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Without space

� often space is not taken into account in quantitative modelling
� not relevant to the modelling question under consideration

� in biological modelling, mass action assumes a spatial
homogeneity

� individuals and population are not located because space plays no
role in their behaviour

� what features are mostly used in the type of quantitative
modelling we do?

� passage of time
� state of individuals, which can change spontaneously or by

interaction with others
� aggregation of individuals to reason at population level and

mitigate state space explosion

� overview of nonspatial representations
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Scalable analysis applied to space

Current approach for scalable modelling

State-space
fluid approximation−−−−−−−−−−−−−−→ ODEs

explosion
Does this work with discrete space?

Bigger
fluid approximation−−−−−−−−−−−−−−→ PDEs

state-space
explosion

Maybe but not the only approach
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Quantitative modelling with space

� what is the main objective here?

� modelling collective adaptive systems (CAS)
� quantitative: behaviour over time is important
� aggregation: many agents lead to state space explosion
� space: behaviour with respect to space relevant to many CAS

� consider mathematical representations of space and movement
� results obtained by analysis techniques
� semantic target for CAS modelling languages
� understand relationships between representations
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Spatial aspects of representations

Space discr cont

grid, lattice, regular infinite

neighbourhood location usually

single individual at each node changes smoothly

multiple individuals at each node

patches, irregular Another approach:
explicit adjacency relationship topological space

regions of cont space will covered tomorrow
multiple individuals in each patch in spatio-temporal logic

typically 2-dimensional or 3-dimensional

SFM-16 16 / 78



quanƟcol. . ...............................
www.quanticol.eu

Spatial aspects of representations

Space discr cont

grid, lattice, regular

infinite

neighbourhood

location usually

single individual at each node

changes smoothly

multiple individuals at each node

patches, irregular Another approach:
explicit adjacency relationship topological space

regions of cont space will covered tomorrow
multiple individuals in each patch in spatio-temporal logic

typically 2-dimensional or 3-dimensional

SFM-16 16 / 78



quanƟcol. . ...............................
www.quanticol.eu

Spatial aspects of representations

Space discr cont

grid, lattice, regular

infinite

neighbourhood

location usually

single individual at each node

changes smoothly

multiple individuals at each node

patches, irregular

Another approach:

explicit adjacency relationship

topological space

regions of cont space

will covered tomorrow

multiple individuals in each patch

in spatio-temporal logic

typically 2-dimensional or 3-dimensional

SFM-16 16 / 78



quanƟcol. . ...............................
www.quanticol.eu

Spatial aspects of representations

Space discr cont

grid, lattice, regular infinite

neighbourhood location usually

single individual at each node changes smoothly

multiple individuals at each node

patches, irregular

Another approach:

explicit adjacency relationship

topological space

regions of cont space

will covered tomorrow

multiple individuals in each patch

in spatio-temporal logic

typically 2-dimensional or 3-dimensional

SFM-16 16 / 78



quanƟcol. . ...............................
www.quanticol.eu

Spatial aspects of representations

Space discr cont

grid, lattice, regular infinite

neighbourhood location usually

single individual at each node changes smoothly

multiple individuals at each node

patches, irregular

Another approach:

explicit adjacency relationship

topological space

regions of cont space

will covered tomorrow

multiple individuals in each patch

in spatio-temporal logic

typically 2-dimensional or 3-dimensional

SFM-16 16 / 78



quanƟcol. . ...............................
www.quanticol.eu

Spatial aspects of representations

Space discr cont

grid, lattice, regular infinite

neighbourhood location usually

single individual at each node changes smoothly

multiple individuals at each node

patches, irregular Another approach:
explicit adjacency relationship topological space

regions of cont space will covered tomorrow
multiple individuals in each patch in spatio-temporal logic

typically 2-dimensional or 3-dimensional

SFM-16 16 / 78



quanƟcol. . ...............................
www.quanticol.eu

Spatial classification

Time continuous
Aggr none state and/or space
State discrete continuous discrete continuous
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Discrete space
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Discrete space

www.quanticol.eu

Work Package 2 22 / 51

www.quanticol.eu

Work Package 2 29 / 51

discrete regular discrete

assumption that vertices and edges are static but parameters as-
sociated with edges (movement) and vertices (local interaction)
may be time-dependent
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Discrete space

� set of locations: L
� undirected graph over locations: (L,EL)

� edges are two element sets: {`1, `2} ∈ P2(L)

� graph is a skeleton which captures where movement or
interaction is possible

� spatial parameters (ranges remain abstract)
� λ(`) for all locations ` ∈ L, and
� η(`1, `2) and η(`2, `1) for all edges {`1, `2} ∈ EL

� locations
� points in space: L
� regions in space: f : R× R→ L
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Connectivity in discrete space

� full connectivity: ease of analysis

� neighbourhood: general location graph
� one-hop neighbour: traverse a single edge
� n-hop neighbour: traverse n edges

� neighbourhood: spatially regular graph
� von Neumann: N, E, S, W
� Moore: N, NE, E, SE, S, SW, W, NW
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Aspects of discrete space

� boundary conditions
� avoid: graph defined over torus or sphere

T. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 9

(Xmax,0)

(0,Ymax) (Xmax,Ymax)

(0,0)

Closed Coverage Area

Figure 7: Rectangular simulation area mapped to a torus in the Boundless Simulation Area Mobility Model.
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Figure 8: Traveling pattern of an MN using the Boundless Simulation Area Mobility Model.

� include: can be an accurate model of realityT. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 8
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Figure 6: Traveling pattern of an MN using the Random Direction Mobility Model.

2.4 A Boundless Simulation Area
In the Boundless Simulation Area Mobility Model, a relationship between the previous direction of travel and velocity
of an MN with its current direction of travel and velocity exists [12]. A velocity vector v = (v,θ) is used to describe
an MN’s velocity v as well as its direction θ; the MN’s position is represented as (x,y). Both the velocity vector and
the position are updated at every Δt time steps according to the following formulas:

v(t+Δt) = min[max(v(t)+Δv,0),Vmax];

θ(t+Δt) = θ(t)+Δθ;

x(t+Δt) = x(t)+ v(t)∗ cosθ(t);

y(t+Δt) = y(t)+ v(t)∗ sinθ(t);

where Vmax is the maximum velocity defined in the simulation, Δv is the change in velocity which is uniformly dis-
tributed between [−Amax∗Δt,Amax∗Δt], Amax is the maximum acceleration of a givenMN, Δθ is the change in direction
which is uniformly distributed between [−α ∗Δt,α ∗Δt], and α is the maximum angular change in the direction an
MN is traveling.

The Boundless Simulation Area Mobility Model is also different in how the boundary of a simulation area is
handled. In all the mobility models previously mentioned, MNs reflect off or stop moving once they reach a simulation
boundary. In the Boundless Simulation Area Mobility Model, MNs that reach one side of the simulation area continue
traveling and reappear on the opposite side of the simulation area. This technique creates a torus-shaped simulation
area allowing MNs to travel unobstructed. Figure 7 illustrates this concept. The rectangular area on the left side of
Figure 7 is transformed into the torus shape on the right side of Figure 7 in two steps; first we fold the simulation
area so that the top border (y=Ymax) lies against the bottom border (y= 0), forming a cylinder, and then we fold the
resulting cylinder so that both open circular ends connect. Figure 8 illustrates an example path of an MN using the
Boundless Simulation Area Mobility Model, where Vmax is 10 m/s, Amax is 10 m/s2, α is π/2 or 90 degrees, and Δt
is 0.1 seconds; the MN begins in the center of the simulation area or position (150, 300) and moves for 500 seconds.
The triangles in the figure illustrate when the MN reaches a boundary and the dots illustrate where the MN reappears.
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quanƟcol. . ...............................
www.quanticol.eu

Space and homogeneity

� location homogeneous:
λ(`i ) = λ(`j) for all locations `i , `j ∈ L

� transfer homogeneous (movement or interaction):
η(`i , `j) = η(`j , `i ) = η(`i ′ , `j ′) = η(`j ′ , `i ′)
for all edges {`i , `j}, {`i ′ , `j ′} ∈ EL

� (spatially) parameter homogeneous:
location and transfer homogeneous

� spatially homogeneous:
parameter homogeneous and complete location graph (every
location neighbours every other location)

� spatial homogeneity may lead to analytic solutions rather than
simulation of differential equations
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Space and regularity

� spatially regular
� maybe be parameter homogeneous
� not spatially homogeneous
� not easy to define from a graph but obvious to identify

� two dimensions: triangles, rectangles, hexagons

� one dimension: path

� other possibilities

� characterised by regular way to define neighbours
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Spatial classification

Time continuous
Aggr none state and/or space
State discrete continuous discrete continuous

Space

discrete

www.quanticol.eu

A1

A1

B1

B3

A1

B2

B3B3

B3

A2

Work Package 2 23 / 51

www.quanticol.eu

Work Package 2 24 / 51
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Discrete space

discrete state without aggregation
www.quanticol.eu

A1

A1

B1

B3

A1

B2

B3B3

B3

A2

Work Package 2 23 / 51
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quanƟcol. . ...............................
www.quanticol.eu

Discrete space: no state aggregation

� no state aggregation: modelling individuals

� consider J, named individual
� loc(J, t) ∈ L, location at time t
� state(J, t) = Ai or state(J, t) = Y
� set of rules to describe behaviour

� discrete state, discrete space and rates:
CTMC with states of the form(
(loc(J1, t), state(J1, t)), . . . , (loc(JN , t), state(JN , t))

)

� potential for (n × p)N states in CTMC where p is number of
locations, n is number of states and N is number of individuals
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Discrete space

continuous state without aggregation
www.quanticol.eu
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Discrete space

discrete state with aggregation
www.quanticol.eu

A1

A1
B1

B3

A1
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quanƟcol. . ...............................
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Notation

A subpopulation is the subset of a population that is in a given state.

Assuming n subpopulations and p locations, then X
(j)
i (t) is the size

of the subpopulation i at location j at time t.

Xi = (X
(1)
i , . . . ,X

(p)
i ) Xi =

∑p
j=1 X

(j)
i

X(j) = (X
(j)
1 , . . . ,X

(j)
n ) X (j) =

∑n
i=1 X

(j)
i

X = (X(1), . . . ,X(n)) X =
∑n

i=1

∑p
j=1 X

(j)
i

=
∑p

j=1

∑n
i=1 X

(j)
i

The size of subpopulation X
(j)
i at time t is N

(j)
i (t).

The total size of subpopulation Xi at time t is Ni (t).
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Discrete space: state aggregation

� discrete space, discrete aggregated state:
population CTMC with states of the form
(
X

(1)
1 , . . . ,X

(1)
n , . . . ,X

(k)
1 , . . . ,X

(k)
n , . . . ,X

(p)
1 , . . . ,X

(p)
n

)

� this CTMC is much smaller than that for discrete space and
discrete state without aggregation

� analysis provides same results at population level

� potential for (M + 1)n×p states in CTMC where p is number of
locations, n is number of states and M is the maximum
subpopulation size
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Discrete space

continuous state with aggregation
www.quanticol.eu

A1
B1

B3

A1

B2

B3

B3

A2

Work Package 2 26 / 51
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Discrete space: state aggregation

� continuous aggregated state gives population ODEs that
approximate CTMC results (under certain conditions)

dX
(j)
i

dt
= fi ,j

(
X

(j)
1 , . . . ,X

(j)
n

)
+

p∑

k=1,k 6=j

(
gi ,j ,k(X

(k)
1 , . . . ,X

(k)
n )− hi ,j ,k(X

(j)
1 , . . . ,X

(j)
n )
)

� a simpler form with parameter homogeneity

dX
(j)
i

dt
= f

(
X

(j)
1 , . . . ,X

(j)
n

)
+

p∑

j=k,j 6=j

(
g(X

(j)
1 )− h(X

(k)
1 ))

� n × p ODEs where p is number of locations and n is number of
states
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Movement in discrete space
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Discrete space and movement

A1

A1
B1

B3

A1

B2

B3

B3

B3

A2

A1

A1
B1

B3

A1

B2

B3

B3

B3

A2

� discrete space with state-based aggregation

� interaction between and within populations at locations

� movement between locations

� patch population models

� population CTMCs and ODEs with locations
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Discrete space and movement

� single occupancy of locations

� discrete space without state-based aggregation

� graph transformation rules, change at a location

� cellular automata

� interacting particle systems
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Continuous space
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Spatial classification
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Continuous space

� R× R or contiguous subset

� radius to define neighbourhood

� boundary conditions: similar to discrete space
� no aggregation, consider individual J

� loc(J, t) = (x , y) which is its location at time t
� state(J, t) = Ai or state(J, t) = Y
� interaction rules
� movement description: random walk, etc

� agent model

� continuous space and state: continuous-time Markov processes

� continuous space and discrete state: hybrid
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Continuous space

� discrete aggregated state: spatio-temporal point processes
Xi ((x , y), t) ∈ N and λ((x , y), t) describes behaviour

dE [Xi ]

dt
describes change in average density, global measure

� continuous aggregated state: partial differential equations
∂Xi

∂t
= fi (X1, . . . ,X

())
n

+
∂

∂x

(
D(Xi , (x , y))

∂Xi

∂x

)

+
∂

∂y

(
D(Xi , (x , y))

∂Xi

∂y

)

D can depend on more than current population size and location
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Movement in continuous space
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Movement

� relationship with parameters and model abstraction

� movement in continuous space
� probability
� speed
� direction
� individual/group/concentration
� boundaries: reflection, absorption, none
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Mobility models from networking

� survey articles [Camp et al 2002, Musolesi and Mascolo 2009]

� distributions often unclear

� mobility models for single node/mobile entity

� random walk: random direction and speed, reflect

� random way-point: random destination and speed, pause, reflect
� boundless simulation area:
� Gauss-Markov: normally distributed random variables used to

update speed and direction from current speed and direction,
parameter to tune randomness

� probabilistic random walk: probability matrix to determine new
direction (if any) and position, fixed step size
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Mobility models from networking
T. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 4
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Figure 1: Traveling pattern of an MN using the 2-D Random Walk Mobility Model (time).
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Figure 2: Traveling pattern of an MN using the 2-D Random Walk Mobility Model (distance).

T. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 5
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Figure 3: Traveling pattern of an MN using the Random Waypoint Mobility Model.

If the specified time (or specified distance) an MN moves in the Random Walk Mobility Model is short, then the
movement pattern is a random roaming pattern restricted to a small portion of the simulation area. Some simulation
studies using this mobility model (e.g., [2, 10]) set the specified time to one clock tick or the specified distance to
one step. Figure 2 illustrates the static nature obtained in the Random Walk Mobility Model when the MN is allowed
to move 10 steps (not one) before changing direction; as shown, the MN does not roam far from its initial position.
In summary, if the goal of the performance investigation is to evaluate a semi-static network, then the parameter to
change an MN’s direction should be given a small value. Otherwise, a larger value should be used.

2.2 RandomWaypoint
2.2.1 Overview

The Random Waypoint Mobility Model includes pause times between changes in direction and/or speed [16]. An
MN begins by staying in one location for a certain period of time (i.e., a pause time). Once this time expires, the
MN chooses a random destination in the simulation area and a speed that is uniformly distributed between [minspeed,
maxspeed]. The MN then travels toward the newly chosen destination at the selected speed. Upon arrival, the MN
pauses for a specified time period before starting the process again.

Figure 3 shows an example traveling pattern of an MN using the Random Waypoint Mobility Model starting at a
randomly chosen point or position (133, 180); the speed of the MN in the figure is uniformly chosen between 0 and
10 m/s. We note that the movement pattern of an MN using the Random Waypoint Mobility Model is similar to the
Random Walk Mobility Model if pause time is zero and [minspeed, maxspeed] = [speedmin, speedmax].

The Random Waypoint Mobility Model is also a widely used mobility model (e.g., [4, 8, 11, 15]). In addition, the
model is sometimes simplified. For example, [18] uses the Random Waypoint Mobility Model without pause times.

2.2.2 Discussion

In most of the performance investigations that use the Random Waypoint Mobility Model, the MNs are initially
distributed randomly around the simulation area. This initial random distribution of MNs is not representative of the
manner in which nodes distribute themselves when moving. Figure 4 illustrates the cumulative average MN neighbor
percentage for MNs using the Random Waypoint Mobility Model as time progresses (speed is 1 m/s and pause time

T. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 9
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Closed Coverage Area

Figure 7: Rectangular simulation area mapped to a torus in the Boundless Simulation Area Mobility Model.
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Figure 8: Traveling pattern of an MN using the Boundless Simulation Area Mobility Model.
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Figure 9: Change of Mean Angle Near the Edges (in degrees)
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Figure 10: Traveling pattern of an MN using the Gauss-Markov Mobility Model.
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Mobility models from networking

� group mobility models
� reference point group: subsumes earlier models

each node has a reference point, relative position of reference
points are fixed, each node moves randomly around its reference
point, references points move as a group

� introduction of barriers, use of Voronoi graphs

� use of data from real logs to generate synthetic data
� connectivity models

� dynamic graphs
� parameter identification: contact duration, time between contacts
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Mobility models: networking

T. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 18

GM
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RP(t+1)

RM

MN

Figure 18: Movements of three MNs using the RPGM model.

3.5 Reference Point Group Mobility Model
The Reference Point Group Mobility (RPGM) model represents the random motion of a group of MNs as well as the
random motion of each individual MN within the group [13]. Group movements are based upon the path traveled by
a logical center for the group. The logical center for the group is used to calculate group motion via a group motion
vector, !GM. The motion of the group center completely characterizes the movement of its corresponding group of
MNs, including their direction and speed. Individual MNs randomly move about their own pre-defined reference
points, whose movements depend on the group movement. As the individual reference points move from time t to
t+1, their locations are updated according to the group’s logical center. Once the updated reference points, RP(t+1),
are calculated, they are combined with a random motion vector, !RM, to represent the random motion of each MN
about its individual reference point.

Figure 18 gives an illustration of three MNs moving with the RPGM model. The figure illustrates that, at time t,
three black dots exist to represent the reference points, RP(t), for the three MNs. As shown, the RPGM model uses
a group motion vector !GM to calculate each MN’s new reference point, RP(t+ 1), at time t+ 1; as stated, !GM may
be randomly chosen or predefined. The new position for each MN is then calculated by summing a random motion
vector, !RM, with the new reference point. The length of !RM is uniformly distributed within a specified radius centered
at RP(t+1) and its direction is uniformly distributed between 0 and 2π.

Movement patterns using the RPGM model are shown in Figures 19 and 20. Figure 19 is an illustration of three
MNs moving together as one group. Figure 20 is an illustration of five groups moving, such that each group has
a different number of MNs. Both the movement of the logical center for each group, and the random motion of
each individual MN within the group, are implemented via the Random Waypoint Mobility Model. One difference,
however, is that individual MNs do not use pause times while the group is moving. Pause times are only used when
the group reference point reaches a destination and all group nodes pause for the same period of time.

The RPGM model was designed to depict scenarios such as an avalanche rescue. During an avalanche rescue, the
responding team consisting of human and canine members work cooperatively. The human guides tend to set a general
path for the dogs to follow, since they usually know the approximate location of victims. The dogs each create their

T. Camp, J. Boleng, and V. Davies: Survey of Mobility Models 19
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Figure 19: Traveling pattern of one group (three MNs) using the RPGM model.
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Figure 20: Traveling pattern of five groups using the RPGM model.
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Mobility models: networking
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2. MOBILITY MODELS

[Bettstetter 2001]
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Movement models: biology/ecology

� survey articles [Codling et al 2012, Holmes et al 1994]

� focus on deterministic models with continuous space, PDEs

� assume a density function X1(x , y , t) over 2-dimensional space

� Brownian random motion/random walk

∂X1

∂t
= D

(
∂2X1

∂x2
+
∂2X1

∂y2

)
= D4X1

� diffusion constant: D
� suits homogeneous space and uniform movement rates
� allows unbounded movement
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respectively (with uCdClCr%1), or remain at the same
location with probability 1Ku(x, y)Kl(x, y)Kd(x, y)K
r(x, y). We now use a difference equation as in §2.2,
expand as a Taylor series and define the following
parameters:

bi Z lim
d;t;ei/0

eid

t
; aii Z lim

d;t/0

kid
2

2t
; ði Z 1; 2Þ;

with e1ZrKl; e2ZuKd; k1ZrCl; and k2ZuCd. (As these
parameters are spatially dependent, we also need to define
partial spatial derivatives ofaand b in the same limit.)Now,
taking appropriate limits as d, t, e1, e2/0, such that e1d/t,

e2d/t, k1d
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Figure 1. (a,c,e) PDFs and (b,d, f ) sample paths of different random walks. (a,b) A lattice BRW with probabilities of moving a

distance d right or left of t(D/d2Gu/(2d)) and up or down of tD/d2. (c,d) A non-lattice CRW with probabilities of turning an
angle dq clockwise or anticlockwise of ts20=ð2d2qÞ. (e, f ) A non-lattice BCRW with probabilities of turning clockwise or
anticlockwise of t s20=ð2d2qÞGq=ð2BdqÞ

! "
(cf. the linear reorientation model of §3.4). In the BRW and BCRW, the global preferred

direction is q0Z0; in the CRW and BCRW, the initial direction is qZp/2 and the walker moves with constant speed v. In all
cases, the walker starts at (x, y)Z(0, 0) at tZ0 and is allowed to move until tZ10. The PDFs p(x, y, tZ10) were calculated from
106 realizations of the walk. In (a), the white lines show the contours of the corresponding theoretical PDF (2.12). In the sample
paths for the BRW, at each step the walker either stays still or moves right, left, up or down by a distance d. In the CRW and
BCRW, at each step the walker’s direction of motion q either stays the same or turns clockwise or anticlockwise by an angle dq,
and the walker’s movement is given by the vector vt(cos q, sin q). Parameter values: DZ0.2, uZ0.5, s20Z0:5, BZ2.5, vZ0.5.
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Movement models: biology/ecology

� Brownian motion with drift/biased random walk

∂X1

∂t
= D

(
∂2X1

∂x2
+
∂2X1

∂y2

)
− wx

∂X1

∂x
− wy

∂X1

∂y

� wx and wy are drift velocities
� models external stimuli affecting movement
� zig-zag motion

� correlated random walk, telegraph equation

∂X1

∂t
=

s2

2λ

(
∂2X1

∂x2
+
∂2X1

∂y2

)
− 1

2λ

∂2X1

∂t2

� correlation between directions of travel: 1/2λ
� velocity of organisms: s
� bounded distribution, no inconsistent movement
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Movement models: biology/ecology

respectively (with uCdClCr%1), or remain at the same
location with probability 1Ku(x, y)Kl(x, y)Kd(x, y)K
r(x, y). We now use a difference equation as in §2.2,
expand as a Taylor series and define the following
parameters:
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Figure 1. (a,c,e) PDFs and (b,d, f ) sample paths of different random walks. (a,b) A lattice BRW with probabilities of moving a

distance d right or left of t(D/d2Gu/(2d)) and up or down of tD/d2. (c,d) A non-lattice CRW with probabilities of turning an
angle dq clockwise or anticlockwise of ts20=ð2d2qÞ. (e, f ) A non-lattice BCRW with probabilities of turning clockwise or
anticlockwise of t s20=ð2d2qÞGq=ð2BdqÞ

! "
(cf. the linear reorientation model of §3.4). In the BRW and BCRW, the global preferred

direction is q0Z0; in the CRW and BCRW, the initial direction is qZp/2 and the walker moves with constant speed v. In all
cases, the walker starts at (x, y)Z(0, 0) at tZ0 and is allowed to move until tZ10. The PDFs p(x, y, tZ10) were calculated from
106 realizations of the walk. In (a), the white lines show the contours of the corresponding theoretical PDF (2.12). In the sample
paths for the BRW, at each step the walker either stays still or moves right, left, up or down by a distance d. In the CRW and
BCRW, at each step the walker’s direction of motion q either stays the same or turns clockwise or anticlockwise by an angle dq,
and the walker’s movement is given by the vector vt(cos q, sin q). Parameter values: DZ0.2, uZ0.5, s20Z0:5, BZ2.5, vZ0.5.
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Movement models: biology/ecology
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(cf. the linear reorientation model of §3.4). In the BRW and BCRW, the global preferred

direction is q0Z0; in the CRW and BCRW, the initial direction is qZp/2 and the walker moves with constant speed v. In all
cases, the walker starts at (x, y)Z(0, 0) at tZ0 and is allowed to move until tZ10. The PDFs p(x, y, tZ10) were calculated from
106 realizations of the walk. In (a), the white lines show the contours of the corresponding theoretical PDF (2.12). In the sample
paths for the BRW, at each step the walker either stays still or moves right, left, up or down by a distance d. In the CRW and
BCRW, at each step the walker’s direction of motion q either stays the same or turns clockwise or anticlockwise by an angle dq,
and the walker’s movement is given by the vector vt(cos q, sin q). Parameter values: DZ0.2, uZ0.5, s20Z0:5, BZ2.5, vZ0.5.
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Movement models: biology/ecology

� biased movement relative to other animals, k ∈ R

∂X1

∂t
= D

(
∂2X1

∂x2
+
∂2X1

∂y2

)
+
∂

∂x

(
kX1

∂X1

∂x

)
+
∂

∂y

(
kX1

∂X1

∂y

)

k > 0 towards others, k < 0 away from others

� density-dependent movement, density function ψ(u)

∂u

∂t
= D

(
∂2X1

∂x2
+
∂2X1

∂y2

)
+
∂2ψ(X1)

∂x2
+
∂2ψ(X1)

∂y2

ψ is negative at low density and positive at high density
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Movement models: biology/ecology

� diffusion and reaction with two species, pairwise interaction

∂X1

∂t
= D1

(
∂2X1

∂x2
+
∂2X1

∂y2

)
+ (r1 − α11X1 − α1vX2)X1

∂X2

∂t
= D2

(
∂2X2

∂x2
+
∂2X2

∂y2

)
+ (r2 − α22X2 − α21X1)X2

� growth terms: r1, r2

� effect on own species: α11, α22

� effect on other species: α12, α21
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Classification and assessment
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Classification of representations

Time continuous
Aggr none state
State discrete continuous discrete continuous

Space
TDSHA,

CTMC, piecewise population population

discrete cellular deterministic CMTCs ODEs

automata, Markov with with

IPS process (PDMP) locations locations

agents, continuous- spatio- partial

continuous molecular time temporal differential

dynamics Markov point equation (PDE)

process (CTMP) process (STPP)
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Approximation techniques

Time continuous
Aggr none state
State discrete continuous discrete continuous

Space

fluid approx−−−−−−−→

population population

discrete cellular CMTCs ODEs

automata, with with

IPS locations locations

partial

continuous differential

equation (PDE)
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State discrete continuous discrete continuous

Space
fluid approx−−−−−−−→

population population

discrete cellular CMTCs ODEs
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IPS locations locations

partial

continuous differential

equation (PDE)
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Assessment for CAS
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Observations and guidelines
Discrete space with aggregation

Existing Approaches

general population CTMCs
patch models
reaction-dispersal networks
metapopulation models
compartments

regular lattice/grid models
coupled-map lattices
subvolumes
cellular Potts models
pattern formation models
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Observations and guidelines
Discrete space with aggregation

Assessment

� This type of approach has been used for smart transport case
studies.

� Many use approximations of stochastic models by ODEs that
are typically easy to solve numerically.

� Some focus on average or global behaviour. We want to
consider local behaviour as well.

� Some modelling approaches use features of the modelling
scenario to construct useful approximations like differences in
rates.

� Sufficient subpopulations per location are needed when using
ODEs.

SFM-16 63 / 78



quanƟcol. . ...............................
www.quanticol.eu

Observations and guidelines
Continuous space with aggregation

Existing Approaches

partial differential equations (PDEs): These describe continuous
aggregation over continuous space, and are typically
solved by discretization techniques. They can be
obtained by the hydrodynamic limit of individuals in
regular discrete space.

spatio-temporal point processes (STPPs): These describe discrete
aggregation over continuous space. STPPs are typically
analysed by finding average measures of density as
ODEs hence they are global in nature
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Observations and guidelines
Continuous space with aggregation

Assessment

� These approaches appear to have a limited match with smart
transport but are suitable for density-related aspects.

� Discretisation and the associated solutions of continuous space
models may provide approaches to analysing discrete space
models.
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Observations and guidelines
Discrete/continuous space without aggregation

Existing Approaches

discrete CTMCs

regular discrete interacting particle systems
cellular automata
contact processes
Markov random fields
Gibbs states

continuous labelled Markov processes
transition-driven stochastic hybrid automata
piecewise deterministic Markov processes
particle space
agent modelling
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Observations and guidelines
Discrete/continuous space without aggregation

Assessment

� These approaches involve modelling each individual and its
location.

� They will be useful for types of smart transport modelling
involving individual entities, such as some bus modelling.

� Continuous space with individuals provides a starting point for
transforming continuous space to discrete space, resulting in
aggregation of both state and space.
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Examples of spatial models
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ZebraNet

� model of ad hoc network using wildlife

� original model is continuous space and not aggregated
[Juang et al, 2002; Feng, 2014]

� transformation to a discrete space, aggregated model
[Feng, 2014]

� use of simulation from full model to obtain movement
parameters

� patches identified by Voronoi tessellation based on waterholes

� results are good approximation to full model

� much larger models can be considered
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ZebraNet
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Modelling movement

� Age of Gossip (Chaintreau et al 2009)

� aim: build a meanfield model of data exchange and ageing for
taxis in San Francisco Bay area

� GPS traces: location and time stamp

� division of area into equal regions
� generation of contact traces

� meeting defined by radio range and time in range

� parameter extraction from contact trace
� counts of vehicles and meetings
� movement rates, contact rates (3 different types)

� parameters used in stochastic and meanfield simulations

� comparison of contact traces and both simulations
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Modelling movement

Locations/Patches Trace Mean field

classes and contains the area outside classes 1-15. Its exis-
tence is important, as it keeps the number of mobile nodes
in the system rather constant. Base stations are placed in
fixed locations, and we assume that they always have fresh
information from a source server. We assume that each mo-
bile node (i.e., a Yellow Cab) is equipped with a short-range
radio that allows for the exchange of data upon a meeting
with base stations or other mobile nodes. As before, upon a
meeting with a base station, a mobile node receives fresh in-
formation; and a meeting between two mobile nodes results
in both of them having the latest information available in
any of them before the meeting.

Figure 2: The Bay Area is split into 16 classes.

Data Sets. We use GPS position records, measured ap-
proximately once per minute, which were collected within
the Cabspotting project [1] that aims at visualizing the as-
pects of everyday life in SF. About 500 Yellow cab vehicles
that operate in the area are equipped with GPS receivers.
Recorded data is sent to the central dispatcher and stored
in the database. Each GPS record contains the cab’s ID,
current location, as well as the time stamp (as Unix epoch).
This allows us to reconstruct the path of each individual
mobile node for the past two years.

We consider a 30 day GPS trace, from May 17 to June 15,
2008. We observe the 16 hour periods between 8 a.m. and
midnight. We want to avoid night-time, when the number
of active cabs drops.

Generation of Contact Traces. In order to obtain an
artificial contact trace from an existing GPS trace, we first
have to define ranges, for both mobile nodes and base sta-
tions. We also have to define the notion of meeting between
two mobile nodes or a mobile node and a base station.

We assume that mobile nodes’ radios, as well as base sta-
tions, have a range of 200m. This corresponds to the en-
visioned range in vehicular communications [11], and it is
a bit longer than the ranges of 802.11 devices (∼140m) or

Bluetooth Class 1 devices (∼100m). Each mobile node per-
forms scanning once per minute, looking for base stations
and other mobile nodes in range. Once another mobile node
or a base station is discovered, we use interpolation to make
sure that the contact lasts at least 10 seconds. So, we assume
that a meeting between two mobile nodes, or a mobile node
and a base station happened if, during scanning, a mobile
node detected another mobile node, or a base station and
their contact lasted for at least 10 seconds. As shown in [5],
a real system implemented on buses equipped with 802.11b
radios has an average transfer opportunity duration of 10.2s,
which is sufficient to exchange on average 1.2MB of data.
Contacts between mobile nodes, and with a base station,
can occur between scanning periods. We decide to ignore
these contacts as most of the existing wireless technologies
do not allow scanning and data exchange at the same time.

Using the provided definition of a meeting, we run a sim-
ulation (written in Java) and obtain the contact trace.

Parameter Settings. The input parameters for the model
and the mean field approximation, as defined in Section 3.1,
are µc, ηc, βc,c′ and ρc,c′ . For each class, we extract them
from the contact traces as follows:

µc (t) =
Nc,ub (t)

Nc (t)
, µc =

1

60

t0+60∑

t=t0

µc(t) ,

ηc (t) =
Nc,uu (t)

uc(t) ∗ (Nc (t) − 1)
, ηc =

1

60

t0+60∑

t=t0

ηc(t) ,

βc,c′(t) =
Nc,c′,uu(t)

2 ∗ N(t) ∗ uc(t) ∗ uc′(t)
, βc,c′ =

1

60

t0+60∑

t=t0

βc,c′(t) ,

ρc,c′(t) =
Nc,c′,trans(t)

Nc(t)
, ρc,c′ =

1

60

t0+60∑

t=t0

ρc,c′(t) .

where for any time slot t (in minute), N(t) is the total num-
ber of nodes; for any c we denote by Nc(t) (resp. uc(t))
the number (resp. the fraction) of nodes in class c, and we
denote by Nc,ub(t) (resp. Nc,uu(t)) the number of meeting
between mobile nodes and base stations (resp. between two
mobile nodes) during the time slot t; finally, for any classes
c $= c′, we denote by Nc,c′,uu(t) (resp. Nc,c′,trans(t)) the
number of meetings between nodes of different classes (resp.
the number of transitions from c to c′) during time slot t.
As shown above, per hour values of the parameters are cal-
culated by averaging their per minute (per time slot) values
over the period of one hour. The necessary per minute values
are extracted from the generated contact trace.

The values of the input parameters indicate that the node
distribution is highly skewed: 75% of the nodes are con-
tained within 4 popular classes (2,3,6 and 15, i.e., city center
and airport); nodes spend on average 12 to 40 min in one of
these classes before moving; 10% of the nodes are contained
in surrounding classes (1,4,5,9 and 12) where nodes stay less
time (4 to 12mn before moving). Class 16 contains roughly
10% of “persistent”nodes that remain in this class two hours
on average. All the other classes contain in total 5% of the
nodes; class 13 is generally empty. The rate of meetings for
two given nodes within the same class is generally between
(1/60mn) and (1/80mn); this contact rate is higher in classes
9,12,15 (1/20mn), and much smaller in 10,11,13,16 (under
1/200mn). Contacts between the nodes in different classes
are almost negligible (with rate less than 1/2000mn).
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Figure 4: The fraction of mobile nodes in classes 1-
15 that have age z<20mn acquired from the trace,
the model and the mean field limit, for a single base
station placed in class 3. We plot for comparison the
values obtained from the trace without opportunis-
tic contacts (bottom curves). Top panel - values at
1 p.m. (t=300mn). Bottom panel - values at 8 p.m.
(t=720mn).

Figure 6 displays QQ plots, comparing the age distribu-
tion of trace data with the corresponding age distributions
obtained from the mean-field approximation, for both of the
aforementioned cases (C = 16 and C = 2). The trace data
shown in the figure, for the case C = 16, was collected by
mobile nodes in classes 1 − 15, during the afternoon peak
hour (5pm-6pm), while the trace data for the 2 class case
was collected by mobile nodes in class 1, during the same
period. Age samples were taken on a per minute bases. The
artificial mean-field data samples were generated from the
mean-field CDFs, for the same time interval.

Figure 6(a) suggests that the mean-field and trace age
data samples, for the case C = 16, come from the same
distribution. In contrast, when C = 2, (Figure 6(b)), we
observe that the mean-field limit underestimates quantiles
for low age and almost always overestimates quantiles for
high age. This is a clear indication that data came from
different distributions.

The results above show that it is essential to capture the
diversity of locations (via classes), as they differ radically in
terms of expected performance (age distribution). The pri-

Figure 5: Comparison between the mean field limit
and the trace. Percentages of mobile nodes in classes
1-15 with age z<20mn at time t=300mn (1 p.m.).
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(a) MF vs Trace (C=16)
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(b) MF vs Trace (C=2)

Figure 6: The importance of being spatial. QQ
plots, comparing the age distributions of trace data
and data artificially obtained from the mean field
CDF, for 16 class and 2 class scenarios. Time period
observed is 5 p.m.-6 p.m.

mary factors are the dependencies between classes created
by patterns of mobility (transition matrix ρc,c′) and the con-
tact rates (µc, ηc, βc,c′) that are influenced by mobile node
densities and variations in placement of base stations.

7. APPLICATION
Let us consider the following problem. We would like to

leverage mobility and opportunistic contacts between taxi-
cabs to disseminate news, traffic information or advertising.
Each of these applications, however, requires a certain level
of infrastructure (base stations). The number and place-
ment of base stations, needed to achieve a given quality of
service, are not easy to guess. The answer, in general, de-
pends on the density of nodes in different areas, as well as
the transition rates and rates of opportunistic contacts. We
demonstrate in this section that a greedy algorithm based
on the mean-field limit offers a fast and efficient method
for placement of base stations, over multiple classes and a
significant improvement over the other simple heuristics.

7.1 Method for Infrastructure Deployment
Based on MF Approximation

The problem we solve can be formulated in the following
way: For a fixed budget (fixed number of base stations),
we would like to find an efficient placement of base stations

Proportion of mobile nodes with

age z ≤ 20 at time t = 300 min

[Chaintreau, Le Boudec and Ristanovic, 2009]
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Wireless virus spread

needs to be refined to take into account the password settings of
the users that range from a default password to weak or strong
passwords and finally to noncrackable passwords. For this rea-
son, we can think of the nonencrypted class S as being subdivided
into 4 subclasses. First, we distinguish between the routers with
default password Snopass and the ones with a password Spass1. The
latter contains routers with all sorts of passwords that undergo
the first stage of the attack that employs the smaller dictionary.
If this strategy fails, the routers are then classified as Spass2 and
undergo the attack that employs the larger dictionary. Finally, if
the password is unbreakable, the router is classified as Rhidden.
The last class represents routers whose password cannot be
bypassed. However, their immune condition is hidden in that it
is known only to the attacker who failed in the attempt, whereas
for all of the others, the router appears in the susceptible class
as it was in its original state. This allows us to model the
unsuccessful attack attempts of other routers in the dynamics.
WEP encrypted routers have the same properties in terms of
password, but the password relevance starts only when the WEP
encryption (if any) has been broken on the router. At this stage
of the attack it can be considered to be in the nonencrypted state,
and therefore no subclasses of SWEP have to be defined. In
addition to the above classes, the model includes the infected
class (I) with those routers that have been infected by the
malware and have the ability to spread it to other routers.

The model dynamics is specified by the transition rates among
different classes for routers under attack. Transitions will occur
only if a router is attacked and can be described as a reaction
process. For instance the infection of a nonencrypted router with
no password is represented by the process Snopass ! I3 2I. The
transition rates are all expressed as the inverse of the average
time needed to complete the attack. In the above case, the
average time of the infection process is ! " 5 min and the
corresponding rate " for the transition Snopass ! I 3 2I is " "
!#1. Similarly the time scale !WEP needed to break a WEP
encryption will define the rate "WEP ruling the transition from
the SWEP to the nonencrypted class. In Materials and Methods, we
report in detail all of the transition processes and the associated
rates defining the epidemic processes.

One of the most common approaches to the study of epidemic
processes is to use deterministic differential equations based on
the assumption that individuals mix homogeneously in the
population, each of them potentially in contact with every other
(19). In our case, the static nonmobile nature of wireless routers
and their geographical embedding make this assumption com-
pletely inadequate, showing the need to study the epidemic
dynamics by explicitly considering the underlying contact pattern
(21, 23–26). For this reason, we rely on numerical simulations
obtained by using an individual-based modeling strategy. At
each time step, the stochastic disease dynamics are applied to
each router by considering the actual state of the router and
those of its neighbors as defined by the actual connectivity

pattern of the network. It is then possible to measure the
evolution of the number of infected individuals and keep track
of the epidemic progression at the level of single routers. In
addition, given the stochastic nature of the model, different
initial conditions and stochastic noise realizations can be used to
obtain different evolution scenarios.

Because multiple-seed attacks are likely, we report simulations
with initial conditions set with 5 infected routers randomly
distributed within the population under study. Single-seed at-
tacks and different number of initial seeds have similar effects
and are reported in SI. The initial state of each router is directly
given by the real WiFi data or is obtained from estimates based
on real data, as detailed in Materials and Methods. Finally, for
each scenario, we report the averages of $100 realizations.
Reports on single realizations and their properties are in SI.

Spreading of Synthetic Epidemics. According to the simulation
procedure outlined above, we study the behavior of synthetic
epidemics in the 7 urban areas we used to characterize the
properties of WiFi router networks. The urban areas considered
are quite diverse in that they range from a relatively small college
town (West Lafayette, IN) to big metropolises such as New York
City and Chicago. In each urban area, we focus on the giant
component of the network obtained with a given Rint that may
vary consistently in size.

Here, we report the results for a typical epidemic spreading
scenario in which the time scales of the processes are chosen
according to their average estimates. In the SI, we report the
best- and worst-case scenarios obtained by considering the
combination of parameters that maximize and minimize the rate
of success of each attack process, respectively. The networks
used as substrate are obtained in the intermediate interaction
range of 45 m. The sensitivity analysis to the change of this
parameter is reported in SI.

The 3 snapshots of Fig. 2 provide an illustration of the
evolution of a synthetic epidemic in the Manhattan area; shown
in red are the routers that are progressively infected by malware.
The striking observation is that the malware rapidly propagates
on the WiFi network in the first few hours, taking control of
%55% of the routers after 2 weeks from the infection of the first
router. The quantitative evidence of the potential impact of the
epidemic is reported in Fig. 3A, where the average profile of the
density of infected routers is reported for all of the urban areas
considered in the numerical experiment. Although it is possible
to notice a considerable difference among the various urban
areas, in all cases, we observe a sharp rise of the epidemic within
the first couple of days and then a slower increase, which after
2 weeks leaves %10% to 55% of the routers in the giant
component controlled by malware. The similar time scale in the
rise of the epidemic in different urban areas is not surprising
because it is mainly determined by the time scale of the specific
attacks considered in the malware spreading model. In general

After 24 hours
Susceptible
Infected
Removed

  After 6 hours
Susceptible
Infected
Removed

  After 1 hour
Susceptible
Infected
Removed

Fig. 2. Illustration of the spread of a wireless worm through Manhattan in several time slices. In this series, the result is based on 1 randomization procedure
for the location of each router and the maximum interaction radius Rint is set to 45 m.

1320 ! www.pnas.org"cgi"doi"10.1073"pnas.0811973106 Hu et al.

[Hu et al, 2009]
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Fire propagation

A Markovian Agent Model 143

(a) t=40min. (b) t=60min. (c) t=90min.

Fig. 8. Fire Propagation with a constant wind

(a) Wind directions. (b) t=30min.

(c) t=40min. (d) t=90min.

Fig. 9. Fire Propagation with a spatial-dependent wind

can be accounted for through the initial spatial agent density ξ{t,f}(v). There-
fore, in the second set of experiments, we study the effect of this parameter. We
consider two cases: a long firebreak that crosses the whole map (see Figure 10(a)),
and a shorter one (Figure 11(a)). In both cases the fire starts at the middle left
edge of the map, the wind is constant, and we pick time instants t = 50, 60, 70min
for plotting. Results are shown in Figures 10 and 11, respectively. In the first
case, we can see clearly that the long firebreak completely prevents the fire from
propagating further. Notice also that the fire front persists along the firebreak
even after 70min from the begining of the wildfire, meaning that the firebreak

[Cerotti et al, 2009] SFM-16 74 / 78
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Space modelling in biology

Bittig and Uhrmacher

Figure 2: Different ways of representing space in a model or a simulation (adapted from
Takahashi, Arjunan, and Tomita 2005, figure 1). (a) molecules/species can be in different compartments and in-
teractions happen only within one compartment, apart from transport between compartments that has to be modeled
explicitly; (b/c) space is divided into equal blocks of a defined neighborhood relation, usually a lattice of cubes, either
(b) small cubes occupied by no more than one particle or (c) subvolumes taking several (up to arbitrary many); (d) model
describes not particles, but concentrations and their gradients across space via appropriate boundary conditions; (e/f)
particles are associated with position and motion in space, collisions between particles trigger reactions. In models close
to the laws of physics (e), even particles farther apart influence each other’s movement to a small extent. Computational
costs are lowered when neglecting influences on a particle beyond a certain distance (sphere of influence) (f), without
sacrificing accuracy when ensuring that time steps are sufficiently small that particles cannot travel beyond them.

also occasionally diffusing into neighboring subvolumes (when the movement function’s target is outside the current
one). Whereas varying numbers are no problem for this approach, varying spatial dimensions are, as the approach does
not consider that individual molecules might occupy space.

These major approaches to spatial simulation were developed with different applications in mind and offer different
granularity in the approximation of the physical processes. From the computationally very expensive molecular dynamics
to the rather elementary discrete grid of cellular automata that allows much faster simulation, the main tradeoff is
between accuracy and calculation time, making each approach more or less fitting for different types of phenomena.
The PDE approach sticks out as it does not cover individual particles but rather distribution gradients, the purely
compartmental approach deviates from the others in that it does not describe motion in the continuous space or a
discretization thereof, but only movements between a finite number of compartments.

4 MODELING FORMALISMS AND THEIR SEMANTICS

4.1 Differential Equations

With differential equations, there is no clear separation between formalism and interpretation, as the term comprises both a
well-defined way to specify the equations (syntax) and their mathematical meaning (semantics). Simply put, the equations
describe changes in variables representing species concentrations over time depending on other variables representing
other species’ concentrations. Since abstractions regarding the reaction dynamics have to be made when modeling on
the population level, the reaction kinetics, e.g. mass action, Michaelis-Menten or detailed enzyme kinetics, are thus
incorporated into the equations’ structure, i.e. the formal part. Some software tools supporting modeling and simulation
of biological systems using ordinary differential equations (ODEs), e.g. SBtoolbox2 (Schmidt and Jirstrand 2006), have
a a text-based input format based on equations.

611

[Bittig and Uhrmacher, 2001]
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Cellular automata model

[Matthews, http://www.generation5.org, 2004]
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Spread of disease

thirds of the disease transmission occurred in
these settings. The remaining third occurred ran-
domly, as a function of the distance from in-
fectious individuals. In contrast, individuals in the
model used in (27) belonged to multiple groups,
in addition to households, schools, and work-
places. The inclusion of these extra settings was
an alternative to the distance-transmission com-
ponent used in (26). Although both approaches
require parameters for which there is little or no
supporting empirical data, the model used in (26)
could be viewed as more parsimonious because
its conclusions are less sensitive to these un-
informed parameters, and it made good use of the
data that were available, such as spatially re-
solved population density and travel survey data.

Model design choices such as these can
have a substantial impact on predictions of in-
tervention efficacy. For example, in (27), targeted
antiviral prophylaxis implicitly assumes that
household clusters and small neighborhoods that
are important for transmission could be easily
identified, resulting in a relatively low upper
bound of 1 million courses of treatment required
for containment. Conversely, the spatial recruit-
ment of households into the intervention pro-
cesses proposed in (26) implicitly assumed a
weaker correlation between antiviral distribution
and transmission, resulting in the more conserv-

ative estimate that 3 million courses of treatment
would be required to achieve containment.

Smallpox and Networks
Patch, distance kernel, and multigroup models
can all be considered as special cases of spatial-
network models, in which nodes represent
individual hosts and arcs represent potentially
infectious links. As networks, all of the model/
pathogen combinations described above would
have high average numbers of arcs per node
(i.e., a large neighborhood size) relative to their
basic reproductive number R0. However, for
smallpox, intimate contact was almost always
required for transmission to occur (30). There-
fore, it is necessary to represent a substantial
proportion of smallpox transmission as occur-
ring over a static network with a relatively small
neighborhood size. This approach was used (31)
to show that for the United Kingdom, the ad-
ditional benefits of geographically targeted
regional vaccination would not outweigh the
adverse effects of vaccinating many low-risk
individuals. Specifically, contact tracing with
isolation and vaccination alone would probably
result in fewer deaths from a small initial cluster
of cases in London than would occur if geo-
graphically targeted regional vaccination was
used in addition to such a policy.

Perhaps the most innovative modeling ap-
proach to emerge from smallpox epidemiology
(32) is the derivation of static contact networks
from individual-based second-by-second micro-
simulation. In (33), all of the people, locations,
and journeys in the city of Portland, Oregon,
were simulated explicitly. Simple rules were then
used to construct static contact networks from
dynamic networks of individuals and locations.
For example, if two individuals were present in
the same location for more than an hour, it was
assumed that a social contact existed between the
two. Because the intensity of contact was as-
sumed to be similar in all locations, implicitly,
people’s behavior in supermarkets (with respect
to disease transmission) was assumed to be the
same as in the home. This uniformity of contact
intensity is unrealistic and must have resulted in
overly connected social networks. However, when
good data are available on the relative transmis-
sibility of respiratory pathogens in different social
settings, the derivation of large spatial contact
networks from microsimulations will provide a
natural refinement of the distance-transmission
approach described above.

Current Challenges
Some of the individual-based spatial models
described above include age classes and house-

A B Distance C Group D NetworkPatch

Fig. 2. Four common abstractions for the spatial transmission of
infectious diseases. Differences between these approaches are best
understood in terms of the FOI, which is location-specific in spatially
explicit models. Red dots represent infectious individuals. (A) For patch
transmission, all members of the same patch (residents of a town, for
example) receive the same FOI, which is a function of the distance from
their home patch to other patches and of the prevalence of infection in all
patches. (B) Distance transmission is explicitly individual-based; that is,
each farm is assigned a precise location. It is assumed that any given
infectious individual can infect all susceptible individuals within range.
The pairwise probability of infection is usually a monotonically decreasing
function of distance, and the absolute FOI experienced by each susceptible
individual because of a single infectious individual is low. (C) In a pure
multigroup model, the FOI is determined entirely by group membership.
For example, if an infectious individual shares a household with a
susceptible individual (ovals), there is a high probability of transmission
occurring between the two. However, if an infectious individual does not
share a group with a particular susceptible individual, transmission

between the two cannot occur. Spatial patterns of spread are determined
by the locations of households and workplaces/schools (rectangle) and by
the typical distribution of journeys between them. Dashed lines indicate
group membership and solid lines indicate potentially infectious links
between individuals. (D) Network transmission is similar to group
transmission in that the FOI experienced by susceptible individuals is
zero, unless they share an arc with an infectious individual. For directly
transmitted respiratory pathogens, network transmission can be thought of
as a refinement of an implicit group structure, in which it is assumed that
not all members of a group are equally well connected; e.g., all colleagues
at a workplace are not contacts. More than one component of transmission
is included in some models. In general, computational requirements
increase from (A) to (D). Patch models can be implemented effectively on
a typical desktop computer because they do not explicitly represent
individuals. For population sizes greater than 10 million, individual-based
models have been implemented on clusters of large-memory personal
computers (26, 31, 34). Detailed microsimulation models (33) have not
yet been implemented at scales larger than a city.

1 JUNE 2007 VOL 316 SCIENCE www.sciencemag.org1300

REVIEW

[Riley, 2007]
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