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Collective Systems

We are surrounded by examples of collective systems:

Most of these systems are also adaptive to their environment
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed as
being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective behaviour.
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Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.

22nd June 2016 6 / 90



quanƟcol. . ...............................
www.quanticol.eu

Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.

22nd June 2016 6 / 90



quanƟcol. . ...............................
www.quanticol.eu

Collective Adaptive Systems

The behaviour of the system is thus dependent on the behaviour of
the individual entities.

And the behaviour of the individuals will be influenced by the state
of the overall system.

22nd June 2016 6 / 90



quanƟcol. . ...............................
www.quanticol.eu

Collective Adaptive Systems

Such systems are often embedded in our environment and need to
operate without centralised control or direction.

Moreover when conditions within the system change it may not be
feasible to have human intervention to adjust behaviour appropriately.

Thus systems must be able to autonomously adapt.
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The Informatic Environment

Robin Milner coined the term of informatics environment —
pervasive computing elements embedded in the human environment,
invisibly providing services and responding to requirements.
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Robin Milner coined the term of informatics environment —
pervasive computing elements embedded in the human environment,
invisibly providing services and responding to requirements.

Such systems are now becoming the reality, and many form collective
adaptive systems, in which large numbers of computing elements
collaborate to meet the human need.

For instance, may examples of such systems can be found in
components of Smart Cities, such as smart urban transport and
smart grid electricity generation and storage.

22nd June 2016 8 / 90



quanƟcol. . ...............................
www.quanticol.eu

Quantitative Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient sharing
of resources.

Markovian-based discrete event models have been applied to
computer systems since the mid-1960s and communication systems
since the early 20th century.

Various formalisms have been designed for capturing such behaviour.
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Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support
and maintain reasonable
response times?
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Performance Modelling: Motivation

Capacity planning

How many buses do I
need to maintain service
at peak time in a smart
urban transport system?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Configuration

What capacity do I need
at bike stations to
minimise the movement
of bikes by truck?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor
belt will minimize robot
idle time and maximize
throughput whilst
avoiding lost widgets?
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Performance Modelling: Motivation

System Tuning

What strategy can I use
to maintain
supply-demand balance
within a smart electricity
grid?
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Performance Modelling

The size and complexity of real systems makes the direct
construction of discrete state models costly and error-prone.

For the last three decades there has been substantial interest in
applying formal modelling techniques enhanced with information
about timing and probability.

From these high-level system descriptions the underlying
mathematical model (Continuous Time Markov Chain (CTMC)) can
be automatically generated.

Primary examples include:

Stochastic Petri Nets and

Stochastic Process Algebras.
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

Activities have a name and a rate.

The rate defines an exponential distribution which means that
the duration of an activity is a random variable.

A small set of language constructs determine how the model will
evolve.

The language is used to generate a CTMC for performance
modelling (via the semantics).
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Solving discrete state models

Using the semantics a SPA
model is mapped to a CTMC
with global states determined
by the local states of all the
participating components.

c

b
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N
...

...
...

qN,1 qN,2 · · · qN,N



π(t) = (π1(t),π2(t), . . . ,πN(t))

π(∞)Q = 0

22nd June 2016 14 / 90



quanƟcol. . ...............................
www.quanticol.eu

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N
...

...
...

qN,1 qN,2 · · · qN,N



π(t) = (π1(t),π2(t), . . . ,πN(t))

π(∞)Q = 0

22nd June 2016 14 / 90



quanƟcol. . ...............................
www.quanticol.eu

Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N
...

...
...

qN,1 qN,2 · · · qN,N



π(t) = (π1(t),π2(t), . . . ,πN(t))

π(∞)Q = 0

22nd June 2016 14 / 90



quanƟcol. . ...............................
www.quanticol.eu

Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible to
carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.

As we have seen in a previous lecture, when the population sizes
become large we can make a mean-field approximation,
approximating the average trajectory of the CTMC by a set of
ordinary differential equations.

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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The Fluid Approximation Alternative

We can shift attention to the populations rather than the individual
entities, and then consider the average behaviour within a population.

Ceasing to distinguish between instances of components we form an
aggregation or counting abstraction to reduce the state space.
We now disregard the identity of components.

Even better reductions can be achieved when we no longer regard the
components as individuals.
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Challenges for modelling CAS

Work over the last twenty years on stochastic process algebra
provides a solid basic framework for modelling CAS but there remain
a number of challenges:

Richer forms of interaction

The influence of space on behaviour

Capturing adaptivity

22nd June 2016 19 / 90
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Richer forms of interaction

If we consider real collective adaptive systems, especially those with
emergent behaviour, they embody rich forms of interaction, often
based on asynchronous communication.

For example, pheromone trails left by social insects.

Languages like SCEL offer these richer communication patterns, with
components which include a knowledge store which can be
manipulated by other components and attribute-based
communication.

R.De Nicola, G.Ferrari, M.Loreti, R.Pugliese. A Language-Based Approach to Autonomic Computing. FMCO 2011.

But languages designed for other purposes typically contain too much
detail to be used as the basis of quantitative modelling and analysis.

22nd June 2016 20 / 90
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Modelling space

Location and movement play an important role within many CAS,
e.g. smart cities.

We can impose the effects of space by encoding it into the behaviour
of the actions of components and distinguishing the same component
in different location as distinct types, but this is modelling space
implicitly.

It is preferable to model space explicitly although this poses
significant challenges both for model expression and model solution.

There is a tension with scalable analysis which is often based on an
implicit assumption that all components are co-located.
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Capturing adaptivity

Existing process algebras, tend to work with a fixed set of actions for
each entity type.

Some stochastic process algebras allow the rate of activity to be
dependent on the state of the system.

But for truly adaptive systems there should also be some way to
identify the goal or objective of an entity in addition to its behaviour.
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A new language for CAS

The QUANTICOL project seeks to develop a coherent, integrated set
of linguistic primitives, methods and tools to build systems that can
operate in open-ended, unpredictable environments.
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CARMA

A key element of the QUANTICOL framework is the language,
carma (Collective Adaptive Resource-sharing Markovian Agents),
which handles:

1 The behaviours of agents and their interactions;

2 The global knowledge of the system and that of its agents;

3 The environment where agents operate. . .

taking into account open ended-ness and adaptation;
taking into account resources, locations and visibility/reachability
issues.

M.Loreti et al. CARMA: Collective Adaptive Resource-sharing Markovian Agents. QAPL 2015.
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Store
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Components

Agents in Carma are defined as components C of the form (P,γ)
where. . .

P is a process, representing agent behaviour;

γ is a store, modelling agent knowledge.

The participants of an interaction are identified via predicates. . .

the counterpart of a communication is selected according its
properties
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Interaction primitives

Processes interact via attribute based communications. . .

Broadcast output: a message is sent to all the components
satisfying a predicate π;

Broadcast input: a process is willing to receive a broadcast
message from a component satisfying a predicate π;

Unicast output: a message is sent to one of the components
satisfying a predicate π;

Unicast input: a process is willing to receive a message from a
component satisfying a predicate π.

The execution of an action takes an exponentially distributed time;
the rate of each action is determined by the environment.
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Interaction primitives
Syntax

act ::= α?[π]〈−→e 〉σ Broadcast output

| α?[π](−→x )σ Broadcast input

| α [π]〈−→e 〉σ Unicast output

| α [π](−→x )σ Unicast input

α is an action type;

π is a predicate;

σ is the effect of the action on the store.
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Simple example

Lecturer = teach?[awake = true]〈fact〉{} . . .
+ coffee?[true]〈·〉{boring := false} . . .

Student = teach?[boring = false](fact){know := know + fact} . . .
+ coffee?[true](·){awake := true} . . .
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Short (5 minute) Break!
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Interaction patterns in CAS

Typically, CAS exhibit two kinds of interaction pattern:

1 Spreading: one agent spreads relevant information to a given
group of other agents

2 Collecting: one agent changes its behaviour according to data
collected from one agent belonging to a given group of agents.

Spreading: 1-to-many Collecting: 1-to-1
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CAS: Carma perspective

Collective

Environment Attributes

Processes are referenced via their attributes!
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CARMA

A Carma system consists of

a collective (N). . .

. . . operating in an environment (E ).

Collective. . .

is composed by a set of components, i.e. the Markovian agents
that compete and/or cooperate to achieve a set of given tasks

models the behavioural part of a system

Environment. . .

models the rules intrinsic to the context where agents operate;

mediates and regulates agent interactions.
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Components

Agents in Carma are defined as components C of the form (P,γ)
where. . .

P is a process, representing agent behaviour;

γ is a store, modelling agent knowledge.

The participants of an interaction are identified via predicates. . .

the counterpart of a communication is selected according its
properties
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Interaction primitives
Syntax

act ::= α?[π]〈−→e 〉σ Broadcast output

| α?[π](−→x )σ Broadcast input

| α [π]〈−→e 〉σ Unicast output

| α [π](−→x )σ Unicast input

α is an action type;

π is a predicate;

σ is the effect of the action on the store.
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Updating the store

After the execution of an action, a process can update the
component store:

σ denotes a function mapping each γ to a probability
distribution over possible stores.

move?[π]〈v〉{x := x + U(−1,+1)}

Remark:

Processes running in the same component can implicitly interact
via the local store;

Updates are instantaneous.
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More on synchronisation

Predicates regulating broadcast/unicast inputs can refer also to the
received values.

Example:

A value greater than 0 is expected from a component with a
trust level less than 3:

α
?[(x > 0)∧ (trust level < 3)](x)σ .P
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Examples of interactions. . .

Broadcast synchronisation:

( stop?[bl < 5%]〈v〉σ1.P ,{role = “master”}) ‖
( stop?[role = “master”](x)σ2 .Q1 ,{bl = 4%}) ‖

( stop?[role = “super”](x)σ3.Q2 ,{bl = 2%}) ‖
( stop?[>](x)σ4.Q3 ,{bl = 2%})

⇓

(P,σ1({role = “master”})) ‖
(Q1[v/x ],σ2({bl = 4%})) ‖

(stop?[role = “super”](x)σ3.Q2,{bl = 2%}) ‖
(Q3[v/x ],σ4({bl = 2%}))
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(P,σ1({role = “master”})) ‖
(Q1[v/x ],σ2({bl = 4%})) ‖

(stop?[role = “super”](x)σ3.Q2,{bl = 2%}) ‖
(Q3[v/x ],σ4({bl = 2%}))
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Examples of interactions. . .

Unicast synchronisation:

(stop[bl < 5%]〈•〉σ1.P,{role = “master”}) ‖
(stop[role = “master”](x)σ2.Q1,{bl = 4%}) ‖

(stop[role = “super”](x)σ3.Q2,{bl = 2%}) ‖
(stop[>](x)σ4.Q3,{bl = 2%})

⇓

(P,σ1({role = “master”})) ‖
(stop[role = “master”](x)σ2.Q1,{bl = 4%}) ‖

(stop[role = “super”](x)σ3.Q2,{bl = 2%}) ‖
(Q3,σ4({bl = 2%}))
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Modelling the environment

Interactions between components can be affected by the
environment:

a wall can inhibit wireless interactions;

two components are too distant to interact;

. . .

The environment. . .

is used to model the intrinsic rules that govern the physical
context;

consists of a pair (γ,ρ):

a global store γ, that models the overall state of the system;
an evolution rule ρ that regulates component interactions
(receiving probabilities, action rates,. . . ).
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The evolution rule

It is assumed that all actions in Carma take some time complete
and that this duration is governed by an exponential distribution.

However the action descriptions to do include any information about
the timing (unlike many other stochastic process algebras).

We also do not assume perfect communication, i.e. there may be a
probability that an interaction will fail to complete even between
components with appropriately match attributes.

The environment manages these aspects of system behaviour, and
others in the evolution rule.
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The evolution rule γ

ρ is a function, dependent on current time, the global store and the
current state of the collective, returns a tuple of functions
ε = 〈µp,µw ,µr ,µu〉 known as the evaluation context

µp(γs ,γr ,α): the probability that a component with store γr can
receive a broadcast message α from a component with store γs ;

µw (γs ,γr ,α): the weight to be used to compute the probability
that a component with store γr can receive a unicast message α

from a component with store γs ;

µr (γs ,α) computes the execution rate of action α executed at a
component with store γs ;

µu(γs ,α) determines the updates on the environment (global
store and collective) induced by the execution of action α at a
component with store γs .
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Operational Semantics of PA

Behaviour of process algebras is classically represented via transition
relations, e.g. α.P

α−→ P.

These relations, defined following a Plotkin-style, are used to infer
possible computations of a process.

premise

conclusion
Rule

Note that, due to nondeterminism, starting from the same process,
different evolutions can be inferred.

P
α−→ P ′

P + Q
α−→ P ′

Choice1
Q

α−→ Q ′

P + Q
α−→ Q ′

Choice2
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Operational Semantics of SPA

However, in Stochastic Process Algebras, like Carma, there is not
any form of nonterminism. . .

. . . while the selection of possible next state is governed by a
probability distribution.

Standard compositional approaches are cumbersome and may fail
when rich SPA are considered (e.g., when the multiplicity of
transitions is important).
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Operational Semantics of SPA

The operational semantics of Carma is defined in the FuTS style.

In FuTS the behaviour of a term is described using a function that,
given a term and a transition label, yields a function associating each
component, collective, or system with a non-negative number.

The meaning of this value depends on the context:

the rate of the exponential distribution characterising the time
needed for the execution of an action;

the probability of receiving a given broadcast message;

the weight used to compute the probability that a given
component is selected for the synchronisation.
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Carma Operational Semantics

The operational semantics of Carma specifications is defined in
terms of three functions that compute the possible next states of a
component, a collective and a system:

1 the function C that describes the behaviour of a single
component;

2 the function Nε builds on C to describe the behaviour of
collectives;

3 the function St that shows how Carma systems evolve.

In all cases the value zero is associated with unreachable terms.
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Component Semantics

The behaviour of a single component is defined by a function

C : Comp×Lab→ [Comp→ R≥0]

where Lab denotes the set of transition labels `:

` ::= α?[πs ]〈−→v 〉,γ Broadcast Output

| α?[πs ](−→v ),γ Broadcast Input

| α [πs ]〈−→v 〉,γ Unicast Output

| α [πs ](−→v ),γ Unicast Input

If C[C , `] = C and C (C ′) = p then C evolves to C ′ with a weight p
when ` is executed.
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Component Semantics
Some rules. . .

C[(nil,γ), `] = /0
Nil C[0, `] = /0

Zero

JπsKγ = π ′s J−→e Kγ =
−→v p= σ(γ)

C[(α?[πs ]〈−→e 〉σ .P,γ),α?[π ′s ]〈
−→v 〉,γ] = (P,p)

B-Out

γr |= πs γs |= πr [
−→v /−→x ] p= σ [−→v /−→x ](γ2)

C[(α?[πr ](
−→x )σ .P,γr ),α

?[πs ](
−→v ),γs ] = (P[−→v /−→x ],p)

B-In

C[(P,γ), `] = C1 C[(Q,γ), `] = C2

C[(P +Q,γ), `] = C1⊕C2
Plus

C[(P,γ), `] = C1 C[(Q,γ), `] = C2

C[(P|Q,γ), `] = C1|Q⊕P|C2
Par
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Semantics of Collectives

The operational semantics of a collective is defined via the function

Nε : Col×LabI → [Col→ R≥0]

defining how a collective reacts when a broadcast/unicast message is
received.

LabI denotes the subset of Lab with only input labels:

` ::= α?[πs ](−→v ),γ Broadcast Input

| α [πs ](−→v ),γ Unicast Input
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Semantics of Collectives
Some rules. . .

Nε [0, `] = /0
Zero

C[(P,γ),α?[πs ](
−→v ),γ] = N N 6= /0 ε = 〈µp ,µw ,µr ,µu〉

Nε [(P,γ),α?[πs ](
−→v ),γ] =

µp(γ,α?)
⊕N ·N +[(P,γ) 7→ (1−µp(γ,α

?)]
Comp-B-In

Nε [N1,α
?[πs ](

−→v ),γ] = N1 Nε [N2,α
?[πs ](

−→v ),γ] = N2

Nε [N1 ‖ N2,α
?[πs ](

−→v ),γ] = N1 ‖N2
B-In-Sync
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Semantics of Systems

The operational semantics of systems is defined via the function

St : Sys×LabS → [Sys→ R≥0]

This function only considers synchronisation labels LabS :

` ::= α?[πs ]〈−→v 〉,γ Broadcast Output

| τ[α [πs ]〈−→v 〉,γ] Unicast Synchronization
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Semantics of Systems
Some rules. . .

ρ(t,γg ,N) = ε = 〈µp ,µw ,µr ,µu〉 µu(γg ,α
?) = (σ ,N ′)

∑C∈N N(C) ·bSync(C ,N−C ,α?[πs ]〈−→v 〉,γ) = N

St [N in (γg ,ρ),α
?[πs ]〈−→v 〉,γ] = N ‖ N ′ in (σ(γg ),ρ)

Sys-B

where

ε = 〈µp ,µw ,µr ,µu〉 C[C ,α?[πs ]〈−→v 〉,γ] = C Nε [N,α?[πs ](
−→v ),γ] = N

bSyncε (C ,N,α?[πs ]〈−→v 〉,γ) = µr (γ,α
?[πs ]〈−→v 〉,γ) ·C ‖N
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Quantitative Analysis

The semantics of carma gives rise to a Continuous Time Markov
Chain (CTMC).

This can be analysed by

by numerical analysis of the CTMC for small systems;

by stochastic simulation of the CTMC;

by fluid approximation of the CTMC under certain restrictions
(particularly on the environment).
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Outline

1 Introduction
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3 CARMA

The CARMA Modelling Language
4 Carma Operational semantics
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Recap. . .

Carma is equipped with linguistic constructs specifically developed
for modelling and programming systems that can operate in
open-ended and unpredictable environments.

However, Carma is a SPA:

concise syntax;

parametric with respect to the used expressions and data types.

To facilitate the use of Carma in the specification/analysis process
of CAS we developed:

a specifiation language;

an Eclipse plug-in as a container for Carma tools.
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A running example. . .

Bike Sharing System. . .

We want to use Carma to model a bike sharing system where:

bikes are made available in a number of stations that are placed
in various areas of a city;

Users that plan to use a bike for a short trip

can pick up a bike at a suitable origin station
return it to any other station close to their planned destination.

we assume that the city is partitioned in homogeneous zones. . .

and that all the stations in the same zone can be equivalently
used by any user in that zone.
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Carma Specification Language. . .

Each Carma specification, also named Carma model, provides
definitions for:

structured data types;

constants and functions;

prototypes of components;

collective of components;

systems composed by collective and environment;

measures, that identify the relevant data to retrieve during
simulation runs.
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CaSL: Data types

Basic data types

bool, for booleans;

int, for integers;

real, for real values.

Collections

Sets: { exp1,. . .,expn }

Arrays: [: exp1,. . .,expn :]

Custom data types

Enumerations: enum name = elem1,. . .,elemn;

Records: record name = [ type1 field1,. . ., typen fieldn];
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CaSL: Expressions

In CaSL syntax of expressions includes:

standard arithmetic and logical operations (+,−,. . . )

common functions (log,sin,. . . )

conditional expression (exp1?exp2:exp3)

special value now, indicating the current time

. . .

A limited set of expression has to be used when specific analysis tools
(fluid semantics) are used.
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CaSL: Operators

[Add here a table with a list of relevant operators!]
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CaSL: Constants and Functions

A Carma specification can also contain constants and functions
declarations having the following syntax:

const name = expression ;

fun type name ( type1 arg1 , . . . , typek argk ) {
· · ·

}
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CaSL: Constants and Functions

Variable declaration, assignment and return:

type var = exp ;
var = exp ;
re tu rn exp ;

If-then-else:

i f (exp ) { . . . } e l s e { . . . }

Iterators:

f o r (var=exp1 ; exp2 ; exp3 ) { . . . }
f o r var i n exp { . . . }
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CaSL: Constants and Functions
Example. . .

[ADD HERE TWO EXAMPLES OF FUNCTIONS ]
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CaSL: Component Prototypes

A component prototype defines the general structure of a component:

component name ( type1 arg1 , . . . , typen argn ) {
s to re { · · ·

a t t r i b anamei := expressioni ; · · ·
}
behaviour { · · ·

proci = pdefi ; · · ·
}
i n i t { P1 | · · · |Pw }

}
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CaSL: Component Prototypes
The BSS scenario. . .

Two kinds of components, one for each of the two groups of agents
involved in our BSS, can be considered:

parking stations;

users.

PS attributes:

zone: indicates where the
station is located;

capacity: the number of
slots installed in the station;

available: the number of
available bikes.

User attributes:

zone: current user location;

dest: user destination.
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CaSL: Component Prototypes
Example: users and stations

component S t a t i o n ( i n t zone , i n t c a p a c i t y , i n t
a v a i l a b l e ) {

s to re {
zone = zone ;
a v a i l a b l e = a v a i l a b l e ;
c a p a c i t y = c a p a c i t y ;

}
. . .

}
component User ( i n t zone , i n t de s t ) {

s to re {
zone = zone ;
d e s t = de s t ;

}
. . .

}
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Behaviour. . .

The block behaviour is used to define the component behaviour. . .

. . . it consists of a sequence of process definitions

behaviour {
proc1 = pdef1 ;
. . .
procn = pdefn ;

}

. . . that associate each process name with alternative actions.
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CaSL: Component Prototypes
Actions. . .

Output actions:

[ guard ] a c t [ pred ] < exp1 , . . . , expn > {
attr1 = exp1 ;
. . .
attrn = expn ;

}

Input actions:

[ guard ] a c t [ pred ] ( x1 , . . . , xn ) {
attr1 = exp1 ;
. . .
attrn = expn ;

}
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CaSL: Component Prototypes
Example: Station behaviour

Two processes are defined at Station component that model the
procedures to get and returning a bike:

G = [my . a v a i l a b l e >0] get<> { my . a v a i l a b l e := my .
a v a i l a b l e −1 s } .G ;

R = [my . a v a i l a b l e <my . c a p a c i t y ] r e t<>{ my . a v a i l a b l e :=
my . a v a i l a b l e+1 } .R ;

Procedures get and returning are modelled via unicast output over
get and ret:

get is enabled when there are bikes available (my.available>0);

get is enabled when there are available slots
(my.available<my.capacity).
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CaSL: Component Prototypes
Example: User behaviour

Each user can be in three different states. . .

. . . P, denoting a pedestrian:

P = get [ my . l o c == l o c ] ( ) .B ;

. . . a pedestrian executes unicast input get to collect a bike from a
station located in his/her current zone (my.zone == zone) and
then becomes a bikers:

B = move ∗ [ f a l s e ]<>{ my . l o c := my . d e s t } .W;

. . . in that state a user move to the final destination and then waits
for a slot:

SPONTANEOUS ACTION!

W = r e t [ my . l o c == l o c ] ( ) . k i l l ;

. . . when a slot in the same zone is found, the user disappear.
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Example: Station

component S t a t i o n ( i n t zone , i n t c a p a c i t y , i n t
a v a i l a b l e ) {

s to re {
zone = zone ;
a v a i l a b l e = a v a i l a b l e ;
c a p a c i t y = c a p a c i t y ;

}
behaviour {
G = [my . a v a i l a b l e >0] get<> {

my . a v a i l a b l e := my . a v a i l a b l e −1
} .G ;
R = [my . a v a i l a b l e <my . c a p a c i t y ] r e t<>{

my . a v a i l a b l e := my . a v a i l a b l e+1
} .R ;

}
i n i t { G |R }

}
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Example: User

component User ( i n t l o c , i n t de s t ) {
s to re {

l o c = l o c ;
d e s t = de s t ;

}
behaviour {

P = get [ my . l o c == l o c ] ( ) .B ;
B = move ∗ [ f a l s e ]<>{ my . l o c := my . d e s t } .W;
W = r e t [ my . l o c == l o c ] ( ) . k i l l ;
}
i n i t { P }

}
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Example: Arrival

To model the of new users, another component is considered in our
model:

component A r r i v a l ( i n t l o c ) {
s to re {

a t t r i b l o c := l o c ;
}
behaviour {

A = a r r i v a l ∗ [ f a l s e ]<>.A ;
}
i n i t {

A
}

}

Above zone indicates the zone indicates the location where users
arrive.
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CaSL: Collective

Block collective can be used to define groups of components:

c o l l e c t i v e name ( type1 var1 , . . . , typen varn ) {
. . .

}

BSS Collective:

c o l l e c t i v e b s s C o l l e c t i v e ( i n t zones , i n t n ) {
f o r ( i ; i<zones ; 1 ) {

new S t a t i o n ( i , C , A )< n >;
}
new A r r i v a l ( i ) ;

}
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CaSL: System Definition

A system definition consists of two blocks, namely collective and
environment:

system name {
c o l l e c t i v e collective
environment { · · ·
}

}

BSS System:

system Sc ena r i o {
c o l l e c t i v e b s s C o l l e c t i v e ( 10 , 10 , 10 )
environment { · · ·
}

}
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CaSL: Environment

Syntax of an block environment is the following:

environment {
s to re { · · · }
prob { · · · }
weight { · · · }
ra te { · · · }
update { · · · }

}
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CaSL: Environment
Example: BSS Store

In our scenario use a global attribute to count the amount of active
users in the system:

s to re {
a t t r i b u s e r s := 0 ;

}
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CaSL: Environment
Example: BSS Environment (1/3)

weight {
get {

re tu rn Rece i v i ngProb (#{User [P ] |my . l o c==sender . l o c
})

}
r e t {

re tu rn Rece i v i ngProb (#{User [W] |my . l o c==sender . l o c
}) ;

}
de f au l t {

re tu rn 1 ;
}

}
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CaSL: Environment
Example: BSS Environment (2/3)

ra te {
get { re tu rn g e t r a t e ; }
r e t { re tu rn r e t r a t e ; }
move∗ { re tu rn move rate ; }
a r r i v a l ∗ { ( g l oba l . u s e r s<TOTAL USERS? a r r i v a l r a t e

: 0 . 0 ) ; }
}
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CaSL: Environment
Example: BSS Environment (3/3)

update {
a r r i v a l ∗ {

u s e r s := g l oba l . u s e r s +1;
new User ( sender . zone , U [ 0 : ZONES−1] ) ;

}
r e t {

u s e r s := g l oba l . u s e r s −1;
}

}
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CaSL: Measures

To extract observations from a model, a Carma specification also
contains a set of measures:

measure m name ( type1 var1 , . . . , type1 varn ) = expr ;

measure AverageB ike s ( i n t z ) =
avg{ my . a v a i l a b l e | my . zone == z } ;

measure MinBikes ( i n t z ) =
min{ my . a v a i l a b l e | my . zone == z } ;

measure MaxBikes ( i n t z ) =
max{ my . a v a i l a b l e | my . zone == z } ;
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Outline
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The Carma Eclipse Plug-in

Carma Eclipse Plug-In provide tools for specification and
quantitative analysis of Carma models.
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