

Spatial Logic and Spatial Model Checking for Closure Spaces

Vincenzo Ciancia, Diego Latella, Michele Loreti, Mieke Massink

June 23, 2016 Bertinoro - Italy

SFM summer School 2016

1/51

"Space, like time, is one of the most fundamental categories of human cognition.

It structures all our activities and relationships with the external world.

It also structures many of our **reasoning capabilities**: it serves as the basis for many metaphors, including temporal, and gave rise to mathematics itself, geometry being the first formal system known."

(Laure Vieu)

Introduction

Origins of Spatial Reasoning

Continuous space, discrete regular grid, graph of stations, street map

5/51

Unified Framework for Spatial Model Checking?

- Generalising some topological notions
- Bridging the gap between continuous and discrete space
- Spatial Logics for Model Checking

Bringing us to explore

Closure Spaces and Quasi-discrete Closure Spaces

following up on work by, a.o., A. Galton and M. B. Smyth et al.

Spatio-temporal model checking

PART I

Logics and Space

Topological Space

A pair (X, O) where

- $X \neq \emptyset$ is a set
- *O* is a collection of open sets $O \subseteq \mathcal{P}(X)$

such that

- $\emptyset, X \in O$
- O is closed under arbitrary unions and finite intersections

O is called the collection of *open sets* of the topological space

Example: Euclidian space (2D)

closed se

- open balls (in \mathbb{R}^n) are open sets
- an open set containing x ∈ X is called an open neighbourhood of x
- x is an *interior point* of
 S ⊆ X iff ∃ open
 neighbourhood U of x
 such that U ⊆ S
- *I*'(S) is the *largest oper* set contained in S
- C^T(S) is the smallest closed set containing S

A pair (X, O) where

- $X \neq \emptyset$ is a set
- *O* is a collection of open sets $O \subseteq \mathcal{P}(X)$

such that

• $\emptyset, X \in O$

• O is closed under arbitrary unions and finite intersections

O is called the collection of *open sets* of the topological space

8/51

Example: Euclidian space (2D)

- open set
- open balls (in \mathbb{R}^n) are open sets
- an open set containing x ∈ X is called an open neighbourhood of x
- x is an *interior point* of S ⊆ X iff ∃ open neighbourhood U of x such that U ⊆ S

- I^T(S) is the *largest open* set contained in S
- C^T(S) is the smallest closed set containing S
 - containing 5

Example: Euclidian space (2D)

- open balls (in ℝⁿ) are open sets
- an open set containing
 x ∈ X is called an open neighbourhood of x
- x is an interior point of S ⊆ X iff ∃ open neighbourhood U of x such that U ⊆ S

- closed set $\mathcal{I}^{T}(S)$ is the largest op
- C^T(S) is the smallest closed set containing S

- open balls (in ℝⁿ) are open sets
- an open set containing x ∈ X is called an open neighbourhood of x
- x is an *interior point* of S ⊆ X iff ∃ open neighbourhood U of x such that U ⊆ S

- closed set
- $\mathcal{I}^{T}(S)$ is the *largest open* set contained in S
- C^T(S) is the smallest closed set containing S

Example: Euclidian space (2D)

neighbourhood of x

closed set

- open balls (in ℝⁿ) are open sets
- an open set containing x ∈ X is called an open neighbourhood of x
- x is an *interior point* of S ⊆ X iff ∃ open neighbourhood U of x such that U ⊆ S

C'(S) is the *smallest* closed set containing S

Example: Euclidian space (2D)

Alternative characterisation of Topological Space [Kuratowski]

A topological space is a pair (X, \mathcal{C}^T) with $\mathcal{C}^T : 2^X \to 2^X$ such that

for each
$$A, B \subseteq X$$
:
Interior and closure are duals:
 $\mathcal{C}^{T}(\emptyset) = \emptyset$
 $\mathcal{C}^{T}(A \cup B) = \mathcal{C}^{T}(A) \cup \mathcal{C}^{T}(B)$
 $\mathcal{C}^{T}(A) = \overline{\mathcal{I}^{T}(\overline{A})}$
 $\mathcal{C}^{T}(A) = \overline{\mathcal{I}^{T}(\overline{A})}$
 $\mathcal{C}^{T}(\mathcal{C}^{T}(A)) = \mathcal{C}^{T}(A)$

Alternative characterisation of Topological Space [Kuratowski]

A topological space is a pair (X, \mathcal{C}^T) with $\mathcal{C}^T : 2^X \to 2^X$ such that

Modal Logic

$$\Phi ::= p \mid \top \mid \perp \mid \neg \Phi \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \Box \Phi \mid \Diamond \Phi$$
A (Kripke) frame (X, R)

a X a set

b R \subseteq X × X an

accessibility relation

A (Model $\mathcal{M} = ((X, R), \mathcal{V})$

c (X, R) a frame

c (

 ${\cal V}$ assigns to each atomic proposition the set of points (also called 'possible worlds') that satisfy it.

Modal Logic of Space [Tarski]

 $\Phi ::= p \mid \top \mid \bot \mid \neg \Phi \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \Box \Phi \mid \Diamond \Phi$

- A topological space (X, O)
 - X a set of points
- A model $\mathcal{M} = ((X, O), \mathcal{V})$
- O the set of open sets of X
- (X, O) a topological space • $\mathcal{V} : P \to \mathcal{P}(X)$ a valuation

function

 $\ensuremath{\mathcal{V}}$ assigns to each atomic proposition the set of points that satisfy it.

$\mathcal{M}, x \models \top$	\iff	true
$\mathcal{M}, x \models p$	\iff	$x\in \mathcal{V}(\rho)$
$\mathcal{M}, x \models \neg \phi$	\iff	$\texttt{not}\mathcal{M}, \pmb{x} \models \phi$
$\mathcal{M}, x \models \phi \land \psi$	\iff	$\mathcal{M}, x \models \phi$ and $\mathcal{M}, x \models \psi$
$\mathcal{M}, x \models \Box \phi$	\iff	$\exists o \in O. (x \in o ext{ and } orall y \in o. \mathcal{M}, y \models \phi)$
$\mathcal{M}, x \models \Diamond \phi$	\iff	$orall o \in O.(x \in o \text{ implies } \exists y \in o.\mathcal{M}, y \models \phi)$

Axiomatic Aspects and Relational Semantics

- Modal logic interpreted on transitive and reflexive Kripke frames
- Spatial modal logic interpreted on topological spaces

are both characterised by the same set of axioms $\mathcal{S}4:$

$egin{array}{llllllllllllllllllllllllllllllllllll$	$(\Box ho o \Box q)$	(K) (4) (T)	distributivity transitivity reflexivity
$\frac{\phi, \phi \rightarrow \psi}{\psi}$ $\frac{\phi}{\Box \phi}$			modus ponens necessitation
- <i>Y</i>	where $\Box \phi =$	$\neg \Diamond \neg \varsigma$	þ

What about Discrete Spatial Structures?

Čech Spaces or Closure Spaces

A closure space is a pair (X, \mathcal{C}) with $\mathcal{C} : 2^X \to 2^X$ such that

Analogy with Topological Spaces [Galton03]

Properties of a closure space (X, C) with $A, B \subseteq X$:

A is open iff A is closed
 A ⊆ B then C(A) ⊆ C(B)
 C(∩_{i∈I} A_i) ⊆ ∩_{i∈I} C(A_i)
 Ø and X are open

 arbitrary unions and finite intersections of open sets are open

The *topological* closure $C^T : 2^X \to 2^X$ is defined as:

$$\mathcal{C}^{\mathsf{T}}(A) = \bigcap \{B \subseteq X | A \subseteq B \land \mathcal{C}(B) = B\}$$

... and satisfies the four basic axioms including idempotence

Čech Spaces or Closure Spaces

A *closure space* is a pair (X, \mathcal{C}) with $\mathcal{C} : 2^X \to 2^X$ such that

for each $A, B \subseteq X$:Define: $\mathcal{C}(\emptyset) = \emptyset$ $\mathcal{I}(A) = \overline{\mathcal{C}(\overline{A})}$ $\mathcal{C}(A \cup B) = \mathcal{C}(A) \cup \mathcal{C}(B)$ $A \text{ is open iff } A = \mathcal{I}(A)$ $A \subseteq \mathcal{C}(A)$ $A \text{ is closed iff } A = \mathcal{C}(A)$ $\mathcal{C}(\mathcal{C}(A)) = \mathcal{C}(A)$ $A \text{ is a neighbourhood of } x \in X \text{ iff } x \in \mathcal{I}(A)$

Interior and closure are duals: • $C(A) = \overline{\mathcal{I}(\overline{A})}$

Graphs as Closure Spaces [Galton03]

A graph is a set of nodes X and a binary relation $R \subseteq X \times X$

$$\mathcal{C}_{R}(A) = A \cup \{x \in X | \exists a \in A.(x, a) \in R\}$$

The pair (X, C_R) is a closure space

Boundary in Closure Spaces

Quasi-discrete Closure Spaces

A closure space (X, C) is *quasi-discrete* if and only if one of the following holds:

- each $x \in X$ has a minimal neighbourhood N_x
- for each $A \subseteq X$, $C(A) = \bigcup_{a \in A} C(\{a\})$

A is a neighbourhood of $x \in X$ iff $x \in \mathcal{I}(A)$

Theorem

 (X,\mathcal{C}) is quasi-discrete iff there is $R\subseteq X imes X$ such that $\mathcal{C}=\mathcal{C}_R$

Lemma

 C_R is idempotent iff the reflexive closure $R^=$ of R is transitive

Boundary in Closure Spaces

Graph inducing a Quasi-discrete Closure Space

Graph inducing a Quasi-discrete Closure Space

But also graphs with an uncountable set of nodes/points such as (\mathbb{R}, \leq) are quasi-discrete closure spaces

Hierarchy of Closure Spaces

PART II

Spatial Logic for Closure Spaces

Spatial Logic for Closure Spaces (SLCS)

Clusters of full stations

Spatial reachability

Areas with low concentration

Spatial Logic for Closure Spaces (SLCS)

..... a little alchemy ...

Spatial operators: intuition

All red and yellow points satisfy N yellow One yellow point satisfies I yellow No points satisfy I green Green points satisfy green S blue Yellow points satisfy yellow S red

SLCS syntax

φ	::=	р	[ATOMIC PROPOSITION]
		Т	[True]
		$\neg \Phi$	[Not]
		$\Phi \wedge \Phi$	[AND]
		$\mathcal{N}\Phi$	[NEAR]
	Ì	$\varphi\mathcal{S}\varphi$	[Surrounded]

Semantics of SLCS

Satisfaction $\mathcal{M}, x \models \phi$ of formula ϕ at point x in quasi-discrete closure model $\mathcal{M} = ((X, C), V)$ is defined, by induction on terms, as follows:

\mathcal{M}, x	Þ	р	\iff	$x \in \mathcal{V}(p)$
\mathcal{M}, x	Þ	Т	\iff	true
\mathcal{M}, x	Þ	$\neg \phi$	\iff	$\texttt{not}\mathcal{M}, x \models \phi$
\mathcal{M}, x	Þ	$\phi \wedge \psi$	\iff	$\mathcal{M}, x \models \phi$ and $\mathcal{M}, x \models \psi$
\mathcal{M}, x	Þ	$\mathcal{N}\phi$	\iff	$x \in \mathcal{C}(\{y \in X \mathcal{M}, y \models \phi\})$
\mathcal{M}, x	\models	$\phi \mathcal{S} \psi$	\iff	$\exists A \subseteq X. x \in A \land \forall y \in A. \mathcal{M}, y \models \phi \land$
				$orall z \in \mathcal{B}^+(\mathcal{A}).\mathcal{M}, z \models \psi$

Derived operators

$\mathcal{E}\phi$	\triangleq	$\phi \mathcal{S} ot$	(everywhere)
$\mathcal{F}\phi$	\triangleq	$\neg \mathcal{E}(\neg \phi)$	(somewhere)

Derived operators

$\mathcal{I}\phi$	\triangleq	$\neg (\mathcal{N} \neg \phi)$	(interior)
$\delta \phi$	$\underline{\underline{\frown}}$	$(\mathcal{N}\phi)\wedge (\neg\mathcal{I}\phi)$	(boundary)
$\delta^-\phi$	$\underline{\underline{\frown}}$	$\phi \wedge (\neg \mathcal{I} \phi)$	(internal/interior boundary)
$\delta^+\phi$	\triangleq	$(\mathcal{N}\phi)\wedge(\neg\phi)$	(external/closure boundary)

Derived operators

 $\begin{array}{lll} \phi \, \mathcal{R}\psi & \triangleq & \neg((\neg\psi) \, \mathcal{S}(\neg\phi)) & (\text{reachability}) \\ \phi \, \mathcal{T} \, \psi & \triangleq & \phi \wedge ((\phi \lor \psi) \, \mathcal{R}\psi) & (\text{from-to}) \end{array}$

 $\phi \mathcal{R}\psi$: either ψ holds in x, or there exists a sequence of points after x, all satisfying ϕ leading to a point satisfying both ϕ and ψ

 $(white \lor blue) \mathcal{R}blue$ satisfied by $\{\bullet, \bullet, \circ, \bullet\}$ white \mathcal{T} blue satisfied by $\{\circ\}$

PART III

Model checking (finite models)

Model checking in quasi-discrete closure spaces is analysis of a graph

Efficient algorithm O(nodes + arcs) for checking $\phi S \psi$

Implemented as a "flooding" algorithm

Model Checking Spatial Logics

Efficient algorithm

The algorithm identifies "bad" areas, where $\neg\phi$ can be reached without passing by points satisfying ψ

Implemented recursively as an operator that enlarges the set of "bad" points at each application

Upon fixed point: the points where ϕ holds, that are not "bad", satisfy $\phi\,\mathcal{S}\,\psi.$

yellow S red

Find points satisfying yellow S red

yellow \mathcal{S} red

1) Find points satisfying neither *yellow* nor *red* and make them black

yellow \mathcal{S} red

²⁾ Identify yellow points in C(black) . . .

yellow \mathcal{S} red

3) . . . and make them black

4) Identify yellow points in C(black) . . .

yellow S red

5) . . . and make them black

yellow S red

Fixed point reached, the yellow points satisfy yellow S red

Model Checking Algorithm

Function Sat(\mathcal{M}, ϕ) Input: Finite, quasi-discrete closure model $\mathcal{M} = ((X, C), \mathcal{V})$, formula ϕ Output: Set of points { $x \in X \mid \mathcal{M}, x \models \phi$ } Match ϕ case \top : return X case p : return $\mathcal{V}(p)$ case $\neg \phi_1$: let $P = \text{Sat}(\mathcal{M}, \phi_1)$ return $X \setminus P$ case $\phi_1 \land \phi_2$: let $P = \text{Sat}(\mathcal{M}, \phi_1)$ return $P \cap Q$ case $\mathcal{N}\phi_1$: let $P = \text{Sat}(\mathcal{M}, \phi_1)$ return $\mathcal{C}(P)$ case $\phi_1 \land \phi_2$: return CheckSurr ($\mathcal{M}, \phi_1, \phi_2$)	Function CheckSurr $(\mathcal{M}, \phi_1, \phi_2)$ Input: Finite, quasi-discrete closure model $\mathcal{M} = ((X, C), V)$, formulas ϕ_1, ϕ_2 Output: Set of points $\{x \in X \mid \mathcal{M}, x \models \phi_1 \ S \ \phi_2\}$ var $V := \operatorname{Sat}(\mathcal{M}, \phi_1)$ let $Q = \operatorname{Sat}(\mathcal{M}, \phi_2)$ var $T := \mathcal{B}^+(V \cup Q)$ while $T \neq \emptyset$ do var $T' := \emptyset$ for $x \in T$ do let $N = pre(x) \cap V$ $V := V \setminus N$ $T' := T' \cup (N \setminus Q)$ T := T'; return V
---	--

Correctness and Complexity

Theorem

For any finite quasi-discrete closure model $\mathcal{M} = ((X, \mathcal{C}), \mathcal{V})$ and SLCS formula $\phi, x \in \operatorname{Sat}(\mathcal{M}, \phi)$ if and only if $\mathcal{M}, x \models \phi$

Proposition

For any finite quasi-discrete model $\mathcal{M} = ((X, \mathcal{C}_R), \mathcal{V})$ and SLCS formula ϕ of size k, function $Sat(\mathcal{M}, \phi)$ terminates in $\mathcal{O}(k \cdot (|X| + |R|))$ steps

Implementation

Prototype available on github
www.github.com/vincenzoml/topochecker

A few hundreds of lines of OCaml code

Any digital image can be treated as a finite, thus quasi discrete, closure space

toExit = [white] T [green] {•,•}

Digital images

toExit = [white] T [green] {•,•}
fromStartToExit = toExit & ([white] T [blue]) {•}
startCanExit = [blue] T fromStartToExit {•}

Digital images

 $\label{eq:toExit} toExit = [white] \ T \ [green] \ \{\bullet, \bullet\}$ fromStartToExit = toExit & ([white] T [blue]) \ \{\bullet\}

Turing Patterns

The Chemical Basis of Morphogenesis (1952)

How the leopard got its spots?

Alan Turing © National Portrait Gallery, London

Turing Patterns

Two chemical substances A and B in a $K \times K$ grid

$$\begin{cases} \frac{dx_{i,j}^{A}}{dt} = R_{1}x_{i,j}^{A}x_{i,j}^{B} - x_{i,j}^{A} + R_{2} + D_{1}(\mu_{i,j}^{A} - x_{i,j}^{A}) \\ \frac{dx_{i,j}^{B}}{dt} = R_{3}x_{i,j}^{A}x_{i,j}^{B} + R_{4} + D_{2}(\mu_{i,j}^{B} - x_{i,j}^{B}) \end{cases}$$

[Gol,Bartocci,Belta, Conference on Decision and Control, 2014]

Areas of low concentration of A

 $far_from_pattern = !(N(N(N(N(pattern))))))$

 $\neg \mathcal{F} far_from_pattern$

Areas of low concentration of A at time 10

pattern = [a < 2]S [a > 2]

Areas of low concentration of A

far_from_pattern =!(N(N(N(N(pattern)))))

- $\neg \mathcal{F}\texttt{far_from_pattern}$

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

 $far_from_pattern = !(N(N(N(N(pattern))))))$

Model checking time: 0.31277 seconds

far_from_pattern =!(N(N(N(N(pattern)))))

Model checking time: 0.31277 seconds

 $far_from_pattern = !(N(N(N(N(pattern))))))$

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

 $far_from_pattern = !(N(N(N(N(pattern))))))$

Model checking time: 0.31277 seconds

far_from_pattern =!(N(N(N(N(pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far_from_pattern =!(N(N(N(N(pattern)))))

Model checking time: 0.31277 seconds

 $far_from_pattern = !(N(N(N(N(pattern))))))$

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

 $far_from_pattern = !(N(N(N(N(pattern))))))$

Model checking time: 0.31277 seconds

far_from_pattern =!(N(N(N(N(pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far_from_pattern =!(N(N(N(N(pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far_from_pattern =!(N(N(N(N(pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D over time

Points where pattern persists for at least 9 steps

..... but first we need to add time

Areas of low concentration of A in 3D over time

Points where pattern persists for at least 9 steps

QUESTIONS?

Main References

- Benthem07 van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of Spatial Logics, pp. 217–298. Springer (2007)
- Ciancia14 Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and Verifying Properties of Space. In: The 8th IFIP International Conference on Theoretical Computer Science, TCS 2014, Track B. LNCS vol. 8705 (2014)
- Ciancia15 Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental spatio-temporal model checker. In: Proceedings of VERY*SCART (workshop affiliated to SEFM 2015). LNCS, vol. 9509, Springer (2015),
- Galton03 Galton, A.: A generalized topological view of motion in discrete space. Theoretical Computer Science 305(1–3), 111 134 (2003),
- Gol14 Aydin Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proc. of CDC (2014)
- Nenzi15 Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) Runtime Verification RV15, LNCS, vol. 9333, Springer (2015),
- Smyth07 Smyth, M. B., Webster, J.: Discrete Spatial Models. In: Handbook of Spatial Logics, pp. 713–798. Springer (2007)
- Turing1952 Turing, A.M.: The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences (1952)
- Vieu1997 Vieu, L. Spatial Representation and Reasoning in Artificial Intelligence. In: O. Stock (ed.) Spatial and Temporal Reasoning. Dordrecht: Kluwer, (1997)