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Predicting Pandemics

Thex 

A SIMPLE STORY (2)         Predicting the H1N1 pandemic 

Network Science: Introduction 2012 Worldwide model of H1N1 2009 influenza virus.
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Motivational overview

� Population models are the natural way to describe large systems of
interacting agents, common in systems biology, epidemiology,
ecology, computer performance, CAS, . . .

� Such models are typically described as a stochastic process in
discrete space and continuous time.
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� These stochastic
models are very hard to
analyse, in particular
for large populations.

� Mean field theorems, when they can be applied, allow us to
replace for large populations the stochastic process with a small
system of ODE, that can be easily solved numerically.
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Example: SIRS epidemic model
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Population Models

� Assumption: agents are
individually indistinguishable and
homogeneously mixed.

� State: we just need to count how
many agents are in each different
state.

� Dynamics: what are the
interactions among agents, how
many interact and how they
change state.
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Population Models

A population CTMC model is a tuple X = (X,D, T ,x0), where:
1. X — vector of variables counting how many individuals in

each state.
2. D — (countable) state space.
3. x0 ∈ D —initial state.
4. ηi ∈ T — global transitions. They can be visualised as

chemical reaction/ rewriting rules:

r1X1 + . . . rnXn −→ s1X1 + . . . snXn.

Formally, they are pairs ηi = (v, r(X))

4.1 v ∈ Rn, v = s− r — update vector (state changes from X to
X + v)

4.2 r : D → R≥0 — rate function.

SFM 11 / 59



quanƟcol. . ...............................
www.quanticol.eu

Example: SIRS epidemics

S

I R

� Three variables: XS,XI ,XR.
� State space:
D = {(n1,n2,n3) | n1 + n2 + n3 =
N} ⊂ {0, . . . ,N}3.

� Transitions:
� S + I −→ I + I
ηinf = ((−1,1,0), skI

XI
N XS)

� I −→ R
ηrec = ((0,−1,1), kRXI)

� R −→ S
ηsusc = ((1,0,−1), kSXR)
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Exponential Distribution

Definition
A random variable T : (Ω,S)→ [0,∞] is Exp(λ) iff

� Cdf is P(T < t) = 1− e−λt

� Density is fT (t) = λe−λt , t ≥ 0.

The expected value of T is E(T ) =
∫∞

0 P(T > t)dt = 1
λ .

Memoryless Property
T ∼ Exp(λ) if and only if the following memoryless property holds:

P(T > s + t |T > s) = P(T > t) for all s, t ≥ 0.

Instantaneous firing probability
An exponential distribution with rate λ models the firing time of an event
who has probability of firing between time t and t + dt equal to λdt .
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CTMC: definition

S-valued Continuous Time Markov Chain
� Let S be finite or countable.

� A CTMC on a state space S is a labelled graph, where labels are
the rates of exponential distributions.

� In each state, there is a race condition between the different exiting
edges: the fastest is traversed.

� The CTMC has the memoryless property: the future depends only
on the current state.

Formally
A Continuous Time Markov Chain is a right-continuous continuous-time
random process (with cadlag sampling paths) satisfying the
memoryless condition: for each n, ti and si :

P(Xtn = sn | Xt0 = s0, . . . ,Xtn−1 = sn−1) = P(Xtn = sn | Xtn−1 = sn−1).
SFM 14 / 59
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CTMC: infinitesimal generator

Formally
A Continuous Time Markov Chain is a right-continuous continuous-time
random process (with cadlag sampling paths) satisfying the
memoryless condition: for each n, ti and si :

P(Xtn = sn | Xt0 = s0, . . . ,Xtn−1 = sn−1) = P(Xtn = sn | Xtn−1 = sn−1).

Q-matrix
A Q-matrix is the |S| × |S| matrix such that:

1. qij ≥ 0, i 6= j is the rate of the exponential distribution giving the
time needed to go from state si to state sj

2. qii = −
∑

j 6=i qij is the opposite of the exit rate from state i .

Therefore, each row of the Q-matrix sums up to zero.
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A simple example:
single agent infectionS
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CTMC for population models:
the SIRS example
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Master Equation

The equation for the time evolution of the probability mass for
CTMC is known as Kolmogorov equation. In the context of
Population Processes is often know as master equation.

There is one equation per state x ∈ D, for the probability mass
P(x, t), which considers the inflow and outflow of probability at
time t .

dP(x, t)
dt

=
∑
η∈T

rη(x− vη)P(x− vη, t)−
∑
η∈T

rη(x)P(x, t)

These differential equations, for finite state spaces, can be solved
by numerical integration or by using specialised methods for
CTMC (uniformization). Finite state projections can be used for
infinite state spaces. The cost is polynomial in the size of the
state space.
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Example: SIRS model
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dP([1,1,1], t)/dt =
2kr P([1,2,0], t) +
2ksP([0,1,2], t)− kiP([1,1,1], t)−
kr P([1,1,1], t)− ksP([1,1,1], t)

dP([3,0,0], t)/dt = ksP([2,0,1], t)

dP([0,3,0], t)/dt =
2kiP([1,2,0], t)− 3kr P([0,3,0], t)
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Stochastic Simulation

An alternative to solve the master equation is to generate sample
trajectories of the CTMC, and then extract statistical information
from them.

The most famous simulation algorithm is due to Doob-Gillespe. It
is based on the fact that a CTMC can be factorized in two
independent processes.

� The time Tx spent in a state (holding time) x is exponentially
distributed with rate r0(x) =

∑
η rη(x) (exit rate).

� The probability of taking transition η (jump chain) is
independent of T and is equal to rη(x)/r0(x).
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Stochastic Simulation

The Doob-Gillespie algorithm samples the time spent in a state
and the next state according to the previous characterization. Let
x be the current state (initially x0) and t the current time (initially,
t = 0).

While t < tfinal

1. Sample dt ∼ Tx (using dt = − log U/r0(x), U uniform in
[0,1]) and update time to t + dt

2. Choose a transition η with probability rη(x)/r0(x) and update
the state to x + vη.

Complexity is proportional on the number of reactions and on the
steps to be done till the final time is reached, which on average
are bounded by tfinal ·maxx r0(x).

SFM 21 / 59
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Example: SIRS model
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System size

A crucial notion in population models is that of system size:
� typically the total population (e.g. for the SIRS model)
� a physical quantity (the volume in biochemical systems)
� a measure of intensity (the arrival rate in queueing networks)

Why it is important?
The size of the state space grows polynomially (or exponentially)
with the system size. For moderate system sizes, numerical
solution of the master equation is unfeasible. Simulation, instead,
typically has a complexity growing linearly with the size.
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Example: SIRS epidemic model
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Example: SIRS epidemic model

S

I R

N = 1000
0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

oc
cu

pa
nc

y

S
I
R

SFM 25 / 59



quanƟcol. . ...............................
www.quanticol.eu

Example: SIRS epidemic model
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Mean-Field (Fluid) Approximation

Basics
� It applies to CTMC models of population dynamics with large

population size N (studies the limit as N →∞)

� It works on scaled variables, to treat uniformly different
population levels.

� Requires proper scaling and regularity assumptions on rates.
� The method works by constructing an ODE from the

sequence of population dependent CTMC.
� It can be proved that, in any finite time horizon, the

trajectories of the CTMC become indistinguishable from the
solution of the ODE.
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An intuition

time

X
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Scaling Conditions

Basics
� We have a sequence X (N) of models, for increasing system

size (e.g. total population N).
� We normalize such models in order to bring them to the

same scale (divide variables by size N).
� X(N)(t) is the Markov process (in continuous time) defined by
X (N).
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Normalization

The normalized model X̂ (N) = (X̂, D̂(N), T̂ (N), X̂(N)
0 ) associated

with X (N) = (X,D(N), T (N),X(N)
0 ) is defined by:

� Variables: X̂ = X
N

� Domain: D̂(N) = {N−1x | x ∈ D}.

� Initial conditions: X̂(N)
n =

X(N)
0
N

� Normalized transition τ̂ = (v̂N
τ , r̂

(N)
τ (X̂)) associated with

τ ∈ T (N):
� Update: v̂N

τ = vτ/N;
� Rates: r (N)

τ (X) = N · f (N)
τ

( X
N

)
= r̂ (N)

τ

(X
N

)

SFM 32 / 59



quanƟcol. . ...............................
www.quanticol.eu

Example: SIRS epidemics

S
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� r (N)
rec (X) = kRXI = NkR

XI
N = NkRX̂I

r̂ (N)
rec (X̂) = NkRX̂I , frec(X̂) = kRX̂I

� r (N)
inf (X) = kI

N XSXI = NkI
XS
N

XI
N = NkIX̂SX̂I

r̂ (N)
inf (X̂) = NkIX̂SX̂I , finf (X̂) = kIX̂SX̂I
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Scaling assumptions: state space

� Consider the normalised state space D̂(N) of X̂(N)(t).

� We need to find a set E ⊂ Rn (open or compact) which
contains D̂(N) for each N. This will be the set in which the
fluid limit will live.

Example: SIRS epidemics
In this case, the normalised variables take values in a discrete
grid between 0 and 1:

D̂(N)
i = { j

N
| j = 1, . . . ,N}.

Hence, we can take E to be the unit cube [0,1]3.

However, the total population is conserved, so we can restrict to
the unit simplex E = {x ∈ [0,1]3 |

∑
i xi = 1}.

SFM 34 / 59
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Scaling assumptions

f (N)
τ is required to converge uniformly to a locally Lipschitz continuous
and locally bounded function fτ :

sup
x∈E
‖f (N)
τ (x)− fτ (x)‖ → 0.

If f (N)
τ = fτ does not depend on N, the rate satisfies the density

dependence condition.

f locally Lipschitz iff ∀x,∃B(x),L > 0,∀y ∈ B(x) ‖f (x)− f (y)‖ ≤ L‖x−y‖
f locally bounded iff ∀x,∃B(x),M > 0, ‖f (x)‖ ≤ M‖x− y‖

The following theorem works also under less restrictive assumptions
(e.g. random increments with bounded variance and average).

SFM 35 / 59
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Drift and Limit Vector Field

Drift
The drift or mean increment at level N is

F (N)(x) =
∑
τ∈T

vτ f (N)
τ (x)

By the scaling assumptions, F (N) converges uniformly to F , the
limit vector field:

F (x) =
∑
τ∈T

vτ fτ (x).

Fluid ODE
The fluid ODE is

dx(t)
dt

= F (x(t))

SFM 36 / 59
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Deterministic approximation theorem

� X̂(N)(t): sequence of Markov processes that satisfy the
conditions above.

� ∃x0 ∈ S such that X̂(N)(0)→ x0 in probability (or almost
surely)

� x(t): solution of ẋ = F (x), x(0) = x0, living in E for all t ≥ 0.

Theorem (Kurtz)
For any finite time horizon T <∞, it holds that:

sup
0≤t≤T

||X̂(N)(t)− x(t)|| → 0 in probability,

meaning, for each δ > 0, that

limN→∞ P
{

sup0≤t≤T ||X̂(N)(t)− x(t)|| > δ
}

= 0.
SFM 37 / 59
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Epidemics example continued

The CTMC X(N)(t) of the epidemics model satisfies all the
hypothesis of fluid limit theorem, so it converges in probability to
the solution of the following set of ODEs:

S

I R


dxS
dt = kSxR − kIxIxS

dxI
dt = kIxIxS − kRxI
dxR
dt = kRxI − kSxR

SFM 38 / 59
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Epidemics example continued
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Epidemics example continued
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Epidemics example continued
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Epidemics example continued
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Proof of Kurtz Theorem: intuition

General idea: CTMC as a perturbed dynamical system

X̂(N)(t) = X̂(N)(0) +

∫ t

0
F (X̂(N)(s))ds + M(N)(t),

M(N)(t) := X̂(N)(t)− X̂(N)(0)−
∫ t

0
F (X̂(N)(s))ds

� Compensator: X̂(N)(0) +
∫ t

0 F (X̂(N)(s))ds

� ODE solution: x(t) = x(0) +
∫ t

0 F (x(s))ds
� Noise term M(N)(t): supt≤T ‖M(N)(t)‖ converges to zero as

1/
√

N in probability. Staten otherwise, the magnitude of
fluctuations of the non-normalised population model are of
order

√
N.
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Mean-field for Process Algebra

� The results on mean field approximation are independent of
the way we specify models, provided the theorem conditions
are satisfied. We can apply it to Stochastic Process Algebra
models.

� SPA usually generate a CTMC via a Structural Operational
Semantics (SOS). But one can define a SOS that generates
the mean-field equations.
In some cases, SPA properties automatically guarantee that
the conditions of the mean-field theorem are satisfied.

� Mean-Field semantics for SPA exist for PEPA, Bio-PEPA,
sCCP, stochastic CCS, . . .

SFM 44 / 59
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Mean-field for Process Algebra

A simple CCS-like SPA

A:=!a.C | ?a.C | a.C | A+A; C:=A; P:=A | P ‖ P; a ∈ A, k(a) ∈ R≥0

We have two types of interaction:

� handshake synchronisation (!a, ?a), with global rate proportional to
the number of agent’s pairs that can perform it.

� spontaneous actions (a), with global rate proportional to the
number of agents that can perform it.

SIRS example

S:=?inf .I; I:=!inf .I + rec.R; R:=loss.S;

SIRS:= S ‖ . . . ‖ S︸ ︷︷ ︸
nS

‖ I ‖ . . . ‖ I︸ ︷︷ ︸
nI SFM 45 / 59
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Mean-field for Process Algebra

How to build the mean-field ODE via SOS?
1. Store the initial number of agents for each type in a counting

vector.
2. Build the reduced system: put one single copy of each agent

type in parallel.
3. Apply a set of SOS rules labeled by an update vector and a

rate function.
4. collect the set of all possible derivations: these will be the

transitions of a PCTMC.

Examples of SOS rules (whiteboard)

� !a.C
!a,eC ,k(a)−−−−−−→ C, ?a.C ?a,eC ,1−−−−→ C, a.C

a,eC ,k(a)−−−−−→ C.

� P1
!a,v1,f1−−−−→ P ′1, P2

?a,v2,f2−−−−→ P ′2 ⇒ P1 ‖ P2
a,v1+v2,f1·f2−−−−−−−→ P ′1 ‖ P ′2
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Fast Simulation
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� Consider a large
population

� Focus on an
individual agent

� We can model it
as a CTMC
conditional on
the global state

� Fast simulation:
replace the
PCTMC with its
mean-field

SFM 50 / 59



quanƟcol. . ...............................
www.quanticol.eu

Fast Simulation
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The formal treatment of fast simulation
requires:

� Define the model of an individual
agent conditional on the system
state

� Prove a convergence result, when
the system is replaced by its
mean-field approximation.
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Single Agent Asymptotic Behaviour

� Fix a single individual in a population model X (N) and let
Z (N) be the single-agent stochastic process with state space
S (not necessarily Markov).

� Let Q(N)(x) be defined by

P{Y (N)
h (t + dt) = j | Y (N)

h (t) = i , X̂(N)(t) = x} = q(N)
i,j (x)dt ,

with Q(N)(x)→ Q(x).
� Let z(t) be the time inhomogeneous-CTMC on S with

infinitesimal generator Q(t) = Q(x(t)), x(t) fluid limit.

Theorem (Fast simulation theorem)

For any T <∞, P{Z (N)(t) 6= z(t), t ≤ T} → 0.
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Fluid Model Checking
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� Goal: check properties of an
individual agent.

� Idea: model check the fast
simulation model.

� Challenge: the model is a
time-dependent CTMC.

� Gain: speedup of few orders of
magnitude.
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Bike Sharing System
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Vélib’ stations in the centre of Paris

(a) Empty station

(b) Full station

� Each station has a given number of parking slots.
� Users enter the system by picking up a bike at a station, if any, and

making a trip to another station, where they drop the bike on an
available parking spot, if any. SFM 55 / 59
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The queueing model

A BSS network with 3 stations
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Queueing network representation

1

X1(t)

�1(t)

�2(t)

�3(t)

µ1(t)
p12(t)

p13(t)

Z21(t)

⌧31 = 1
µ31

Figure : A BSS network with 3 stations

June 13, 2016 8 / 22

� Assume a fully symmetric
situation: each station has k
slots, arrival rates are the
same, routing is uniform.

� Each station can be seen as
an agent with internal states
{0, . . . , k}.

� We can build a population
model with counting variables
X0, . . . ,Xk .

� Transitions: arrival of a customer in a station with i bikes (Xi − 1, Xi−1 + 1),
with rate λ(t)Xi(t), and the return of a bike from station i to station with j
bikes (Xj − 1, Xj+1 + 1) with rate µij(t)Xj(t).

� System size: number of stations N. We can apply the mean field limit.
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Mean field analysis

Fast simulation→ treat stations independently

µ(t) λ(t)

⇓

0 1 2 . . . . . . κ

µ(t)

λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

µ(t)

λ(t)

Beyond homogeneity
This approach works if all stations are the same, which is not realistic.

It can be adapted to the case of heterogeneous stations (next part of the talk)!
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Summary

� Context: stochastic models of large populations of interacting
agents (e.g. epidemics, bike sharing, . . . ).

� Problem: hard to analyse computationally.
� Main idea: theorems showing that under mild regularity

conditions, the behaviour of these models for large
populations is essentially captured by a small set of ODEs.

� Pros: fast computational methods to analyse global behavior,
and to check properties of individuals.

� Cons: limitations due to the conditions to be satisfied (large
populations, continuous rates, scaling conditions,
homogeneity). Relaxations are possible.

Take home message
If you need to analyse a large population model, check if you can
apply mean-field. If so, use it and save a lot of time and energy.
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