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a b s t r a c t

We prove some existence, nonexistence and regularity results for the boundary value
problem

∆λu + f (u) = 0 in Ω, u |∂Ω = 0,

where Ω is a bounded subset of R
N , N ≥ 2, and ∆λ is a ∆λ-Laplacian, i.e. a ‘‘degenerate’’

elliptic operator of the kind

∆λ :=
N�

i=1

∂xi (λ
2
i (x)∂xi ), λ = (λ1, . . . , λN ).

Together with some assumptions made in Franchi and Lanconelli (1984) [1], the family λ
is supposed to verify a condition making ∆λ homogeneous of degree two with respect to a
group of dilations in R

N .
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Homogeneous ∆λ-Laplacians. The semilinear Dirichlet problem

In recent years a certain number of papers have beendevoted to ‘‘degenerate’’ elliptic operatorswhose simplest prototype
in R

N is the following one.

∆α := ∆(1) + |x(1)|2α∆(2), α > 0. (1.1)

Here x = (x(1), x(2)), x(i) ∈ R
Ni , i = 1, 2 denotes the point of R

N ,N = N1 + N2, and ∆(i) stands for the classical Laplacian in
R

Ni .
Nowadays,∆α in (1.1) is usually quoted in the literature as Grushin’s operator. However, if α is a nonnegative integer,∆α

falls into the general class of Hörmander’s operators, sum of squares of vector fields generating a Lie algebra of maximum
rank at any point. If α is not an integer, then ∆α is contained in a family of operators of the kind

∆λ :=
N�

i=1

∂xi(λ
2
i ∂xi), ∂xi = ∂

∂xi
(1.2)

first studied in [1–3] with a geometrical technique taking into account the property of the control (or Carnot-Carathéodory)
metric d := dλ generated by the vector fields

Xi := λi∂xi , i = 1, . . . ,N. (1.3)
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The aim of this paper is to establish existence, nonexistence and regularity results for the problem
�
∆λu + f (u) = 0 in Ω,
u|∂Ω = 0 (1.4)

whereΩ is a bounded open subset of R
N and∆λ is the operator in (1.2) related to a N-tuple λ = (λ1, . . . , λN) of continuous

functions inR
N verifying, togetherwith the assumption in [1] (whichwill be recalled, for reader convenience, in Section 1.2),

the following one.
(H1) There exists a group of dilations (δt)t>0,

δt : R
N −→ R, δt(x) = δt(x1, . . . , xN) = (tε1x1, . . . , tεN xN)

with 1 = ε1 ≤ ε2 ≤ · · · ≤ εN , such that λi is δt homogeneous of degree εi − 1, i.e.,

λi(δt(x)) = tεi−1λi(x), ∀ x ∈ R
N , ∀ t > 0, i = 1, . . . ,N. (1.5)

The number
Q := ε1 + ε2 + · · · + εN (1.6)

is the homogeneous dimension of R
N with respect to (δλ)t>0. It will play a crucial rôle both in the geometry and the functional

setting naturally associated to ∆λ. We explicitly remark that (1.5) is equivalent to the δt-homogeneity of degree one of the
vector field Xi, that is, to the property

Xi(u(δt(x))) = t(Xu)(δt(x)), ∀ x ∈ R
N , ∀ t > 0 (1.7)

and for every u ∈ C∞(RN).
Thus, (H1) implies that ∆λ is δt-homogeneous of degree two. When the family λ satisfies all the hypotheses mentioned

above, we call ∆λ-Laplacian the operator in (1.2).

1.2. Hypotheses on λ = (λ1, . . . , λN)

The function λi’s are continuous in R
N , different from zero and of class C1 in R

N \ Π where

Π =
�

(x1, . . . , xN) ∈ R
N :

N�

i=1

xi = 0

�

.

Moreover, together with (H1), we assume the following properties.
(H2) λ1 = 1, λi(x) = λi(x1, . . . , xi−1), i = 2, . . . ,N .
(H3) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xkλi(x) ≤ ρλi(x) ∀ k ∈ {1, . . . , i − 1}, ∀ i = 2, . . . ,N

and for every x ∈ R
N
+ := {(x1, . . . , xN) ∈ R

N : xi ≥ 0 ∀ i = 1, . . . ,N}.
(H4) For every x ∈ R

N , λi(x) = λi(x∗) where

x∗ = (|x1|, . . . , |xN |) if x = (x1, . . . , xN).

Some remarks are in order.

Remark 1.1. If εi = 1 then λi(x) = λi(0) > 0 for every x ∈ R
N . Indeed, if εi = 1 then λi is δt-homogeneous of degree zero

and its continuity implies

λi(x) = λi(δt(x)) = lim
t�0

λi(δt(x)) = λi(0).

Moreover, λi(0) has to be strictly positive since λi > 0 in R
N
+ \ Π . We want to stress that, vice versa, if λi(0) > 0 from (1.5)

we get εi = 1 and λi(x) = λi(0) for every x ∈ R
N .

Note 1. Throughout the paper, without loss of generality, we assume λi ≡ 1 if εi = 1.

Remark 1.2. By condition (H2) the operator ∆λ can be written as follows

∆λ =
N�

i=1

λ2
i ∂

2
xi =

N�

i=1

X2
i .

Remark 1.3. If theλi’s are smooth, then (H1) and (H2) imply thehypoellipticityof∆λ, i.e. the smoothness of the distributional
solutions to ∆λu = f when f is smooth.
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Indeed, since λi is smooth, δt-homogeneous and everywhere different from zero in R
N \Π, λi is a nonvanishing polynomial

function (see, e.g., [4, Proposition 1.3.4]). Then, for every fixed x ∈ R
N there exists a multi-index α(i) = (α

(i)
1 , . . . ,α

(i)
i−1) such

that
Dα(i)

λi(x) �= 0.
Using this property it is easy to recognize that

Lie {X1, . . . , XN} (x) ⊇
�
∂x1 , . . . , ∂xN

�
.

Therefore
rank Lie {X1, . . . , XN} = N, ∀ x ∈ R

N ,

and, by the Hörmander Theorem in [5] and Remark 1.2, ∆λ is hypoelliptic.
On the other hand, apart from the obvious case in which every λi is constant, ∆λ is not elliptic at every point of Π (see

Remark 1.1). Thus, if the λi’s are not constant
dim

�
span

�
λi(0)∂xi : i = 1, . . . ,N

��
< N = dim

�
span

�
λi(x)∂xi : i = 1, . . . ,N

��
∀ x �∈ Π .

As a consequence: there is no composition law ◦ in R
N making ∆λ left translation invariant (see [4, Proposition 1.2.13]). So

that, if the λi’s are not constant, there is no Lie group G in R
N making ∆λ a sub-Laplacian on G.

1.3. The ∆λ-metric space

An absolutely continuous path γ : [0, T ] −→ R
N is called λ-subunit if there exist measurable functions c1, . . . , cN :

[0, T ] −→ R such that, almost everywhere in [0, T ] one has

γ̇ (t) =
N�

i=1

ci(t)Xi(γ (t)),
N�

i=1

c2i (t) ≤ 1.

Hereafter we agree to identify the vector fields

Xi(x) = λi(x)∂xi with the function λi(x)ei, ei =
�
0, . . . , 1

i
, . . . , 0

�
.

Assumption (H2) and the positivity of the λi’s in R
N \ Π imply the λ-connectivity of R

N . Precisely, for every x, y ∈ R
N there

exists a λ-subunit path γ : [0, T ] −→ R
N such that γ (0) = x and γ (T ) = y. We denote by Λ(x, y) the family of the

λ-subunit paths connecting x and y. Finally, if the subunit path γ is defined in the interval [0, T ], we let l(γ ) := T . Then dλ,
what we call the λ-distance, is defined as follows: if x, y ∈ R

N ,
dλ(x, y) := inf{l(γ ) : γ ∈ Λ(x, y)}.

It is quite trivial to verify that (RN , dλ) is a metric space. Sometime, in what follows, we will write d instead of dλ. The d-ball
of center x ∈ R

N and radius r > 0 will be denoted by Bd(x, r). Hence
Bd(x, r) := {y ∈ R

N | d(x, y) < r}.
A precise estimate of the dλ-distance, and of the Lebesgue measure of the dλ-balls, come from (H1)–(H4). Define a N-tuple
of functions F1, . . . , FN on R

N
+ × [0, ∞[ with the following recurrence law

�
F1(x, τ ) = τ
Fi(x, τ ) = τλi(x1 + F1(x, τ ), . . . , xi−1 + Fi−1(x, τ )), i = 2, . . . ,N.

(1.8)

Since λi is monotone increasing with respect to xj ∈ [0, ∞[, j = 1, . . . , i − 1, and strictly positive in R
N
+ \ Π the function

τ �→ Fi(x, τ ) is strictly increasing in [0, ∞[, for every fixed x ∈ R
N
+. We let

φi(x, ·) = (Fi(x, ·))−1, i = 1, 2, . . . ,N. (1.9)
Then, by Theorems 2.6 and 2.7 in [1] we have the following. There exist two strictly positive constants c1 and c2 such that

c1 ≤ d(x, y)
N�
i=1

φi(x∗, |xi − yi|)
≤ c2 (1.10)

and

c1 ≤ |Bd(x, r)|
N�
i=1

Fi(x∗, r)
≤ c2 (1.11)

for every x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ R
N and for every r > 0. |Bd(x, r)| denotes the Lebesgue measure of Bd(x, r).
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From (1.10) and (1.11), and from the properties of the functions Fi’s showed in the Appendix, we obtain some crucial
result on the matric dλ and on the measure of the dλ-balls. Precisely:

(d1) there exist positive constants c∗
1 , . . . , c

∗
N such that

dλ(x, y) ≤
N�

i=1

c∗
i |xi − yi|

1
εi (1.12)

for every x = (x1, . . . , xN) and y = (y1, . . . , yN) in R
N .

(See Corollary A.3.)
(d2) For every fixed compact subset K ⊆ R

N there exists d∗ = d∗
K > 0 such that

dλ(x, y) ≥ d∗|x − y|, ∀ x, y ∈ K (1.13)

(See (A.4).)
(d3) There exists a positive constant cd such that

|B(x, 2r)| ≤ cd|B(x, r)| ∀ x ∈ R
N , ∀ r > 0, (1.14)

where cd = c2
c1
. (See (A.1) and (1.11).)

Moreover, from (A.2),

|B(x, R)| ≤ cd2Q
�
R
r

�Q

|B(x, r)| (1.15)

for every x ∈ R
N and 0 < r < R.Q is the number defined in (1.6), the homogeneous dimension of R

N with respect to (δt)t>0.

1.4. The ∆λ-functional setting

For a function u of class C1 we let

|∇λu|2 :=
N�

i=1

|λi∂xiu|2. (1.16)

Given a bounded open set Ω ⊆ R
N , for every p ∈]1, ∞[ we denote by

W̊ 1,p
λ (Ω)

the closure of C1
0 (Ω) with respect to the norm

�u�1,p :=
��

Ω

|∇λu|p dx
� 1

p
. (1.17)

In Section 3 we will directly recognize the continuous embedding

W̊ 1,p
λ (Ω) �→ Lp

∗
λ(Ω) (1.18)

for every p ∈]1,Q [ and

p∗
λ := pQ

Q − p
. (1.19)

As before, Q is the homogeneous dimension of R
N with respect to (δt)t>0.

We would like to stress that the embedding (1.18) also follows from generalized doubling property (1.15) and the
following Poincaré inequality

�

Bd(x,r)
|u − ur | dy ≤ Cr

�

Bd(x,θr)
|∇λu| dy ∀ u ∈ C1(Bd(x, θr)) (1.20)

where C > 0 and θ > 1 are suitable constants independent of u, x and r (see [3] and [6, Section 3]) and ur stands for the
average of u on Bd(x, r), i.e.,

ur = 1
Bd(x, r)

�

Bd(x,r)
u(y) dy.

Indeed, nowadays it is well known that (1.15) and (1.20) imply the embedding (1.18); some important references are [7–10].
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1.5. Examples of ∆λ operators

Example 1.4. Let us split R
N as follows

R
N = R

N1 × · · · × R
Nr

and denote by x = (x(1), . . . , x(r)), x(i) ∈ R
Ni , i = 1, . . . , r, the point of R

N . Let ∆(i) be the classical Laplace operator in R
Ni .

Given a multi-index α = (α1, . . . ,αr−1) αj ≥ 1, j = 1, . . . , r − 1, define

∆α := ∆(1) + |x(1)|2α1∆(2) + · · · + |x(r−1)|2αr−1∆(r). (1.21)

Then ∆α = ∆λ with λ = (λ(1), . . . , λ(r)) and λ(i) = |x(i−1)|αi−11(i), i = 1, . . . , r . Here we agree to let |x(0)|α0 = 1 and
1(i) = (1

1
, . . . , 1

i
). A group of dilations for which λ satisfies (H1) is given by

δt : R
N −→ R

N , δt(x(1), . . . , x(r)) = (tε1x(1), . . . , tεr x(r)) (1.22)

with ε1 = 1 and εi = αi−1εi−1 + 1, i = 2, . . . , r . In particular, if α1 = · · · = αr−1 = 1, the operator (1.21) and the dilation
(1.22) becomes, respectively

∆(1) + |x(1)|2∆(2) + · · · + |x(r−1)|2∆(r)

and

δt(x(1), . . . , x(r)) = (tx(1), t2x(2), . . . , tr x(r)).

Example 1.5. Let R
N = R

N1 × R
N2 and let µ : R

N1 → R be continuous in its domain and of class C1 and strictly positive
outside the coordinate axis. Moreover, assume that µ(tx(1)) = tα(x(1)), for a suitable α > 0, and for every x(1) ∈ R

N1 and
t > 0. Then, if we let λ = (1(1), µ1(2)), we have

∆λ = ∆(1) +
�
µ

�
x(1)��2 ∆(2). (1.23)

This operator satisfies (H1) with respect to the dilations

δt : R
N −→ R

N , δt(x(1), x(2)) = (tx(1), tα+1x(2)).

The class of the operators in (1.23) obviously contains ∆α in (1.1), as well as

∆z + |x|2α1 |y|2α2∆t , z = (x, y) ∈ R
m × R

n, t ∈ R
N2 .

Note 2. When µ(x(1)) = 1
4 |x(1)| the operator ∆λ in (1.23) takes the form

∆x(1) + 1
4
|x(1)|2∆x(2) .

On the other hand, if the dimension N1 and N2 verify the inequality N2 < ρ(N1), where ρ is the so called Hurwitz–Radon
function, then there exists a composition law ◦ in R

N making HN := (RN , ◦, δλ) a group of Heisenberg type (see
[4, Remark 3.6.7]). Then if ∆HN denotes the canonical sub-Laplacian on HN , for every smooth function u : R

N −→ R which
is radially symmetric in the variable x(1), one has

�
∆x(1) + 1

4
|x(1)|2∆x(2)

�
u = ∆HN u,

see [4, page 251].

2. Some integral identities for ∆λ: nonexistence results

In this sectionwe prove some integral identities extending to the∆λ setting the classical Pohozaev identity for semilinear
Poisson equation [11]. Pohozaev identity has been extended by several authors to general elliptic equations and systems,
both in Riemannian and sub-Riemannian context, see, e.g., [12–14] and the references therein. To prove our identities we
closely follow the original procedure of Pohozaev, just replacing the vector field P = �N

i=1 xi∂xi in [11, page 1410], by

T :=
N�

i=1

εixi∂xi , (2.1)
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the generator of the group of dilation (δt)t≥0 in (H1) (we say that T generates (δt)t≥0 since a function u is δt-homogeneous of
degreem if and only if Tu = mu).

Throughout this section the λj’s are not supposed to verify assumptions (H3) and (H4) and Ω ⊆ R
N will be assumed to

be open, bounded, with C1-boundary and such that Ω = int(Ω). We will denote by Λ2(Ω) the linear space of the function
u ∈ C(Ω) such that

Xju, X2
j u, j = 1, . . . ,N

exist in the weak sense of distributions in Ω and can be continuously extended to Ω (as above, Xj := λj∂xj ).
Our first integral identity is the following one.

Theorem 2.1. For every u ∈ Λ2(Ω) we have
�

Ω

T (u)∆λu dx =
�

∂Ω

�∇λu, νλ�T (u) ds − 1
2

�

∂Ω

|∇λu|2�T , ν� ds +
�
Q
2

− 1
� �

Ω

|∇λu|2 dx, (2.2)

where T is the vector field (2.1), �·, ·� stands for the Euclidean inner product, ν is the outward normal toΩ , νλ = (λ1ν1, . . . , λNνN)
and

∇λu = (λ1∂x1u, . . . , λN∂xN u).

Proof. We first prove (2.2) assuming u ∈ C2(Ω). An integration by parts gives1
�

Ω

T (u)∆λu dx =
�

∂Ω

εixi∂xiu∂xjuλ
2
j νj ds −

�

Ω

λ2
j ∂xju∂xj(εixi∂xiu) dx =: I1 + I2. (2.3)

It is easily seen that

I1 =
�

∂Ω

T (u)�∇λuλ, νλ� ds, (2.4)

while I2 can be handled as follows

I2 = −
�

Ω

λ2
j ∂xjuδijεi∂xiu dx −

�

Ω

λ2
j ∂xjuεixi∂xjxiu dx =: I2,1 + I2,2. (2.5)

Obviously

I2,1 = −
�

Ω

λ2
j (∂xju)

2εj dx.

Moreover, an integration by parts in I2,2 gives

I2,2 = −
�

∂Ω

λ2
j ∂xjuεjxi∂xjuνi ds +

�

Ω

∂xju∂xi(λ
2
j ∂xjuεixi) dx

= −
�

∂Ω

|∇λu|2�T , ν� ds +
�

Ω

|∇λu|2(div T ) dx +
�

Ω

λ2
j ∂xjuεixi∂xixju dx +

�

Ω

�
∂xju

�2 Tλ2
j dx

= (keeping in mind that div T = Q and that λj is δt-homogeneous

of degree εj − 1, hence Tλ2
j = 2λjΠλj = 2(εj − 1)λ2

j )

−
�

∂Ω

|∇λu|2�T , ν� ds + Q
�

Ω

|∇λu|2 dx − I2,2 + 2
�

Ω

(εj − 1)(λj∂xju)
2 dx.

Therefore,

I2,2 = −1
2

�

∂Ω

|∇λu|2�T , ν� ds +
�
Q
2

− 1
� �

Ω

|∇λu|2 dx − I2,1

hence, by (2.5),

I2 = −1
2

�

∂Ω

|∇λu|2�T , ν� ds +
�
Q
2

− 1
� �

Ω

|∇λu|2 dx.

1 Repeated indices i and j are understood to be summed from 1 to N .
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This identity, together with (2.3) and (2.4), implies (2.2) under the assumption u ∈ C2(Ω). To complete the proof when
u ∈ Λ2(Ω) we argue as in [13, page 77]. Let (Ωk)k∈N be a sequence of open set with smooth boundary such that

Ωk ⊆ Ωk+1 for every k ∈ N and ∪k∈N Ωk = Ω.

On every Ωk we can approximate the function u with a sequence of C2(Ωk) functions uj for each of which identity (2.3)
holds on Ωk. Letting j to ∞ we obtain (2.3) for u in Ωk. Finally, as k → ∞ we get our identity for u ∈ Λ2(Ω). �
From the previous theorem we easily obtain an integral identity for Λ2(Ω)-solutions of the equation

∆λu + f (u) = 0, (2.6)
where f : R −→ R is a continuous function. In what follows we let F(u) :=

� u
0 f (t)dt and we agree to call Λ2(Ω)-solution

of (2.6) every function u ∈ Λ2(Ω) satisfying
N�

j=1

�
X2
j u

�
(x) + f (u)(x) = 0 ∀ x ∈ Ω.

Theorem 2.2. Let u ∈ Λ2(Ω) be a solution of (2.6). Then
�

Ω

�
F(u) +

�
1
Q

− 1
2

�
uf (u)

�
dx = 1

Q

�

∂Ω

�
�T , ν�

�
F(u) − 1

2
|∇λu|2

�

+ �∇λu, ν�
�
T (u) +

�
Q
2

− 1
�
u
��

ds. (2.7)

Moreover, if u = 0 on ∂Ω

�

Ω

�
F(u) +

�
1
Q

− 1
2

�
uf (u)

�
dx = 1

2Q

�

∂Ω

�
∂u
∂ν

�2

|νλ|2�T , ν� ds. (2.8)

Proof. Since Q = div T , we have

Q
�

Ω

F(u) dx =
�

Ω

div(T )F(u) dx.

On the other hand, if u ∈ C2(Ω), an integration by parts gives
�

Ω

div(T )F(u) dx =
�

∂Ω

�T , ν�F(u) ds −
�

Ω

T (u)f (u) dx

so that

Q
�

∂Ω

F(u) dx =
�

∂Ω

�T , ν�F(u) ds +
�

Ω

T (u)∆λu dx. (2.9)

On the other hand,
�

Ω

uf (u) dx = −
�

Ω

�
λ2
i ∂

2
xiu

�
u dx

= −
�

∂Ω

λ2
i ∂xiuνiu ds +

�

Ω

λ2
i (∂xiu)

2 dx,

that is
�

Ω

uf (u) dx = −
�

∂Ω

u�∇λu, νλ� ds +
�

Ω

|∇λu|2 dx. (2.10)

Identities (2.9) and (2.10) can be extended to functions u ∈ Λ2(Ω) by using an approximation argument as in the proof
of the previous theorem. Using (2.9) and (2.10) in (2.2) one gets (2.7). When u = 0 on ∂Ω (2.7) becomes

� �
F(u) +

�
1
Q

− 1
2

�
uf (u)

�
dx = 1

Q

�

∂Ω

�
−1

2
�T , ν�|∇λu|2 + T (u)�∇λu, νλ�

�
ds. (2.11)

We now remark that u ∈ C1(Ω \Π), since λj∂xju ∈ C1(Ω) and λj is C1 and different from zero in R
N \Π . Thus, the condition

u = 0 on ∂Ω implies

∂xju =
�

∂u
∂ν

�
νj at any point of ∂Ω \ Π
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for every j ∈ {1, . . . ,N}. As a consequence, on ∂Ω \ Π we have

−1
2
�T , ν�|∇λu|2 + T (u)�∇λu, νλ� = −1

2
εixiνiλ

2
i (∂xju)

2 + εixi∂xiuλ
2
j ∂xjuνj

= −1
2
εixiνiλ

2
j

�
∂u
∂ν

�2

ν2
j + εixi

�
∂u
∂ν

�2

νiλ
2
j ν

2
j

= 1
2
�T , ν�|νλ|2

�
∂u
∂ν

�2

.

Replacing this identity in (2.11) we obtain (2.8). �

Our nonexistence results follow from the previous theorem. To proceed, we need the definition of δt-starshaped domain.

Definition 2.3. We say that Ω is δt-starshaped with respect to the origin if 0 ∈ Ω and

�T , ν� ≥ 0 at every point of ∂Ω.

Theorem 2.4. Let Ω be δt -starshaped with respect to the origin. Then the problem

∆λu + f (u) = 0 in Ω, u|∂Ω = 0 (2.12)

has no solution u ∈ Λ2(Ω), u �≡ 0, if

F(s) +
�

1
Q

− 1
2

�
sf (s) < 0 (2.13)

for every s �= 0. If (2.13) holds for every s > 0 then (2.12) has no nonnegative solution u �≡ 0.

Proof. Let u ∈ Λ2(Ω) be a solution to (2.12). Since �T , ν� ≥ 0 at any point of ∂Ω identity (2.8) implies
�

Ω

�
F(u) +

�
1
Q

− 1
2

�
uf (u)

�
dx ≥ 0.

Using condition (2.13) in this inequality, one gets u = 0 a.e. in Ω , completing the proof of the theorem. �

Condition (2.13) can be weakened to obtain a nonexistence result of nonnegative nontrivial solutions to (2.12). For this we
need a unique continuation theorem that seems to have an interest in its own right.

Proposition 2.5. Let u ∈ W̊ 1,2
λ (Ω) be a weak nonnegative solution of ∆λu + cu = 0 in Ω , with c ∈ L

Q
2
loc(Ω).2 If there exists

x0 ∈ Ω such that
�

Bd(x0,r)
u(x) dx = O(rk) as r → 0, for every k ∈ N,

then u ≡ 0 in the connected component of Ω containing x0.

Proof. The proof of this proposition follows exactly the same lines as the one of Corollary A.1 in [13]. We only stress that
Jerison’s Poincaré inequality in [15], used in page 96 in [13], has to be replaced by the one related to our vector fields
λ1∂x1 , . . . , λN∂xN . We omit any further details. �

We are ready to state our second nonexistence theorem.

Theorem 2.6. Let Ω be connected and δt -starshaped with respect to the origin. Then problem (2.12) has no nonnegative solution
u ∈ Λ2(Ω), u �≡ 0, if f is locally Lipschitz continuous, f (0) = 0 and

F(s) +
�

1
Q

− 1
2

�
sf (s) ≤ 0 for every s > 0. (2.14)

2 We refer to the next section for the definition of weak solutions.
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Proof. Suppose u ∈ Λ2(Ω), u ≥ 0, is a solution of (2.12). Then (2.14) and identity (2.8) imply
�

∂Ω

�
∂u
∂ν

�2

|νλ|2�T , ν� ds ≤ 0.

The assumption �T , ν� ≥ 0 on ∂Ω implies
�

∂u
∂ν

�2

�T , ν� = 0 at any point of ∂Ω.

On the other hand, since Ω is bounded, it must be �T , ν� > 0 on V ∩ (∂Ω \ Π), for a suitable bounded and connected open
set V ⊆ R

N \ Π . Thus

Du = ∂u
∂ν

≡ 0 in V ∩ (∂Ω \ Π).

Setting u ≡ 0 in (RN \ Ω) ∩ V we then obtain a weak solution to

∆λu + cu = 0 in V ,

where c = f (u)
u where u �= 0 and c = 0 otherwise. Thus, since f is locally Lipschitz, c ∈ L∞(V ) and, by Proposition 2.5 u ≡ 0

in V . A connectedness argument yields u ≡ 0 in Ω . �

3. Existence and regularity results

In this section we aim to prove the existence of weak solutions to problem (1.4) under natural assumptions on the
nonlinearity f . The second aim of the section is to provide some regularity results for the weak solutions.

Our existence result is the following one.

Theorem 3.1. Let Ω ⊆ R
N be a bounded open set and let f : Ω × R −→ R be a continuous function satisfying

f (x, u) = o(u) as u −→ 0 and f (x, u) = o
�
|u| Q+2

Q−2
�

as |u| −→ ∞ (3.1)

uniformly with respect to x ∈ Ω . Let

F(x, u) :=
� u

0
f (x, s) ds

and assume the existence of two constants µ > 2 and µ0 > 0 such that

uf (x, u) ≥ µF(x, u) for |u| > u0 and F(x, u) > 0 for u > u0. (3.2)

Then, there exists a nonnegative weak solution u ∈ W̊ 1,2
λ (Ω), u �= 0 to the equation

∆λu − ηu + f (x, u) = 0 (3.3)

for every η ≥ 0.

In (3.1) the number Q stands for the homogeneous dimension of R
N with respect to (δt)t>0, see (1.6). By a weak solution to

(3.3) we mean a critical point of the functional

J(u) =
�

Ω

�
|∇λu|2 + ηu2 − F(x, u)

�
dx, u ∈ W̊ 1,2

λ (Ω). (3.4)

The proof of Theorem 3.1 is a standard application of Ambrosetti–Rabinowitz’s Mountain Pass theorem and of the following
compact embedding result.

Proposition 3.2. Let Ω ⊆ R
N be a bounded open set. Then the embedding

W̊ 1,2
λ (Ω) �→ Lp(Ω)

is compact for every p ∈ [1, 2∗
λ[, 2∗

λ = 2Q
Q−2 .

This proposition is a consequence of the Poincaré inequality (1.20), the doubling property of the dλ-balls and a general result
from analysis inmetric spaces, see, e.g., the survey paper [16]. However, it also easily follows fromnext embedding theorem,
which is of interest in its own right. Indeed, it can be seen as a regularity result, in terms of classical Sobolev spaces, for the
functions u ∈ W̊ 1,p

λ (Ω).
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Theorem 3.3. Let Ω be a bounded open subset of R
N . Then, for every p ∈]1, ∞[, we have

W̊ p
λ (Ω) �→ W̊

1
ε1

,..., 1
εN

,p
(Ω). (3.5)

We denote by W̊
1
ε1

,..., 1
εN

,p
(Ω) the closure of C1

0 (Ω) with respect to the norm

�u� 1
ε ,p :=

N�

j=1

�u� 1
εj

,p

where

�u� 1
εj

,p :=
�

RN
|∂xju|p dx if εj = 1

while

�u� 1
εj

,p :=
� 1

0

��

RN

|u(x + sej) − u(x)|p

s
1+ p

εj

dx

�

ds if εj > 1,

where, as usual, ej = (0, . . . , 1
j
, . . . , 0). From an embedding theorem for classical anisotropic Sobolev-type spaces of

fractional orders, we know that

W̊
1
ε1

,..., 1
εN

,p
(Ω) �→ Lq(Ω) (3.6)

if

1 < p < ε1 + ε2 + · · · + εN = Q ,
1
p

− 1
q

= 1
Q

i.e., q = pQ
Q − p

:= p∗
λ,

and the embedding is compact if

q < p∗
λ,

see, e.g., [17]. As a consequence, by Theorem 3.3, Proposition 3.2 immediately follows.

Proof of Theorem 3.3. To prove embedding (3.5) we use a family of inequalities proved in [2, Theorem 2.6]. To begin with,
we remark that embedding (3.5) is equivalent to the inequality

�u�p
1
εj

,p
≤ C

N�

i=1

�

Ω

|λi∂xiu|p dx, j = 1, 2, . . . , p, (3.7)

for every u ∈ C∞
0 (Ω) and C = C(Ω, λ, p) > 0. If εj = 1 inequality (3.7) is trivial because, in this case, λj ≡ 1 (see

Remark 1.1) so that

�u�p
1
εj

,p
=

�

Ω

|λj∂xju|p dx.

Then, we can only consider the case εj > 1 and use inequality (2.6.b), page 1242, in [2]. From that inequality we obtain, for
a suitable positive constant C = C(Ω, λ, p),

� 1

0

��

RN

|u(x + sej) − u(x)|p
s(ϕj(s))p

dx
�

ds ≤ C�u�λ,p, ∀ u ∈ C∞
0 (Ω), (3.8)

where ϕj(s) = φj(0, s) and φj is defined in (1.9).3 Thus, to complete the proof of the theorem, it is enough to show that

ϕj(s) = cjs
1
εj (3.9)

for a suitable constant cj > 0, and for every j = 1, . . . ,N . Indeed, by Proposition A.2 in the Appendix we have

Fj(0, r) = ajrεj , j = 1, . . . ,N

3 We would like to explicitly remark that the assumption (2.6.a) of Theorem 2.6 in [2] is satisfied. Indeed, due to the δλ-homogeneity of λj , we have

(εj − 1)λj = T (λj) ≤
�
max
1≤i≤N

εi

�
�∇λj, x�.
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for a suitable constant ai > 0. Therefore

ϕj(s) =
�

1
aj
s
� 1

εj
, j ∈ {1, . . . ,N}

and the proof is complete. �

Proof of Theorem 3.1. Using assumption (3.1) and Proposition 3.2 we can show that the functional J satisfies the
Palais–Smale condition. With an equally standard argument we can show, using (3.1) and (3.2) that J satisfies all the other
assumptions of theMountain Pass Theorem, see e.g. [18,19].We explicitly remark that the argument based on theMaximum
Principle for Elliptic Equation used in [18,19] in order to get nonnegative solutions, alsoworks in the present context. Indeed,
∆λ satisfies a weak and a strong maximum principle, thanks to Theorem 3.1 and the nonhomogeneous Harnack inequality
of Theorem 5.5 in [20]. �

We close this section by stating a regularity theorem which can be proved verbatim as Theorem 4.1 in [13].

Theorem 3.4. Let Ω ⊆ R
N be a bounded open set and let u ∈ W̊ 1,2

λ (Ω) be a weak solution to (3.3), with f satisfying
assumption (3.1). Then u ∈ Lp(Ω) for every p ∈ [2, ∞[.
This theorem, togetherwith the nonhomogeneousHarnack inequality of Theorem5.5 in [20], leads to the following corollary.

Corollary 3.5. Let the assumptions of Theorem 3.4 be satisfied and let u ∈ W̊ 1,2
λ (Ω) be a weak solution to (3.3). Then u is locally

Hölder continuous in Ω . Precisely, u ∈ L∞
loc(Ω) and there exists θ ∈]0, 1[ and C > 0 such that

|u(x) − u(y)| ≤ C sup
Bd(x0,2r)

|u| (d(x, y))θ

for every λ-ball Bd(x0, 2r) ⊆ Ω and for every x, y ∈ Bd(x0, r). The constants θ and C are independent of u and of Bd(x0, 2r).
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Appendix

In this Appendix we prove some propositions regarding the functions Fi’s and φi’s fromwhich important properties of dλ

and of |Bd(x, r)| easily follow. First of all, we prove the following.

Proposition A.1. For every x ∈ R
N
+ and for every r > 0 we have

Fi(x, 2r) ≤ 2εi Fi(x, r), i = 1, . . . ,N. (A.1)

Proof. We argue by induction on the index i ∈ {1, . . . ,N}. Inequality (A.1) is trivial if i = 1. Assume it holds for j ≤ i and
prove it holds for j = i + 1. Indeed, since λi+1 is increasing with respect to its argument

Fi+1(x, 2r) = 2rλi+1(x1 + F1(x, 2r), . . . , xi + Fi(x, 2r))
≤ 2rλi+1(x1 + 2r, . . . , xi + 2εi Fi(x, r))
≤ 2rλi+1(2(x1 + r), . . . , 2εi(xi + Fi(x, r)))
= (by the δt-homogeneity of λi+1)2εi+1 rλi+1(x1 + F1(x, r), . . . , xi + Fi(x, r))
= 2εi+1Fi+1(x, r).

This completes the proof. �

From (A.1), with a standard argument, we get

Fi(x, R) ≤ 2εi

�
R
r

�εi

Fi(x, r) (A.2)

for 0 < r < R.
The functions Fi’s take an explicit form at x = 0. Indeed, the following proposition holds.

Proposition A.2. For every r > 0 we have

Fi(0, r) = airεi , i = 1, . . . ,N

for suitable constant ai > 0.
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Proof. We know that F1(0, τ ) = τ , Fj(0, τ ) = τλj(F1(0, τ ), . . . , Fj−1(0, τ )) for 2 ≤ j ≤ N . Using the δt-homogeneity of the
λj’s, we obtain

F2(0, τ ) = τλ2(F1(0, τ )) = τλ2(τ ) = τ ε2λ2(1) =: a2τ ε2 .

Moreover

F3(0, τ ) = τλ3(F1(0, τ ), F2(0, τ )) = τλ3(τ , a2τ ε2) = τ ε3λ3(1, a2) =: a3τ ε3 .

An easy iteration argument shows that

Fj(0, τ ) = ajτ εj for every j ∈ {1, . . . ,N}
with the aj’s given by the recurrence formula:

a1 = 1, aj = λj(a1, . . . , aj−1), j ∈ {2, . . . ,N}. �

From the previous proposition and inequalities (1.10) we immediately get the following corollary.

Corollary A.3. For every x, y ∈ R
N we have

dλ(x, y) ≤
N�

i=1

c∗
i |xi − yi|, c∗

i = c2
�

1
ai

� 1
εi

, i = 1, . . . ,N

for every x = (x1, . . . , xN) and y = (y1, . . . , yN) ∈ R
N .

To obtain a local lower estimate of dλ we need one more proposition.

Proposition A.4. For every compact set K ⊆ R
N there exists a constant di = di(K) > 0 such that

Fi(x, r) ≤ dir ∀ x ∈ K , ∀ r ∈ [0, 1], i = 1, . . . ,N. (A.3)

Proof. The inequality (A.3) is obvious if i = 1. Suppose (A.3) is satisfied for i ≤ j. Then, for 0 < r < 1,

Fj+1(x, r) = rλj+1(x1 + F1(x, r), . . . , xj + Fj(x, r))
≤ rλj+1(x1 + d1r, . . . , xj + djr)
≤ r sup

x∈K
λj+1(x1 + d1, . . . , xj + dj) =: dj+1r.

This completes the proof. �

From (A.3) we get Fi
�
x, r

di

�
≤ r for r ≤ di. Hence r

di
≤ φi(x, r) for 0 < r < di. As a consequence, by (1.10),

dλ(x, y) ≥ c1
N�

i=1

φi(x∗, |xi − yi|) ≥ c1
N�

i=1

|xi − yi|
di

.

Therefore, for a suitable constant d∗, we have

dλ(x, y) ≥ d∗|x − y|, ∀ x ∈ K , ∀ y ∈ R
N : |x − y| ≤ d∗. (A.4)
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