

Quantitative Abstractions For Collective Adaptive Systems

Mirco Tribastone and Andrea Vandin

SFM'16 – Bertinoro

- ERODE: A tool for the Evaluation and Reduction of ODEs
 - Frontend
 - Core
 - Reduction Techniques
- Case Studies
 - Large case studies

Continuous time Markov chains from MRMC distribution

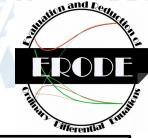
Chemical Reaction Networks from the literature

Spatial dynamics

Crowd Dynamics

Multi-community Epidemiology

IDOL: Intermediate Drift-oriented Language [POPL'16]


$$p ::= \varepsilon \mid \dot{x}_i = f, \ p$$
$$f ::= n \mid x_i \mid f + f \mid f \cdot f \mid f^{\frac{1}{m}}$$

Reaction Networks [CONCUR'15, TACAS'16]

$$x_i + x_j \xrightarrow{k_1} x_i + x_j + x_k$$

$$x_i \xrightarrow{k_2} x_i + x_j$$

$$\emptyset \xrightarrow{k_3} x_i$$

IDOL: Intermediate Drift-oriented Language [POPL'16]

$$p ::= \varepsilon \mid \dot{x}_i = f, \ p$$

$$f ::= n \mid x_i \mid f + f \mid f \cdot f \mid f^{\frac{1}{m}}$$

- Forward Equivalence
- Backward Equivalence

Reaction Networks [CONCUR'15, TACAS'16]

$$x_{i} + x_{j} \xrightarrow{k_{1}} x_{i} + x_{j} + x_{k}$$

$$x_{i} \xrightarrow{k_{2}} x_{i} + x_{j}$$

$$\emptyset \xrightarrow{k_{3}} x_{i}$$

- Forward Bisimulation
- Backward Bisimulation

IDOL: Intermediate Drift-oriented Language [POPL'16]

$$p ::= \varepsilon \mid \dot{x}_i = f, \ p$$

$$f ::= n \mid x_i \mid f + f \mid f \cdot f \mid f^{\frac{1}{m}}$$

Reaction Networks [CONCUR'15, TACAS'16]

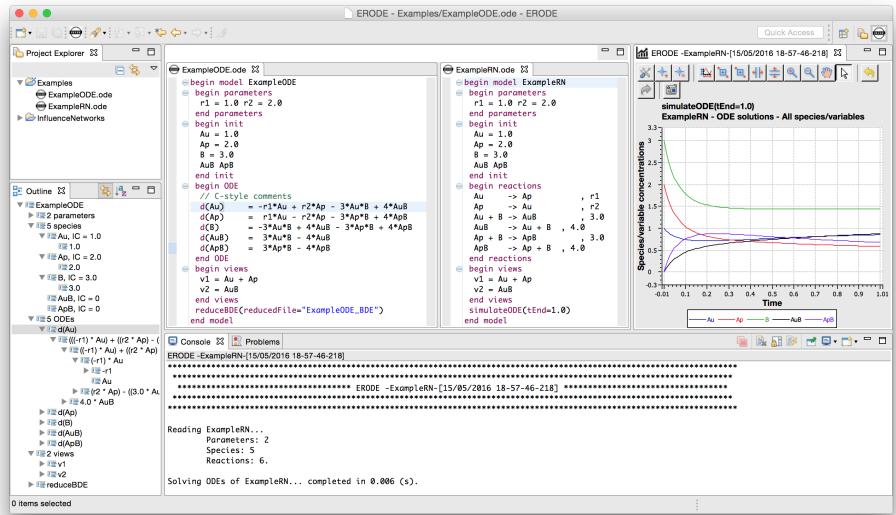
$$x_i + x_j \xrightarrow{k_1} x_i + x_j + x_k$$

$$x_i \xrightarrow{k_2} x_i + x_j$$

$$\emptyset \xrightarrow{k_3} x_i$$

Luca Cardelli¹

Mirco Tribastone²


Max Tschaikowski² Andrea Vandin²

- ¹ Microsoft Research and University of Oxford, UK
- ² IMT School for Advanced Studies Lucca, Italy

-RONTEND

ODE and RN Editor

Auto-completion Error detection Fix suggestion

ERODE Views

Project explorer
Outline & Problems
Console & Plots

ERODE Wizards

Update manager New ERODE Project & File Import BNG, Matlab, LBS

CORE

ODE Simulator

BDE/FDE Reducer

ODE ← RN Encoder

Stochastic Simulator (RN)

Statistical Model Checker (RN)

BB/FB Reducer (RN)

Importer/Exporter (BNG,Matlab,LBS,SBML)

APIs

Apache Commons Math

FERN

MultiVeStA

Microsoft Z3

ERODE: Frontend

-RONTEND

ODE and RN Editor

Auto-completion Error detection Fix suggestion

ERODE Views

Project explorer
Outline & Problems
Console & Plots

ERODE Wizards

Update manager New ERODE Project & File Import BNG, Matlab, LBS

ORF

ODE Simulator

BDE/FDE Reducer

ODE → RN Encoder

Stochastic Simulator (RN) Statistical Model Checker (RN)

BB/FB Reducer (RN)

Importer/Exporter (BNG,Matlab,LBS,SBML)

APIS

Apache Commons Math

FERN

MultiVeStA

Microsoft Z3

ERODE: Frontend

Highlights:

- The Project explorer
- Project and file creation
- Parts composing an ERODE file
- The Outline
- Auto completion, error detection and fix suggestion
- Importer wizards
- Updates manager

ERODE: Core

-RONTEND

ODE and RN Editor

Auto-completion Error detection Fix suggestion

ERODE Views

Project explorer
Outline & Problems
Console & Plots

ERODE Wizards

Update manager
New ERODE Project & File
Import BNG, Matlab, LBS

CORE

ODE Simulator

BDE/FDE Reducer

ODE ← RN Encoder

Stochastic Simulator (RN) Statistical Model Checker (RN)

BB/FB Reducer (RN)

Importer/Exporter (BNG,Matlab,LBS,SBML)

APIS

Apache Commons Math

FERN

MultiVeStA

Microsoft Z3

Highlights

- SimulateODE
- setIC/setParam,
- Plots and CSV files
- Views in plots
- RN to ODE encoding
- Specific features of ODE editor
- Matlab export/import
- Stochastic simulation

FRONTEND

ODE and RN Editor

Auto-completion Error detection Fix suggestion

ERODE Views

Project explorer
Outline & Problems
Console & Plots

ERODE Wizards

Update manager
New ERODE Project & File
Import BNG, Matlab, LBS

CORE

ODE Simulator

BDE/FDE Reducer

ODE ← RN Encoder

Stochastic Simulator (RN) Statistical Model Checker (RN)

BB/FB Reducer (RN)

Importer/Exporter (BNG,Matlab,LBS,SBML)

APIS

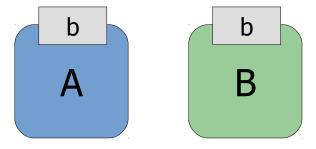
Apache Commons Math

FERN

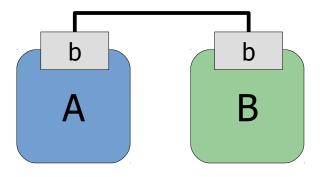
MultiVeStA

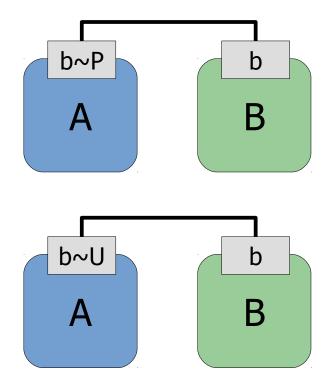
Microsoft Z3

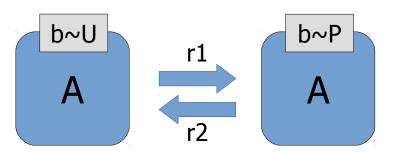
A simple binding/unbinding model


Α

В

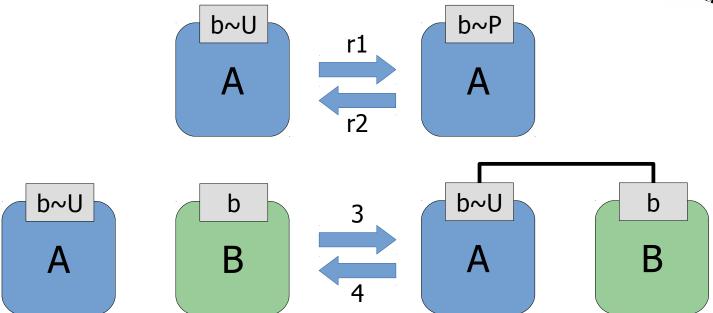

A simple binding/unbinding model

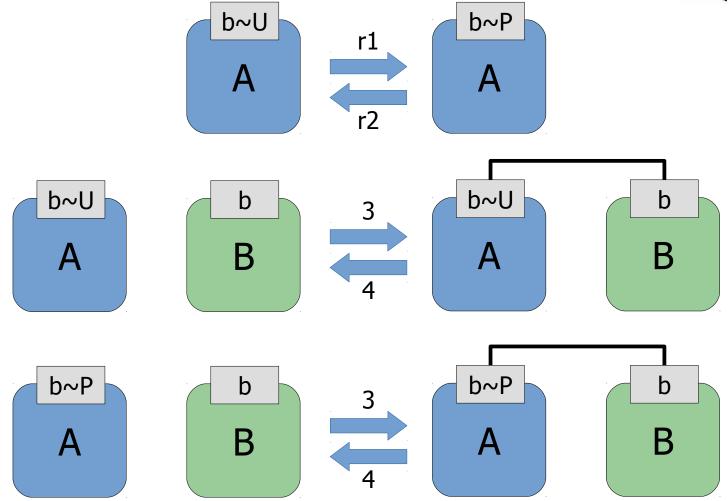

A simple binding/unbinding model



A simple binding/unbinding model







Highlights

- RN specification
- ODE simulation
- ODE specification (via encoding)
- FDE reduction
 - With & without pre-partitioning
 - Explanation of reduction via plots
- BDE reduction
 - For r1=r2 and not
 - With & without IC pre-partitioning
 - Explanation of reduction via plots

Model

$$\dot{x}_1 = -x_1$$
 $\dot{x}_2 = k_1 \cdot x_1 - x_2$
 $\dot{x}_3 = k_2 \cdot x_1 - x_3$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Model

$$\dot{x}_1 = -x_1$$
 $\dot{x}_2 = k_1 \cdot x_1 - x_2$
 $\dot{x}_3 = k_2 \cdot x_1 - x_3$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Equivalence condition (quantifier free)

$$\phi \equiv (x_2 = x_3) \implies k_1 \cdot x_1 - x_2 = k_2 \cdot x_1 - x_3$$

Model

$$\dot{x}_1 = -x_1
\dot{x}_2 = k_1 \cdot x_1 - x_2
\dot{x}_3 = k_2 \cdot x_1 - x_3$$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Equivalence condition (quantifier free)

$$\phi \equiv$$

$$k_1 \cdot x_1 - x_2 = k_2 \cdot x_1 - x_2$$

Model

$$\dot{x}_1 = -x_1$$
 $\dot{x}_2 = k_1 \cdot x_1 - x_2$
 $\dot{x}_3 = k_2 \cdot x_1 - x_3$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Equivalence condition (quantifier free)

$$\phi \equiv k_1 \cdot x_1 - x_2 = k_2 \cdot x_1 - x_2$$

SMT check $sat(\neg \phi) = false$

Model

$$\dot{x}_1 = -x_1
\dot{x}_2 = k_1 \cdot x_1 - x_2
\dot{x}_3 = k_2 \cdot x_1 - x_3$$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Equivalence condition (quantifier free)

$$\neg \phi \equiv k_1 \cdot x_1 - x_2 \neq k_2 \cdot x_1 - x_2$$

SMT check $sat(\neg \phi) = false$

Algorithm. Compute the largest equivalence that refines a given partition of variables:

$$k_1 = k_2 = 3$$


$$\dot{x}_1 = -x_1$$

$$\dot{x}_2 = 3 \cdot x_1 - x_2$$

$$\dot{x}_3 = 3 \cdot x_1 - x_3$$

$$\{\{x_1, x_2, x_3\}\}$$

Algorithm. Compute the largest equivalence that refines a given partition of variables:

1. SMT check of negation of

$$x_1 = x_2 = x_3 \implies$$
 $-x_1 = 3 \cdot x_1 - x_2 = 3 \cdot x_1 - x_3$

$$k_1 = k_2 = 3$$

$$\dot{x}_1 = -x_1$$
 $\dot{x}_2 = 3 \cdot x_1 - x_2$
 $\dot{x}_3 = 3 \cdot x_1 - x_3$

$$\{\{x_1, x_2, x_3\}\}$$

Algorithm. Compute the largest equivalence that refines a given partition of variables:

a given partition of variables:

1. SMT check of negation of
$$x_1 = x_2 = x_3 \implies$$
 $-x_1 = 3 \cdot x_1 - x_2 = 3 \cdot x_1 - x_3$

$$k_1=k_2=3$$

$$\dot{x}_1=-x_1$$

$$\dot{x}_2=3\cdot x_1-x_2$$

$$\dot{x}_3=3\cdot x_1-x_3$$

$$egin{aligned} ig\{ \{x_1, x_2, x_3\} ig\} \ & x_1 = x_2 = x_3 = 1 \ \dot{x}_1 = -1 \ & \dot{x}_2 = 3 \cdot 1 - 1 \ & ext{sat} \ \dot{x}_3 = 3 \cdot 1 - 1 \end{aligned}$$

Algorithm. Compute the largest equivalence that refines a given partition of variables:

1. SMT check of negation of
$$x_1 = x_2 = x_3 \implies$$
 $-x_1 = 3 \cdot x_1 - x_2 = 3 \cdot x_1 - x_3$

2. If **sat** get witness and split partition preserving its uniformity. Goto 1.

$$k_1=k_2=3$$

$$\dot{x}_1=-x_1$$

$$\dot{x}_2=3\cdot x_1-x_2$$

$$\dot{x}_3=3\cdot x_1-x_3$$

$$egin{array}{c} ig\{ \{x_1, x_2, x_3\} ig\} \ & x_1 = x_2 = x_3 = 1 \ \dot{x}_1 = -1 \ & \dot{x}_2 = 3 \cdot 1 - 1 \ & ext{sat} \ \dot{x}_3 = 3 \cdot 1 - 1 \end{array}$$

Algorithm. Compute the largest equivalence that refines a given partition of variables:

- 1. SMT check of negation of $x_1 = x_2 = x_3 \implies$ $-x_1 = 3 \cdot x_1 x_2 = 3 \cdot x_1 x_3$
- 2. If **sat** get witness and split partition preserving its uniformity. Goto 1.

$$k_1 = k_2 = 3$$

$$\dot{x}_1 = -x_1$$

$$\dot{x}_2 = 3 \cdot x_1 - x_2$$

$$\dot{x}_3 = 3 \cdot x_1 - x_3$$

$$egin{array}{ll} \left\{ \{x_1, x_2, x_3\}
ight\} \\ \dot{x}_1 = x_2 = x_3 = 1 \\ \dot{x}_1 = -1 \\ \dot{x}_2 = 3 \cdot 1 - 1 \quad ext{sat} \\ \dot{x}_3 = 3 \cdot 1 - 1 \end{array}$$

 $\{\{x_1\},\{x_2,x_3\}\}$

Algorithm. Compute the largest equivalence that refines a given partition of variables:

- 1. SMT check of negation of $x_1 = x_2 = x_3 \implies$ $-x_1 = 3 \cdot x_1 x_2 = 3 \cdot x_1 x_3$
- 2. If **sat** get witness and split partition preserving its uniformity. Goto 1.

$$k_1 = k_2 = 3$$

$$\dot{x}_1 = -x_1$$

$$\dot{x}_2 = 3 \cdot x_1 - x_2$$

$$\dot{x}_3 = 3 \cdot x_1 - x_3$$

$$egin{array}{c} ig\{ \{x_1, x_2, x_3\} ig\} \\ \dot{x}_1 = x_2 = x_3 = 1 \\ \dot{x}_1 = -1 \\ \dot{x}_2 = 3 \cdot 1 - 1 \\ \dot{x}_3 = 3 \cdot 1 - 1 \\ \hline \end{array}$$
 sat

 $ig\{\{x_1\},\{x_2,x_3\}ig\}$ unsat

Algorithm. Compute the largest equivalence that refines a given partition of variables:

- 1. SMT check of negation of $x_1 = x_2 = x_3 \implies$ $-x_1 = 3 \cdot x_1 x_2 = 3 \cdot x_1 x_3$
- 2. If **sat** get witness and split partition preserving its uniformity. Goto 1.
- 3. If **unsat** the current partition is the coarsest refinement. End.

$$k_1=k_2=3$$

$$\dot{x}_1=-x_1$$

$$\dot{x}_2=3\cdot x_1-x_2$$

$$\dot{x}_3=3\cdot x_1-x_3$$

$$egin{array}{c} \left\{ \{x_1, x_2, x_3\}
ight\} \\ \dot{x}_1 = x_2 = x_3 = 1 \\ \dot{x}_1 = -1 \\ \dot{x}_2 = 3 \cdot 1 - 1 \quad ext{sat} \\ \dot{x}_3 = 3 \cdot 1 - 1 \end{array}$$

 $ig\{\{x_1\},\{x_2,x_3\}ig\}$ unsat

Model

$$\dot{x}_1 = -x_1
\dot{x}_2 = k_1 \cdot x_1 - x_2
\dot{x}_3 = k_2 \cdot x_1 - x_3$$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Equivalence condition (quantifier free)

$$\neg \phi \equiv k_1 \cdot x_1 - x_2 \neq k_2 \cdot x_1 - x_2$$

SMT check $sat(\neg \phi) = false$

Model

$$\dot{x}_1 = -x_1$$
 $\dot{x}_2 = k_1 \cdot x_1 - x_2$
 $\dot{x}_3 = k_2 \cdot x_1 - x_3$

Candidate partition

$$\{\{x_1\},\{x_2,x_3\}\}$$

Equivalence condition (quantifier free)

$$\neg \phi \equiv k_1 \cdot x_1 - x_2 \neq k_2 \cdot x_1 - x_2$$

http://rise4fun.com/Z3/IW7d1

 $\beta a u (\psi) - 1 a i b c$

ERODE: FB/BB

Highlights

- RN Encoding
- FDE & FB reduction
 - Same FDE reductions as for ODE
 - FB is stricter than FDE
- BDE & BB reduction
 - Same BDE reductions as for ODE
 - The two reductions coincide
 - Comparison of the BDE/BB reduced RNs

- ERODE: A tool for the Evaluation and Reduction of ODEs
 - Frontend
 - Core
 - Reduction Techniques
- Case Studies
 - Large case studies

Continuous time Markov chains from MRMC distribution

Chemical Reaction Networks from the literature

Spatial dynamics

Crowd Dynamics

Multi-community Epidemiology

Some considered large case studies

Original model		FE	3 reduction	ı	BB reduction					
R	R $ S $		Red.(s) $ R $		Red.(s)	R	S			
Continuous-time Markov chains										
22 871 849	3 101 445	2.01E+3	1 069 777	135 752	1.34E+3	1 166 931	148 092			
11 583 520	2 373 652	9.78E+1	5 792 531	1 187 597	3.07E+2	5 814 622	1 187 597			
10 485 761	1 048 576	1.76E+1	3301	792	1.23E+1	5083	792			
		Bioche	mical rea	ction netwo	orks					
3 538 944	262 146	7.49E+0	990	222	1.21E+1	2614	222			
786 432	65 538	1.58E+0	720	167	2.51E+0	1873	167			
172 032	16 386	2.89E-1	504	122	6.03E-1	1 305	122			
194 054	14 531	3.88E-1	142 165	10855	6.00E-1	91 001	6634			
187 468	10734	6.09E-1	57 508	3 744	1.40E+0	145 650	5 5 7 5			
32776	2 506	1.19E-1	16481	1 281	2.14E-1	32 776	2 506			
41 233	2 562	2.69E-1	33 075	1 897	3.97E-1	41 233	2 562			

Largest models from MRMC distribution

Comparison with state-of-the-art model checker to assess scalability and correctness

Original model		FB	reduction	,	BB reduction					
R	S	Red.(s) $ R $		S	Red.(s)	R	S			
Continuous-time Markov chains										
22 871 849 3 11 583 520 3 10 485 761	2 373 652	2.01E+3 1 9.78E+1 5 1.76E+1		135 752 1 187 597 792	1.34E+3 3.07E+2 1.23E+1	1 166 931 5 814 622 5083	148 092 1 187 597 792			
		Bioche	mical reac	ction netwo	orks					
3 538 944 786 432 172 032 194 054 187 468 32 776 41 233	262 146 65 538 16 386 14 531 10 734 2 506 2 562	7.49E+0 1.58E+0 2.89E-1 3.88E-1 6.09E-1 1.19E-1 2.69E-1	990 720 504 142 165 57 508 16 481 33 075	222 167 122 10 855 3 744 1 281 1 897	1.21E+1 2.51E+0 6.03E-1 6.00E-1 1.40E+0 2.14E-1 3.97E-1	2 614 1 873 1 305 91 001 145 650 32 776 41 233	222 167 122 6 634 5 575 2 506 2 562			

Largest models from MRMC distribution

Comparison with state-of-the-art model checker to assess scalability and correctness

Original	model	FB	reduction		BB reduction					
R	S	Red.(s) $ R $		S	Red.(s)	R	S			
Continuous-time Markov chains										
22 871 849 11 583 520 10 485 761	2 373 652	2.01E+3 1 9.78E+1 5 1.76E+1		135 752 1 187 597 792	1.34E+3 1 3.07E+2 5 1.23E+1		148 092 1 187 597 792			
		Biochen	nical reac	tion netwo	orks					
3 538 944 786 432 172 032 194 054 187 468 32 776 41 233	262146 65538 16 $14R_Q$ 10734 2506 2562	$7.49E+0$ $1.58E+0$ $= \{s_i$ $6.09E-1$ $1.19E-1$ $2.69E-1$	990 720 $Q_{i,j}$ 57508 16481 33075	$\begin{array}{c c} 222 \\ 167 \\ \hline & s_{j} \\ 3744 \\ 1281 \\ 1897 \\ \end{array}$	$1.21E+1$ $2.51E+0$ $Q_{i,j} \neq 1.40E+0$ $2.14E-1$ $3.97E-1$	$ \begin{array}{c} 2614 \\ 1873 \\ 40 \\ 50 \\ 145650 \\ 32776 \\ 41233 \end{array} $	222 167 122 6634 5575 2506 2562			

Largest models from MRMC distribution

Comparison with state-of-the-art model checker to assess scalability and correctness

Original	model	FB	reduction	,	BB reduction						
R	S	Red.(s) $ R $		S	Red.(s)	R	S				
Continuous-time Markov chains											
22 871 849 11 583 520 10 485 761	2 373 652	2.01E+3 1 9.78E+1 5 1.76E+1		135 752 1 187 597 792	1.34E+3 1 3.07E+2 5 1.23E+1		148 092 1 187 597 792				
		Biocher	nical reac	ction netwo	orks						
3 538 944 786 432 172 032 194 054	262146 65538 16 $14R$	$7.49E+0$ $1.58E+0$ $= \{s_i\}$	$Q_{i,j}$	$\begin{array}{c} 222 \\ 167 \\ \rightarrow s_i \end{array}$	$\begin{array}{c} ^{1.21\text{E}+1} \\ ^{2.51\text{E}+0} \end{array}$	$ \begin{array}{c} 2614 \\ 1873 \\ 4 0 \\ \end{array} $	222 167 122 6 634				
187 468 32 776 41 233	10 734 2 506 2 562	6.09E-1 1.19E-1 2.69E-1	57 508 16 481 33 075	3 744 1 281 1 897	1.40E+0 2.14E-1 3.97E-1	145 650 32 776 41 233	5 575 2 506 2 562				

Biochemical models from BioNetGen repository

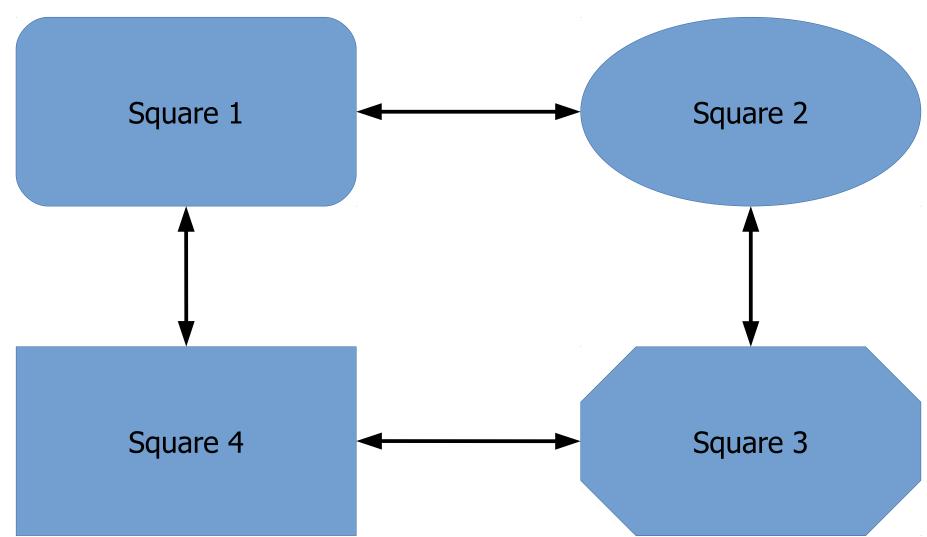
Support for state-of-the-art tool for the analysis of biological networks

Original	model	FE	3 reduction	$\overline{\imath}$	BB reduction				
R	S	Red.(s)	(s) $ R $ $ S $		Red.(s) $ R $		S		
		Continu	ous-time	Markov cl	nains				
22 871 849	3 101 445	2.01E+3	1 069 777	135 752	1.34E+3	1 166 931	148 092		
11 583 520	2 373 652	9.78E+1 5	5 792 531	1 187 597	3.07E+2	5 814 622	1 187 597		
10 485 761	1 048 576	1.76E+1	3301	792	1.23E+1	5083	792		
		Bioche	mical reac	ction netwo	orks				
3 538 944	262 146	7.49E+0	990	222	1.21E+1	2614	222		
786 432	65 538	1.58E+0	720	167	2.51E+0	1873	167		
172 032	16 386	2.89E-1	504	122	6.03E-1	1 305	122		
194 054	14 531	3.88E-1	142 165	10855	6.00E-1	91 001	6634		
187 468	10734	6.09E-1	57 508	3 744	1.40E+0	145 650	5 5 7 5		
32776	2 506	1.19E-1	16481	1 281	2.14E-1	32 776	2 506		
41 233	2 562	2.69E-1	33 075	1 897	3.97E-1	41 233	2 562		

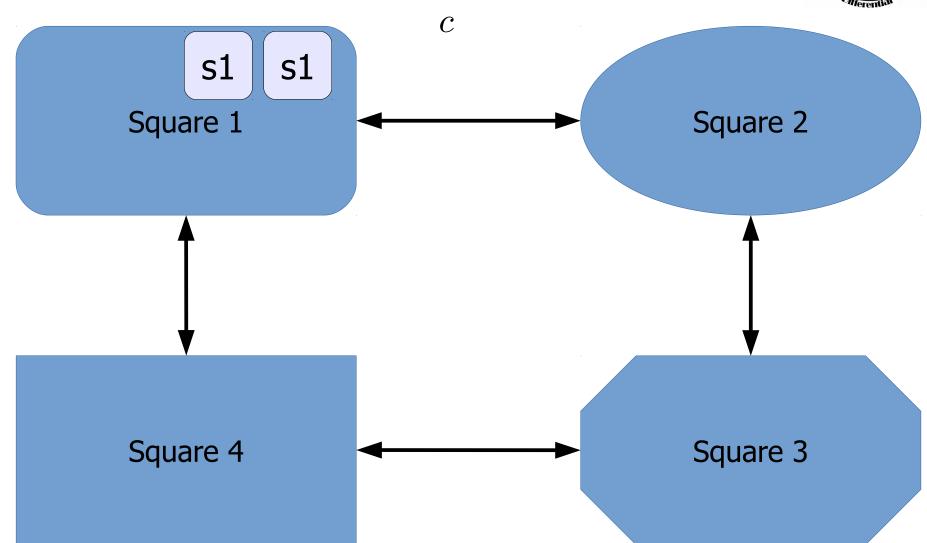
Observable-preserving FB reduction

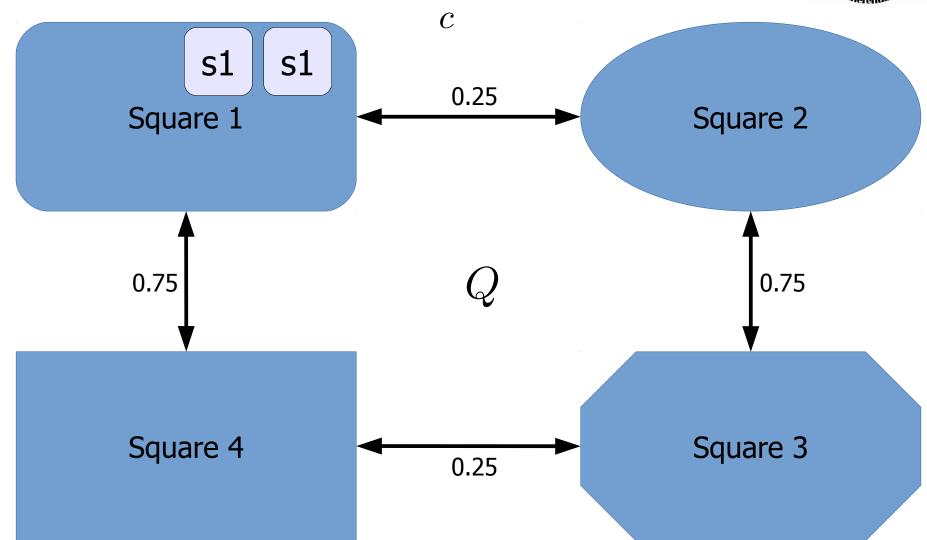
Original model		FB re	eduction	\overline{n}	FB reduction with prep.			
R	S	Red.(s)	R	S	$\overline{ Prep. }$	Red.(s)	R	S
194054	14531	3.88E-1	142 165	10855	1345	3.28E-1	147 797	12037
5797	796	1.90E-2	4210	503	18	4.10E-2	4210	503
487	85	2.00E-3	264	56	4	2.00E-3	362	69

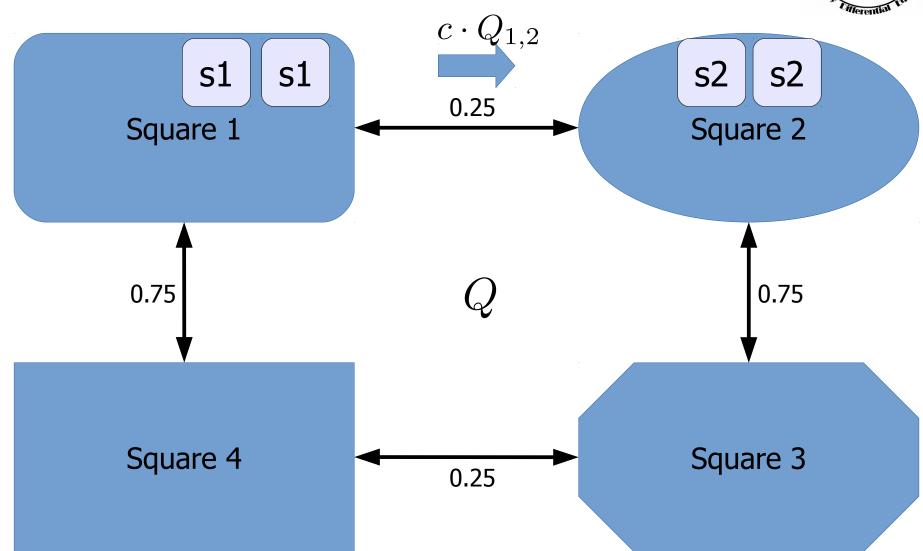
Observable-preserving FB reduction

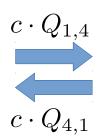

$Original\ model$		FB r	eduction	n	FB reduction with prep.			
R	S	Red.(s)	R	S	$\overline{ Prep. }$	Red.(s)	R	S
$\overline{194054}$	14531	3.88E-1	142 165	10855	1345	3.28E-1	147 797	$\overline{12037}$
5797	796	1.90E-2	4210	503	18	4.10E-2	4210	503
487	85	2.00E-3	264	56	4	2.00E-3	362	69

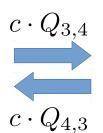
- ERODE: A tool for the Evaluation and Reduction of ODEs
 - Frontend
 - Core
 - Reduction Techniques
- Case Studies
 - Large case studies
 Continuous time Markov chains from MRMC distribution
 Chemical Reaction Networks from the literature
 - Spatial dynamics
 Crowd Dynamics
 Multi-community Epidemiology







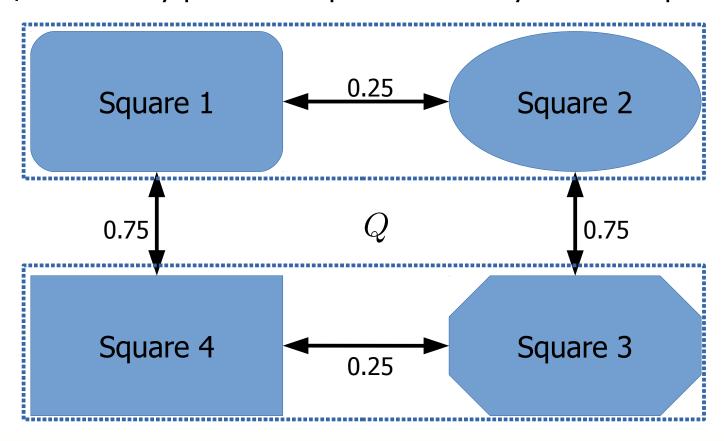


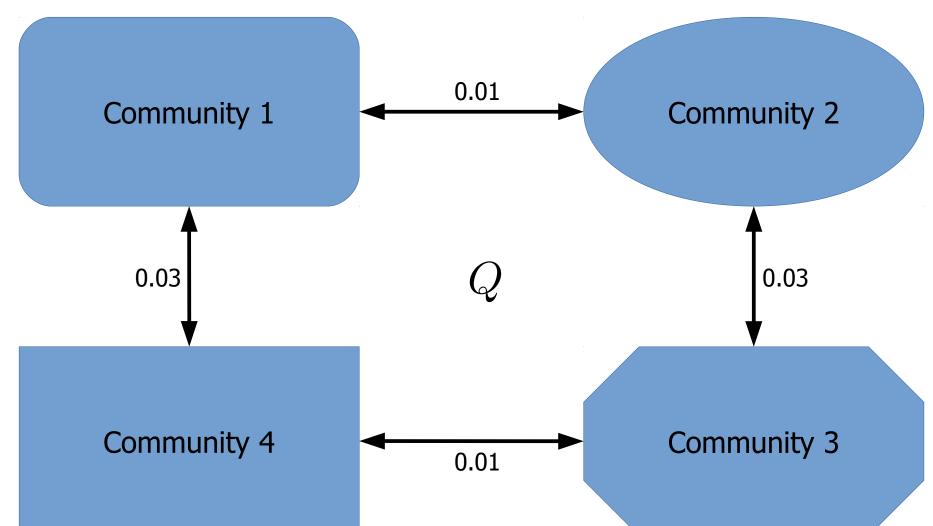


$$c \cdot Q_{1,2}$$
 $c \cdot Q_{2,1}$

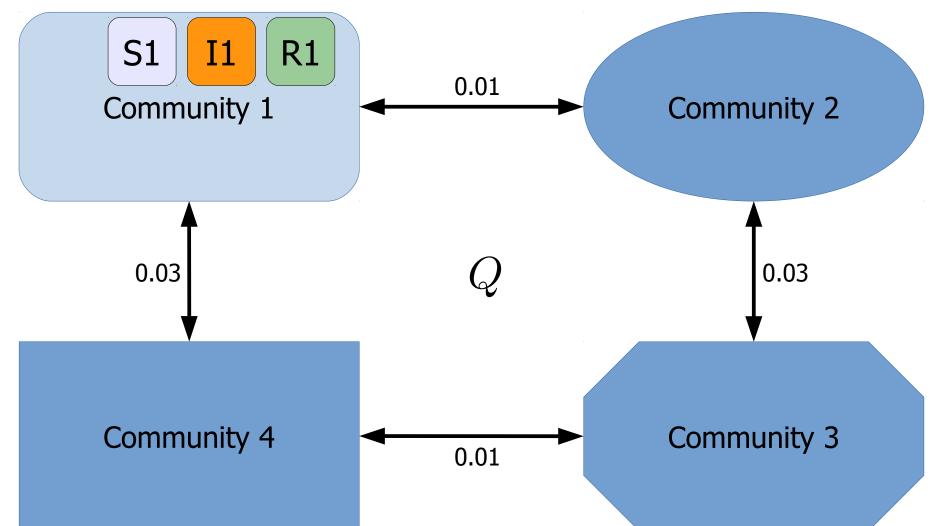
$$c \cdot Q_{2,3}$$

$$c \cdot Q_{3,2}$$




Highlights

- Plots for different IC
- BDE/BB formally proves the presence of "symmetric squares"



Movements

$$\begin{array}{c|c} Ii & Q_{i,j} & \hline \\ Ij & \end{array}$$

$$\mathbb{R}_{\mathsf{i}}$$
 \mathbb{R}_{j}

Movements

Local interactions

Si $\bigcirc i$

Sj

Si

Ιi

Ιi

Ti

Ιi

 $Q_{i,j}$

IJ

Ri

 $Q_{i,j}$

Rj

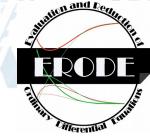

Movements

Local interactions

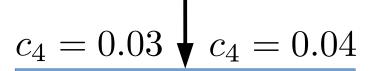
 $oxed{\mathsf{Si}}$ $oxed{Q_{i,j}}$ $oxed{\mathsf{Sj}}$

 $\begin{array}{c|c} Ii & Q_{i,j} & \hline \\ Ij & \end{array}$

 \mathbb{R}_{i} \mathbb{R}_{j}



$$c_1=0.03$$
 $c_2=0.03$ Community 1 $c_3=0.03$ Community 2 $c_3=0.03$ Community 3



$$c_1 = 0.03$$

 $c_2 = 0.03$

Community 1

Community 2

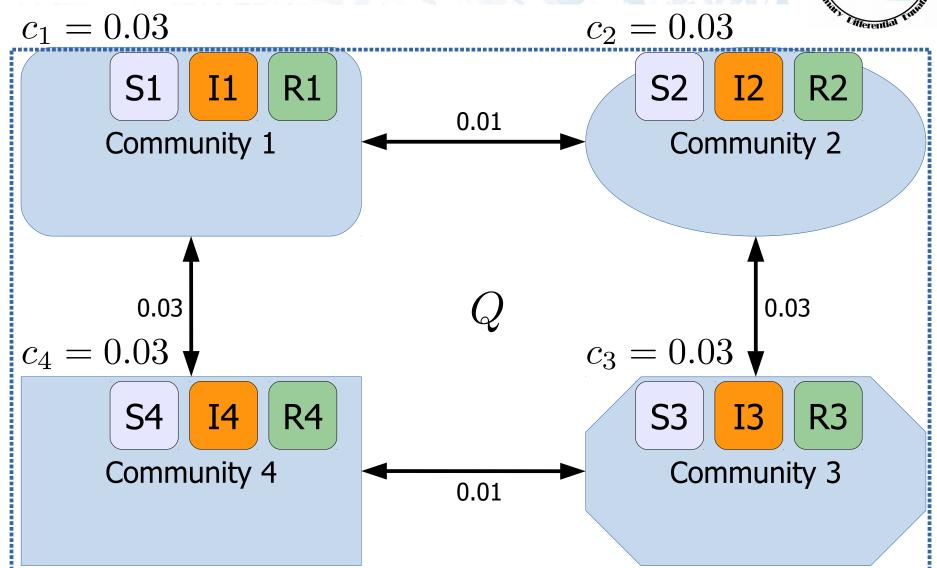
 $c_3 = 0.03 \quad c_3 = 0.04$

Community 4

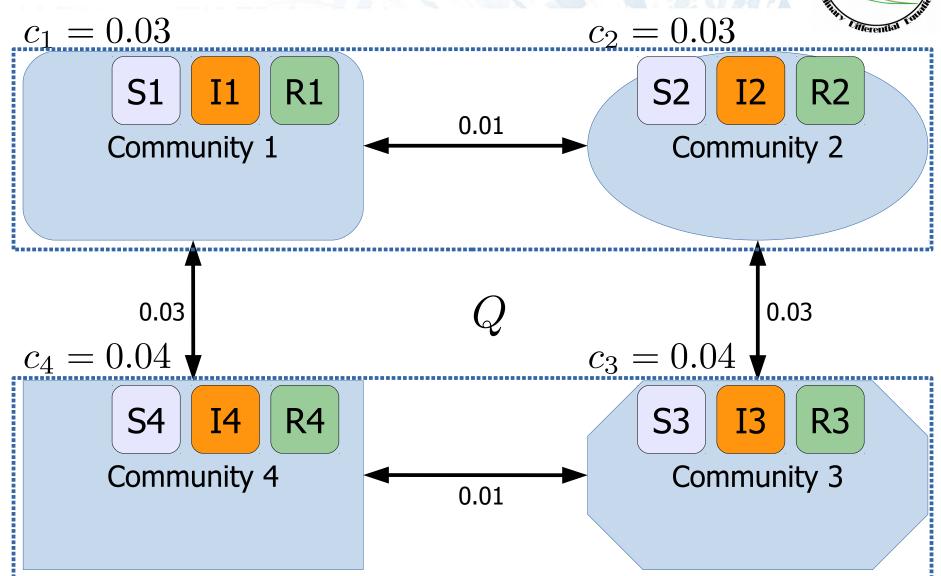
Community 3

http://groups.inf.ed.ac.uk/paloma/SIR.paloma

```
#params
param p = 0.5;
#states
//an agent in state "S" can receive a "contact" msg and become infected, or move to another location.
S(0,0):= ?(contact,p)@Pr{1/(|S(0,0)|+|I(0,0)|+|R(0,0)|)}.I(0,0)+(move_0_1,0.01).S(0,1)+(move_0_2,0.01).S(1,0);
S(0,1) := ?(contact,p)@Pr{1/(|S(0,1)|+|I(0,1)|+|R(0,1)|)}.I(0,1)+(move_1_0,0.01).S(0,0)+(move_1_3,0.01).S(1,1);
S(1,0):= ?(contact,p)@Pr{1/(|S(1,0)|+|I(1,0)|+|R(1,0)|)}.I(1,0)+(move_2_0,0.01).S(0,0)+(move_2_3,0.01).S(1,1);
S(1,1) := ?(contact,p)@Pr{1/(|S(1,1)|+|I(1,1)|+|R(1,1)|)}.I(1,1)+(move_3_1,0.01).S(0,1)+(move_3_2,0.01).S(1,0);
//an agent in state "I" can send out "contact" broadcast msg to its current location, or move to another location.
I(0,0):= !(contact,0.03)@IR\{local\}.I(0,0)+(recover,0.2).R(0,0)+(move_0_1,0.01).I(0,1)+(move_0_2,0.01).I(1,0);
I(0,1):= !(contact,0.03)@IR\{local\}.I(0,1)+(recover,0.2).R(0,1)+(move_1_0,0.01).I(0,0)+(move_1_3,0.01).I(1,1);
I(1,0):= !(contact,0.03)@IR\{local\}.I(1,0)+(recover,0.2).R(1,0)+(move_2_0,0.01).I(0,0)+(move_2_3,0.01).I(1,1);
I(1,1):= !(contact,0.03)@IR\{local\}.I(1,1)+(recover,0.2).R(1,1)+(move_3_1,0.01).I(0,1)+(move_3_2,0.01).I(1,0);
//an agent in state "R" can only move to another location.
R(0,0) := (move_0_1,0.01).R(0,1)+(move_0_2,0.01).R(1,0);
R(0,1) := (move_1_0,0.01).R(0,0)+(move_1_3,0.01).R(1,1);
R(1,0) := (move_2_0,0.01).R(0,0)+(move_2_3,0.01).R(1,1);
R(1,1) := (move_3_1,0.01).R(0,1)+(move_3_2,0.01).R(1,0);
#agents
S(0,0)[150] | I I(0,0)[11] | I R(0,0)[12] | I
S(0,1)[150] | I I(0,1)[11] | I R(0,1)[12] | I
S(1,0)[150] | | I(1,0)[11] | | R(1,0)[12] | |
S(1,1)[150] || I(1,1)[11] || R(1,1)[12]
```




```
fluidflow.m 🔀
                       \Box function dy = fluidflow(y)
    1
                                   dy=zeros(90,1);
    2 -
    3
                                   %First-order moments (12 ODEs)
    4
    5 -
                                   dy(1)=0-1*0.03*y(1)-1*0.01*y(1)+1*0.01*y(2)+1*0.03*y(9)+1*0.2*y(10);
    6
                                   dy(12)=0+1*0.03*0.5*1/(y(5)+y(12)+y(2))*y(69)+1*0.01*y(10)+1*0.03*y(5)
   7 -
   8
                                   %Second-order moments (12 ODEs)
   9
10 -
                                   dy(13)=0+0.03*(1)^2*y(1)-2*y(13)*0.03*1+0.01*(1)^2*y(1)-2*y(13)*0.01
11
                                   dy(24)=0+0.03*(0.5*1/(y(5)+y(12)+y(2)))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(12)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*((y(69))^2)/(y(17)+e^2))^2*(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))^2)(y(17)*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(y(17))*(y(17)*(
12 -
13
14
                                   %Further 66 auxiliary ODEs
                                   dy(25)=0-0.03*1*y(25)-0.01*1*y(25)+0.01*1*y(13)-0.01*(1)^2*y(1)-0.03
15 -
16
                                   dy(90)=0+0.03*0.5*1/(y(5)+y(12)+y(2))*(y(69)*y(90)*y(68)/(y(12)+eps))
17 -
18
                               end
19 -
```



ERODE: Evaluation and Reduction of ODEs

-RONTEND

ODE and RN Editor

Auto-completion Error detection Fix suggestion

ERODE Views

Project explorer
Outline & Problems
Console & Plots

ERODE Wizards

Update manager New ERODE Project & File Import BNG, Matlab, LBS

CORE

ODE Simulator

BDE/FDE Reducer

ODE ← RN Encoder

Stochastic Simulator (RN) Statistical Model Checker (RN)

BB/FB Reducer (RN)

Importer/Exporter (BNG,Matlab,LBS,SBML)

APIs

Apache Commons Math

FERN

MultiVeStA

Microsoft Z3

