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Instantaneous blowup and singular potentials on Heisenberg groups
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Abstract. In this paper we generalize the instantaneous blowup result from the
1984 paper by Baras and Goldstein and the 2001 paper by Goldstein and Zhang
to the heat equation perturbed by singular potentials on the Heisenberg group.
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1. Introduction

The problem of existence and nonexistence of non-negative solutions to the heat
equation with singular potentials V ⇤

c .x/ D
c

jxj2
; x 2 �N ,

8<
:
@u

@t
.x; t/ D �u.x; t/C V ⇤

c .x/u.x; t/ .x; t/ 2 �N ⇥ .0;1/

u.x; 0/ D u0.x/; x 2 �N ;
(1.1)

where �N D

⇢
R

N if N � 2
.0;1/ if N D 1;

was settled and solved by Baras and Gold-

stein [3]. For�1 D .0;1/ one has to add a Dirichlet boundary condition at 0. For
simplicity we assume in the sequel that N � 3 and set C⇤.N / WD

�
N �2

2

�2
.

Obviously, the phenomenon of existence and nonexistence is caused by the
singular potential V ⇤

c , which is controlled by Hardy’s inequality

C⇤.N /
Z
RN

j'.x/j2

jxj2
dx 

Z
RN

jr'.x/j2 dx; 8' 2 C1
c .RN /;
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together with its optimal constant C⇤.N /. Moreover V ⇤
c belongs to a borderline

case where the strong maximum principle and Gaussian bounds fail, cf. [2].
Let Wn.x/ D inffV ⇤

c .x/; ng be the cutoff potential, with c > C⇤.N /. Let un

be the unique solution of
8<
:
@tun

@t
��un �Wnun D 0 in R

N ⇥ .0;1/

un.x; 0/ D u.x; 0/ D u0.x/ � 0:

Here 0 6⌘ u0 2 L2.RN / or, more generally, u0 grows no faster than ejxj2�"
at

infinity. Since Wn is bounded, un exists. If a positive solution u to (1.1) were to
exist, then 0 < un  u which is a contradiction, since un.x; t/ tends to infinity at
all spatial points and at all positive times (see [3, Theorem 2.2.(ii)]). This is called
instantaneous blowup.

Given non-negative functions u0 2 L1.RN /; 0  V 2 L1
loc.R

N / and 0 

f 2 L1.RN ⇥ .0; T //, Baras and Goldstein [3] considered the problem of finding
a function u such that

.P /

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

0  u on R
N

⇥ .0; T /

V .�/u 2 L1
loc.R

N ⇥ .0; T //
@u

@t
D �uC V uC f in D0.RN ⇥ .0; T //

esslim
t!0C

Z
RN

u.x; t/ .x/ dx D

Z
RN

u0.x/ .x/ dx for all  2 D.RN /:

Here D.RN / WD C1
c .RN /; D.RN ⇥ .0; T // WD C1

c .RN ⇥ .0; T // with the usual
topology and D0.RN ⇥ .0; T //, the dual of D.RN ⇥ .0; T //, is the space of all
distributions on R

N ⇥ .0; T /.
Consider the potential

W0.x/ D

8<
:

c

jxj2
if x 2 B1

0 if x 2 R
N n B1:

Here B1 can be replaced by Bı for every fixed ı > 0, where Br denotes the ball
in R

N of center 0 and radius r > 0. Baras and Goldstein [3] proved the following
result:

Theorem 1.1.

(i) Let 0  c  C⇤.N / and let V � 0 be a measurable potential satisfying
V 2 L1.RN n B1/, where B1 denotes the unit ball in R

N . Let 0  f 2

L1.RN ⇥ .0; T //. If V  W0 in B1, then .P / has a positive solution if

Z
RN

jxj
�˛u0.x/ dx < 1 ;

Z T

0

Z
RN

f .x; s/jxj
�˛dxds < 1; (1.2)
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where ˛ is the smallest root of ˛.N � 2 � ˛/ D c. If V � W0 in B1, and if
.P / has a solution u, then

Z
�0

jxj
�˛u0.x/ dx < 1;

Z T �"

0

Z
�0
f .x; s/jxj

�˛dxds < 1;

for each " 2 .0; T / and each �0 ⇢⇢ R
N with ˛ as above. If either u0 ¤ 0

or f ¤ 0 in R
N ⇥ .0; "/ for each " 2 .0; T /, then given �0 ⇢⇢ R

N , there is
a C D C.";�0/ > 0 such that

u.x; t/ �
C

jxj˛
if .x; t/ 2 �0

⇥ Œ"; T /I (1.3)

(ii) If c > C⇤.N /, V � W0 and either u0 6⌘ 0 or f 6⌘ 0, then .P / does not have
a positive solution.

Many extensions of the above result have been done by several authors, cf. [6, 7,
9, 10, 12–17]. In this article we present a new result of this type replacing the
Laplacian on R

N by the sub-Laplacian�H (also known as the Kohn Laplacian) on
the Heisenberg group H

N . For the definitions see Section 2.
For this purpose let us consider, for w D .z; l/ 2 H

N , the problem
8<
:
@u

@t
.w; t/ D �Hu.w; t/C V⇤.w/u.w; t/C f .w; t/ t > 0; w 2 H

N

u.w; 0/ D u0.w/; w 2 H
N :

(1.4)

Assume u0 � 0, f � 0 and as V⇤ choose the corresponding critical potential in
the case of the Heisenberg group H

N

V⇤.w/ D c
jzj2

jzj4 C l2
; w D .z; l/ 2 H

N :

We thus look at the problem

.P /HN

8<
:
@u

@t
D �HuC V⇤uC f in H

N ⇥ .0; T /

u.w; 0/ D u0.w/ w 2 H
N ;

with u0 �0 and u0 6⌘0 a.e. Set Vn.w/DminfV⇤.w/; ng, fn.w; t/Dminff .w; t/; ng.
Let un be the unique non-negative solution of

.Pn/HN

8<
:
@un

@t
D �Hun C Vnun C fn in H

N ⇥ .0; T /

un.w; 0/ D u0.w/ w 2 H
N ;

and assume that un exists. We only need to assume that the heat equation with no
potential has a global positive solution when u0 is the initial value, see (2.6) and
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Theorem 2.2 below. It is sufficient that u0 2 L2
loc.H

N / and u0 grows no faster than
ed2.w/�" at infinity, where d.�/ is the function given by (2.4).

Let
C ⇤.N / D N 2:

We will prove, for un the solution of .Pn/HN , that:

(I) If 0 < c  C ⇤.N /, then

lim
n!1un.w; t/ D u.w; t/; .w; t/ 2 H

N
⇥ .0; T /;

exists and is a solution of .P /HN ;
(II) If c > C ⇤.N /, then

lim
n!1un.w; t/ D C1 (1.5)

for all .w; t/ 2 H
N ⇥ .0; T /:

The conclusion in (II), namely (1.5), is known as instantaneous blowup, or (IBU)
for short.

In the existence case .I /, by the maximum principle for�H, it is clear that we
can replace Vn; V⇤ by QVn; QV⇤ where QVn  Vn, QV⇤  V⇤ a.e. for each n. Similarly,
for the nonexistence result (II), we can replace Vn; V⇤ by QVn; QV⇤ where QVn � Vn,
QV⇤ � V⇤ a.e. (at least in a neighborhood of the origin).

The paper is organized as follows. In the next section we recall the definitions
of the Heisenberg group H

N and the sub-Laplacian�H on H
N . We also give some

known properties of�H that we need in this paper. In Section 3 we state and prove
the main results of this paper. In the Appendix we prove some technical lemmas
that we use in the proof of the main results.

This paper treats the same basic problem as did [15]. There, the existence part
of Theorem 3.4 was proved, using a different method. But part (ii) of Theorem 3.4
is much stronger than the corresponding result of [15].

In 1999, X. Cabré and Y. Martel [5] gave a different approach to a more general
problem. The paper [3] treated a potential V � 0 with only one singularity, at the
origin, while [5] allowed for a much more general potential which one takes to
be 0  W 2 L1

loc.R
N n f0g/: In [5] the authors defined the “generalized first

eigenvalue” of the Schrödinger operator �� �W as

�W D inf
u2C 1

c .RN /; kuk
L2 D1

⇢Z
RN

.jru.x/j2 �W.x/ju.x/j2/ dx

�

 
or �W D inf

u2C 1
c .RN nf0g/; kuk

L2 D1

⇢Z
RN

.jru.x/j2 �W.x/ju.x/j2/ dx

�
if N 2

!
:

Note that for W.x/ D
c

jxj2 ; x 2 R
N , one has �W D �1 if c > C⇤.N / and

�W > �1 if c  C⇤.N /: Roughly speaking, in [5] the existence of positive
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solutions, when �W > �1 and for �W D �1, was obtained; further the authors
proved that there is no globally defined pointwise solution that is exponentially
bounded in time. This is a much weaker conclusion than the instantaneous blowup
(IBU).

In the H
N setting, the authors in [15] used the method of [5] and proved

nonexistence of globally defined (in .x; t/) positive solutions that grow at most
exponentially for c > C ⇤.N /: But the question of (IBU) remained open until now.

2. Notation and preliminaries

The Heisenberg group and its sub-Laplacian play a crucial role in several branches
of harmonic analysis, complex geometry and partial differential equations (see,
e.g., [8, 11, 19, 20]; see also the survey papers [18, 21]).

The Heisenberg group H
N ; N 2 N, is the stratified Lie group of step two

.R2N C1; ı;D�/: (2.1)

If we denote the generic point of R2N C1 byw D .z; l/ D .x; y; l/, with x; y 2 R
N

and l 2 R, the composition law ı is defined by

.x; y; l/ ı .x0; y0; l 0/ D .x C x0; y C y0; l C l 0 C 2.x0
� y � y0

� x//;

where x � y denotes the inner product in R
N .

In (2.1), D�, � > 0 denotes the anisotropic dilation

D� W R
2N C1

�! R
2N C1;D�.z; l/ D .�z;�2l/:

The family .D�/�>0 is a group of automorphisms of HN , that is,

D�..z; l/ ı .z0; l 0// D .D�.z; l/ ıD�.z
0; l 0//:

The real number
Q WD 2N C 2

is called the homogeneous dimension of HN since it appears in the formula

jD�.A/j D �Q
jAj;

where A ✓ R
2N C1 is a Lebesgue measurable set and jAj stands for the Lebesgue

measure of A.
A basis for the Lie algebra of left invariant vector fields on H

N is given by

Xj D @xj
C 2yj @l ; Yj D @yj

� 2xj @l ; j D 1; : : : ; N:

One easily calculates that

ŒXj ;XkçD ŒYj ;YkçD0 for every j; kD1; : : : ; N; and ŒXj ;YkçD�4ıjk@l : (2.2)
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These are the canonical commutation relations of Quantum Mechanics for position
and momentum, whence H

N is called the Heisenberg group.
The subelliptic gradient is the gradient taken with respect to the horizontal

directions rH WD .X1; : : : ; XN ; Y1; : : : ; YN / and the sub-Laplacian on H
N is

�H WD

NX
j D1

.X2
j C Y 2

j / D rH � rH;

and it can be explicitly also written as

�H D �z C 4jzj2@2
l C 4@lT;

where

�z D

NX
j D1

.@2
xj

C @2
yj
/

and

T D

NX
j D1

.yj @xj
� xj @yj

/:

From (2.2) it immediately follows that

rank Lie .X1; : : : ; XN ; Y1; : : : ; YN /.z; l/ D 2N C 1

at any point .z; l/ 2 R
2N C1: Then, by a celebrated theorem of Hörmander, �H is

hypoelliptic, that is, every distributional solution of�Hu D f is smooth whenever
f is smooth.

The operator �H is left translation invariant on H
N and D�-homogeneous of

degree two. Moreover �H has a fundamental solution (with a pole at the origin)
given by

�.w/ D cN

✓
1

d.w/

◆Q�2

D cN

✓
1

d.w/

◆2N

; w ¤ .0; 0/; (2.3)

where
d.w/ D .jzj4 C l2/

1
4 for w D .z; l/ 2 H

N (2.4)

defines the metric ⇢.w; Qw/ WD d. Qw�1 ıw/ on H
N , and Qw�1 denotes the inverse of

Qw in the group H
N .

In the following lemma we summarize some properties of d and its gradient
rH which one can obtain by simple computations, see [4, Proposition 5.4.3].
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Lemma 2.1. For d.w/ D .jzj4 C l2/
1
4 ; w D .z; l/ 2 H

N , the following hold:

jrHd.w/j
2

D jzj2.jzj4 C l2/�
1
2 ;

�Hd.w/ D
Q � 1

d.w/
jrHd.w/j

2;

��Hd
�˛.w/ D Cd�˛.w/

jzj2

jzj4 C l2
(2.5)

for w 2 H
N n f.0; 0/g, where C WD ˛.Q � 2 � ˛/ D ˛.2N � ˛/. So, �Hd

�˛ 2

L1
loc.H

N / if and only if 2N � ˛ > 0.

It is known that the left translation invariance of �H implies that the semigroup
et�H is given by a right convolution

et�Hf .w/ D

Z
HN

f . Qw/pt . Qw�1
ı w/ d Qw; t > 0; w 2 H

N ; (2.6)

where .w; t/ 7! pt .w/ is the fundamental solution of
⇣

@
@t

C�H

⌘
u D 0. Hence,

by hypoellipticity, pt .w/ is a C1 function on H
N ⇥ .0;1/ and kptk1 D 1. More-

over, pt satisfies the following Gaussian estimates, cf. [22, Theorem IV.4.2 and
Theorem IV.4.3].

Theorem 2.2. The heat kernel pt satisfies

Ct�
Q
2 exp

✓
�c
d2.w/

t

◆
 pt .w/  C"t

� Q
2 exp

✓
�d2.w/

4.1C "/t

◆

for some positive constants C; c; C", any " > 0; w 2 H
N and t > 0.

3. The main results

In this section we make the following hypotheses.

Hypotheses 3.1.

✏ 0  V 2 L1
loc.H

N /I

✏ 0  f 2 L1.HN ⇥ .0; T //I
✏ 0  u0 2 L1.HN / (or more generally u0 can be a positive finite Radon mea-

sure).

We consider the problem8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@u

@t
D �HuC V uC f in D0.HN ⇥ .0; T //

esslim
t!0C

Z
HN

u.w; t/ .w/ dwD

Z
HN

u0.w/ .w/ dw for all  2D.HN /

u � 0 on H
N ⇥ .0; T /

V u 2 L1
loc.H

N ⇥ .0; T //:

(3.1)
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Here D.HN / D C1
c .HN / (respectively D.HN ⇥ .0; T // D C1

c .HN ⇥ .0; T //)
with the usual topologies and D0 WD D0.HN / (respectively D0

T WD D0.HN ⇥

.0; T //) is its dual space. We also consider the approximating problem
8̂
<
:̂

@un

@t
D �Hun C Vnun C fn in D0

T

lim
t!0C

Z
HN

un.w; t/ .w/ dwD

Z
HN

u0.w/ .w/ dw for all  2D.HN /:
(3.2)

Here

fn D minff; ng;

Vn 2 L1; 0  Vn  V; Vn " V a.e.

By the variation of parameters formula, (3.2) has a unique bounded non-negative
solution obtained by solving the integral equation

un.t/ D et�Hu0 C

Z t

0

e.t�s/�HVn.�/un.s/ ds C

Z t

0

e.t�s/�Hfn.s/ ds; (3.3)

where
�
et�H

�
t�0

is the semigroup generated by �H on H
N . We note that Vn is a

bounded multiplication operator on Lp
�
H

N
�

for all p 2 Œ1;C1/. Since fVng is
an increasing sequence, clearly fung is an increasing sequence, as well.

Proposition 3.2. Suppose there is a .w0;t0/2H
N ⇥ .0;T / with lim

n!1un.w0; t0/<

1. Then (3.1) has a non-negative solution on H
N ⇥ .0; T0/ for all 0 < T0 < t0

given by
u.w; t/ D lim

n!1un.w; t/ a:e: in H
N

⇥ .0; T0/: (3.4)

Moreover, if (3.1) has a non-negative solution in H
N ⇥.0; T /, then lim

n!1un.w; t/ <

1 a.e. in H
N ⇥ .0; T /.

Proof. Clearly, if u�0 is a solution of (3.1), then unu for all n, so lim
n!1un.w; t/

u.w;t/ a.e. in H
N ⇥ .0; T /. This establishes the last part of the proposition.

For the main part, we start by considering

Un D etun; t > 0:

Then
@Un

@t
D �HUn C .Vn C 1/Un C etfn;

and, using the variation of parameters formula, we obtain

et0un.w0; t0/�

Z t0

0

es.e.t0�s/�H.Vn C 1/un.s//.w0/ ds; .w0; t0/2H
N

⇥ .0; T /;

(3.5)
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since e�Hu0 � 0 and fn � 0: On the other hand, it follows from the Gaussian
estimates in Theorem 2.2 that

Z t0

0

es.e.t0�s/�H.VnC 1/un.s//.w0/ ds

� C

Z t0

0

Z
HN

es.Vn. Qw/C1/un. Qw; s/.t0 � s/�
Q
2 exp

✓
�c
d2. Qw�1 ı w0/

t0 � s

◆
d Qwds:

So if �0 ⇢⇢ H
N and " 2 .0; T /, it follows that, for .w0; t0/ 2 H

N ⇥ .0; T /, there
is c0 > 0 such that

c0

Z t0�"

0

Z
�0
Vn. Qw/un. Qw; s/ d QwdsC c0

Z t0�"

0

Z
�0
un. Qw; s/ d Qwdset0un.w0; t0/:

(3.6)
By our hypothesis un increases, moreover the right-hand side of (3.6) is clearly
bounded, so by the monotone convergence theorem, un " u and Vnun " V u in
L1 .�0 ⇥ .0; t0 � "// and u is a solution of (3.1) in the sense of distributions.

Remark 3.3. Notice that the solution of (3.1) satisfies the integral equation

u.w; t/ D et�Hu0.w/C

Z t

0

e.t�s/�HV.w/u.w; s/ ds

C

Z t

0

e.t�s/�Hf .w; s/ ds; .w; t/ 2 H
N

⇥ .0; t0/:

Also, since un.w; t/ ! u.w; t/ < 1 a.e. on H
N ⇥ .0; t0/, we get, using (3.5),

s 7�! .e.t0�s/�HV.�/u.�; s//.w/ 2 L1.0; t0/ for a.e. w 2 H
N .

The inverse square potential in the Euclidean case of x 2 R
N is V ⇤

c .x/ D
c

jxj2

and the critical constant is the best constant

C⇤.N / D

✓
N � 2

2

◆2

in Hardy’s inequality

Z
RN

jru.x/j2 dx � C⇤.N /
Z
RN

ju.x/j2

jxj2
dx

for u 2 C 1
c .R

N / if N � 3 and for u 2 C 1
c .R

N n f0g/ if N D 1; 2:

The multiplication operator V ⇤
c and the Laplacian both have the same scaling

property, namely
U.�/�1LU.�/ D �2L
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for L D V ⇤
c or L D �, where U.�/f .x/ D �

N
2 f .�x/, for � > 0; defines a

unitary operator on L2.RN /.
In the case of the Heisenberg group H

N , the corresponding critical potential is

QV ⇤
c .w/ D

cjzj2

jzj2 C l2

forw D .x; y; l/ D .z; l/ 2 H
N and c > 0: The corresponding Hardy’s inequality,

due to Garofalo and Lanconelli ([11], see also [4, 15]), is
Z
HN

jrHN u.w/j2 dw � C ⇤.N /
Z
HN

QV ⇤
1 .w/ju.w/j

2 dw;

with the best constant being C ⇤.N / D N 2, for all N � 1: Both �HN and multi-
plication by QV ⇤

c scale in the same way. Let

QU.�/f .z; l/ D �N C1f .�z;�2l/I

QU.�/ is unitary on L2.HN / for all � > 0 and

QU.�/�1L QU.�/ D �2L

for L D �HN or L D QV ⇤
c , and all � > 0:

As in the Euclidean case, the critical potential is C ⇤.N / QV ⇤
1 D QV ⇤

C ⇤.N /
near

the origin. That is, by localizing to the unit ball B1 in H
N (or to B⇢ for any ⇢ > 0),

let

V ⇤
0 .w/ D

8̂
<̂
ˆ̂:

cjzj2

jzj4 C l2
w 2 B1

0 w 2 H
N n B1;

(3.7)

where B1 is the unit ball centered at the origin in H
N with respect to the metric

⇢.w;w0/ D d.w0�1 ı w/; w; w0 2 H
N .

Finally, notice that the smallest root of

˛.Q � 2 � ˛/ D c

is given by

˛ D
Q � 2

2
�

s✓
Q � 2

2

◆2

� c D N �

p

N 2 � c;

when c  C ⇤.N /.
The following theorem is the main result of this paper. It is an extension

of [15, Theorem 1.1] and a generalization of [3].
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Theorem 3.4.

(i) Let 0  c  C ⇤.N / and let V � 0 be a measurable potential satisfying
V 2 L1.HN n B1/. Let 0  f 2 L1.HN ⇥ .0; T //. If V  V ⇤

0 in B1, then
(3.1) has a solution if

Z
HN

d.w/�˛u0.w/ dw < 1 ;

Z T

0

Z
HN

f .w; s/d.w/�˛dwds < 1;

(3.8)
where ˛ is the smallest root of ˛.2N �˛/ D c. If V � V ⇤

0 in B1, and if (3.1)
has a solution u, then

Z
HN

d.w/�˛u0.w/ dw < 1;

Z T �"

0

Z
�0
f .w; s/d.w/�˛dwds < 1

for each " 2 .0; T / and each �0 ⇢⇢ H
N with ˛ as above. If either u0 6⌘ 0

or f 6⌘ 0 in H
N ⇥ .0; "/ for each " 2 .0; T /, then given �0 ⇢⇢ H

N with
0 2 �0, there is a constant C D C.";�0/ > 0 such that

u.w; t/ �
C

d˛.!/
; .w; t/ 2 �0

⇥ Œ"; T çI (3.9)

(ii) If c > C ⇤.N /, V � V ⇤
0 and either u0 6⌘ 0 or f 6⌘ 0, then (3.1) does not

have a positive solution. Moreover, we have instantaneous blowup.

Proof.
(i) We can assume that V  V ⇤

0 in H
N . Otherwise consider V D QV C B DW

V�B1
C V�Bc

1
with QV  V ⇤

0 in H
N , B 2 L1.HN / and use Proposition A.5 in the

Appendix.
Let �.w/ WD d.w/�˛ , and choose a convex function ⇢ 2 C 2.R/ with ⇢.0/ D

⇢0.0/ D 0: Next, multiply (3.2) by ⇢0.un/� and integrate over H
N ⇥ Œı; t/ for

0 < ı < t < T: Then, letting
R

denote
R
HN ,

Z t

ı

Z
@un

@s
⇢0.un/� D

Z t

ı

Z
�Hun⇢

0.un/� C

Z t

ı

Z
.Vnun Cfn/⇢

0.un/�;

and so

Z Z t

ı

@

@s
.⇢.un//�D�

Z t

ı

Z
rHun � rH.⇢

0.un/�/C

Z t

ı

Z
.Vnun C fn/⇢

0.un/�:
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Then,
Z
⇢.un.t//� D �

Z t

ı

Z
⇢00.un/jrHunj

2� C .rHun � rH�/⇢
0.un/

C

Z t

ı

Z
.Vnun C fn/⇢

0.un/� C

Z
⇢.un.ı//�

D

Z t

ı

Z
�⇢00.un/jrHunj

2� C

Z t

ı

Z
⇢.un/�H�

C

Z t

ı

Z
.Vnun C fn/⇢

0.un/� C

Z
⇢.un.ı//�;

since ⇢0.un/rHun D rH.⇢.un//: Hence
Z
⇢.un.t//� 

Z t

ı

Z
⇢.un/�H�

C

Z t

ı

Z
.Vnun C fn/⇢

0.un/� C

Z
⇢.un.ı//�:

(3.10)

Replace ⇢ in (3.10) with the convex function ⇢".r/ D
p
r2 C "2 � "2; r � 0; and

let " ! 0 to obtain, by the monotone convergence theorem,
Z
un.t/� 

Z t

ı

Z
un�H� C

Z t

ı

Z
.Vnun C fn/� C

Z
un.ı/�: (3.11)

Next we want to let ı ! 0: Notice that

eı�Hu0  un.ı/ D eı.�HCVn/u0 C

Z ı

0

e.ı�s/.�HCVn/fn.s/ds: (3.12)

Since kVnk1 DW cn < 1; it follows from the Daletskii–Trotter product formula
that

eı.�HCVn/u0 D lim
m!1

⇣
eı�H=me

ı
m Vn

⌘m

u0

 eıcneı�Hu0;

by the positivity of the semigroup feı�Hg: So (3.12) becomes

eı�Hu0  un.ı/  eıcneı�Hu0 C

Z ı

0

ecn.ı�s/e.ı�s/�Hfn.s/ds;

and by the contractivity of et�H we have
Z ⇣

eı�Hu0

⌘
� 

Z
un.ı/�  eıcn

Z ⇣
eı�Hu0

⌘
� C eıcnkfnk1ı

Z
�:
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The strong continuity of the semigroup implies

lim
ı!0

Z ⇣
eı�Hu0

⌘
� D

Z
�u0:

Thus we have shown that

lim
ı!0

Z
un.ı/� D

Z
�u0:

Now let ı ! 0 in (3.11), using (2.5), to deduce

Z
un.t/� 

Z t

0

Z
un�H� C

Z t

0

Z
Vnun� C

Z t

0

Z
fn� C

Z
u0�

D

Z t

0

Z ✓
�c

jzj2

jzj4 C l2
C Vn

◆
un� C

Z t

0

Z
fn� C

Z
u0�



Z t

0

Z
fn� C

Z
u0�;

since Vn  V ⇤
0 . It follows that if

R t

0

R
f � C

R
�u0 < 1, then, by Proposition 3.2,

un.w; t/ " u.w; t/.< C1/ as n ! 1 for all t 2 .0; T ç and a.e. w 2 H
N , which

gives the first part of (i) of the theorem.
Let us now prove the second part of (i). The inequality (3.9) is proved in

Lemma 3.5 below. On the other hand, by the first part of (i) we have that, for each
w 2 H

N n f0g; (3.1) has a solution with u0 D ��1.w/ıw , f ⌘ 0 and V D V ⇤
0 ,

where ıw denotes the Dirac measure at w. We denote this solution by uw . We
define

hw. Qw; t/ D uw. Qw; t/�. Qw/�1; . Qw; t/ 2 H
N

⇥ .0; T ç;

and set h D u��1 and hn D un�
�1 with u (respectively un) the solution of (3.1)

(respectively (3.2)) obtained by Proposition 3.2.
We now prove

h.w; t/ �

Z
HN

hw. Qw; t/�. Qw/u0. Qw/ d Qw

C

Z t

0

Z
HN

hw. Qw; t � s/f . Qw; s/�. Qw/ d Qw ds

(3.13)

holds for w 2 H
N n f0g and t 2 .0; T ç.

To this end let un be the solution of (3.2), and let vn be the solution of

(
@vn

@t
D �Hvn C V0;nvn

vn.0/ D �.w/�1ıw ;
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where V0;n D min
˚
V ⇤

0 ; n
 
. Note that by the above construction, vn. Qw; t/ "

uw. Qw; t/ as n ! 1 for all t 2 .0; T ç and a.e. Qw 2 H
N .

On the other hand, we have

@

@s

Z
HN

un. Qw; s/vn. Qw; t � s/ d Qw

D

Z
HN


@un

@s
. Qw; s/vn. Qw; t � s/ � un. Qw; s/

@vn

@s
. Qw; t � s/

�
d Qw

D

Z
HN

⇥
vn. Qw; t�s/�Hun. Qw; s/��Hvn. Qw; t�s/un. Qw; s/Cfn. Qw; s/vn. Qw; t�s/

⇤
d Qw

C

Z
HN

.Vn � V0;n/ un. Qw; s/vn. Qw; t � s/ d Qw

�

Z
HN

fn. Qw; s/vn. Qw; t � s/ d Qw:

Hence, integration from ı to t � ı yields
Z
HN

un. Qw; t � ı/vn. Qw; ı/ d Qw

�

Z t�ı

ı

Z
HN

fn. Qw; s/vn. Qw; t � s/ d Qw ds C

Z
HN

un. Qw; ı/vn. Qw; t � ı/ d Qw:

(3.14)

Letting ı ! 0 in (3.14) and noting that, as ı ! 0, un.t � ı/ ! un.t/ weakly,
vn.t � ı/ ! vn.t/ weakly, un.ı/ ! u0 weakly and vn.ı/ ! �.w/�1ıw weakly,
we get

un.w; t/�
�1.w/ �

Z t

0

Z
HN

fn. Qw; s/vn. Qw; t � s/ d Qw ds

C

Z
HN

vn. Qw; t/u0. Qw/ d Qw:

(3.15)

Letting n ! 1 in (3.15) and noting that un.w; t/ " u.w; t/ D h.w; t/�.w/ and
vn. Qw; t/ " uw. Qw; t/ D hw. Qw; t/�. Qw/, we obtain (3.13).

Applying (3.9) to uw for a fixed w 2 H
N n f0g, we obtain that there exists a

constant C > 0 such that

hw. Qw; t/ � C for . Qw; t/ 2 �0
⇥ Œ"; T ç:

It follows from (3.13) that

h.w; t/ � C

Z
�0
�. Qw/u0. Qw/ d Qw C C

Z T �"

0

Z
�0
f . Qw; s/�. Qw/ d Qwds:

If a solution u exists, we must have h.w; t/ < 1 for a.e. w 2 H
N and all t 2

.0; T ç. Thus, necessary conditions for the existence of a solution u are
Z

�0
�.w/u0.w/ dw < 1; and

Z T �"

0

Z
�0
f .w; s/�.w/ dw ds < 1:
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This completes the proof of (i).

(ii) Let c > C ⇤.N / and let u 6⌘ 0 be a solution of (3.1). Then,

@u

@t
��Hu D C ⇤.N /

jzj2

jzj4 C l2
uC .c � C ⇤.N //

jzj2

jzj4 C l2
u:

From part (i), a solution exists only if

.c � C ⇤.N //
jzj2

jzj4 C l2
u� 2 L1.�0

⇥ .0; T � "//;

for �0 any compact set in H
N and " > 0. (Here we have assumed 0 2 �0.) But by

the preceding proof (see (3.9) with ˛ D N ), we have

u � C"d
�N .w/

in �0 ⇥ Œ"; T /, and so we would need jzj2
jzj4Cl2d

�N 2 L1.�0/, which is false.

Lemma 3.5. Assume 0  c  C ⇤.N /; ˛ the smallest root of ˛.2N �˛/ D c, and
0  V 2 L1.HN nB1/ with V � V ⇤

0 in B1. If u is a solution of (3.1) with u0 6⌘ 0

in H
N , then given �0 ⇢⇢ H

N ; " 2 .0; T /, there is C D C.";�0/ > 0 such that
(3.9) holds.

Proof. Assume that �0 ⇢⇢ H
N with 0 2 �0. Since u0 6⌘ 0, it follows from

Theorem 2.2 that there is a constant C0 > 0 with

et�Hu0. Qw/ � C0; (3.16)

for Qw 2 �0 and "
2

 t < T . Since u � et�Hu0, by the Maximum Principle,
(3.9) follows from (3.16) for the case ˛ D 0. So from now on we assume that ˛ is
strictly positive.

Let as before V0;n WD inf
˚
V ⇤

0 ; n
 
, and consider the problems

8<
:
@z

@t
D �Hz C V ⇤

0 z in D0 �
H

N ⇥ Œ "
2
; T ç

�
z
�

Qw; "
2

�
D C0 ��0. Qw/ Qw 2 H

N ;
(3.17)

8<
:
@zn

@t
D �Hzn C V0;nzn in D0 �

H
N ⇥ Œ "

2
; T ç

�
zn

�
Qw; "

2

�
D C0 ��0. Qw/ Qw 2 H

N ;
(3.18)

and for Br0
⇢ �0 a ball centered at the origin with radius r0 2 .0; 1/;

8̂
<
:̂

@vn

@t
D �Hvn C V0;nvn in D0 �Br0

⇥ Œ "
2
; T ç

�
vn D 0 on @Br0

vn

�
Qw; "

2

�
D C0 Qw 2 Br0

:

(3.19)
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Notice that (3.18) has a unique solution zn � 0, also that zn. Qw; t/ " z. Qw; t/, for
almost every . Qw; t/ 2 H

N ⇥ Œ "
2
; T /, where z is the unique solution of (3.17). It

is also clear that zn � vn, the solution of (3.19), and that vn is a radial function.1
Finally, we note that u is bounded below by the solution of (3.17) since V � V ⇤

0 .
Multiply the equation in (3.19) by vp�1

n �2�p; p � 2; where we recall that
�.w/ D d.w/�˛ only depends on w, and integrate to get

Z
Br0

@vn

@t
vp�1

n �2�p
D

Z
Br0

.�Hvn/v
p�1
n �2�p

C

Z
Br0

V0;nv
p
n�

2�p;

so
@

@t

Z
Br0

1

p

✓
vn

�

◆p

�2
D �

Z
Br0

rHvn � rH

�
vp�1

n �2�p
�

C

Z
Br0

V0;n

✓
vn

�

◆p

�2:

(3.20)

Set gn D
vn

�
. Then equation (3.20) becomes

@

@t

Z
Br0

1

p
gp

n�
2

D �
4.p � 1/

p2

Z
Br0

jrHg
p=2
n j

2�2

C

Z
Br0

gp
n .�H�/� C

Z
Br0

V0;ng
p
n�

2:

Using (2.5) and the fact that ˛.2N � ˛/ D c, we obtain V0;n  V ⇤
0  �

�H�
�

, so
that V0;n�

2  .��H�/�. Hence we have shown

@

@t

Z
Br0

gp
n�

2
 0;

and we thus have, for "
2

 t  T , that

 Z
Br0

vp
n�

2�p

!1=p

 C0

 Z
Br0

�2�p

!1=p

: (3.21)

Letting p ! 1 in (3.21) we get

gn  C0 a.e. in Br0
; (3.22)

which is equivalent to vn  C0� a.e. in Br0
. So we can make sense of

v D lim
n!1 vn and g D lim

n!1gn:

1 Recall that a function g.w/ is radial on H
n if w D .z; l/ and g.z; l/ D g.jzj; l/. In fact,

our function vn is even more special, since vn D vn.d.w//: Notice that this gives rHvn D

v0
n.d.w//rHd.w/.
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Now we claim that
0 < C1  g.w; t/  C0 (3.23)

for t 2 Œ"; T ç and a.e. w 2 B r0
2

. Once (3.23) is proved, and since

u � z � zn � vn D gn�;

(3.9) follows directly in the case�0 D B r0
2

. Otherwise, we observe that for almost
every Qw 2 �0 n B r0

2
we have

h. Qw; t/ D �. Qw/�1u. Qw/ � �. Qw/�1
�
et�Hu0

�
. Qw/ � C2 > 0

from Theorem 2.2 since
�. Qw/�1

� C3 > 0

for all t 2 Œ"; T ç and some constants C2; C3 > 0. This concludes the proof of (3.9).
Now we must prove (3.23). By (3.22), the right inequality is proved. For

the remaining part of (3.23), let I 2 C 2.RC;RC/ be convex. Multiply equation
(3.19) by I 0.gn/I.gn/� 

2 and integrate overQ D Br0
⇥
�

"
2
; t
�
; t 2 Œ "

2
; T ç, where

 2 D.Br0
⇥ . "

2
; T ç/, to get

Z
Q

I 0.gn/I.gn/
@vn

@t
� 2

D

Z
Q

˚
�HvnI 0.gn/I.gn/� 

2
CV0;nvnI 0.gn/I.gn/� 

2
 
;

1

2

Z
Q

@

@t
.I.gn//

2�2 2
D �

Z
Q

rH.gn�/ � rH.I 0.gn/I.gn/� 
2/

C

Z
Q

V0;ngnI 0.gn/I.gn/�
2 2:

Notice thatZ
Br0

rH.gn�/ � rH.I 0.gn/I.gn/� 
2/

D

Z
Br0

˚
.rHgn � rH.I 0.gn//I.gn/� 

2/� C gn.rH� � rH.I 0.gn//I.gn/� 
2/
 

D

Z
Br0

˚
I 00.gn/jrHgnj

2I.gn/�
2 2

C jrHI.gn/j
2�2 2

 

C

Z
Br0

˚
.rHI.gn/ � rH�/ 

2�I.gn/C .rHI.gn/ � rH 
2/I.gn/�

2
 

C

Z
Br0

.��H�/gnI 0.gn/I.gn/� 
2

C

Z
Br0

� .rH� � rHI.gn//I.gn/� 
2

D

Z
Br0

˚
I 00.gn/jrHgnj

2I.gn/�
2 2

C jrHI.gn/j
2�2 2

 

C

Z
Br0

.rHI.gn/ � rH 
2/I.gn/�

2
C

Z
Br0

.��H�/gnI 0.gn/I.gn/� 
2;
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and so

1

2

Z
Q

@

@t

�
I.gn/

2
�
�2 2

C

Z
Q

rHI.gn/ � rH 
2I.gn/�

2

D �

Z
Q

I 00.gn/jrHgnj
2
�
I.gn/�

2 2
�

�

Z
Q

jrHI.gn/j
2�2 2

C

Z
�H�gnI 0.gn/I.gn/� 

2 (3.24)

C

Z
Q

V0;ngnI 0.gn/I.gn/�
2 2:

Using Hölder’s inequality,
ˇ̌
ˇ̌
ˇ2
Z

Br0

.rI.gn/ � rH /I.gn/�
2 

ˇ̌
ˇ̌
ˇ


1

2

Z
Br0

jrHI.gn/j
2�2 2

C 2

Z
Br0

jrH j
2
jI.gn/j

2�2;

on the second term of the left-hand side of (3.24), using the convexity assumption
on I , and integrating by parts on the first term in (3.24), we obtain

1

2

Z
Br0

�
I.gn/

2 2�2
�
.t/C

1

2

Z
Q

jrHI.gn/j
2�2 2



Z
Q

.V0;n� C�H�/gnI 0.gn/I.gn/� 
2 (3.25)

C

Z
Q

I.gn/
2

✓
2jrH j

2
C  

@ 

@t

◆
�2:

Now, we make a key observation. Since ˛ < N , we have ��H� 2 L1.Br0
/. As-

sume r0 to be sufficiently small. Since V ⇤
0 D

��H�
�

, the first term on the right-hand
side of (3.25) converges to 0 as n ! 1 by Lebesgue’s dominated convergence
theorem, since kgnk  C0 in Br0

and I is convex, C 2 and non-negative. Letting
n ! 1, (3.25) gives

Z
Br0

I.g/2 2�2
C

Z
Q

jrHI.g/j2 2�2

 2

Z
Q

I.g/2
✓
2jrH j

2
C  

@ 

@t

◆
�2: (3.26)

Choose  so that 0    1 for s �
"
2
; r < r0 and 0 < ı < r , and

 .w; t/ D

(
1 Br�ı ⇥ Œs C ı; T ç

0
�
Br0

⇥ Œ0; sç
�

[

⇣
Br0

n Br� ı
2

⇥ Œ0; T ç
⌘
;
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so that ˇ̌
ˇ̌@ 
@t

ˇ̌
ˇ̌ 

QC

ı
; jrH j

2


QC

ı2
;

for some constant QC independent of s; ı: Then for all sCı  t  T (3.26) becomes
Z

Br�ı

I.g.t//2�2
C

Z T

sCı

Z
Br�ı

jrHI.g/j2�2

 6 QCı�2

Z T

s

Z
Br0

I.g/2�2: (3.27)

Note that for fixed t , w 7! I.g.w; t// is a radial function; in fact as we noted
earlier, I.g.w; t// is a function of d.w/. Applying (A.4), with ˇ as in Lemma A.4,
and (3.27), one obtains

Z T

sCı

Z
Br�ı

I.g/2C2ˇ�2


OOC

Z T

sCı

"✓Z
Br�ı

jrHI.g.t//j2�2
C I.g.t//2�2

◆✓Z
Br�ı

I.g.t//2�2

◆ˇ
#
dt


OOC

"Z T

sCı

Z
Br�ı

jrHI.g/j2�2
C

Z T

sCı

Z
Br�ı

I.g/2�2

# 
6 QCı�2

Z T

s

Z
Br0

I.g/2�2

!ˇ


OOC.6 QCı�2

C 1/

 Z T

s

Z
Br0

I.g/2�2

! 
6 QCı�2

Z T

s

Z
Br0

I.g/2�2

!ˇ

:

Since 0 < ı < r < 1, it follows that
 Z T

sCı

Z
Br�ı

I.g/2C2ˇ�2

! 1
2C2ˇ


OOC

1
2C2ˇ .6 QC C 1/1=2ı�1

 Z T

s

Z
Br0

I.g/2�2

!1=2

(3.28)

 Cı�1

 Z T

s

Z
Br0

I.g/2�2

!1=2

:

Let b > 0 be sufficiently small, and set

ı D
b

2n
; rnC1 D rn �

b

2n
; InC1 D I1Cˇ

n ; snC1 D sn C
b

2n
;

and kn D

 Z T

sn

Z
Brn

In.g/
2�2

!1=2

:



1742 G. R. GOLDSTEIN, J. A. GOLDSTEIN, A. E. KOGOJ, A. RHANDI AND C. TACELLI

Here I1 D I and r1; s1 > 0 with s1 �
"
2

and r1 < 1 are given. Applying (3.28)
yields

k
1

1Cˇ

nC1  C2nb�1kn: (3.29)

Applying Lemma A.1 in the Appendix, we have

k
1

.1Cˇ/n�1

n 

 
C

b

! an

.1Cˇ/n�2

2
dn

.1Cˇ/n�2 k1;

where an D
Pn�2

j D0.1 C ˇ/j and dn D
Pn�2

j D0.j C 1/.1 C ˇ/n�2�j for n � 2.
Letting n ! 1 we have

sn ! s1Cb; rn ! r1�b;
an

.1C ˇ/n�2
!

✓
1C ˇ

ˇ

◆
;

dn

.1C ˇ/n�2
!

✓
1C ˇ

ˇ

◆2

and taking into account that In D I.1Cˇ/n�1
we obtain

k
1

.1Cˇ/n�1

n D

 Z T

sn

Z
Brn

I.g/2.1Cˇ/n�1

�2

! 1

2.1Cˇ/n�1

! sup
Br1�b⇥Œs1Cb;T ç

I.g/:

Finally, we have

sup
Br1�b⇥Œs1Cb;T ç

I.g/ 

 
C

b
2

1Cˇ
ˇ

! 1Cˇ
ˇ
 Z T

s1

Z
Br1

I.g/2�2

!1=2

: (3.30)

Now, consider a sequence In.r/ 2 C 2.RC;RC/ of convex functions converging
to 1

r� as n ! 1, where � > 0 is a parameter to be chosen later. Replacing I by a
In in (3.30), we obtain

sup
Br1�b⇥Œs1Cb;T ç

g��


 
C

b
2

1Cˇ
ˇ

! 1Cˇ
ˇ
 Z T

s1

Z
Br1

g�2��2

!1=2

:

Set s1 D
3
4
", b D

"
4

and r1 < r0, where r0 is the one chosen in the beginning of
the proof. We have

g.!; t/ D
v

�
� ��1.w/

�
et�HC0

�
.w/ D C0�

�1.w/;

for almost every w 2 Br0
where C0 is the constant given in (3.16). So

sup
Br1�"=4⇥Œ";T ç

g��
 C2C

��
0 "� 1Cˇ

ˇ

 Z T

3
4 "

Z
Br1

�2C2�

!1=2

;
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and it follows that

g.w; t/ � C
� 1

�

2 C0"

⇣
1C 1

ˇ

⌘
1
�

 Z
Br1

�2C2�

!� 1
2�

; (3.31)

for almost every w 2 Br1� "
4

and for all t 2 Œ"; T ç, where C2 is a positive constant
independent of " and r1: A simple computation shows that

R
Br1

�2C2� < 1 by

choosing 0 < � < N C1
˛

� 1, which is possible since ˛ 2 .0;N ç.
Thus (3.23) follows by taking � 2 .0; N C1

˛
� 1/ and " D 2.2r1 � r0/ with

r0

2
< r1 < r0.

This concludes the proof.

We end this section by the following remark.

Remark 3.6. The arguments used are based on the explicit form of the fundamental
solution and on the existence of an underlying group of dilations; thus, the results
would likely extend to the setting of H-type groups.

A. Appendix

In this appendix we collect all technical lemmas that we needed for proving the
main result.

Lemma A.1. For ˇ > 0 and n � 2, define an D
Pn�2

j D0.1 C ˇ/j and dn DPn�2
j D0.j C 1/.1C ˇ/n�2�j and kn � 0 for n � 1 such that

k
1

1Cˇ
n  C2n�1b�1kn�1:

Then

k
1

1Cˇ
n 

 
C

b

!an

2dnk
.1Cˇ/n�2

1 : (A.1)

Proof. We use an induction argument. Assume (A.1) is true for 1  k  n: We
will show

k
1

1Cˇ

nC1 

 
C

b

!anC1

2dnC1k
.1Cˇ/n�1

1 :

Clearly (3.29) gives (A.1) if n D 1: By (3.29),

k
1

1Cˇ

nC1  C2nb�1kn 

 
C

b

!
2n

 
C

b

!an.1Cˇ/

2dn.1Cˇ/k
.1Cˇ/n�1

1 ;
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by the induction hypothesis. Now it is easy to check that

an.1C ˇ/C 1 D

n�2X
j D0

.1C ˇ/j C1
C 1 D

n�1X
j D0

.1C ˇ/j D anC1

and

dn.1C ˇ/C n D

n�2X
j D0

.j C 1/.1C ˇ/n�1�j
C n D

n�1X
j D0

.j C 1/.1C ˇ/n�1�j

D dnC1:

The following two lemmas can be found in [3, Appendix].

Lemma A.2. If 0  h 2 C 1Œ0; 2r ç and h.2r/ D 0, then

✓Z 2r

0

hp.s/s��1ds

◆1=p

 M0

 Z 2r

0

ˇ̌
ˇ̌dh
ds

ˇ̌
ˇ̌2 s��1ds

!1=2

; (A.2)

where � D 2N C 2 � 2˛ > 2, 1
p

D
1
2

�
1
�

and M0 is a constant depending only
on �:

Lemma A.3. If 0 < r 0  r  1, 0  h 2 C 1Œ0; r ç then

✓Z r

0

jh.s/jps2N �2˛C1ds

◆2=p

 OC

✓Z r

0

Œjh0.s/j2 C jh.s/j2çs2N �2˛C1ds

◆
; (A.3)

where 1
p

�
1
2

�
1

2N C2�2˛
and p D 1 if N D ˛ � 1, OC depends on r 0 but not r:

The following lemma is needed for the proof of Lemma 3.5.

Lemma A.4. If k 2 C 1.RC;RC/; Qk.w/ WD k.d.w//; �.w/ D d.w/�˛; w D

.z; l/ 2 H
N ; and 0 < ˇ is such that ˇ C

2
p

D 1, where 1
p

D
1
2

�
1

2N �2˛C2
, then

Z
Br

Qk2C2ˇ .w/�2.w/ dw


OOC

✓Z
Br

⇣
jrH

Qk.w/j2 C Qk2.w/
⌘
�2.w/ dw

◆✓Z
Br

Qk2.w/�2.w/ dw

◆ˇ

:

(A.4)

Proof. We first prove that
Z

Br

jrHk.d.!//j
2�2.d.w// dw D CN

Z r

0

ˇ̌
k0.s//

ˇ̌2
s2N �2˛C1 ds; (A.5)
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where CN WD S2N �1

R ⇡
2

� ⇡
2

cosN ' d' and S2N �1 the surface area of the unit ball

in R
2N .
Consider the change of variables ⇢ D jzj in polar coordinates, and take

⇢
⇢2 D r2 cos'
l D r2 sin'

with ' 2 Œ�⇡
2
; ⇡

2
ç. Recalling from Lemma 2.1 that jrHd.w/j

2 D jzj2d.w/�2;

w D .z; l/ 2 H
N and since rHk.d.w// D k0.d.w//rHd.w/ we obtain

Z
Br

jrHk.d.w//j
2�2.d.w// dw

D S2N �1

Z
jrHk.

4
p
⇢4 C l2/j2�2.

4
p
⇢4 C l2/⇢2N �1 d⇢dl

D S2N �1

Z ⇡
2

� ⇡
2

Z r

0

jk0.s/j2.s2 cos'/s�2s�2˛.s
p

cos'/2N �1

✓
s2

p
cos'

◆
dsd'

D CN

Z r

0

jk0.s/j2s2N �2˛C1 ds

for CN WD S2N �1

R ⇡
2

� ⇡
2

cosN ' d'.
It follows from Hölder’s inequality, (A.5) and Lemma A.3 that

Z
Br

k2C2ˇ .w/�2.w/ dw

DCN

Z r

0

k2C2ˇ .s/�2.s/s2N C1ds



✓
CN

Z r

0

kp.s/�2.s/s2N C1ds

◆2=p ✓
CN

Z r

0

k2.s/�2.s/s2N C1ds

◆ˇ

D

✓
CN

Z r

0

kp.s/s2N �2˛C1ds

◆2=p ✓Z
Br

k2�2

◆ˇ

 OCC
2
p �1

N CN

Z r

0

�
jk0.s/j2 C k2.s/

�
s2N �2˛C1ds

✓Z
Br

k2�2

◆ˇ

D
OOC

✓Z
Br

jrHkj
2�2

C

Z
Br

k2�2

◆✓Z
Br

k2�2

◆ˇ

:

This completes the proof.

We conclude this Appendix by proving the following perturbation result:
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Proposition A.5. Assume that the problem (3.1) has a solution for some u0 � 0,
f � 0 and let B 2 L1.HN /. Then the problem
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

@u

@t
D �HuC V.�/uC B.�/uC f in D0.HN ⇥.0; T //

esslim
t!0C

Z
HN

u.w; t/ .w/dwD

Z
HN

u0.w/ .w/ dw 8  2D.HN /

u � 0 on H
N ⇥ .0; T /

V u 2 L1
loc.H

N ⇥ .0; T //;

(A.6)

has a solution.

Proof. Let un be the solution of (3.2). We know that un " u, u being a solution of
(3.1). Suppose that vn solves

8̂
<̂
ˆ̂:

@vn

@t
D �Hvn C .Vn.�/C B.�// vn C fn in D0

T

lim
t!0C

Z
HN

vn.w; t/ .w/ dw D

Z
HN

u0.w/ .w/ dw 8 2 D.HN /;
(A.7)

where fn D minff; ng and Vn D minfV; ng. Fix � � kBk1, and consider

Un D e�tun:

So Un satisfies
@Un

@t
D �HUn C .Vn C �/Un C etfn:

By the Maximum Principle we have

vn.w; t/  Un.w; t/  e�tu.w; t/ for a.e. .w; t/ 2 H
N

⇥ .0; T /:

Clearly fvng is an increasing sequence and since u; V u 2 L1
loc.H

N ⇥ .0; T //, it
follows by the Monotone Convergence theorem that vn " v and .Vn C B/vn "

.V C B/v in L1
loc.H

N ⇥ .0; T //, and v gives a solution of (A.6).
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