
Dependability of
Adaptable and Evolvable

Distributed Systems

Carlo Ghezzi

DEIB-Politecnico di Milano

1

SFM-16

Bertinoro, June 2016

Outline

• Of software and change

• Evolution, adaptation, self-adaptation

• How can they supported dependably?

• How can dynamic evolution be supported for
continuously running systems?

2

Software and change

3

Facts

4

Facts

• Software undergoes continuous changes

4

Facts

• Software undergoes continuous changes

• Unrivalled by any other technology

4

Facts

• Software undergoes continuous changes

• Unrivalled by any other technology

• Can be a problem

4

Facts

• Software undergoes continuous changes

• Unrivalled by any other technology

• Can be a problem

• Can be an opportunity

4

Evolution: positive view of change

Embeds the notions of

• improvement

• adaptation

5

Formal methods can be integrated into
software engineering practice to achieve

dependability and effectively and efficiently turn
change into evolution

6

Why change?

7

The world and the machine

8

We build (abstract) machines to achieve certain
real-world goals, satisfy certain requirements

P. Zave, M. Jackson. Four dark corners of requirements engineering.
ACM Trans. Softw. Eng. Methodol. 6, 1 (January 1997)

The world and the machine

8

We build (abstract) machines to achieve certain
real-world goals, satisfy certain requirements

P. Zave, M. Jackson. Four dark corners of requirements engineering.
ACM Trans. Softw. Eng. Methodol. 6, 1 (January 1997)

The world and the machine

8

We build (abstract) machines to achieve certain
real-world goals, satisfy certain requirements

P. Zave, M. Jackson. Four dark corners of requirements engineering.
ACM Trans. Softw. Eng. Methodol. 6, 1 (January 1997)

Environment properties
& assumptions

… they bridge the gap between
requirements and specifications
(M. Jackson & P. Zave)

Software engineer's responsibilities

9

E

SR

Software engineer's responsibilities

• Develop a specification S for the machine (and an
implementation) such, assuming that the environment
behaves according to E, we can assure satisfaction of R

9

E

SR

Software engineer's responsibilities

• Develop a specification S for the machine (and an
implementation) such, assuming that the environment
behaves according to E, we can assure satisfaction of R

• Formally,

9

E

SR

Software engineer's responsibilities

• Develop a specification S for the machine (and an
implementation) such, assuming that the environment
behaves according to E, we can assure satisfaction of R

• Formally,

 E & S ⊨ R

9

E

SR

Software engineer's responsibilities

• Develop a specification S for the machine (and an
implementation) such, assuming that the environment
behaves according to E, we can assure satisfaction of R

• Formally,

 E & S ⊨ R

9

Dependability argumentE

SR

Change source: Getting the machine right

• It is an evolutionary process

• Software design is an exploratory activity

• Software evolves from incomplete to a progressively
complete and stable solution

• An then the solution becomes unstable to support further
evolution

10

Change source: Requirements

• Requirements are highly volatile

• Hard to get

• Change rapidly

• Satisfaction of certain requirements generate new
requirements

E & S ⊨ R

11

E

SR

Change source: Requirements

• Requirements are highly volatile

• Hard to get

• Change rapidly

• Satisfaction of certain requirements generate new
requirements

E & S ⊨ R

11

R

E

SR

Change source: Requirements

• Requirements are highly volatile

• Hard to get

• Change rapidly

• Satisfaction of certain requirements generate new
requirements

E & S ⊨ R

11

RS

E

SR

Change source: The environment

• Getting environment properties and assumptions right is
hard

12

E

SR

Change source: The environment

• Getting environment properties and assumptions right is
hard

12

• Properties

• Domain laws (e.g., physics)

• R: move a body from A to B

• D: suitable force A->B causes motion A->B

• S: send suitable force command to actuator

E

SR

Change source: The environment

• Getting environment properties and assumptions right is
hard

12

E

SR

Change source: The environment

• Getting environment properties and assumptions right is
hard

12

• Assumptions

• Uncertain/incomplete/changeable knowledge

• R: guarantee given avg response time to users

• D: avg traffic X transactions/msec.

E

SR

Change source: The environment

• Getting environment properties and assumptions right is
hard

12

E

SR

More on properties vs. assumptions

• Property

• it holds regardless of any software-to-be; e.g. physics’ laws

avgTrainAcceleration (t1, t2) > 0 implies trainSpeed (t2) > trainSpeed (t1)

• Assumption

• may expect a violation

“temperature is in the range -40..+40 Celsius”

“device generates a measure every 2 ms.”

“humans behave as instructed by the machine”

13

Change source: The environment

14

Change source: The environment

14

• Often wrong properties/assumptions are hypothesized

• Often assumptions made at design time are uncertain

• Often assumptions change

E & S ⊨ R

Change source: The environment

14

• Often wrong properties/assumptions are hypothesized

• Often assumptions made at design time are uncertain

• Often assumptions change

E & S ⊨ R

Change source: The environment

14

• Often wrong properties/assumptions are hypothesized

• Often assumptions made at design time are uncertain

• Often assumptions change

E

E & S ⊨ R

Change source: The environment

14

• Often wrong properties/assumptions are hypothesized

• Often assumptions made at design time are uncertain

• Often assumptions change

SE

The (in)famous Airbus accident (Sept. 1993)

15

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

WheelPulsesOn <—> WheelsTurning

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

WheelPulsesOn <—> WheelsTurning

ActuateRevThrust <—> ReverseThrust

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

WheelPulsesOn <—> WheelsTurning

ActuateRevThrust <—> ReverseThrust

Sensor/actuator
correctness
assumption

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

WheelPulsesOn <—> WheelsTurning

ActuateRevThrust <—> ReverseThrust

WheelsTurning <—> TouchedDown

Sensor/actuator
correctness
assumption

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

WheelPulsesOn <—> WheelsTurning

ActuateRevThrust <—> ReverseThrust

WheelsTurning <—> TouchedDown

Sensor/actuator
correctness
assumption

The (in)famous Airbus accident (Sept. 1993)

15

• Requirement: ReverseThrust —> TouchedDown

• Machine Spec: ActuateRevThrust —> WheelPulsesOn

• Assumptions:

WheelPulsesOn <—> WheelsTurning

ActuateRevThrust <—> ReverseThrust

WheelsTurning <—> TouchedDown

Sensor/actuator
correctness
assumption

The notion of failure

• Failure = broken dependability argument

• Functional or nonfunctional failure

• not necessarily a "catastrophic event"

• includes violation of quality of service, which may
lead to financial losses, penalties, or damage to
reputation

• Experienced or predicted failures drive evolution

16

A relevant case: multi-owner systems

• Rely on third-party components to provide their own service, which
make environment volatile

• Platform as a Service (cloud)

• Software as a Service

• Reinvigorating Leslie Lamport's statement

• a distributed system is a system where I can't get my work done
because a computer has failed that I never heard of

17

How can changes be handled?

• Evolution due to environment changes is called
adaptation

• Evolution and adaptation are traditionally performed off-
line, but they are increasingly performed on-line at run
time (see continuously running systems)

• Adaptation can be self-managed (self-adaptive systems)

18

• J. Kephart, D. Chess, The vision of autonomic computing. IEEE Comput. 2003
• R. de Lemos et al., Software engineering for self-adaptive systems. Dagstuhl Seminar 2009
• E. Di Nitto et al., A journey to highly dynamic, self-adaptive service-based applications. ASE Journal, 2008
• Software Engineering for Adaptive and Self-Managing Systems (SEAMS), starting 2006

A personal journey through dependable self-
adaptation and on-line evolution with the

SMScom ERC AdG (2008-2013)

19

The autonomic feedback loop

20

The autonomic feedback loop

20

The autonomic feedback loop

20

Where are the founding principles?

Paradigm shift

• SaSs ask for a paradigm shift, which involves both
development time (DT) and run time (RT)

• The boundary between DT and RT fades

• Reasoning and reacting capabilities must enrich the RT
environment

• detect change

• reason about the consequences of change

• react to change
21

Our view of the lifecycle

22

Our view of the lifecycle

22

Reqs

Our view of the lifecycle

22

Reqs

Env

Our view of the lifecycle

22

Reqs

Modelling

Modelling
Development time

Env

Our view of the lifecycle

22

Reqs

Modelling

Modelling
Development time

Env

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation

Modelling

Modelling
Development time

Env

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation

Modelling

Modelling
Development time

Run time

Env

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation

Execution

Modelling

Modelling
Development time

Run time

Env

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation Monitoring

Execution

Modelling

Modelling
Development time

Run time

Env

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation Monitoring

Execution

ReasoningModelling

Modelling
Development time

Run time

Env

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation Monitoring

Execution

ReasoningModelling

Modelling
Development time

Run time

Env

Self-adaptation

E1

0

Machine+
environment

Our view of the lifecycle

22

Reqs

Implementation Monitoring

Execution

ReasoningModelling

Modelling
Development time

Run time

Env

Self-adaptation

E1

0

Machine+
environment

Offline adaptation

Models&verification@run-time

• To detect change, we need to monitor the environment

• The changes must be retrofitted to models of the
machine+environment that support reasoning about the
dependability argument (a learning step)

• The updated models must be verified to check for
violations to the dependability argument

• In case of a violation, a self-adaptation must be triggered

23

Known unknowns vs unknown unknowns
• The system can self-adapt to known unknowns

• The unknowns are elicited at design time

• The unknowns become known at run time via monitoring

• If the system has been designed upfront to handle the now
knowns, it can self-adapt

• If not, a designer must be in the loop

• There are limits to automation: unknown unknowns cannot even be
monitored

24

Whereof one cannot speak, thereof one must be silent
(Wittgenstein)

25

Zooming in

25

Zooming in

• I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, "Model Evolution by Run-
Time Parameter Adaptation”, ICSE 2009

• C. Ghezzi, G. Tamburrelli, "Reasoning on Non Functional Requirements for
Integrated Services”, RE 2009

• A. Filieri, C. Ghezzi, G. Tamburrelli, “ Run-time efficient probabilistic model
checking”, ICSE 2011

• A. Filieri, C. Ghezzi, G. Tamburrelli, “Supporting Self-adaptation via
Quantitative Verification and Sensitivity Analysis at Run Time, IEEE TSE,
January 2016

An exemplary framework

• QoS requirements

• performance (response time), reliability (probability of
failure), cost (energy consumption)

User

Integrated Service

Workflow

W

Service

S
1

<uses>

Service

S
2

<uses>

Service

S
n

<uses>

....

26

An exemplary framework

• QoS requirements

• performance (response time), reliability (probability of
failure), cost (energy consumption)

User

Integrated Service

Workflow

W

Service

S
1

<uses>

Service

S
2

<uses>

Service

S
n

<uses>

....

Sources of uncertainty
(and change)

26

Non-functional requirements are quantitative

• Functional requirements are often qualitative ("the system shall close
the gate as the sensor signals an incoming train" or "it should never
happen that the gate is open and the train is in the intersection")

• Non-functional requirements refer to quality and they are often
quantitative ("average response time shall be less than 3 seconds");
often they are probabilistic

• LTL, CTL temporal logics are typical examples of qualitative
specification languages

• Non-functional requirements ask for quantitative logics and
quantitative verification

27

Formal modeling and analysis

• S, E can often be formalized via probabilistic Markovian
models for non functional rquirements (reliability,
performance, energy consumption)

• R formalized via probabilistic temporal logic, e.g. PCTL

• Verification performed via probabilistic model checking

28

Brief intro to Discrete Time Markov Chains

29

A DTMC is defined by a tuple (S, s0, P, AP, L) where

• S is a finite set of states

• s0 ∈ S is the initial state

• P: S×S→[0;1] is a stochastic matrix

• AP is a set of atomic propositions

• L: S→2AP is a labelling function.

The modelled process must satisfy the Markov property, i.e., the probability distribution
of future states does not depend on past states; the process is memoryless

An#example#

!A simple communication protocol operating with a channel!

C. Baier, JP Katoen, “Principles of model checking” MIT Press, 2008

delivered try lost

start

1

0.9

1

1

0.1

 S D T L
S 0 0 1 0
D 1 0 0 0
T 0 0.9 0 0.1
L 0 0 1 0

matrix representation

Note: sum of probabilities for transitions leaving a given state equals 1

30

Discrete Time Markov Reward Models

• Like a DTMC, plus

• states/transitions labeled with a reward

• rewards can be any real-valued, additive, non negative
measure; we use non-negative real functions

• Use in modeling

• rewards represent energy consumption, average
execution time, outsourcing costs, pay per use cost,
CPU time

31

Reward DTMC

• A R-DTMC is a tuple (S, s0, P, AP, L, µ), where S, s0, P, L
are defined as for a DTMC, while µ is defined as follows:

• µ : S→R≥0 is a state reward function assigning a non-
negative real number to each state

• ... at step 0 the system enters the initial state s0.
At step 1, the system gains the reward µ(s0)
associated with the state and moves to a new
state...

32

PCTL
• Probabilistic extension of CTL

• In a state, instead of existential and universal quantifiers over paths we
can predicate on the probability for the set of paths (leaving the state)
that satisfy property

• In addition, path formulas also include step-bounded until ϕ1 U
≤t

 ϕ2

• An example of a reachability property

P>0.8 [◊(system state = success)]
33

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

absorbing state
1

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

true if expected state reward to be gained in the state entered at step k
along the paths originating here meets the bound r

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

true if the expected reward cumulated after k steps meets the bound r

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

true if the expected reward cumulated before
a state satisfying ϕ is reached meets the bound r

R-PCTL

34

Reward-Probabilistic CTL for R-DTMC

� ::= true | a | � � � | ¬ � | P��p (�)

� ::= X � | � U � | � U�t �

| R��r (�)

� ::= I=k | C�k | F�

R��r(I
=k) R��r(C

�k) R��r(F�)

Example 1

Expected state reward to be gained in the state entered at
step k along the paths originating in the given state

35

R��r(I
=k)

Example 1

Expected state reward to be gained in the state entered at
step k along the paths originating in the given state

35

R��r(I
=k)

“The expected cost gained after exactly 10 time steps is
less than 5”

Example 1

Expected state reward to be gained in the state entered at
step k along the paths originating in the given state

35

R��r(I
=k)

“The expected cost gained after exactly 10 time steps is
less than 5”

R<5(I=10)

Example 2

Expected cumulated reward within k time steps

36

R��r(C
�k)

 “The expected energy consumption within the first 50 time
units of operation is less than 6 kwh”

Example 2

Expected cumulated reward within k time steps

36

R��r(C
�k)

 “The expected energy consumption within the first 50 time
units of operation is less than 6 kwh”

R<6(C
�50)

Example 3

Expected cumulated reward until a state satisfying ϕ is
reached

37

R��r(F�)

“The average execution time until a user session is complete is
lower than 150 s”

Example 3

Expected cumulated reward until a state satisfying ϕ is
reached

37

R��r(F�)

“The average execution time until a user session is complete is
lower than 150 s”

R<150(F end)

A bit of theory

• Probability for a finite path to be traversed
is 1 if otherwise

• A state sj is reachable from state si if a finite path exists
leading to sj from si

• The probability of moving from si to sj in exactly 2 steps
is which is the entry of

• The probability of moving from si to sj in exactly k steps is the
entry of

38

⇡ = s0, s1, s2, . . .
|⇡| = 1

Q|⇡|�2
k=0 P (sk, sk+1)

P
s

x

2S

p
ix

· p
xj

(i, j) P 2

(i, j) P k

A bit of theory

• A state is recurrent if the probability that it will be eventually visited
again after being reached is 1; it is otherwise transient (a non-zero
probability that it will never be visited again)

• A recurrent state sk where pk, k = 1 is called absorbing

• Here we assume DTMCs to be well-formed, i.e.

• every recurrent state is absorbing

• all states are reachable from initial state

• from every transient state it is possible to reach an absorbing
state

39

An example

40

0 1

2

3

1

0.2

0.5

0.3

An example

40

0

BB@

0 1 0 0
0.2 0 0.5 0.3
0 0 1 0
0 0 0 1

1

CCA0 1

2

3

1

0.2

0.5

0.3

An example

40

0

BB@

0 1 0 0
0.2 0 0.5 0.3
0 0 1 0
0 0 0 1

1

CCA0 1

2

3

1

0.2

0.5

0.3

Probability of reaching an absorbing state (e.g., 2)
2 can be reached by reaching 1 in 0, 1, 2,...∞ steps and then 2 with prob .5

(1+0.2+0.22+0.23+ ...) x 0.5 = (∑ 0.2n) x 0.5 = (1/(1-0.2)) x 0.5 = 0.625

Similarly, for state 3, (1/(1-0.2)) x 0.3 = 0.375

Notice that an absorbing state is reached with prob 1

A bit of theory

41

Qk ! 0 as k ! 1

• Consider a DTMC with r absorbing and t transient states
• Its matrix can be restructured as
•

- Q is a nonzero t × t matrix
- R is a t × r matrix
- 0 is a r × t matrix
- I is a r × r identity matrix

• Theorem
- In a well-formed Markov chain, the probability of the process to

be eventually absorbed is 1

P =

✓
Q R
0 I

◆
(1)

Reachability properties

42

• A reachability property has the following form

states that the probability of reaching a state where
holds matches the constraint

• Typically, they refer to reaching an absorbing state
(denoting success/failure for reliability analysis)

• It is a flat formula (i.e. no subformula contains)
• These properties are the most commonly found

P./p(⌃ �)

P./p(·)

A bit on theory

43

Consider again

ni,k expected # of visits of transient state sk from si, i.e.,
the sum of the probabilities of visiting it 0, 1, 2, ...times
Theorem: The geometric series converges to
Consider . The probability of reaching
absorbing state sk from si is

P =

✓
Q R
0 I

◆
(1)

N = I +Q1 +Q2 +Q3 + · · · =
1X

k=0

Qk

(I �Q)�1

B = N ⇥R
bik =

X

k=0..t�1

nij · rjk
j

Proving reachability

44

)Pr(Ends =◊ ∑ ⋅=
j

Endjj rn ,,0

n0,j is the sum of the probabilities to reach state j
in 1, 2, 3, ... ∞ steps

Model checking

• SPIN (Holzmann) analyzes LTL properties for LTSs
expressed in Promela

• (Nu)SMV (Clarke et al, Cimatti et al.) can also analyze CTL
properties and uses a symbolic representation of visited
states (BDDs) to address the “state explosion problem”

• PRISM (Kwiatkowska et al.) and MRMC (Katoen et al.)
support Markov models and perform probabilistic model
checking

45

Question

• How can modeling notations and verification fit software
evolution?

• Obvious solution:

• A modification to an existing system viewed as a new
system

• No support to reasoning on the changes and their
effects

46

An e-commerce case study

47

Login

Search

Buy

[buy more]

NrmShipping

ExpShipping

[proceed]

[normal]

CheckOut

Logout

[express]

An e-commerce case study

47

Login

Search

Buy

[buy more]

NrmShipping

ExpShipping

[proceed]

[normal]

CheckOut

Logout

[express]

Returning customers
vs

new customers

An e-commerce case study

47

3 probabilistic requirements:
R1: “Probability of success is > 0.8”
R2: “Probability of a ExpShipping failure for a user recognized as

ReturningCustomer < 0.035”
R3: “Probability of an authentication failure is less then < 0.06”

Login

Search

Buy

[buy more]

NrmShipping

ExpShipping

[proceed]

[normal]

CheckOut

Logout

[express]

Returning customers
vs

new customers

Assumptions

User profile assumptions

External service assumptions (reliability)

RC
RC

RC
NC

NC

48

12

Logged

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03
0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

S, E, R in practice

49

12

Logged

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03
0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

R1: Probability of success > 0.8
R2: Probability of ExpShipping failure for ReturningCustomer < 0.035

S, E, R in practice

49

What happens at run time?

• Actual environment behavior is monitored

• Model updated

• e.g., by using a Bayesian approach to estimate
DTMC matrix (posterior) given run time traces and
prior transitions

50

What happens at run time?

• Actual environment behavior is monitored

• Model updated

• e.g., by using a Bayesian approach to estimate
DTMC matrix (posterior) given run time traces and
prior transitions

50

What happens at run time?

• Actual environment behavior is monitored

• Model updated

• e.g., by using a Bayesian approach to estimate
DTMC matrix (posterior) given run time traces and
prior transitions

50

A-priori Knowledge

What happens at run time?

• Actual environment behavior is monitored

• Model updated

• e.g., by using a Bayesian approach to estimate
DTMC matrix (posterior) given run time traces and
prior transitions

50

A-priori Knowledge A-posteriori Knowledge

Verification @ runtime as a trigger for adaptation

• The model has a predictive nature

• Requirements violation on model predicts future
violations

• This may lead to preventive adaptation prior to violations

• Otherwise it leads to self-healing adaptation

51

52

12

Logged

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03
0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

52

12

Logged

9

Buy

6

Search

1

Returning

3

NewCustomer

7

Buy

4

Search

11

10

ExpShipping

12

14

Logout

16

Success

5 1

FailedLg

8

FailedChk

15 1

FailedNrmSh

13 1

FailedExpSh

1

0

Login

0.97

0.03
0.65

0.35

1

1

0.2
0.5 0.05

0.6

NrmShipping

0.030.95

0.1 0.97

0.95

0.9

1

0.15

1

0.3

0.05

CheckOut

0.25

Models&Verification @ runtime: challenges

• Paradigm change

• The development-time / run-time boundary fades

• Real-time constraints prevent applicability of current
techniques

53

Towards efficient verification @ runtime

Make verification incremental

• Instead of checking the model after any change, just
try to restrict the check to what has changed

• easier to say than do!

54

The quest for incrementality

• Is a fundamental engineering principle

Given a system (model) S, and a set of properties P met by S

Change = new pair S’, P’ where S’= S + ∆S and P’= P + ∆P

Let ∏ be the proof of S against P

The proof ∏’ of P’ against S’ can be done by just performing
a proof increment ∆∏ such that ∏’ = ∏ + ∆∏

Expectation: ∆∏ easy and efficient to perform

55

How can we achieve it?

• By construction and change anticipation

• leveraging modularity and encapsulation

• assume/guarantee

• By automatic scope detection

56

An effective technique: incrementality by
parameterization

• Requires anticipation of changing parameters, represented
as symbolic variable

• The model is partly numeric and partly symbolic

• Evaluation of the verification condition requires partial
evaluation (mixed numerical/symbolic processing)

• Result is a formula (polynomial for reachability on DTMCs)

• Evaluation at run time substitutes actual values to symbolic
parameters and is very efficient

57

An effective technique: incrementality by
parameterization

• Requires anticipation of changing parameters, represented
as symbolic variable

• The model is partly numeric and partly symbolic

• Evaluation of the verification condition requires partial
evaluation (mixed numerical/symbolic processing)

• Result is a formula (polynomial for reachability on DTMCs)

• Evaluation at run time substitutes actual values to symbolic
parameters and is very efficient

57

Working mom paradigm

Cook first

Warm-up later

The parametric WM approach

58

The parametric WM approach

58

D
es

ig
n-

T
im

e
(o

ffl
in

e) Partial
evaluation

E1

0

The parametric WM approach

58

R
un

-T
im

e
(o

nl
in

e)
D

es
ig

n-
T

im
e

(o
ffl

in
e) Partial
evaluation

E1

0

The parametric WM approach

58

R
un

-T
im

e
(o

nl
in

e)
D

es
ig

n-
T

im
e

(o
ffl

in
e) Partial
evaluation

E1

0

Parameter
values

The approach

• Assumes that the Markov model is well formed

• Works by symbolic/numeric matrix manipulation

• All of (R) PCTL covered

• Does partial evaluation (mixed computation, Ershov 1977)

• Expensive design-time partial evaluation, fast run-time
verification

• symbolic matrix multiplications, but very sparse and
normally only few variables

59

An example

60

r = 0.85− 0.85 ⋅ x + 0.15 ⋅ z− 0.15 ⋅ x ⋅ z− y ⋅ x
0.85+ 0.15 ⋅ z

r = Pr(◊ s = 5)> r

Additional benefit: sensitivity analysis

Back to theory: flat reachability formula

61

We need to evaluate

where B = N x R; N is the inverse of I - Q,

ni,k expected # of visits of transient state sk from si, i.e.,
the sum of the probabilities of visiting it 0, 1, 2, ...times
Matrix R is available, we need to compute N

In our context, N must be evaluated partially, i.e., by a
mix of numeric and symbolic processing

P =

✓
Q R
0 I

◆
(1)

N = I +Q1 +Q2 +Q3 + · · · =
1X

k=0

Qk

Pr(true U {sj 2 T}) =
X

sj2T

b0j

Design-time vs run-time costs

• Design-time computation expensive because of numeric/symbolic
computations

• Complexity reduced by

• sparsity

• few symbolic transitions

• careful management of symbolic/numeric parts

• parallel processing

• Run-time computation extremely efficient: polynomial formula for reachability,
minor additional complications for full R-PCTL coverage (but still very efficient!)

62

Run-time performance comparison

63

PRISM
MRMC
WM

Ti
m

e
(m

s)

1

10

100

1000

System size (# of states)
50 100 150 200 250 300 350 400 450 500

128 randomly generated DTMCs, 50 to 500 states (with step 50), two absorbing states, and a normally
distributed number of outgoing transitions per state with mean 10 and standard deviation 2. The number
of variable states is 4 in each model, thus the number of parameters of each model is normally distributed
with mean 40 and standard deviation 8.

64

Looking forward

Where are we?

65

Where are we?

• Change is quintessential to software

• not a nuisance nor something to handle as an afterthought

• Formal methods can set change management on systematic
and rigorous grounds that lead to effective and efficient
evolution

• They can be brought to runtime to self-manage response to
environment changes

65

Where are we?

• Change is quintessential to software

• not a nuisance nor something to handle as an afterthought

• Formal methods can set change management on systematic
and rigorous grounds that lead to effective and efficient
evolution

• They can be brought to runtime to self-manage response to
environment changes

• How can they support a holistic response to changes
throughout the software lifetime?

65

Looking forward: continuous assurance

66

Looking forward: continuous assurance

• Change of perspective: DevOps—the current hype

• Development and operation viewed as a continuum

• Focus on assurance that system complies with
requirements drives both development and operation

66

Looking forward: continuous assurance

• Change of perspective: DevOps—the current hype

• Development and operation viewed as a continuum

• Focus on assurance that system complies with
requirements drives both development and operation

• Focus on continuous assurance requires revisiting
verification methods in the light of continuous change

66

Looking forward

• Software development has become increasingly
incremental, change-oriented, agile

67

B. Meyer, "Agile! The good, the Hype and the Ugly”, Springer, 2015

Looking forward

• Software development has become increasingly
incremental, change-oriented, agile

67

B. Meyer, "Agile! The good, the Hype and the Ugly”, Springer, 2015

• The ugly

• deprecation of upfront activities: requirements
(replaced by user stories), specification (replaced
by tests), modeling…

Looking forward

• Software development has become increasingly
incremental, change-oriented, agile

67

B. Meyer, "Agile! The good, the Hype and the Ugly”, Springer, 2015

Looking forward

• Software development has become increasingly
incremental, change-oriented, agile

67

B. Meyer, "Agile! The good, the Hype and the Ugly”, Springer, 2015

• The good

• continuous testing: do not wait for a complete
system…

Looking forward

• Software development has become increasingly
incremental, change-oriented, agile

67

B. Meyer, "Agile! The good, the Hype and the Ugly”, Springer, 2015

Looking forward

• Software development has become increasingly
incremental, change-oriented, agile

67

B. Meyer, "Agile! The good, the Hype and the Ugly”, Springer, 2015

• Get rid of the ugly and move the good one
step further

• automate upfront activities and integrate
them in agile development

• can we achieve verification driven
development in practice?

What needs to be done

68

What needs to be done

• How can we integrate modelling and verification into iterative,
agile development?

68

What needs to be done

• How can we integrate modelling and verification into iterative,
agile development?

• Support incomplete, partial specifications

68

• G. Bruns, P. Godefroid. Model checking partial state spaces with 3-valued temporal logics. In
Computer Aided Verification, vol. 1633 LNCS, Springer, 1999.

• G. Bruns, P. Godefroid. Generalized model checking: Reasoning about partial state spaces.
CONCUR 2000

• M. Chechik, B. Devereux, S. Easterbrook, A. Gurfinkel. Multi-valued symbolic model-
checking. ACM TOSEM, 2003.

• S. Uchitel, G. Brunet, M. Chechik. Synthesis of partial behavior models from properties and
scenarios. IEEE TSE 2009.

• G. Brunet, M. Chechik, D. Fischbein, N. D’Ippolito, S. Uchitel,Weak alphabet merging of
partial behaviour models. ACM TOSEM 2011.

What needs to be done

• How can we integrate modelling and verification into iterative,
agile development?

• Support incomplete, partial specifications

• Support reasoning about changes: support incremental
verification

68

• G. Bruns, P. Godefroid. Model checking partial state spaces with 3-valued temporal logics. In
Computer Aided Verification, vol. 1633 LNCS, Springer, 1999.

• G. Bruns, P. Godefroid. Generalized model checking: Reasoning about partial state spaces.
CONCUR 2000

• M. Chechik, B. Devereux, S. Easterbrook, A. Gurfinkel. Multi-valued symbolic model-
checking. ACM TOSEM, 2003.

• S. Uchitel, G. Brunet, M. Chechik. Synthesis of partial behavior models from properties and
scenarios. IEEE TSE 2009.

• G. Brunet, M. Chechik, D. Fischbein, N. D’Ippolito, S. Uchitel,Weak alphabet merging of
partial behaviour models. ACM TOSEM 2011.

Support to incomplete, partial specifications

• Given an incomplete system (model) S, and a set of
properties P to be met by S

• Verification can return YES, NO, MAYBE

• In the MAYBE case, it should compute proof
obligations for the incomplete parts

• Completion only verifies proof obligations

69

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

?

E(¬())U()

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

?

E(¬())U()

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

?

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

?

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

?

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

?
MAYBE
and this: "blah blah"
is the proof obligation

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

?
MAYBE
and this: "blah blah"
is the proof obligation

Example of an incomplete model

• An FSM where certain states stand for an unspecified FSM

• a functionality whose detail model is postponed

70

E(¬())U()

?
MAYBE
and this: "blah blah"
is the proof obligation

Partial models vs. incremental changes

• Initial decomposition affects the kind of incrementally we
get

• Can we achieve incremental verification independent of
hierarchical decomposition?

• Can a general approach to incremental verification be
found independent of model/program and property
language to verify?

71

Towards a general theory of
incremental verification

72

• D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli, Syntactic-Semantic Incrementality for
Agile Verification, Science of Computer Programming 2014

Syntactic-semantic incremental verification

• A general approach

• independent of the artifact

• model, program,

• independent of the property language

• LTL, CTL, PCTL, Hoare logic, Matching Logic, ...

• unconstrained possible changes in artifact (and in
property)

73

Intuition: back to the 1970's

• Incremental parsing: Re-build the minimum sub-tree
“covering” the change w, rooted in <N>, and “plug-it-in”
the unmodified portion of tree

74

C. Ghezzi and D. Mandrioli, Incremental parsing, ACM TOPLAS, 1979
C. Ghezzi and D. Mandrioli, Augmenting Parsers to Support Incrementality. J. ACM, 1980

hSi

hN i

xwz

Example

• Incremental parsing can detect the part of the syntax tree
to rebuild and hook it into the unchanged part

6*5+3*2+1 6*5+4+1

75

Example

• Incremental parsing can detect the part of the syntax tree
to rebuild and hook it into the unchanged part

6*5+3*2+1 6*5+4+1

75

Example

• Incremental parsing can detect the part of the syntax tree
to rebuild and hook it into the unchanged part

6*5+3*2+1 6*5+4+1

75

Intuition: adding semantics

76

Intuition: adding semantics

• Semantic functions can be attached to syntactic rules
and computed traversing the syntax tree (Knuth's
attribute grammars)

• The formalism is Turing complete

• Attributes can be evaluated by bottom-up traversal

76

Intuition: adding semantics

• Semantic functions can be attached to syntactic rules
and computed traversing the syntax tree (Knuth's
attribute grammars)

• The formalism is Turing complete

• Attributes can be evaluated by bottom-up traversal

• Any verification algorithm can be expressed via
attribute functions

76

Current stage

• Using the approach in significant case studies

• Incremental reliability analysis of Web service
compositions

• Complete semantics of Kernel C and verification of
Matching Logic properties

• Building a syntactic-semantic incremental engine

77

• D. Bianculli, A. Filieri, C. Ghezzi, and D. Mandrioli, Incremental Syntactic-Semantic
Reliability Analysis of Evolving Structured Workflows, ISOLA 2014

78

Dynamic software update

• X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, and J. Lu, Version-consistent dynamic
reconfiguration of component-based distributed systems, in Proceedings of ESEC/FSE ’11

• L. Baresi, C. Ghezzi, X. Ma, and V. Panzica La Manna Efficient Dynamic Updates of
Distributed Components, to appear on IEEE TSE

The problem

• You have an existing and running distributed application

• You identify changes that need to be made as a
reconfiguration (i.e., an update of a distributed
configuration)

• Assumptions

• Componentized distributed implementation

• Reconfiguration affects a small number of components

79

Traditional solution

• Develop updates and verify their correctness off-line

• Shut down running system

• Deploy new components and restart updated system

80

Requirements for dynamic update

• Dynamic update must be

• safe: new offline version must be correct and ongoing
activities must complete correctly)

• have low disruption (i.e., interruption of system service)

• timely: delay of update is minimal

81

A simple case study

82

Proc

Portal
DB

Auth

Ditributed components and their static dependencies

Transactions

• A transaction is a sequence of actions executed by a component that completes in
bounded time

• Actions include:

• Local computations

• Message exchanges

• A transaction can be:

• a root transaction if initiated by an outside client

• a sub-transaction if initiated by another transaction

• A distributed transaction includes the root transaction and all (direct and indirect)
sub-transactions

83

Transactions

84

AuthAuthPortalPortal ProcProc DBAccessDBAccess

T0T0

T1T1

T3T3

T2T2

T4T4

getToken (cred)

return token

process (token,data)

verify(token)

ok

dbOperation()

db result

proc result

root$transaction$
$

sub,transaction$
$

Extended set of a transaction T is set comprising T and all its direct and indirect subtransactions

Idleness

• A component (node) is idle if it is not engaged in a
transaction

• It is a necessary condition for component update (for
simplicity, we assume components to be stateless; i.e.,
dynamic update does not require application of a state
transfer function)

• Idleness is not a sufficient condition; additional conditions
must also be considered

85

Replacing Auth when idle

86

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

B✖

Replacing Auth when idle

86

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

A✔

D✔

C✔

Replacing Auth when idle

86

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

C✔

87

Quiescence (Kramer&Magee, TSE 1990)
A sufficient condition:
all transactions initiated by dependent nodes must be
completed

87
Progress of nodes that may (indirectly) activate Auth must also be blocked

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

A

C

D

✖

✖

✖

Quiescence (Kramer&Magee, TSE 1990)
A sufficient condition:
all transactions initiated by dependent nodes must be
completed

Tranquillity (Vandewoude et al. TSE 2007)

• Aims at reducing disruption caused by quiescence

• no need to wait for a transaction to complete if it will
not request service of the node to be updated (even if
it has been involved in the transaction in the past)

• also possible to update a node if an on-going
transaction will request service but they have not
before

88

Tranquillity can be unsafe

89

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

Tranquillity can be unsafe

89

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

A✔

Tranquillity can be unsafe

89

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

A✔

D✔

Tranquillity can be unsafe

89

Portal

T0

Auth Proc DB

T1

getToken(cred)

return token

T2

process(token, data)

T3

verify(token)

OK

T4

dbOp()

A✔

C✔

D✔

It is a sufficient condition if "components follow the black-box principle"
but how can this be established?

Updates and version consistency

• An update (ignoring state transfer) is a tuple <S, c, c'> , where S is a
configuration (set of components), c is a component and c' is its update

• Correct update: assuming SP, SP' to be the specs of S, S', —
transactions that end before the update satisfy SP, —
transactions that begin after the update satisfy SP', —
those that begin before and end after the update satisfy either SP or SP'

• Transaction T is version consistent with respect to update <S, c, c'> iff
no two transactions T1, T2 in ext(T) exist such that h(T1) = c and h(T2) = c'

• A dynamic update is version consistent if c is idle and all transactions in the
system are version consistent

• Version consistency ensures correct dynamic update

90

How to check version consistency?

• We proposed a distributed algorithm for checking version
consistency

• The algorithm builds a dynamic, distributed data
structure representing dynamic dependencies

• Each component has a local portion that supports a local
check of version consistency to enable its update

91

Intuitively

• For each node n, we record information p/T and f/T
indicating that some node has invoked in the past n in
the context of a root transaction T, or will invoke it in the
future

• We say that a node is free if it is idle and has no pair p/T,
f/T for all root transactions T

• A dynamic update is version consistent if it happens
when the node is free

92

Intuitively

• How can we achieve freeness?

• Wait for it to happen

• Concurrent versions (as soon as a version becomes
free, it is safely removed)

• Blocking for freeness (requests to a node are
blocked to avoid creating a p/T if an f/T is present)

93

(details in L. Baresi, C. Ghezzi, X. Ma, and V. Panzica La Manna Efficient
Dynamic Updates of Distributed Components, to appear on IEEE TSE)

In summary

• Version consistency requires more complex run-time
support actions

• But experimental assessment shows that it achieves
better results (in terms of timeliness and disruption) than
quiescence

94

Conclusions

95

Software evolution

• It is a first-class citizen, cannot be handled as a patch

• It must be anticipated and governed

• It must not add flexibility at the expense of correctness

• Formal methods play a fundamental role in founding both
the design time and the run time

96

