

SFM-QUANTICOL 2016, Bertinoro, Italy

Spatio-Temporal Model-Checking

Ezio Bartocci, Radu Grosu

Institute of Computer Engineering

WIEN

Cyber-Physical Systems Group

Outline

Motivation

Verifying Cyber-Physical Systems

Temporal Logics

Linear and Signal Temporal Logics

Spatial Superposition Logics

Linear Spatial Superposition Logics

Spatio-Temporal Logics

SpaTel and Signal Spatio-Temporal Logics

Motivation

Cyber-Physical Systems (CPS)

Amazon drone

Google self-driving car

Kiva robots

Cyber-Physical Systems (CPS)

Construction with a swarm of drones

Amazon Kiva Warehouse Automation

Biological CPS

Reaction Diffusion Examples

Parameters

Turing Diffusion Model

Bird flocking

Spatio-temporal behaviors in the heart

A smart electro-mechanical pump engineered by nature

5 billions of cells (nodes):

- communicating over a complex structure
- synchronizing to contract the muscle
- fault-tolerant, self-stabilizing

Engineering Safe CPS

How to automatically ensure safety-critical requirements in CPS ?

Exhaustive verification of CPS is increasingly intractable:

- Openness, environmental change
- Uncertainty, spatial distribution
- Emergent behaviors resulting from the local interactions are not predictable by the analysis of system's individual parts
- Classic state-space explosion problem

Google Cars

Open Hot Topics:

- Apply CS methods for optimization & control
- Predicting emergent behaviors

Temporal Logics

Temporal logics in a nutshell

Temporal logics

 Concise and intuitive formal specification languages to specify temporal behaviors

Example: Linear Temporal Logic (LTL)

- LTL deals with discrete sequences of states
- Classical logical operators (not, and, or) + temporal operators: "next", "always" (G), "eventually" (F) and "until" (U)

Linear Temporal Logic (LTL) A. Pnueli, 1977

Syntax:

 $\varphi \coloneqq T \mid p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$

Derived operators

 $F \ \varphi = T \ U \ \varphi$ $G \ \varphi = \neg F \neg \varphi$

An LTL formula φ is evaluated on a sequence of events, e.g.: w = aaabbaaa...

At each step of w, we can define a truth value of φ , noted $\chi^{\varphi}(w,i)$ An LTL atoms are symbols: a,b

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \dots$$

 $w = a \ a \ a \ b \ b \ a \ a \ a \ \dots$
 $\chi^a(w, i) = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ \dots$
 $\chi^b(w, i) = 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ \dots$

Spatio-Temporal Model Checking

○ (next), G (always), F (eventually), U (until)

They are evaluated at each step w.r.t. the future of sequences

	Trace	w =	a	a	a	b	b	a	a	a	
$\bigcirc b$	(next)	$\chi^{\bigcirc b}(w,i) =$	0	0	1	1	0	0	0	?	• • •
G a	(always)	$\chi^{{\sf G}a}(w,i) =$	0	0	0	0	0	1?	1?	1?	•••
Fb	(eventually)	$\chi^{Fb}(w,i) =$	1	1	1	1	1	0?	0?	0?	•••
$a ~ {f U} ~ b$	(until)	$\chi^{a{f U}b}(w,i)=$	1	1	1	0	0	0?	0?	0?	•••

○ (next), G (always), F (eventually), U (until)

They are evaluated at each step w.r.t. the future of sequences

	Trace	w =	a	a	a	b	b	a	a	a	•••
$\bigcirc b$	(next)	$\chi^{\bigcirc b}(w,i) =$	0	0	1	1	0	0	0	?	•••
G a	(always)	$\chi^{{\sf G}a}(w,i) =$	0	0	0	0	0	1?	1?	1?	• • •
F b	(eventually)	$\chi^{Fb}(w,i) =$	1	1	1	1	1	0?	0?	0?	• • •
$a ~ {f U} ~ b$	(until)	$\chi^{a{f U}b}(w,i)=$	1	1	1	0	0	0?	0?	0?	•••

○ (next), G (always), F (eventually), U (until)

They are evaluated at each step w.r.t. the future of sequences

	Trace	w =	a	a	a	b	b	a	a	a	•••
$\bigcirc b$	(next)	$\chi^{\bigcirc b}(w,i) =$	0	0	1	1	0	0	0	0?	•••
G a	(always)	$\chi^{Ga}(w,i) =$	0	0	0	0	0	1?	1?	1?	•••
F b	(eventually)	$\chi^{Fb}(w,i) =$	1	1	1	1	1	0?	0?	0?	•••
$a \mathbf{U} b$	(until)	$\chi^{a \mathbf{U} b}(w,i) =$	1	1	1	0	0	0?	0?	0?	•••

○ (next), G (always), F (eventually), U (until)

They are evaluated at each step w.r.t. the future of sequences

	Trace	w =	a	a	a	b	b	a	a	a	•••
$\bigcirc b$	(next)	$\chi^{\bigcirc b}(w,i) =$	0	0	1	1	0	0	0	?	•••
G a	(always)	$\chi^{{\sf G}a}(w,i) =$	0	0	0	0	0	1?	1?	1?	•••
F b	(eventually)	$\chi^{Fb}(w,i) =$	1	1	1	1	1	0?	0?	0?	•••
$a \mathbf{U} b$	(until)	$\chi^{a{f U}b}(w,i)=$	1	1	1	0	0	0?	0?	0?	• • •

 χ is acasual: it depends on future events

Finite sequences semantics allows to define a unique value $\forall (w,i)$ Notation: $w \models \varphi \Leftrightarrow \chi^{\varphi}(w,0) = 1$

Verification

Suppose *w* are execution traces of a system M

System M
$$\rightarrow$$
 aaaabbbaa... \rightarrow Property $\varphi \rightarrow 111000...$

Model-checking: proving that $M \models \varphi$ where $M \models \varphi \Leftrightarrow \forall w \in traces(M), \chi^{\varphi}(w,0) = 1$ **Monitoring**: computing $\chi^{\varphi}(w,0)$ for finite sets of w

Statistical Model-Checking Computing statistics on $\chi^{\varphi}(w,0)$ for population of w

Model Checking and Monitoring

- White-box Systems:
 ✓ We need a system model
- It deals with infinite words:
 ✓ It is exhaustive
- Very computational expensive:
 ✓ State Explosion Problem

It can be used for certification
 ✓ It return a counterexample

- Black-box Systems:
 - ✓ We just need the system running !!
 - ✓ No legacy issues
- It deals with finite (expanding) words
 - ✓ It is not exhaustive
- Lightweight
 - The complexity of monitor generation is less important than the complexity of monitoring
- It can be used both for testing and to trigger safe mechanisms

Monitoring

Problem definition:

Given a program P, an execution trace τ of P, and a property ϕ , decide whether τ satisfies ϕ .

Monitoring Process

A monitor reads a finite trace and return a verdict (True, False, Not known yet)

Example: Traffic Light Property:

Always if the light is green implies no red light until yellow $\varphi := \Box(green \rightarrow \neg red \ U \ yellow)$

Safe Behavior:

From LTL to DFSM

Wolper, Vardi 1986

Complexity: size of monitor $|M| \leq 2^{|\varphi|}$

Literature

P. Wolper (2001): **Constructing Automata from Temporal Logic Formulas: A Tutorial,** Lectures on formal methods and performance analysis, LNCS 2090.

M. Geilen (2001): On the Construction of Monitors for Temporal Logic Properties, Electr. Notes Theor. Comput. Sci 55(2), pp. 181–199, Spatio-Temporal Model Checking

 $\varphi := \Box(green \rightarrow \neg red \cup yellow)$

 $\varphi := \Box(green \rightarrow \neg red \ U \ yellow)$

 $\varphi := \Box (green \rightarrow \neg red \ U \ yellow)$

Spatio-Temporal Model Checking

23-06-2016

23-06-2016

Spatio-Temporal Model Checking

Efficient DFSM: BTT-FSM

Literature

M. d'Amorim, G. Rosu: Efficient Monitoring of omega-Languages. CAV 2005: 364-378

LTL with Past

Syntax:

$$\varphi := \mathbf{T} | \mathbf{p} | \neg \varphi | \varphi_1 \lor \varphi_2 | \bigcirc \varphi | \varphi_1 \cup \varphi_2 | \bigcirc \varphi | \varphi_1 \heartsuit \varphi_2$$

$$next \quad until \quad previous \quad since$$

Semantics of the Past operators:

$$\begin{aligned} & (\xi,t) \mid = \odot \varphi & \leftrightarrow \quad t > 0 \text{ and } (\xi,t-1) \mid = \varphi \\ & (\xi,t) \mid = \varphi_1 \otimes \varphi_2 & \leftrightarrow \quad \exists t' : \ 0 \le t' < t, (\xi,t') \mid = \varphi_2 \text{ and} \\ & \forall t'' : \ 0 \le t'' < t, (\xi,t'') \mid = \varphi_1 \end{aligned}$$

Derived Temporal Operator:

$$F \varphi = T \cup \varphi$$
 $G \varphi = \neg F \neg \varphi$ $O \varphi = T \otimes \varphi$ $H \varphi = \neg O \neg \varphi$ EventuallyGloballyOnceHistorically

Spatio-Temporal Model Checking

LTL with Past

Beyond LTL

 The use of LTL has been very successful in formal verification and synthesis of hardware digital circuits and software

 However, the expressivity of LTL is rather limited to discrete-time systems than to hybrid (discretecontinuous) systems

Monitoring Signals

From the Earth

From the Climate Changes

El Niño/La Niña-Southern Oscillation

From the Economy

Seismometer

Stock Market

From Circuits

Spatio-Temporal Model Checking

From Music

Music Sheet

23-06-2016

From LTL to Signal Temporal Logic

- Extending LTL with real-time and real-valued constraints
- Example: request-grant property

Linear Temporal Logic Boolean predicates, discrete-time

Metric Temporal Logic Boolean predicates, real-time

$$G\left(a \Rightarrow \mathsf{F}_{[0,0.5s]} \mathsf{b}\right)$$

 $G (a \Rightarrow Fb)$

Signal Temporal Logic Predicates over real values, real-time

$$G\left(x[t]>0 \Rightarrow \mathsf{F}_{[0,0.5s]} y[t]>0\right)$$

Υ.

Signal Temporal Logic

MTL/STL Formulas

$$\varphi := \top \mid \mu \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \mathbf{U}_{[a,b]} \psi$$

 $\blacktriangleright \perp = \neg \top$

 $\blacktriangleright \ \, {\sf Eventually is } \ \, {\sf F}_{[a,b]} \ \, \varphi = \top \ \, {\cal U}_{[a,b]} \ \, \varphi$

• Always is
$$G_{[a,b]}\varphi = \neg (F_{[a,b]} \neg \varphi)$$

STL Predicates

STL adds an analog layer to MTL. Assume signals $x_1[t]$, $x_2[t]$, ..., $x_n[t]$, then atomic predicates are of the form:

$$\mu = f(x_1[t], \ldots, x_n[t]) > 0$$

STL Semantics

The validity of a formula φ w.r.t. a signal $x = (x_1, \dots, x_n)$ at time t:

- $(\mathbf{x},t) \models \mu \qquad \Leftrightarrow f(x_1[t],\ldots,x_n[t]) > 0$
- $(\mathbf{x},t)\models\varphi\wedge\psi\qquad \Leftrightarrow \ (x,t)\models\varphi\wedge(x,t)\models\psi$
- $(\mathbf{x},t) \models \neg \varphi \qquad \Leftrightarrow \neg((x,t) \models \varphi)$

 $\begin{array}{ll} (\mathbf{x},t) \models \varphi \; \mathcal{U}_{[a,b]} \; \psi & \Leftrightarrow \; \exists t' \in [t+a,t+b] \; \text{such that} \; (x,t') \models \psi \; \land \\ \forall t'' \in [t,t'], \; (x,t'') \models \varphi \} \end{array}$

STL Semantics

- Eventually is $\mathsf{F}_{[a,b]} \varphi = \top \mathcal{U}_{[a,b]} \varphi$ $(\mathbf{x},t) \models \mathsf{F}_{[a,b]} \psi \Leftrightarrow \exists t' \in [t+a,t+b] \text{ such that } (x,t') \models \psi$
- Always is $G_{[a,b]}\varphi = \neg (F_{[a,b]} \neg \varphi)$

 $(\mathbf{x},t) \models \mathsf{G}_{[a,b]}\psi \Leftrightarrow \forall t' \in [t+a,t+b] \text{ such that } (x,t') \models \psi$

STL Examples

STL Examples

The signal is never above 3.5

$\varphi \coloneqq \operatorname{G}(|x[t]| < 3)$

STL Examples

Between 2s and 5s the signal is between -2 and 2

$\varphi \coloneqq \mathbf{G}_{[2,5]}(|x[t]| < 2)$

STL Examples

Always $|x| > 0.5 \Rightarrow$ within 1 s, |x| settles between 0.5 and 1.5 s $\varphi \coloneqq G((|x[t]| > 0.5) \rightarrow F_{[0,1]}(G_{[0,1.5]}x[t] < 0.5))$

Model-Checking STL

- Models are generally hybrid systems producing hybrid traces
- Model-Checking is limited to restrictive cases
- Monitoring simulated traces is more practical

Model-Checking STL

- Models are generally hybrid systems producing hybrid traces
- Model-Checking is limited to restrictive cases
- Monitoring simulated traces is more practical
- Quantitative satisfaction of STL can address the problem of noise and approximation

¬ ok

Robust Satisfaction Signal

$$\rho^{\mu}(x,t) = f(x_{1}[t], \dots, x_{n}[t])$$

$$\rho^{\neg \varphi}(x,t) = -\rho^{\varphi}(x,t)$$

$$\rho^{\varphi_{1} \wedge \varphi_{2}}(x,t) = \min(\rho^{\varphi_{1}}(x,t), \rho^{\varphi_{2}}(w,t))$$

$$\rho^{\varphi_{1} \mathcal{U}_{[a,b]} \varphi_{2}}(x,t) = \sup_{\tau \in t + [a,b]} (\min(\rho^{\varphi_{2}}(x,\tau), \inf_{s \in [t,\tau]} \rho^{\varphi_{1}}(x,s)))$$

Robustness of STL

Robustness of STL

Property of Robust Satisfaction Signal

Sign indicates satisfaction status

$$\rho^{\varphi}(x,t) > 0 \Rightarrow x,t \vDash \varphi$$
$$\rho^{\varphi}(x,t) < 0 \Rightarrow x,t \nvDash \varphi$$

Absolute value indicates tolerance

$$\begin{array}{lll} x,t\vDash\varphi\;\text{and}\;\|x-x'\|_{\infty}\leq\rho^{\varphi}(x,t)&\Rightarrow&x',t\vDash\varphi\\ x,t\nvDash\varphi\;\text{and}\;\|x-x'\|_{\infty}\leq-\rho^{\varphi}(x,t)&\Rightarrow&x',t\nvDash\varphi\end{array}$$

Robust Monitoring

A robust STL monitor is a *transducer* that transform x into $\rho^{\varphi}(x, .)$

In practice

I

• Trace: time words over alphabet \mathbb{R} , linear interpolation

nput:
$$x(\cdot) \triangleq (t_i, x(t_i))_{i \in \mathbb{N}}$$
 Output: $\rho^{\varphi}(x, \cdot) \triangleq (r_j, z(r_j))_{j \in \mathbb{N}}$

Continuity, and piecewise affine property preserved

Temporal Frequency Logic

Donze, Maler, Bartocci, Nickovick, Grosu, Smolka, ATVA, 2012

They extend STL with frequency predicates

Continuous-time STFT:

$$STFT\{x(t)\}(\tau,\omega) \equiv X(\tau,\omega) = \int_{-\infty}^{\infty} x(t)\omega(t-\tau)e^{-j\omega t}dt$$

Discrete-time STFT:

$$STFT\{x[n]\}(m,\omega) \equiv X(\tau,\omega) = \sum_{n=-\infty}^{\infty} x[n]\omega[n-m]e^{-j\omega n}$$

Fixed Resoultion:

freq

New predicate for the logic:

$$\mu = f(x,p) > \theta$$

Monitoring Music

Monitoring ECG

Bartocci, Bortolussi, Sanguinetti, FORMATS, 2014

Spatial Logics – Linear Spatial Superposition Logic

Grosu, Smolka, Corradini, Wasilewska, Entcheva, Bartocci, CAMC 2009

Emergent Behavior in Heart Cells

Arrhythmia afflicts more than 3 million Americans alone

Excitable Cells

- Generate action potentials (elec. pulses) in response to electrical stimulation
 - **Examples:** neurons, cardiac cells, etc.
- Local regeneration allows electric signal propagation without damping
- Building block for electrical signaling in brain, heart, and muscles

Neurons of a squirrel University College London

Artificial cardiac tissue University of Washington

Action Potential (AP)

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External
 - Neighboring cells
- Cell's state

Hybrid Automaton Model

Hybrid Automaton Model

56

Fibrillation/Defibrillation

(400x400 neonatal-rat cells)

Finite Mode Abstraction

Preserves spatial properties (4^{160,000} images)

Problems to Solve

- Detection problem:
 - Does a simulated tissue contain a spiral ?
- Specification problem:
 - Encode above property as a logic formula?
 - Can we learn the formula?

How? Use Spatial Abstraction

Superoposition Quadtrees (SQTs)

 $\exists !m \in \{s, u, p, r\}. \ p_i(m) = 1 \qquad p_i(m) = \frac{1}{4} \sum_{j=1}^{4} p_{ij}(m_j)$

Abstract position and compute PMF p(m) ≡ P[D=m]

SQGs and Kripke Structures (KSs)

Superposition Quadgraphs (Fractals): modal SSL

Kripke Structure: linear / branching SSL

Spatio-Temporal Model Checking

The Path to the Core of a Spiral

Spatio-Temporal Model Checking

Linear Spatial-Superposition Logic

Syntax

Semantics

$$\begin{split} \pi \models_{k}^{i} \top & and \ \pi \not\models_{k}^{i} \bot \\ \pi \models_{k}^{i} p & \Leftrightarrow \ p \in L(\pi[i]) \\ \pi \models_{k}^{i} \neg \varphi & \Leftrightarrow \ \pi \not\models_{k}^{i} \varphi \\ \pi \models_{k}^{i} \varphi \lor \psi & \Leftrightarrow \ \pi \models_{k}^{i} \varphi \text{ or } \pi \models_{k}^{i} \psi \\ \pi \models_{k}^{i} X\varphi & \Leftrightarrow \ i < k \text{ and } \pi \models_{k}^{i+1} \varphi \\ \pi \models_{k}^{i} B\varphi & \Leftrightarrow \ 0 < i \le k \text{ and } \pi \models_{k}^{i-1} \varphi \\ \pi \models_{k}^{i} \varphi U\psi & \Leftrightarrow \ \exists j. \ i \le j \le k. \ \pi \models_{k}^{j} \psi \text{ and } \forall n. \ i \le n < j. \ \pi \models_{k}^{n} \psi \\ \pi \models_{k}^{i} \psi R\varphi & \Leftrightarrow \ \forall j. \ i \le j \le k. \ \pi \models_{k}^{j} \varphi \text{ or } \exists n. \ i \le n < j. \ \pi \models_{k}^{n} \psi \end{split}$$

SQGs, KSs and LSL

Overview of Our Approach

The Wave Front

Measure density of mode stimulated (yellow)

Yellow modes represent the wave front

Learning Formula

Input – Sequence of images (mode distribution)

Output – Set of **records** with attributes (a table)

Record	a1	a2	a3	a4	 Spiral
1			•••		 N
2					 N
3					 Y
4					 Y
5		•••		•••	 Y

Class Description Formula

Each record: corresponds to a discriminant rule

$$\mathbf{r}_{\mathbf{i}} \equiv (\wedge_{\mathbf{j} \in \mathbf{I}_{\mathbf{i}}} \mathbf{a}_{\mathbf{ij}} = \mathbf{v}_{\mathbf{ij}} \Longrightarrow \mathbf{c} = \mathbf{v})$$

Table: corresponds to conjunction of rules

$$\wedge_{i=1}^{n} \mathbf{r}_{i} = \wedge_{i=1}^{n} (\wedge_{j \in I_{i}} \mathbf{a}_{ij} = \mathbf{v}_{ij} \Longrightarrow \mathbf{c} = \mathbf{v})$$
$$= (\vee_{i=1}^{n} \wedge_{j \in I_{i}} \mathbf{a}_{ij} = \mathbf{v}_{ij}) \Longrightarrow (\mathbf{c} = \mathbf{v})$$

Class description formula (CDF): the antecedent $\bigvee_{i=1}^{n} \wedge_{j \in I_{i}} \mathbf{a}_{ij} = \mathbf{v}_{ij}$

Creating/Checking an LSSL formula

Decision tree algorithm: simplifies the CDF

if $a_7 \le 0.875$ then {if $a_2 > 0.049$ then c else $\neg c$ } else if $a_3 \le 0.078$ then { if $a_0 > 0.025$ then c else $\neg c$ } else $\neg c$

LSSL formula ϕ : gives meaning to attributes a_i X⁷(P(D=s)≤ 0.875) ∧ X²(P(D=s) > 0.049) ∨ X⁷(P(D=s)> 0.875) ∧ X³(P(D=s) ≤ 0.078) ∧ (P(D=s) > 0.025)

Spiral detection for SQT T: reduces to BMC of $T \vDash \phi$

Overview of Our Approach

Using Weka

Preprocess Classify Cluster Associate		
Classifier		
Choose J48 -C 0.25 -M 2		
Test options	Classifier output	
🔿 Use training set	LIASS	
	Test mode: 10-fold cross-validation	
Cross unlidation Ends 10	=== Classifier model (full training set) ===	
O Percentage split % 66	J48 pruned tree	
More options		
	a7 <= 0.875	
(Nom) Class 🗠	al <= 0.026535: Not-Spiral (44.0/1.0)	
Start Stop	al > 0.026535: Spiral (112.0)	
-Degult list (vight click for options)	a/ > 0.075 a3 <= 0.078369	
Resolution (ingrit-click for options)	a0 <= 0.025021: Not-Spiral (9.0)	
00:32:40 - trees.946	a0 > 0.025021: Spiral (11.0)	
	a3 > 0.078369: Not-Spiral (370.0/1.0)	
	Number of Leaves : 5	
	Size of the tree : 9	
	Time taken to build model: 0.19 seconds	
Chabura		
Emerald: Learning LSSL Formula

Preproce	essing	Bound	ded Mode	el Checki	ng											
									Start	Stop						
	QuadTree QuadT															
Set of R	ecoras		0 -#4	0.#2	0 -#-2	0 -#4	0 -#-5	0.440	0 #7	0.#0	Onirol					
Experi s	snapS snapO	0.007	0.028	0.061	0.244	0.305	0.871	1.0	1.0	1.0	spiral					
Experi s	snap0	0.007	0.029	0.061	0.246	0.313	0.839	1.0	1.0	1.0						
Experi s	snapO	0.007	0.029	0.063	0.253	0.327	0.816	1.0	1.0	1.0						
Experi s	snapO	0.007	0.029	0.063	0.252	0.338	0.792	1.0	1.0	1.0						
Experi s	snapO	0.007	0.028	0.061	0.247	0.231	0.140	0.296	0.5	1.0	~	-				
Experi s	snapO	0.007	0.028	0.061	0.247	0.231	0.140	0.296	0.4375	1.0	~	-				
Experi s	snapO	0.007	0.028	0.061	0.247	0.231	0.140	0.296	0.5	0.75						
Experi Is	snapu	0.007	0.028	0.061	0.247	0.231	0.140	0.296	0.4375	0.5		_			Core of a s	piral ?
	Import		Wek	ka	Max	PMF P		Save		Dele	te				x = 148, y =	220
	Previous Image First Image Next Image Fibrillation BasicGridImage x = 148, y = 220															

🕌 Emerald

Emerald
Preprocessing

Bounded Model Checking

Emerald: Bounded Model Checking

Start Stop							
QuadTree QuadTree QuadT							
3-06-2016 Previous Image Eirst Image Next Image Two Spirals Che Basic Grid BlackWhiteImage snap199.ppm							

Results

Path Classifier	Test Set 550	Test Set 600	Test Set 650
Trained (512 Paths)	87.00%	88.83%	88.23%
Retrained (512 Paths $+$ 67 Counter-Examples)	97.10%	97.33%	93.07%

Prediction accuracy for spiral detection in Emerald

Spatial Logics Tree Spatial Superposition Logic

Quadtree and Spatial Superposition

			:	•	:	•	
	•	•	-		•	•	•
				■	•		•
						•	•

Leaves of the tree

Quadtree and Spatial Superposition

Quadtree and Spatial Superposition

Quadtree and Spatial Superposition

More compact representation

Pruning the tree

Reasoning over QuadTrees

From QuadTrees to Kripke Structures

 $\boldsymbol{M} = \left(\boldsymbol{S}, \boldsymbol{s}_0, \boldsymbol{R}, \boldsymbol{L}\right)$

 $L: S \rightarrow 2^{AP}$ is a labeling (or interpretation) function

Reasoning over QuadTrees

Compact Kripke Structures

 $\boldsymbol{M} = \left(\boldsymbol{S}, \boldsymbol{s}_0, \boldsymbol{R}, \boldsymbol{L}\right)$

 $R \in S \times S$ is a total transition relation $\forall s \in S, \exists t \in S : (s,t) \in R$

 $L: S \rightarrow 2^{AP}$ is a labeling (or interpretation) function

Aydin-Gol, Bartocci, Belta, CDC 2014

Problem: chessboard example

Adding directions (NW, NE, SW, SE) to transitions

Syntax $\varphi ::= \perp | m \sim d | \neg \varphi | \varphi \land \varphi | \exists_B \bigcirc \varphi | \forall_B \bigcirc \varphi | \exists_B \varphi U_k \varphi | \forall_B \varphi U_k \varphi$

$$\begin{array}{l} \sim \in \left\{ \leq, \geq \right\}, d \in \left[0, b\right], \\ b \in \mathbb{R}_+, k \in \mathbb{N}_{>0} \\ B \subseteq D \\ B \neq \emptyset \end{array}$$

$$\forall_{*} \left(\boldsymbol{m} \geq \frac{1}{2} \right) \boldsymbol{U}_{1} \left(\exists_{\{NW, SE\}} \boldsymbol{X} (\boldsymbol{\varphi}_{1}) \land \exists_{\{NE, SW\}} \boldsymbol{X} (\boldsymbol{\varphi}_{2}) \right)$$

$$\boldsymbol{\varphi}_{1} = \exists_{\{NW, SE\}} \boldsymbol{X} (\boldsymbol{m} \leq 0) \land \exists_{\{NE, SW\}} \boldsymbol{X} (\boldsymbol{m} \geq 1)$$

$$\boldsymbol{\varphi}_{2} = \exists_{\{NE, SW\}} \boldsymbol{X} (\boldsymbol{m} \leq 0) \land \exists_{\{NW, SE\}} \boldsymbol{X} (\boldsymbol{m} \geq 1)$$

Quantitative Semantics

$$\rho_s(\exists_B X(m \ge 0.7), s) = \frac{0.5 - 0.7}{4} = -0.05$$

Quantitative Semantics

$$\begin{array}{lll} \rho_{s}(\top,a) &= b \\ \rho_{s}(m \sim d,a) &= (\sim \mbox{ is } \geq)?([m](a) - d) : (d - [m](a)) \\ \rho_{s}(\neg\varphi,a) &= -\rho_{s}(\varphi,a) \\ \rho_{s}(\varphi_{1} \wedge \varphi_{2},a) &= \min(\rho_{s}(\varphi_{1},a),\rho_{s}(\varphi_{2},a)) \\ \rho_{s}(\exists_{B} \bigcirc \varphi,a) &= 0.25 \max_{\pi^{B} \in LPath^{B}(a)} \rho_{s}(\pi_{1}^{B}) \\ \rho_{s}(\forall_{B} \bigcirc \varphi,a) &= 0.25 \min_{\pi^{B} \in LPath^{B}(a)} \rho_{s}(\pi_{1}^{B}) \\ \rho_{s}(\exists_{B}\varphi_{1}U_{k}\varphi_{2}) &= \sup_{\pi^{B} \in LPath^{B}(a),i \in (0,k]}(\min(0.25 \\ \rho_{s}(\varphi_{2},\pi_{i}^{B}),\inf_{j \in [0,i)} 0.25^{j}\rho_{s}(\varphi_{1},\pi_{j}^{B}))) \\ \rho_{s}(\forall_{B}\varphi_{1}U_{k}\varphi_{2}) &= \inf_{\pi^{B} \in LPath^{B}(a),i \in (0,k]}(\min(0.25 \\ \rho_{s}(\varphi_{2},\pi_{i}^{B}),\inf_{j \in [0,i)} 0.25^{j}\rho_{s}(\varphi_{1},\pi_{j}^{B}))). \end{array}$$

Spatio-Temporal Logics SpaTel: Spatial-Temporal Logic

SpaTel: Spatial-Temporal Logic

Syntax

 $\varphi ::= \bot | m \sim d | \neg \varphi | \varphi \land \varphi | \exists_B \bigcirc \varphi | \forall_B \bigcirc \varphi | \exists_B \varphi_1 \tilde{U}_k \varphi_2 | \forall_B \varphi_1 \tilde{U}_k \varphi_2 \leftarrow \mathsf{TSSL}$

 $\Phi := \varphi \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 U_I \Phi_2 \quad \longleftarrow \quad \text{Signal Temporal Logic}$

$$\begin{split} \Phi &= F_{[0,T]}(\varphi_{cboard} \to G_{[0,1]}\varphi_{flipcboard}) \\ \varphi_{cboard} &= \forall_{B^*} \tilde{F}_2 \Big(\forall_{\{SW,NE\}} \bigcirc w \land \forall_{\{NW,SE\}} \bigcirc b \Big) \\ \varphi_{flipcboard} &= \forall_{B^*} \tilde{F}_2 \Big(\forall_{\{NW,SE\}} \bigcirc w \land \forall_{\{SW,NE\}} \bigcirc b \Big) \end{split}$$

SpaTel: Spatial-Temporal Logic

Syntax

 $\varphi ::= \bot | m \sim d | \neg \varphi | \varphi \land \varphi | \exists_B \bigcirc \varphi | \forall_B \bigcirc \varphi | \exists_B \varphi_1 \tilde{U}_k \varphi_2 | \forall_B \varphi_1 \tilde{U}_k \varphi_2 \leftarrow \mathsf{TSSL}$

 $\Phi ::= \varphi \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 U_I \ \Phi_2 \ \longleftarrow \ \text{Signal Temporal Logic}$

Quantitative Semantics

$$\rho_t(\neg \Phi, Q, t) = -\rho_t(\Phi, Q, t)
\rho_t(\Phi_1 \land \Phi_2, Q, t) = \min(\rho_t(\Phi_1, Q, t), \rho_t(\Phi_2, Q, t))
\rho_t(\Phi_1 U_{[I_1, I_2]} \Phi_2, Q, t) = \sup_{t' \in [t+I_1, t+I_2]} (\min(\rho_t(\Phi_2, Q, t'), \inf_{t'' \in [t, t']} \rho_t(\Phi_1, Q, t'')))
\rho_t(\varphi, Q, t) = \rho_s(\varphi, a_0(t))$$

Pattern Synthesis Problem

Problem: Find (the optimal) $(p_1,...,p_n)$: $M(p_1,...,p_n) \models P$

Parameters

Model Satisfies Property

Example of models:

Parameters $\dot{u} = F(u,v) - d_u v + D_u \nabla u$ $\dot{v} = G(u,v) - d_v v + D_v \nabla v$ REACTION DIFFUSION DEGRADATION

Turing Diffusion Model

System Design and Parameter Synthesis

23-06-2016

94

2. Classification and Quantification

System Design and Parameter Synthesis

System Design and Parameter Synthesis

Particle swarm optimization over the parameter space. Fitness: The quantitative valuation $\llbracket \Phi_{LS}
rbracket$ of the image from TSSL formula Φ_{LS}

$$\begin{aligned} \text{Turing diffusion system:} \\ x_{k+1}(i,j) &= x_k(i,j) + \Delta_t \left(D_x \left(\frac{1}{4} \sum_{m,n \in \{-1,1\}} x_k(i+m,j+n) - x_k(i,j) \right) + x_k(i,j) y_k(i,j) - x_k(i,j) - 12 \right) \\ y_{k+1}(i,j) &= y_k(i,j) + \Delta_t \left(D_y \left(\frac{1}{4} \sum_{m,n \in \{-1,1\}} y_k(i+m,j+n) - y_k(i,j) \right) - x_k(i,j) y_k(i,j) + 16 \right) \end{aligned}$$

Unknown parameters: D_x, D_y

 $\Phi_{LS,3}$: learned from LS⁺ and LS⁻₃ (95.64 % on test) $\llbracket \Phi_{LS,3} \rrbracket(\mathcal{Q}) = 0.0011$ PSO: $D_x = 6.25$ $D_y = 29.417$

23-06-2016

Spatio-Temporal Model Checking

System Design and Parameter Synthesis

Algorithm 2 Parameter Synthesis

Input: SpaTeL formula Φ , system model S, parameter ranges \mathcal{P} , number of traces N, PSO parameters (W, r_p, r_g, m) , termination constant kOutput: Parameter values Π^* for $1 \leq j \leq m$ do $\mid z_i \leftarrow$ initialize particle positions $v_i \leftarrow$ initialize particle velocities end while Π^* has changed during the last k iterations do $\mid for \ 1 \leq j \leq N$ do $\mid Q_{u_j,z_i} \leftarrow$ draw a sample trace of the system $\rho_t(\Phi, Q_{u_j,z_i}) \leftarrow$ calculate quantitative valuation of Q_{u_j,z_i} with respect to Φ end $[z_i, v_i] \leftarrow$ update particles $\Pi^* \leftarrow$ the best position so far (z^{best}) end

Update particles

$$v_i \leftarrow Wv_i + \eta(0, r_p)(z_i^{best} - z_i) + \eta(0, r_g)(z_i^{best} - z_i)$$
$$z_i \leftarrow z_i + v_i$$

Inside each building, $n_i(t)$ appliances are consuming rate r_i KW. The arrival distribution of appliances for building class *i* over the period [t,t+1] is a Poisson distributed with a rate $\lambda(U_i - p_j(t))/U_i$, where U_i is the utility of an appliance of class i and $p_j(t)$ is the broadcast price for neighborhood class j,j in {c,r} with residential building and EV station charged by the same price

Comm Zo	nercial ne	Residential Zone EV charging Station		
Resic Zo	lential one	Resid Zc	ential one	
EV charging Station			EV charging Station	

Specification

The total power consumption of the commercial buildings is always less than 150; the power consumption is below 150 in each EV station and below 25 in each of the residential neighborhoods in the first 12 hours; after 12 hours, the power consumption of each EV station is between 30 and 200; after 15 hours, the power consumption in all residential areas is above 5.

$$\begin{split} \Phi &= \Phi_1 \wedge \Phi_2 \wedge \Phi_3 \wedge \Phi_4 \\ \Phi_1 &= G_{[0,24]} \Big(\forall_{NW} \bigcirc (m \le 150) \Big) \\ \Phi_2 &= G_{[0,12]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{NW,SE,SW\}} \bigcirc (m \le 25) \wedge \forall_{\{SE\}} \bigcirc (m \le 150) \Big) \Big) \\ \Phi_3 &= G_{[12,18]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{SE\}} \bigcirc (m \le 200 \wedge m \ge 30) \Big) \Big) \\ \Phi_4 &= G_{[15,18]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{NW,SE,SW\}} \bigcirc (m \ge 5) \Big) \Big) \end{split}$$

Comm Zo	nercial ne	Residential Zone EV charging Station		
Resic Zo	lential one	Resid Zc	ential one	
EV charging Station			EV charging Station	

Specification

The total power consumption of the commercial buildings is always less than 150; the power consumption is below 150 in each EV station and below 25 in each of the residential neighborhoods in the first 12 hours; after 12 hours, the power consumption of each EV station is between 30 and 200; after 15 hours, the power consumption in all residential areas is above 5.

$$\begin{split} \Phi &= \Phi_1 \wedge \Phi_2 \wedge \Phi_3 \wedge \Phi_4 \\ \Phi_1 &= G_{[0,24]} \Big(\forall_{NW} \bigcirc (m \le 150) \Big) \\ \Phi_2 &= G_{[0,12]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{NW,SE,SW\}} \bigcirc (m \le 25) \wedge \forall_{\{SE\}} \bigcirc (m \le 150) \Big) \Big) \\ \Phi_3 &= G_{[12,18]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{SE\}} \bigcirc (m \le 200 \wedge m \ge 30) \Big) \Big) \\ \Phi_4 &= G_{[15,18]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{NW,SE,SW\}} \bigcirc (m \ge 5) \Big) \Big) \end{split}$$

Comm Zo	nercial ne	Residential Zone ^{EV charging} Station		
		Decid		
Resid Zc	lential one	Zc	ential one	

N	(RP_D^*, RP_N^*, CP_N^*)	\hat{p}
1	(4.69, 4.41, 19.70)	0.43
10	(4.42, 4.74, 19.70)	0.75
20	(4.40, 4.75, 19.70)	0.73
50	(4.15, 5.05, 19.70)	0.90

$$\begin{split} \Phi &= \Phi_1 \wedge \Phi_2 \wedge \Phi_3 \wedge \Phi_4 \\ \Phi_1 &= G_{[0,24]} \Big(\forall_{NW} \bigcirc (m \le 150) \Big) \\ \Phi_2 &= G_{[0,12]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{NW,SE,SW\}} \bigcirc (m \le 25) \wedge \forall_{\{SE\}} \bigcirc (m \le 150) \Big) \Big) \\ \Phi_3 &= G_{[12,18]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{SE\}} \bigcirc (m \le 200 \wedge m \ge 30) \Big) \Big) \\ \Phi_4 &= G_{[15,18]} \Big(\forall_{\{NE,SE,SW\}} \bigcirc \Big(\forall_{\{NW,SE,SW\}} \bigcirc (m \ge 5) \Big) \Big) \end{split}$$

Spatio-Temporal Logics Signal Spatio-Temporal Logic

Nenzi, Bortolussi, VALUETOOLS, 2014 Nenzi, Bortolussi, Ciancia, Loreti, Massink, RV, 2015

Signal Spatio-Temporal Logic (SSTL)

SSTL Syntax

$$\varphi \coloneqq \mu \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \mathcal{U}_{[t_1, t_2]} \varphi_2 \mid \bigotimes_{[w_1, w_2]} \varphi \mid \varphi_1 \mathcal{S}_{[w_1, w_2]} \varphi_2$$

where $t_1, t_2, w_1, w_2 \in \mathbb{R}_{\geq 0}$.

In addition $\mathcal{F}_{[a,b]}\varphi \coloneqq \top \mathcal{U}_{[a,b]}\varphi, \quad \mathcal{G}_{[a,b]}\varphi \coloneqq \neg \mathcal{F}_{[a,b]}\neg \varphi, \quad \Box_{[w_1,w_2]}\varphi \coloneqq \neg \otimes_{[w_1,w_2]}\neg \varphi.$

The space

A **weighted graph** is a tuple G=(L,E,w) where:

- $L = \{\ell_1, ..., \ell_n\}$
- *E* is the set of edges
- w: E → ℝ is the function that identy the weight associated with each edge.

Somewhere

$$(\vec{x}, t, \ell) \vDash (\vec{x}, t, \ell)$$

Shortest path

$$\begin{array}{c}
(\vec{l}_{1} \xrightarrow{1} (l_{2}) \xrightarrow{1} (l_{3}) \\ \neg - - 2 \xrightarrow{2} (l_{1}, l_{2}), (l_{2}, l_{3}), (l_{1}, l_{3}) \end{aligned} \\
E^{*} = \left\{ (l_{1}, l_{2}), (l_{2}, l_{3}), (l_{1}, l_{3}) \right\} \\
E^{*} = \left\{ (l_{1}, l_{2}), (l_{2}, l_{3}), (l_{1}, l_{3}) \right\} \\
E^{*} = \left\{ (l_{1}, l_{2}), (l_{2}, l_{3}), (l_{1}, l_{3}) \right\}$$

The orange point satisfies

 $\otimes_{[3,5]}$ purple

Everywhere

$$\square_{[w_1,w_2]}\varphi \coloneqq \neg \otimes_{[w_1,w_2]} \neg \varphi$$

The orange point satisfies $\square_{[2,3]}$ yellow

Surround

 $\begin{aligned} (\vec{x}, t, \ell) \vDash \varphi_1 \mathcal{S}_{[w_1, w_2]} \varphi_2 \Leftrightarrow \exists A \subseteq L^{\ell}_{[0, w_2]} : \ell \in A \land \forall \ell' \in A, (\vec{x}, t, \ell') \vDash \varphi_1 \land B^+(A) \subseteq L^{\ell}_{[w_1, w_2]} \land \\ \forall \ell'' \in B^+(A), (x, t, \ell'') \vDash \varphi_2. \end{aligned}$

The dark green point satisfies green $S_{[2,3]}$ violet Green points satisfy green $S_{[0,100]}$ violet

Spatio-temporal signals

$$\begin{split} (\vec{x}, t, \ell) &\models \varphi_1 \mathcal{S}_{[w_1, w_2]} \varphi_2 \Leftrightarrow \exists A \subseteq L^{\ell}_{[0, w_2]} : \ell \in A \land \forall \ell' \in A, (\vec{x}, t, \ell') \vDash \varphi_1 \land B^+(A) \subseteq L^{\ell}_{[w_1, w_2]} \land \\ &\forall \ell'' \in B^+(A), (x, t, \ell'') \vDash \varphi_2. \end{split}$$

Green points satisfy green $S_{[0,100]}$ violet The dark green point satisfies green $S_{[2,3]}$ violet

Spatio-temporal signals

Spatio-temporal trace

 $\vec{x}: \mathbb{T} \times L \to \mathbb{R}^n$, $\vec{x}(t,\ell) = (x_1(t,\ell), \cdots, x_n(t,\ell))$

 $\vec{x}(t,\ell) = (x_S(t,\ell), x_I(t,\ell), x_R(t,\ell))$

Pattern formation

The production of skin pigments that generate spots in animal furs:

Spots formation property

Spot formation property

$$\mathcal{F}_{[18,20]}\mathcal{G}_{[0,30]}((x_A \le 0.5)\mathcal{S}[1,4](x_A > 2))$$

Monitoring SSTL

$$\varphi := \mathcal{F}_{[18,20]} \mathcal{G}_{[0,30]}((x_A \le 0.5) \mathcal{S}[1,4](x_A > 2))$$

The parse tree of the formula:

Monitoring SSTL

Spatial Boolean Signal $s_{\varphi} : [0, T] \times L \rightarrow \{0, 1\}$ such that $s_{\varphi}(t, \ell) = 1 \Leftrightarrow (\vec{x}, t, \ell) \models \varphi$

Quantitative Semantics

$$\begin{split} \rho(\mu, \mathbf{x}, t, \ell) &= f(\mathbf{x}(t, \ell)) \quad \text{where } \mu \equiv (f \ge 0) \\ \rho(\neg \varphi, \mathbf{x}, t, \ell) &= -\rho(\varphi, \mathbf{x}, t, \ell) \\ \rho(\varphi_1 \land \varphi_2, \mathbf{x}, t, \ell) &= \min(\rho(\varphi_1, \mathbf{x}, t, \ell), \rho(\varphi_2, \mathbf{x}, t, \ell)) \\ \rho(\varphi_1 \mathcal{U}_{[t_1, t_2]} \varphi_2, \mathbf{x}, t, \ell) &= \sup_{t' \in t + [t_1, t_2]} (\min\{\rho(\varphi_2, \mathbf{x}, t', \ell), \inf_{t'' \in [t, t']} (\rho(\varphi_1, \mathbf{x}, t'', \ell))\} \\ \rho(\otimes_{[w_1, w_2]} \varphi, \mathbf{x}, t, \ell) &= \max\{\rho(\varphi, \mathbf{x}, t, \ell') \mid \ell' \in L, (\ell', \ell) \in E^* \\ and w_1 \le w(\ell', \ell) \le w_2\} \\ \rho(\varphi_1 \mathcal{S}_{[w_1, w_2]} \varphi_2, \mathbf{x}, t, \ell) &= \max_{A \le L^{\ell}_{[0, w_2]}, \ell \in A, B^+(A) \le L^{\ell}_{[w_1, w_2]}} (\min(\min_{\ell' \in A} \rho(\varphi_1, \mathbf{x}, t, \ell'), \min_{\ell'' \in B^+(A)} \rho(\varphi_2, \mathbf{x}, t, \ell''))). \end{split}$$

Example

Spot formation property

$$\phi_{spot_{form}} \coloneqq \mathcal{F}_{[\mathcal{T}_{pattern}, \mathcal{T}_{pattern} + \delta]} \mathcal{G}_{[0, \mathcal{T}_{end}]}((x_{\mathcal{A}} \le h) \mathcal{S}[w_1, w_2](x_{\mathcal{A}} > h))$$

 $x_A(50,\ell)$

Boolean sat. Spatio-Temporal Model Checking Quantitative sat.

Example

Pattern property

$$\phi_{pattern} \coloneqq \Box [0, w] \otimes [0, w'] \phi_{spot_{form}},$$

- w is the distance to cover all space
- ▶ **w**′ measures the distance between spots

References

jSSTL tool :

- https://bitbucket.org/LauraNenzi/jsstl
- L. Bortolussi and L.Nenzi, Specifying and Monitoring Properties of Stochastic Spatio-Temporal Systems in SSTL, Valuetools, 2014.
- L.Nenzi, L. Bortolussi, V. Ciancia, M. Loreti and M. Massink Qualitative and Quantitative Monitoring of Spatio-Temporal Properties, RV, 2015.

STL :

O. Maler, T. Ferrére, and D. Nickovic. Efficient Robust Monitoring for STL. In Proc. CAV 2010.

Boolean Surround:

Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Proc. of IFIP-TCS, 2014.

Turing Model:

Haghighi, I., Jones, A., Kong, J.Z., Bartocci, E., R., G., Belta, C.: SpaTeL: ANovelSpatial-Temporal Logic and Its Applications to Networked Systems. In: Proc. of HSCC, 2015.