

 y.write(42,rlx)    if (a==1)
   x.write(42,rlx)

88Wednesday 17 June 15



State of the art

“Implementations should ensure 
that no “out-of-thin-air” values are 
computed that circularly depend 

on their own computation.”
Current proposal for C++14

89Wednesday 17 June 15



Currently, there is no really satisfactory proposal 
for the semantics of a general-purpose 

shared-memory concurrent programming language.

90Wednesday 17 June 15



Currently, there is no really satisfactory proposal 
for the semantics of a general-purpose 

shared-memory concurrent programming language.

Remarkable and disturbing.

90Wednesday 17 June 15



The memory models of modern 
hardware are better understood

Programming languages attempt 
to specify and implement 

reasonable memory models.

Researchers and programmers 
are now interested in these 

problems.

91Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 1 returns without modifying b

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

Thread 1 returns without modifying b

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

Thread 2 is not affected by Thread 1 and vice-versa

C11 states that this program must print 42

Thread 1 returns without modifying b

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

92Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

93Wednesday 17 June 15



...sometimes we get 0 on the screen 

gcc 4.7 -O2

int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

93Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

The outer loop can be (and is) optimised away

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

94Wednesday 17 June 15



int s;
for (s=0; s!=4; s++) {
  if (a==1)
    return NULL;
  for (b=0; b>=26; ++b)
    ; 
}

 movl  a(%rip), %eax   # load a into eax
 movl  b(%rip), %ebx   # load b into ebx
 testl %eax, %eax      # if a==1
 jne   .L2             #   jump to .L2
 movl  $0, b(%rip)
 ret
.L2:
 movl  %ebx, b(%rip)   # store ebx into b
 xorl  %eax, %eax      # store 0 into eax
 ret                   # return

gcc 4.7 -O2

The compiled code saves and restores b

Correct result in a sequential setting

94Wednesday 17 June 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

95Wednesday 17 June 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

95Wednesday 17 June 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx

95Wednesday 17 June 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b

95Wednesday 17 June 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b

95Wednesday 17 June 15



  movl   a(%rip),%eax
  movl   b(%rip),%ebx
  testl  %eax, %eax
  jne    .L2
  movl   $0, b(%rip)
  ret
.L2:
  movl   %ebx, b(%rip)
  xorl   %eax, %eax
  ret

- Read a (1) into eax

b = 42;
printf("%d\n", b);

int a = 1;
int b = 0;

Thread 1 Thread 2

Shared memory

- Read b (0) into ebx
- Store 42 into b
- Store ebx (0) into b
- Print b: 0 is printed

95Wednesday 17 June 15



The horror, the horror...  a subtle compiler bug!

96Wednesday 17 June 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

97Wednesday 17 June 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

97Wednesday 17 June 15



Compiler testing: state of the art  
    Yang, Chen, Eide, Regehr - PLDI 2011

Reported hundreds of bugs

on various versions of gcc, clang and other compilers

Cannot catch
concurrency compiler bugs

97Wednesday 17 June 15



Hunting concurrency compiler bugs?

How to deal with non-determinism?

How to generate non-racy interesting programs?

How to capture all the behaviours of concurrent programs?

A compiler can optimise away behaviours: 
how to test for correctness?

limit case: two compilers generate correct code with disjoint final states

98Wednesday 17 June 15



C/C++ compilers support separate compilation
Functions can be called in arbitrary non-racy concurrent contexts

C/C++ compilers can only apply transformations sound 
with respect to an arbitrary non-racy concurrent context

Idea

Hunt concurrency compiler bugs 

=
 search for transformations of sequential code 

not sound in an arbitrary non-racy context

99Wednesday 17 June 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

Check: only transformations sound 
in any concurrent non-racy context

SEQUENTIAL
PROGRAM

100Wednesday 17 June 15



Soundness of compiler optimisations in 
the C11/C++11 memory model

101Wednesday 17 June 15



Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

...

Under which conditions is it 
correct to eliminate the first store?

102Wednesday 17 June 15



A same-thread release-acquire pair is a pair of 
a release action followed by an acquire action

in program order.

An action is a release if it is a possible source of a synchronisation

 unlock mutex, release or seq_cst atomic write

An action is an acquire if it is a possible target of a synchronisation 

lock mutex, acquire or seq_cst atomic read 

103Wednesday 17 June 15



Elimination of overwritten writes

Store g 1

Store g 2

sb

sb

It is safe to eliminate the first store 
if there are:

no access to g

no st rel/acq pair
1. no intervening accesses to g
2. no intervening 
       same-thread release-acquire pair

104Wednesday 17 June 15



g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

105Wednesday 17 June 15



candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 1

105Wednesday 17 June 15



candidate overwritten write
g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

same-thread release-acquire pair

Thread 1

105Wednesday 17 June 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

106Wednesday 17 June 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

106Wednesday 17 June 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

The program should only print 1

106Wednesday 17 June 15



The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

Thread 2 is non-racy

g = 1;
f1.store(1,RELEASE);
while(f2.load(ACQUIRE)==0);
g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

sync

sync

If we perform overwritten write elimination it prints 0
The program should only print 1

106Wednesday 17 June 15



sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

while(f2.load(ACQUIRE)==0);

107Wednesday 17 June 15



sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

107Wednesday 17 June 15



sync

The soundness condition

g = 0; atomic f1 = f2 = 0;

Shared memory

If only a release (or acquire) is present, then 
all discriminating contexts are racy.

It is sound to optimise the overwritten write.

data race

g = 1;
f1.store(1,RELEASE);

g = 2;

while(f1.load(ACQUIRE)==0);
printf(“%d”, g);
f2.store(1,RELEASE);

Thread 1 Thread 2

107Wednesday 17 June 15



Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb

108Wednesday 17 June 15



Write-after-Read

Store g v1

Store g v1

Write-after-Write

no access to g

no rel/acq pair

Read-after-Read

Read g v

Read g v

no access to g

no rel/acq pair

sb

sb

Read-after-Write

Store g v

Read g v

no access to g

no rel/acq pair

sb

sb

Eliminations: bestiary

Store g v1

Store g v2

no access to g

no rel/acq pair

sb

sb

Overwritten-Write

Read g v

Store g v

Write-after-Read

no access to g

no rel/acq pair

sb

sbsb

Reads which are not used (via data or control dependencies) to decide a 
write or synchronisation event are also eliminable (irrelevant reads).

sb

Also correctness statements for

reorderings, merging, and introductions of events.

108Wednesday 17 June 15



From theory to the Cmmtest tool

109Wednesday 17 June 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

Check: only transformations sound 
in any concurrent non-racy context

110Wednesday 17 June 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

Check: only transformations sound 
in any concurrent non-racy context

110Wednesday 17 June 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

reference
semantics

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

110Wednesday 17 June 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

111Wednesday 17 June 15



REFERENCE 
MEMORY 

TRACE
MEMORY 

TRACE

optimising
compiler
under test

EXECUTABLE

tracing

SEQUENTIAL
PROGRAM

CSmith 
extended with locks 

and atomics

binary 
instrumentation

EXECUTABLE

gcc/clang -O0

binary
instrumentation

Check: only transformations sound 
in any concurrent non-racy context

OCaml tool
 1. analyse the traces to detect eliminable actions
 2. match reference and optimised traces

111Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

Start with a randomly generated well-defined program

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

const unsigned int g3 = 0UL;
long long g4 = 0x1;
int g6 = 6L;
volatile unsigned int g5 = 1UL;

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

112Wednesday 17 June 15



void func_1(void){
    int *l8 = &g6;
    int l36 = 0x5E9D070FL;
    unsigned int l107 = 0xAA37C3ACL;
    g4 &= g3;
    g5++;
    int *l102 = &l36;
    for (g6 = 4; g6 < (-3); g6 += 1);
    l102 = &g6;
    *l102 = ((*l8) && (l107 << 7)*(*l102));
}

RaW* Load  g4 1 
     Store g4 0 
RaW* Load  g5 1
     Store g5 2 
OW*  Store g6 4 
RaW* Load  g6 4 
RaR* Load  g6 4 
RaR* Load  g6 4 
     Store g6 1 
RaW* Load  g4 0

reference
semantics

Load  g5 1 
Store g4 0 
Store g6 1 
Store g5 2
Load  g4 0

gcc -O2 memory trace

Init g3 0
Init g4 1
Init g5 1
Init g6 6 

Can match applying 
only correct eliminations and reorderings

112Wednesday 17 June 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

If we focus on the miscompiled initial example...

113Wednesday 17 June 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

113Wednesday 17 June 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

reference
semantics

Load a 1

113Wednesday 17 June 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory tracereference
semantics

Load a 1

113Wednesday 17 June 15



  int s;
  for (s=0; s!=4; s++) {
    if (a==1)
      return NULL;
    for (b=0; b>=26; ++b)
      ; 
  }

int a = 1;
int b = 0;

Load  a 1
Load  b 0
Store b 0

gcc -O2 memory trace

     Cannot match some events           detect compiler bug

reference
semantics

Load a 1

113Wednesday 17 June 15



Applications

114Wednesday 17 June 15



1. Testing C compilers (GCC, Clang, ICC)

Some concurrency compiler bugs found 
in the latest version of GCC.

Store introductions performed by loop invariant motion or 
if-conversion optimisations.

Remark: these bugs break the Posix thread model too.

All promptly fixed.

115Wednesday 17 June 15



2. Checking compiler invariants

Baked this invariant into the tool and found a counterexample...

GCC internal invariant: never reorder with an atomic access

atomic_uint a; 
int32_t g1, g2;

int main (int, char *[]) {
  a.load() & a.load ();
  g2 = g1 != 0; 
}

ALoad  a   0  4
ALoad  a   0  4
Load   g1  0  4
Store  g2  0  4

Load   g1  0  4
ALoad  a   0  4
ALoad  a   0  4
Store  g2  0  4

...not a bug, but fixed anyway

116Wednesday 17 June 15



3. Detecting unexpected behaviours

Correct or not?

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

117Wednesday 17 June 15



3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

118Wednesday 17 June 15



3. Detecting unexpected behaviours

uint16_t g

for (; g==0; g--); g=0;

uint16_t g

ALoad  a  0  4
Load   g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

ALoad  a  0  4
Store  g  0  2
ALoad  a  0  4
AStore a  0  4
ALoad  a  1  4

?

The introduced store cannot be observed by a non-racy context.

Still, arguable if a compiler should do this or not.

If g is initialised with 0, a load gets replaced by a store:

False positives in Thread Sanitizer

118Wednesday 17 June 15



The formalisation of the C11 memory model 
enables compiler testing...  what else?

119Wednesday 17 June 15



Proving the correctness of mappings for atomics
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

120Wednesday 17 June 15

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html


Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish

121Wednesday 17 June 15



Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish

Still, many open problems...

121Wednesday 17 June 15



Inform new optimisations
e.g. the work by Robin Morisset on the Arm LLVM backend

  while (flag.load(acquire))
   {}

.loop
  ldr r0, [r1]
  dmb ish
  bnz .loop

.loop
  ldr r0, [r1]
  bnz .loop
  dmb ish

Still, many research opportunities!

121Wednesday 17 June 15



Thank you!  Questions?

122Wednesday 17 June 15


