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1. Introduction
1.1. Homogeneous A, -Laplacians. The semilinear Dirichlet problem

In recent years a certain number of papers have been devoted to “degenerate” elliptic operators whose simplest prototype
in RN is the following one.

Ay i=Aq) + XV An), a>0. (1.1)

Here x = (x, x@),x® € RV, i = 1, 2 denotes the point of RN, N = N; + N, and A; stands for the classical Laplacian in
RN,

Nowadays, A, in (1.1) is usually quoted in the literature as Grushin’s operator. However, if & is a nonnegative integer, A,
falls into the general class of Hormander’s operators, sum of squares of vector fields generating a Lie algebra of maximum
rank at any point. If « is not an integer, then A,, is contained in a family of operators of the kind

el

= 87(, (1.2)

N
A}\. = Z 8X,' ()"12 ax,-)a 8)(,'
i=1
first studied in [1-3] with a geometrical technique taking into account the property of the control (or Carnot-Carathéodory)
metric d := d, generated by the vector fields

Xi = hidy, i=1,...,N. (1.3)
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The aim of this paper is to establish existence, nonexistence and regularity results for the problem

Azu J:f(u) =0 ing2, (1.4)
ulpe =0
where £2 is a bounded open subset of RN and A, is the operatorin (1.2) related to a N-tuple A = (A1, ..., Ay) of continuous

functions in RN verifying, together with the assumption in [ 1] (which will be recalled, for reader convenience, in Section 1.2),
the following one.

(H1) There exists a group of dilations (5¢);~0,
8 RN — R, 8§(X) = 8:(x1,...,xy) = (t51xq, ..., tNxy)

with 1 = g1 < gy < --- < gy, such that }; is §; homogeneous of degree ¢; — 1, i.e.,

A (x) =t 10(x), VYxeRV,Vt>0,i=1,...,N. (1.5)
The number
Q=¢e1+e&+- --+en (1.6)

is the homogeneous dimension of RN with respect to (8, )¢~o. It will play a crucial réle both in the geometry and the functional
setting naturally associated to A;. We explicitly remark that (1.5) is equivalent to the §;-homogeneity of degree one of the
vector field X;, that is, to the property

Xiu(s; (%)) = tXu)(8:(x)), VxeRV, Vt>0 (1.7)

and for every u € C*(RV).
Thus, (H1) implies that A; is §;-homogeneous of degree two. When the family X satisfies all the hypotheses mentioned
above, we call A; -Laplacian the operator in (1.2).

1.2. Hypotheseson A = (Aq, ..., An)

The function A;’s are continuous in RV, different from zero and of class C' in RN \ IT where

N
= (x],...,xN)eRN:Hxi:o},

i=1
Moreover, together with (H1), we assume the following properties.

(HZ) A =1, )»,'(X) = )u,'(X], e ,X,;]), i=2,...,N.
(H3) There exists a constant p > 0 such that

0 < X0y Ai(¥) < pAi(x) Yke{l,...,i—1},Vi=2,...,N
and foreveryx € RY == {(x1,...,xy) e RN : x> 0Vi=1,...,N}.
(H4) For every x € RN, A;(x) = A;(x*) where
X =(xl, ..o xnl) ifx = (X1, ..., xN).

Some remarks are in order.

Remark 1.1. If &; = 1 then A;(x) = 1;(0) > 0 for every x € R". Indeed, if &; = 1 then }; is §;-homogeneous of degree zero
and its continuity implies

Ai(x) = Ai(8¢(x)) = lim A;(8;(x)) = 2;(0).
N0

Moreover, A;(0) has to be strictly positive since A; > 0 in R’i \ I1. We want to stress that, vice versa, if 1;(0) > 0 from (1.5)
we get &; = 1and A;(x) = A;(0) for every x € RV,

Note 1. Throughout the paper, without loss of generality, we assume A; = 1ifg; = 1.

Remark 1.2. By condition (H2) the operator A, can be written as follows
N N
A=) aor =) X2
i=1 i=1

Remark 1.3. Ifthe A;’s are smooth, then (H1) and (H2) imply the hypoellipticity of A;,i.e. the smoothness of the distributional
solutions to A, u = f when f is smooth.
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Indeed, since A; is smooth, §;-homogeneous and everywhere different from zero in RV \ I7, }; is a nonvanishing polynomial

function (see, e.g., [4, Proposition 1.3.4]). Then, for every fixed x € RN there exists a multi-index «® = (!, ..., «”,) such
that

D" %i(x) # 0.
Using this property it is easy to recognize that
Lie {X1, ..., Xn} () 2 {0, ..., 0y} -
Therefore
rank Lie{X;,..., Xy} =N, Vxe RV,

and, by the Hérmander Theorem in [5] and Remark 1.2, A; is hypoelliptic.
On the other hand, apart from the obvious case in which every A; is constant, A, is not elliptic at every point of IT (see
Remark 1.1). Thus, if the A;’s are not constant

dim (span {A;(0)dy, :i=1,...,N}) <N =dim (span {};(x)dy, :i=1,...,N}) Vx¢II.

As a consequence: there is no composition law o in RN making A;, left translation invariant (see [4, Proposition 1.2.13]). So
that, if the A;’s are not constant, there is no Lie group G in R¥ making A, a sub-Laplacian on G.

1.3. The A;-metric space

An absolutely continuous path y : [0, T] — RV is called A-subunit if there exist measurable functions cy, ..., cy :
[0, T] — R such that, almost everywhere in [0, T] one has

N N
PO =) aOXy@®), Y ) <1
i=1 i=1
Hereafter we agree to identify the vector fields
Xi(x) = Ai(x)0y, with the function A;(x)e;, e; = (O, e } e, 0) .
Assumption (H2) and the positivity of the A;’s in RN \ IT imply the A-connectivity of RN, Precisely, for every x, y € RN there
exists a A-subunit path ¥ : [0,T] — R" such that y(0) = x and y(T) = y. We denote by A(x,y) the family of the

A-subunit paths connecting x and y. Finally, if the subunit path y is defined in the interval [0, T], we let [(y) := T. Then d;,
what we call the A-distance, is defined as follows: ifx, y € R,

dp.(x,y) = inf{l(y) : y € Alx, y)}.
It is quite trivial to verify that (R", d,) is a metric space. Sometime, in what follows, we will write d instead of d, . The d-ball
of center x € RN and radius r > 0 will be denoted by B,(x, r). Hence

By(x,1) :={y e R" | d(x,y) <r}.
A precise estimate of the d; -distance, and of the Lebesgue measure of the d; -balls, come from (H1)-(H4). Define a N-tuple

of functions Fy, ..., Fy on Rﬁ X [0, oo[ with the following recurrence law
Filx,T) =71 (18)
Fi(x,7) = thi1 + Fi(x, 1), ..., X1 + Fia(x, 7)), i=2,...,N. ’
Since A; is monotone increasing with respect tox; € [0, oo[,j = 1,...,i — 1, and strictly positive in ]R’i \ IT the function
T — Fi(x, 7) is strictly increasing in [0, oo, for every fixed x € R’i. We let
¢ix,) = (Fi(x,-))~", i=12...,N. (1.9)
Then, by Theorems 2.6 and 2.7 in [ 1] we have the following. There exist two strictly positive constants c¢; and ¢, such that
d(x,
1 < (—y) <0 (110)

=~ <
> oilx*, Ixi — yil)
i=1

and

(1.11)

[TFG* 1)

i=1

B
- ll a(x, T)] <c

foreveryx = (X1, ...,X%y), ¥ = V1, ..., yn) € RV and for every r > 0. |By(x, r)| denotes the Lebesgue measure of By(x, ).
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From (1.10) and (1.11), and from the properties of the functions F;'s showed in the Appendix, we obtain some crucial
result on the matric d, and on the measure of the d, -balls. Precisely:

(d1) there exist positive constants c7, ..., ¢y such that
N 1
& y) <Y cflxi—yil (1.12)
i=1
foreveryx = (x1,...,xy)andy = (y1, ..., yn) in RN,

(See Corollary A.3.)
(d2) For every fixed compact subset K € RN there exists d* = dy > 0 such that

d(x,y) =d"|x—yl, Vx,yeK (1.13)

(See (A.4).)
(d3) There exists a positive constant c; such that

IB(x, 2r)| < cg|B(x,1)| YxeRY, Vr >0, (1.14)
where ¢ = E—f (See (A.1)and (1.11).)
Moreover, from (A.2),
R Q
Q
[B(x, R)| < cqa2 (*) |B(x, )| (1.15)
r
foreveryx € RV and0 < r < R.Q is the number defined in (1.6), the homogeneous dimension of RN with respect to (§;)~o.
1.4. The A, -functional setting

For a function u of class C! we let
N
Vol =) |hidgul’. (1.16)
i=1

Given a bounded open set £2 € RY, for every p €]1, oo[ we denote by
WP (82)

the closure of C(} (§2) with respect to the norm

1
p
lully,p = (f IVAuI"dX) . (1.17)
2

In Section 3 we will directly recognize the continuous embedding

WP (2) < [P (82) (1.18)
forevery p €]1, Q[ and
, pQ
= 1.19
D Q—p ( )

As before, Q is the homogeneous dimension of RN with respect to (8;);.
We would like to stress that the embedding (1.18) also follows from generalized doubling property (1.15) and the
following Poincaré inequality

/ lu—u,|dy < Cr/ |Viuldy Yue C'(By(x, 0r)) (1.20)
Bg(x,1) Bg(x,0r)

where C > 0and # > 1 are suitable constants independent of u, x and r (see [3] and [6, Section 3]) and u, stands for the
average of u on By(x, r), i.e.,

1
ur =
Bd(x7 r) Bg(x,r)

Indeed, nowadays it is well known that (1.15) and (1.20) imply the embedding (1.18); some important references are [7-10].

u(y) dy.
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1.5. Examples of A, operators

Example 1.4. Let us split RN as follows

RV =RV x ... x R™

and denote by x = (xV, ..., x"), x? € RN i=1,...,r, the point of RN. Let A be the classical Laplace operator in RV
Given a multi-index o = (a1, ..., 0—1) o > 1,j=1,...,r — 1, define

Ag = Aay + XV Ay + -+ 4 XD P14, (1.21)
Then A, = A, witha = A0, ..., 20) and A = |x0=D|@i-110 j = 1, ..., r. Here we agree to let [x©|* = 1 and
19 = (1, ..., 1). A group of dilations for which A satisfies (H1) is given by

1 i

S RN — RN, 5V, L xD) = @51k, L ™) (1.22)

withe; = land g = oj_16i_1 + 1,i = 2, ..., r.In particular, if¢; = - - - = a,_; = 1, the operator (1.21) and the dilation

(1.22) becomes, respectively
Awy +IXVPAg + -+ XTVPA,
and

Se(x D, XDy = (D, 22X @tk D).

Example 1.5. Let RV = RN x R™ and let 1 : RM — R be continuous in its domain and of class C' and strictly positive
outside the coordinate axis. Moreover, assume that p(txV) = t*(x1), for a suitable o > 0, and for every x(¥ € RN and
t > 0.Then, ifwe let A = (10, 41®), we have

2
A=A + (l,L (X(]))) Ap. (1.23)
This operator satisfies (H1) with respect to the dilations
8 RV — RN, 5,(x™, x®) = (txV, t41x@).
The class of the operators in (1.23) obviously contains A, in (1.1), as well as

A, + xPyPP2 A, z=(xy) eR™" xR", teR™.

Note 2. When p(x") = ;x| the operator A;, in (1.23) takes the form

1
Ay + Z|X(1)|2Ax<z).
On the other hand, if the dimension Ny and N, verify the inequality N, < p(N;), where p is the so called Hurwitz-Radon

function, then there exists a composition law o in R¥ making Hy = (RM,o,3,) a group of Heisenberg type (see
[4, Remark 3.6.7]). Then if Ay, denotes the canonical sub-Laplacian on Hy, for every smooth function u : RY — R which

is radially symmetric in the variable x(”, one has
T a2
Ay + Z'X |“Ave | u = Amgyu,
see [4, page 251].
2. Some integral identities for A, : nonexistence results
In this section we prove some integral identities extending to the A, setting the classical Pohozaev identity for semilinear
Poisson equation [11]. Pohozaev identity has been extended by several authors to general elliptic equations and systems,

both in Riemannian and sub-Riemannian context, see, e.g., [ 12-14] and the references therein. To prove our identities we
closely follow the original procedure of Pohozaev, just replacing the vector field P = Zf':] X;0x; in [11, page 1410], by

N
T:=) ey, (2.1)
i=1
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the generator of the group of dilation (8;)>o in (H1) (we say that T generates (4;)>¢ since a function u is 6;-homogeneous of
degree m if and only if Tu = mu).

Throughout this section the A;'s are not supposed to verify assumptions (H3) and (H4) and 2 C RN will be assumed to
be open, bounded, with C!-boundary and such that £ = int(£2). We will denote by A?(£2) the linear space of the function
u € C(£2) such that

2 .
Xju, Xju, j=1,...,N

exist in the weak sense of distributions in 2 and can be continuously extended to £2 (as above, X = Ajaxj).
Our first integral identity is the following one.

Theorem 2.1. Forevery u € A%(2) we have

1
/ T(u)Azudx = / (Vau, v)T(u) ds — f/ [Vsul?(T, v) ds + (9 - 1> / |Vyu|? dx, (2.2)
2 002 2 he 2 2
where T is the vector field (2.1), (-, -) stands for the Euclidean inner product, v is the outward normal to 2, v; = (Aqv1, ..., ANVUN)

and

Vku = (A18X1u, PN )\NaxNU).

Proof. We first prove (2.2) assuming u € C2(£2). An integration by parts gives'

/ T(u)Azudx = / £iXiOy; U UAT v ds — / A Oudy (eixidyu) dx =: I + 1. (2.3)
2 082 2
It is easily seen that
I 2/ T(u)(Vyu,, vy) ds, (24)
082
while I, can be handled as follows
L=-— / A7 Oy usije; Oy u dx — / A Oy Ui Ot dX = Lo 1 + I3 (2.5)
2 2
Obviously

Li=— / AF (Bgu) e dx.
2
Moreover, an integration by parts in I ; gives

Ly =— / A7 OOy ds + / Oy, (A7 Oy 1eix;) dx
a2 £2

_/ |Vaul?(T, v) ds + / |Vsu|?(divT) dx + / )\faxjus,-x,-ax,.xju dx + / (3xju)2 TA].Z dx
b¥e) 2 2 2

(keeping in mind that divT = Q and that A; is §;-homogeneous

of degree ; — 1, hence TA? = 2A;ITA; = 2(g; — A7)

—/ |Voul*(T, v) ds+Q/ |V;ul? dx—12,2+2/(e,-—1)(xjaxju)2 dx.
a2 2 2

Therefore,

1 2 Q 2
12,2 = —= |V)LU| <T, U) ds+(=—1 |V)LU| dx — 12’1
2 Jha 2 2

hence, by (2.5),

1
L = —f/ |Vul*(T, v) ds + <9 - 1) f |V,.ul® dx.
2 Jag 2 2

1 Repeated indices i and j are understood to be summed from 1 to N.
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This identity, together with (2.3) and (2.4), implies (2.2) under the assumption u € C?(£2). To complete the proof when
u € A%(2) we argue as in [13, page 77]. Let (£2;)ren be a sequence of open set with smooth boundary such that

21 C 241 forevery k € Nand Uey 2, = 2.

On every §2, we can approximate the function u with a sequence of C2(£2;) functions u; for each of which identity (2.3)
holds on £2y. Letting j to oo we obtain (2.3) for u in £2;. Finally, as k — oo we get our identity foru € A%(22). O
From the previous theorem we easily obtain an integral identity for A%(£2)-solutions of the equation

Ayu+fu) =0, (2.6)
where f : R — R is a continuous function. In what follows we let F(u) := fouf(t)dt and we agree to call A%(£2)-solution
of (2.6) every function u € A%($2) satisfying
; (Xfu) 0 +fwx) =0 Vxe Q.
=1

J

Theorem 2.2. Let u € A?(£2) be a solution of (2.6). Then

/ <F(u) + (l - 1) uf(u)) dx = 1 ((T V) <F(u) — 1|v u|2>
Ie) Q 2 T Q Jie ' 2

+ (V,u,v) (T(u) + (% — 1) u)) ds. (2.7)
Moreover, if u = 0on ds2

F L, = ou’)” 2T vy d 2.8
/Q( (u>+(a—5)uf<u>) x—ﬁfm<5> v (T, v) ds. (2.8)

Proof. Since Q = divT, we have
Q/ F(u) dx = / div(T)F (u) dx.
Q 2
On the other hand, if u € C%(£2), an integration by parts gives
/ div(T)F (u) dx = / (T, v)F(u) ds — / T(w)f (u) dx
2 GXe) 2
so that
Q/ F(u) dx = / (T, v)F(u) ds + / T(u)A;udx. (2.9)
4R a2 2
On the other hand,

/ uf (u) dx = —f (A707u) u dx
2 2

—/ A7 By uviu ds—i—/ A7 (Byu)? dx,
02 2

that is
/uf(u) dx:—/ u(Vu, vk)ds—l—/ |V,ul? dx. (2.10)
2 082 2

Identities (2.9) and (2.10) can be extended to functions u € A%(£2) by using an approximation argument as in the proof
of the previous theorem. Using (2.9) and (2.10) in (2.2) one gets (2.7). When u = 0 on 952 (2.7) becomes

1 1 1 1

/ <F(u) + (— — 7) uf(u)) dx = — (—f(T, V)| Vaul? + Tw)(Vsu, vﬂ) ds. (2.11)
Q 2 Q Jie 2

We now remark thatu e C'(£2\ IT), since Ajdyu € C'(£2) and A; is C! and different from zero in R" \ /7. Thus, the condition

u = 0 on d42 implies

au
8Xju = <8—> vj atany pointof 082 \ I7
v
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foreveryj € {1, ..., N}. As a consequence, on 32 \ IT we have

1 1
—5<T, WVaul? + TW)(Viu, v) = —Esixiv,»x,?(axju)z + £Xi O UAT Oy U

1 au\? au\?
—Esix,-vl-)ujz (5) vjz + &ix; (5) v,-kfvf
Lo (24)

—(T, v)|v — .
2 * v

Replacing this identity in (2.11) we obtain (2.8). O

Our nonexistence results follow from the previous theorem. To proceed, we need the definition of §;-starshaped domain.

Definition 2.3. We say that 2 is §,-starshaped with respect to the origin if 0 € §2 and

(T,v) >0 atevery point of 2.

Theorem 2.4. Let 2 be §;-starshaped with respect to the origin. Then the problem
Mu+fw) =0 inQ,ule=0 (2.12)
has no solution u € A?(2), u # 0, if

1 1
F(s) + (a - 5) sf(s) <0 (2.13)

forevery s # 0. If (2.13) holds for every s > 0 then (2.12) has no nonnegative solution u s 0.

Proof. Letu € A2(£2) be a solution to (2.12). Since (T, v) > 0 at any point of 32 identity (2.8) implies

/Q (F(u) + (é — ;) uf(u)) dx > 0.

Using condition (2.13) in this inequality, one gets u = 0 a.e. in £2, completing the proof of the theorem. O

Condition (2.13) can be weakened to obtain a nonexistence result of nonnegative nontrivial solutions to (2.12). For this we
need a unique continuation theorem that seems to have an interest in its own right.

. Q
Proposition 2.5. Let u € WQ‘Z(Q) be a weak nonnegative solution of Au + cu = 0in £2, withc € Lléc(.Q).2 If there exists
Xo € §2 such that

/ u(x) dx = 0(r*) asr — 0, foreveryk € N,
Ba(xo,r)

then u = 0 in the connected component of §2 containing X,.

Proof. The proof of this proposition follows exactly the same lines as the one of Corollary A.1 in [13]. We only stress that
Jerison’s Poincaré inequality in [15], used in page 96 in [13], has to be replaced by the one related to our vector fields
A10x,, ..., ANOxy. We omit any further details. O

We are ready to state our second nonexistence theorem.

Theorem 2.6. Let 2 be connected and 8,-starshaped with respect to the origin. Then problem (2.12) has no nonnegative solution
u e A*(2),u # 0, if f is locally Lipschitz continuous, f (0) = 0 and

F(s) + (% — %) sf(s) <0 foreverys > 0. (2.14)

2 We refer to the next section for the definition of weak solutions.
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Proof. Suppose u € A%(£2), u > 0, is a solution of (2.12). Then (2.14) and identity (2.8) imply

du\>? 5
— ) |vn|(T,v)ds <O.
0 av

The assumption (T, v) > 0 on 952 implies
au\? .
3 (T,v) =0 atany point of 952.
v

On the other hand, since £2 is bounded, it must be (T, v) > 0on V N (32 \ IT), for a suitable bounded and connected open
setV C RN\ IT. Thus

_Bu

Du = =0 inVN(@©@N\I).

av

Setting u = 0in (RV \ £2) NV we then obtain a weak solution to
Au4+cu=0 inV,
where c = f(T”) where u # 0 and ¢ = 0 otherwise. Thus, since f is locally Lipschitz, c € L*°(V) and, by Proposition2.5u =0

in V. A connectedness argument yieldsu = 0in 2. O

3. Existence and regularity results

In this section we aim to prove the existence of weak solutions to problem (1.4) under natural assumptions on the
nonlinearity f. The second aim of the section is to provide some regularity results for the weak solutions.
Our existence result is the following one.

Theorem 3.1. Let 2 C R" be a bounded open set and let f : 2 x R — R be a continuous function satisfying
Q+2
fx,uy=o0) asu—> 0 and f(x,u)=o0 (|u|Q%2> as |u| — oo (3.1)
uniformly with respect to x € 2. Let

F(x,u) := /uf(x,s) ds
0

and assume the existence of two constants ;. > 2 and ity > 0 such that

uf (x,u) > uF(x,u) for|u] >ug and F(x,u) >0 foru > ug. (3.2)
Then, there exists a nonnegative weak solution u € W;*Z(Q), u # 0 to the equation

Au—nu+f(x,u) =0 (3.3)
foreveryn > 0.

In (3.1) the number Q stands for the homogeneous dimension of RN with respect to (8;)¢~0, see (1.6). By a weak solution to
(3.3) we mean a critical point of the functional

J = / (IVaul? + nu? — F(x,w) dx, ue W, (). (34)
k7}

The proof of Theorem 3.1 is a standard application of Ambrosetti-Rabinowitz’s Mountain Pass theorem and of the following
compact embedding result.

Proposition 3.2. Let 2 € R" be a bounded open set. Then the embedding

W)2(2) = IP(2)

is compact forevery p € [1, 2], 2} = %.

This proposition is a consequence of the Poincaré inequality (1.20), the doubling property of the d; -balls and a general result
from analysis in metric spaces, see, e.g., the survey paper [ 16]. However, it also easily follows from next embedding theorem,
which is of interest in its own right. Indeed, it can be seen as a regularity result, in terms of classical Sobolev spaces, for the
functions u € W,"”(2).
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Theorem 3.3. Let 2 be a bounded open subset of RN. Then, for every p €]1, oo[, we have

WP(2) > Wera (). (35)

11
We denote by W& & P (£2) the closure of C(} (£2) with respect to the norm

N
lulls = lully,
=1 !

where

lull s, = / P dx ife; =1
J R

while
1 ) — p
u(x + se u(x
flull. :=/ / e + ’)p CF ) as ife; > 1,
B 0 RN S]+?j
where, as usual, ¢, = (0,...,1,...,0). From an embedding theorem for classical anisotropic Sobolev-type spaces of
j
fractional orders, we know that
.11
Wi (@) s 19(Q) (3.6)
if
11 1 pQ
l<p<éert+e+---+ev=0Q, -——-=— lie,q=——:=pj,
p g Q Q-p ™

and the embedding is compact if
q<p;.
see, e.g., [17]. As a consequence, by Theorem 3.3, Proposition 3.2 immediately follows.

Proof of Theorem 3.3. To prove embedding (3.5) we use a family of inequalities proved in [2, Theorem 2.6]. To begin with,
we remark that embedding (3.5) is equivalent to the inequality

N
uf, < [ duran j=1.2...p (37)
1 i=1

foreveryu € (g°(£2) and C = C(£2,A,p) > 0.If g = 1 inequality (3.7) is trivial because, in this case, ; = 1 (see
Remark 1.1) so that

lull” 2/ | A0 ul” dx.
1o J,

i
Then, we can only consider the case ¢; > 1 and use inequality (2.6.b), page 1242, in [2]. From that inequality we obtain, for
a suitable positive constant C = C($2, A, p),

! u(x + se;) — u(x)|P
/ (/ utx + s¢) — U@l dx) ds < Cllull;.p, YuecC (), (3.8)
o \JrN s(gj(s))P
where ¢;(s) = ¢;(0, s) and ¢; is defined in (1.9).3 Thus, to complete the proof of the theorem, it is enough to show that
1
@i(s) = ¢s% (3.9)
for a suitable constant ¢; > 0, and for every j = 1, ..., N. Indeed, by Proposition A.2 in the Appendix we have

F@O,r)y=qr%, j=1,...,N

3 We would like to explicitly remark that the assumption (2.6.a) of Theorem 2.6 in [2] is satisfied. Indeed, due to the §; -homogeneity of 1;, we have

(Sj — ]))‘j = T()»J) < (1111&13’(\’ 81') (V}\]‘,X).
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for a suitable constant a; > 0. Therefore

1\&
%G%=<g§ , jef{1,....N}

g
and the proof is complete. O

Proof of Theorem 3.1. Using assumption (3.1) and Proposition 3.2 we can show that the functional | satisfies the
Palais-Smale condition. With an equally standard argument we can show, using (3.1) and (3.2) that J satisfies all the other
assumptions of the Mountain Pass Theorem, see e.g.[18,19]. We explicitly remark that the argument based on the Maximum
Principle for Elliptic Equation used in[18,19] in order to get nonnegative solutions, also works in the present context. Indeed,
A, satisfies a weak and a strong maximum principle, thanks to Theorem 3.1 and the nonhomogeneous Harnack inequality
of Theorem 5.5in [20]. O

We close this section by stating a regularity theorem which can be proved verbatim as Theorem 4.1 in [13].
Theorem 3.4. Let 2 C RN be a bounded open set and let u € VOV;’Z(Q) be a weak solution to (3.3), with f satisfying
assumption (3.1). Then u € I[P (£2) for every p € [2, ool.

This theorem, together with the nonhomogeneous Harnack inequality of Theorem 5.5 in [20], leads to the following corollary.

Corollary 3.5. Let the assumptions of Theorem 3.4 be satisfied and let u € W;*Z(.Q) be a weak solution to (3.3). Then u is locally

Hélder continuous in £2. Precisely, u € Ly, (§2) and there exists 6 €]0, 1[ and C > 0 such that

lux) —u@)| < C sup |ul (d(x,y))’

Bg(xo,2r)

for every A-ball B4(xq, 2r) C £2 and for every x, y € Bq(Xo, ). The constants 6 and C are independent of u and of By(xo, 21).
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Appendix

In this Appendix we prove some propositions regarding the functions F;’s and ¢;’s from which important properties of d;,
and of |B4(x, r)| easily follow. First of all, we prove the following.

Proposition A.1. Forevery x € Rﬁ and for every r > 0 we have
Fi(x,2r) < 2%Fi(x,r), i=1,...,N. (A.1)

Proof. We argue by induction on the index i € {1, ..., N}. Inequality (A.1) is trivial if i = 1. Assume it holds for j < i and
prove it holds for j = i + 1. Indeed, since A;1 is increasing with respect to its argument
Fip1(x,2r) = 2riip1(xq + F1(x, 2r), ..., x; + Fi(x, 2r))
2rhip1(Xq +2r, ..., x + 2°5Fi(x, 1))
2rhip12(xq + 1), ..., 2% (x; + Fi(x,1)))
= (by the §;-homogeneity of A;1)2°+ 1A 1 (X1 + F1(X, 1), ..., % + Fi(x, 1))
= 25%1F 1 (x, 1).

=
=

This completes the proof. O

From (A.1), with a standard argument, we get

Fix,R) < 24 (':) o) (A2)

forO <r <R
The functions F;’s take an explicit form at x = 0. Indeed, the following proposition holds.

Proposition A.2. For every r > 0 we have
F0O,r)=arf, i=1,...,N

for suitable constant a; > 0.
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Proof. We know that F;(0, ) = 7, Fj(0, t) = tA;(F1(0, 7), ..., F_1(0, 7)) for 2 < j < N. Using the §;-homogeneity of the
Aj's, we obtain
F(0,7) = tA2(F1(0, 7)) = tA2(7) = t%205(1) =: ayT*2.
Moreover
F3(0, t) = tA3(F1(0, 7), F5(0, 7)) = tA3(1, a7°%) = %3 A3(1, a3) =: a3t*3.
An easy iteration argument shows that
F;(0, t) = a;j7® foreveryje {1,...,N}
with the g;’s given by the recurrence formula:

a =1, aj = Aj(ay, ..., aq-1), je{2,...,N}. O
From the previous proposition and inequalities (1.10) we immediately get the following corollary.

Corollary A.3. Forevery x,y € RN we have

N 1
1\& |
dk(x,y)EZcﬂx,-—yiL ci*:c2<—> ,i=1,...,N
i=1

aj

foreveryx = (x1,...,xy)andy = (y1, ..., yn) € RV,

To obtain a local lower estimate of d; we need one more proposition.

Proposition A.4. For every compact set K € RN there exists a constant d; = d;(K) > 0 such that

Fi(x,r) <dir VxeK,Vrel[0,1],i=1,...,N. (A.3)

Proof. The inequality (A.3) is obvious if i = 1. Suppose (A.3) is satisfied for i < j. Then, for0 < r < 1,

Fip1(x, 1) = rhjpi (i + Fi(x, 1), ..., % + Fi(x, 7))
< A (xq +dir, o X+ diT)
TSUp)»j+1(X1 + d], e Xj + dj) = dj+1r.

xeK

IA

This completes the proof. O

From (A.3) we get F; (x, d%) < rforr < d;. Hence dil < ¢i(x,r) for0 < r < d;. As a consequence, by (1.10),

3 X 5 [xi — yil
dxy) = a Yy ¢l xi—yih) =1 ) —
i=1 i=1 !

Therefore, for a suitable constant d*, we have

d(x,y) >d*x—yl, VxeK,VyeR":|x—y| <d" (A4)
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