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, like , is one of the most categories
of human cognition.
It structures all our and with the
external world.
It also structures many of our st

serves as the basis for many metaphors, including temporal, and gave
rise to mathematics itself, geometry being the first
known."

(Laure Vieu)
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Introduction

Origins of Spatial Reasoning

Physical Sciences Pure Mathematics
L

Ordinary/ | > Topology
Partial ’ . Modal Logics
Differential |- Decidability
Equations Satisfiability
Region Model checking
Connection
Calculus

Artificial Intelligence Collective Adaptive Systems
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l Spatio-temporal model checking qua nt COl

Model checker

) 00000 ¢
DO 0000 ¢

)0 00004

Continuous space, discrete regular grid, graph of stations, street map @

Formula
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Unified Framework for Spatial Model Checking?

m Generalising some topological notions PA RT I

® Bridging the gap between continuous and discrete space

® Spatial Logics for Model Checking

Bringing us to explore

Closure Spaces and Quasi-discrete Closure Spaces
Logics and Space

following up on work by, a.o., A. Galton and M. B. Smyth et al.
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Topological Space

A pair (X, O) where

m X #(is aset
® O is a collection of open sets O C P(X)

such that

(). XeO
® QO is closed under arbitrary unions and finite intersections

Example: Euclidian space (2D)

open set

Topological Space

A pair (X, O) where

m X #(is aset
® O is a collection of open sets O C P(X)

such that

") XecO
® QO is closed under arbitrary unions and finite intersections

O is called the collection of of the topological space
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Example: Euclidian space (2D)

0

open set closed set



Example: Euclidian space (2D) Example: Euclidian space (2D)

0 0

open set closed set open set closed set
® open balls (in R") are ® open balls (in R") are
open sets open sets

® an open set containing
x € X is called an

of x
Example: Euclidian space (2D) Example: Euclidian space (2D)
open set closed set open set closed set
® open balls (in R") are ® open balls (in R") are = Z7(S) s the
open sets open sets contained in S
B an open set containing ® an open set containing
x € X is called an x € X is called an
of x of x
B x is an of B x is an of
S C X iff 3 open S C X iff 3 open
neighbourhood U of x neighbourhood U of x

suchthat UC S suchthat UC S



Example: Euclidian space (2D)

0

open set closed set
® open balls (in R™) are = 77(S) is the
open sets contained in S
B an open set containing = CT(S) is the
x € X is called an containing S
of x
B X is an of

S C X iff 3 open
neighbourhood U of x
suchthat UC S

Alternative characterisation of Topological Space
[Kuratowski]

A topological space is a pair (X,CT) with CT : 2X — 2X such that

for each A, B C X: Interior and closure are duals:
=CT(0)=0 = IT(A)=CT(A)
= CT(AUB) =CT(A)UCT(B) = CT(A)=ZT(A)
= ACCT(A)
= CT(CT(A)) =CT(A)

Alternative characterisation of Topological Space
[Kuratowski]

A topological space is a pair (X,CT) with CT : 2X — 2X such that

for each A, B C X:

CT@)=0

CT(AuB) =CT(A)uCT(B)
ACCT(A)

CT(CT(A) = CT(A)

Modal Logic

Gu=p|T|L[-®|OAD|[DVSD|OD|Od

A (Kripke) (X,R) A M= ((X,R),V)
® X a set ® (X,R) a frame
B RCXxXan m)Y:P—PX)a

V assigns to each atomic proposition the set of points (also called
‘possible worlds') that satisfy it.

M xET < true

M, xE=p <~ xe€V(p)

M, x = ¢ <= notM,xE¢

MxEOINY <= M,xEpand M, xE=1

M, x = O¢ — VyeX(x,y)eR = M,yE¢
M, x = 0o — JyeX(x,y)eRAM,yl=¢



Modal Logic of Space [Tarski]

Gu=p|T|L|-®|OAD|OVO|OD| 0D

A topological space (X, O) A model M = ((X, 0),V)
®m X a set of points ® (X, O) a topological space
® O the set of open sets of ® V: P — P(X) a valuation
X function

)V assigns to each atomic proposition the set of points that satisfy it.

M xET < true

M, xE=p <~ xe€V(p)

M, x = ¢ <= notM,xE¢

MxE(NYY <— M,xE¢and M,x =1

M, x = 0o <= Joe O.(x€oandVyeoM,ykE9)
M, x E O¢ < Vo€ O.(x € 0o implies Jy € o.M,y E ¢)

Up

Op
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Op —Up A Op p -Op A Op

Axiomatic Aspects and Relational Semantics

® Modal logic interpreted on and Kripke frames

O ® Spatial modal logic interpreted on topological spaces

‘ are both characterised by the same set of axioms S4:

—Up AOp pA—=O0p
O(p— q) — (Op —Ogq) (K) distributivity
Op — OOp (4) transitivity
Op—p (T) reflexivity
W modus ponens
Dii;s necessitation

where O¢p = =0—¢



What about Discrete Spatial Structures?

Cech Spaces or Closure Spaces

A is a pair (X,C) with C : 2X — 2X such that
for each A, B C X: Define: -

= C(0)=0 = Z(A) = C(A)

" C(AUB)=C(A)UC(B) mAis iff A=17Z(A)

" ACC(A) mAis iff A=C(A)

" C{CAN=C{A) B Aisa of

x € X iff x e Z(A)

Interior and closure are duals:

= C(A) = I(A)

Cech Spaces or Closure Spaces

A is a pair (X,C) with C : 2X — 2% such that

for each A, B C X:

= C(0)=0

= C(AUB) =C(A)UC(B)
= ACC(A)

= e —eiA)

Analogy with Topological Spaces [Galton03]

Properties of a closure space (X,C) with A, B C X:

1 Ais open iff A is closed
2 AC B then C(A) CC(B)
3 C(niel Ai) - ﬂiel C(Ai)
4 ®m () and X are open

B arbitrary unions and finite intersections
of open sets are open

The topological closure CT : 2X — 2X is defined as:
CT(A)=({B < X|AC BAC(B) =B}

.. and satisfies the four basic axioms including idempotence



Graphs as Closure Spaces [Galton03]

A graph is a set of nodes X and a binary relation R C X x X
Cr(A) = AU{x € X|Fa € A.(x,a) € R}

The pair (X,Cg) is a closure space

Boundary in Closure Spaces

A= {.7.}
? !H! OH? Z(A) = {e} and
il zig C(A) = {, 0,0}
B(A) = C(A) \ Z(A) = {s, o}

B7(A) = A\Z(A) = {e}
BT (A) =C(A)\ A= {e}

0¥

Boundary in Closure Spaces

A= {e}

Z(A) = 0 and C(A) = {e, o}
B(A) = C(A)\ Z(A) = {e, o}
B7(A) = A\NZ(A) = {*}
BY(A) =C(A)\ A= {e}

Quasi-discrete Closure Spaces

A closure space (X,C) is quasi-discrete if and only if one of the
following holds:

B each x € X has a minimal neighbourhood N,
® for each AC X, C(A) = U,caC({a})

A is a neighbourhood of x € X iff x € Z(A)

Theorem
(X,C) is quasi-discrete iff there is R C X x X such that C = Cg }

Lemma

S

Cr is idempotent iff the reflexive closure R= of R is transitive




Graph inducing a Quasi-discrete Closure Space Graph inducing a Quasi-discrete Closure Space

mT()7 mT()7
= Cr()? = Cr()7?
= BY()7? = BY()7?
" B()7? " B()7?
BB (eUe)? BB (eUe)?

But also graphs with an uncountable set of nodes/points such as
(R, <) are quasi-discrete closure spaces

Hierarchy of Closure Spaces

PART Il

Closure spaces

Quasi-discrete
closure spaces

Finite point
spaces

Topological spaces

Spatial Logic for Closure Spaces



Spatial Logic for Closure Spaces (SLCS) Spatial Logic for Closure Spaces (SLCS)

Clusters of full stations Near to a bus stop

Spatial reachability

5 10 15 20 25 30

Spatial operators: intuition

SLCS syntax gWW

o = p [ATOMIC PROPOSITION] <—>
| T [TRUE] I
| - [NoT] I
| AP [AND]
| N&é  [NEAR]
| ¢®S¢ [SURROUNDED]

All red and yellow points satisfy A yellow
One yellow point satisfies Zyellow
No points satisfy Zgreen
Green points satisfy greenS blue
Yellow points satisfy yellow S red



Semantics of SLCS

Satisfaction M, x |= ¢ of formula ¢ at point x in quasi-discrete
closure model M = ((X,C), V) is defined, by induction on terms, as
follows:

M,x E p <~ x€V(p)

M,x E T < true

M, x E ¢ < notM,xE¢

M, x E oAy <= M,x|E¢and M,x =

Mx E Né <= xeC({y € XM,y d})

M, x E ¢Sy <= FJACXxeAANVy e AM,y E oA

Vz e BHA).M,z =

Derived operators

£ ¢S1  (everywhere)
Fop 2 —&E(-¢) (somewhere)

Derived operators

i
Ilﬁ

I:I:IH?H?
%1:1
[ 11

Ip £ —(N-9) (interior)
§¢ = (N¢)A(—-Z¢) (boundary)
¢ & ¢oN(-I9) (internal/interior boundary)
§t¢ = (N¢)A(-¢) (external/closure boundary)
Derived operators
oRY = ~((—)S(=¢))  (reachability)
¢TY = oA ((¢9VY)RY) (from-to)

gt
3333

¢ Rap: either 1) holds in x, or there exists a sequence of points after
x, all satisfying ¢ leading to a point satisfying both ¢ and ¥

%m

(white V blue) Rblue satisfied by {e, e, 0, e}
white T blue satisfied by {o}



Model Checking Spatial Logics

Efficient algorithm

The algorithm identifies “bad” areas, where —¢ can be reached
passing by points satisfying 1

Implemented recursively as an operator that enlarges the set of
“bad” points at each application

Upon fixed point: the points where ¢ holds, that are not “bad”,
satisfy ¢ S .

Model checking (finite models)

Model checking in quasi-discrete closure spaces is analysis of a graph
Efficient algorithm O(nodes + arcs) for checking ¢ S

Implemented as a “flooding” algorithm

yellow S red

ssiiies
e

Find points satisfying yellow S red



yellow S red
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1) Find points satisfying neither yellow nor red and make them black

yellow S red

3) . . . and make them black

yellow S red
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2) ldentify yellow points in C(black) . . .
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4) ldentify yellow points in C(black) . . .
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Model Checking Algorithm

Function Sat(M, ¢)
Input: Finite, quasi-discrete closure model
M = ((X,C), V), formula ¢
Output: Set of points {x € X | M, x |= ¢}
Match ¢
case T : return X
case p : return V(p)
case "¢
let P = Sat(M, ¢1)
return X \ P
case ¢ A ¢ :
let P = Sat(M, ¢1)
let Q = Sat(M, ¢2)
return PN Q
case N'¢y :
let P = Sat(M, ¢1)
return
case ¢1 S @3 :
return CheckSurr (M, ¢1,¢2)

Function CheckSurr (M, ¢1,¢2)

Input: Finite, quasi-discrete closure model
M = ((X,C), V), formulas ¢1, ¢
Output: Set of points {x € X | M, x |= ¢1 S ¢2}
var V := Sat(M, ¢1)
let Q = Sat(M, ¢7)
var T := (VvuQ)
while T # 0 do
var T/ := 0
for x € T do
let N = pre(x) NV
V:i=V\N
T =T U(N\ Q)
T:=T;
return V

yellow S red

Fixed point reached, the yellow points satisfy yellow S red

Correctness and Complexity

Theorem

For any finite quasi-discrete closure model M = ((X,(C),V) and
SLCS formula ¢, x € Sat(M, ¢) if and only if M,x = ¢

Proposition

For any finite quasi-discrete model M = ((X,Cg), V) and SLCS
formula ¢ of size k, function Sat(M, ¢) terminates in
O(k - (|X]| +|R])) steps




Implementation

Prototype available on github

www.github.com/vincenzoml/topochecker

A few hundreds of lines of OCaml code

toExit

fromStartToExit

Digital images

= [white] T [green] { e}

= toExit & ([white] T [blue]) {e}

I,
=

| N e

|

|

=

I I R N

Digital images

Any digital image can be treated as a finite, thus quasi discrete,
closure space

toExit = [white] T [green] { ,e}

I

I I I s

I
=
¥

Digital images

toExit = [white] T [green] { ,e}
fromStartToExit = toExit & ([white] T [bluel) {o}

startCanExit = [blue] T fromStartToExit {e}

It
=
Iy

I I I e

I I I e




Turing Patterns

The Chemical Basis of Morphogenesis (1952)

How the leopard got its spots?

Stripes

Alan Turing
© National Portrait Gallery, London

Areas of low concentration of A at time 10

pattern = [a < 2|S [a > 2]
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Turing Patterns

=0

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

B 5 10 15 20 25 30
5 10 15 20 25 30 5 10 15 20 25 30

Two chemical substances A and B in a K x K grid

dx?.

T P AUB A A A
dr = Rix[ix” — xii + Ro + Di(uf; — X7
dx?.

[ A B B _ B
g = Rex{jxij + Ra+ Da(uiy — X

[Gol,Bartocci,Belta, Conference on Decision and Control, 2014]

Areas of low concentration of A

far from pattern =!(N (N (N (N (pattern)))))

t=10 and t=100



Areas of low concentration of A

far from pattern =!(N (N (N (N (pattern)))))

—~Ffar_from pattern

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds



Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))
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Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds



Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))
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Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

£=15
R ]
357 J
30
25 n -
20 = '
i - “-
10 - =
5 g,
95~ ~ - o -
95
BT, - =
P10 & rET
he e 0
07 g =

Model checking time: 0.31277 seconds

Areas of low concentration of A in 3D

far from pattern =!(N (N (N (N (pattern)))))

Model checking time: 0.31277 seconds



Areas of low concentration of A in

far from pattern =!(N (N (N (N (pattern)))))

= RN W
mowmowmowm

Model checking time: 0.31277 seconds

Areas of low concentration of A in over

Points where pattern persists for at least 9 steps

...... but first we need to add time ....

Areas of low concentration of A in over

Points where pattern persists for at least 9 steps

QUESTIONS?
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