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Instantaneous blowup and singular potentials on Heisenberg groups
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Abstract. In this paper we generalize the instantaneous blowup result from the
1984 paper by Baras and Goldstein and the 2001 paper by Goldstein and Zhang
to the heat equation perturbed by singular potentials on the Heisenberg group.
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1. Introduction

The problem of existence and nonexistence of non-negative solutions to the heat

. . . . c
equation with singular potentials V" (x) = W’ x € Qn,
by

%—L;(x,t) = Au(x,t) + Vy(x)u(x,t) (x,1) € Qn x (0,00)

u(x,0) = uo(x), x € Qn,

(1.1)

RN ifN =2
(0,00) if N =1,
stein [3]. For ; = (0, co) one has to add a Dirichlet boundary condition at 0. For
simplicity we assume in the sequel that N > 3 and set C«(N) := (#)2

Obviously, the phenomenon of existence and nonexistence is caused by the

singular potential V*, which is controlled by Hardy’s inequality

where Qn = was settled and solved by Baras and Gold-

|(/7(X)|2 2 oo mN
V) [ dx < | Ve dx. Ve e CERY),
RV |x]? RN
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together with its optimal constant C«(N). Moreover V* belongs to a borderline
case where the strong maximum principle and Gaussian bounds fail, cf. [2].

Let Wy, (x) = inf{V*(x),n} be the cutoff potential, with ¢ > C«(N). Let u,
be the unique solution of

a
t;;n — Auy — Wyu, =0 in RY x (0, 00)

Un(x,0) = u(x,0) = up(x) > 0.

Here 0 # uy € L*(RY) or, more generally, 1o grows no faster than e at
infinity. Since W}, is bounded, u, exists. If a positive solution u to (1.1) were to
exist, then 0 < u,, < u which is a contradiction, since u, (x, ¢) tends to infinity at
all spatial points and at all positive times (see [3, Theorem 2.2.(ii)]). This is called
instantaneous blowup.

Given non-negative functions ug € L'(RY),0 <V € LL (R¥) and 0 <

f e LY(RY x (0, T)), Baras and Goldstein [3] considered the problem of finding
a function u such that

0<uonRY x(0,7)
V(u e LL. (RN x (0, 7))

loc

(P) 2_’;‘ — AutVu+ f in D'(RY x (0,7))

esslim/ u(x,t)w(x)dx=/ uo(x)¥(x)dx forall y € DRY).
t—0+ RN RN

Here D(RY) := C*(RY), DRY x (0, T)) := CX[RY x (0, T)) with the usual
topology and D'(RY x (0, T)), the dual of D(RY x (0, 7)), is the space of all
distributions on RY x (0, T).

Consider the potential

C
— ifx € B;
Wo(x) = { IxI?
0 if x € RV \ B;.

Here B; can be replaced by Bg for every fixed § > 0, where B, denotes the ball
in RY of center 0 and radius > 0. Baras and Goldstein [3] proved the following
result:

Theorem 1.1.

(1) Let 0 < ¢ < C«(N) and let V. > 0 be a measurable potential satisfying
V e L®°@RN \ By), where By denotes the unit ball in RN. Let 0 < f €
LY(RYN x (0,T)). IfV < Wy in By, then (P) has a positive solution if

T
/ |x|"%uo(x) dx < 00, / / f(x,s)|x|"%dxds < oo, (1.2)
RN 0o JRN
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where o is the smallest root of (N —2 —«) = c. If V = Wy in By, and if
(P) has a solution u, then

T—¢
/ |x]"%uo(x) dx < oo, f [ f(x,8)|x| *dxds < oo,
Q/ 0 Q/

for each & € (0,T) and each Q' CC RN with a as above. If either ug # 0
or f #0inRN x (0,¢) for each & € (0,T), then given Q' CC RV, there is
aC = C(e, Q) > 0 such that

C
M(X,l) = Wlf‘(x?t) EQ/X[E’ T), (13)
X
(i) Ifc > C«(N), V = Wy and either ug % 0 or f #£ 0, then (P) does not have

a positive solution.

Many extensions of the above result have been done by several authors, cf. [6,7,
9,10, 12-17]. In this article we present a new result of this type replacing the
Laplacian on R¥ by the sub-Laplacian Ay (also known as the Kohn Laplacian) on
the Heisenberg group HY . For the definitions see Section 2.

For this purpose let us consider, for w = (z,) € H", the problem

bl
a—?(w,t) = Agu(w,t) + Vi(w)u(w,t) + f(w,t) t>0 weHY

u(w,0) = up(w), w e HY.

(1.4)

Assume ug > 0, f > 0 and as Vi choose the corresponding critical potential in
the case of the Heisenberg group HY

z|?

_ N
W’ w—(Z,l)EH .

V*(w) =

We thus look at the problem

0
(P)un a_L: = Agu + Viu+ f inHY x (0,7)
H
u(w, 0) = up(w) w e Y,

with ug >0 and ug =0 a.e. Set V, (w) =min{Vy(w), n}, frn(w,)=min{f(w,t), n}.
Let u, be the unique non-negative solution of

ou '
(PH)HN a_tn = AHun + Vnun + fn m HN X (0, T)
un(w90) :u()(lU) w eHN’

and assume that u, exists. We only need to assume that the heat equation with no
potential has a global positive solution when u is the initial value, see (2.6) and
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Theorem 2.2 below. It is sufficient that uy € Lloc (HY) and 1 grows no faster than
d (w)—e

Let

at infinity, where d(-) is the function given by (2.4).
C*(N) = N?
We will prove, for u, the solution of (P,)yn~, that:

(I If0 < ¢c < C*(N), then

lim up(w,1) = u(w,r), (w,1) e HY x(0,7),
n—0o0

exists and is a solution of (P )y ;
(D) If ¢ > C*(N), then
lim u,(w,t) = 400 (1.5)
n—>oo

for all (w,?) € HY x (0, T).

The conclusion in (IT), namely (1.5), is known as instantaneous blowup, or (IBU)
for short.

In the existence case (/), by the maximum principle for Ap, it is clear that we
can replace V;,, Vi by Vn, V.« where V < Va, Vi < Vi ae. for each n. Similarly,
for the nonexistence result (II), we can replace Vy,, Vi by Vn, V, where Vi = Vy,
V* > V, a.e. (at least in a neighborhood of the origin).

The paper is organized as follows. In the next section we recall the definitions
of the Heisenberg group HY and the sub-Laplacian Ay on HY . We also give some
known properties of Ag that we need in this paper. In Section 3 we state and prove
the main results of this paper. In the Appendix we prove some technical lemmas
that we use in the proof of the main results.

This paper treats the same basic problem as did [15]. There, the existence part
of Theorem 3.4 was proved, using a different method. But part (ii) of Theorem 3.4
is much stronger than the corresponding result of [15].

In 1999, X. Cabré and Y. Martel [5] gave a different approach to a more general
problem. The paper [3] treated a potential V' > 0 with only one singularity, at the
origin, while [5] allowed for a much more general potential which one takes to
be 0 < W e LL (RN \ {0}). In [5] the authors defined the “generalized first

loc
eigenvalue” of the Schrodinger operator —A — W as

ow=  inf { (VU = W) hux)P) dx}
RN

MECL! (RN)a ”u"L2=1

(or ow = inf {/ (Vu(x)|)> =W(x)|u(x)?) dx} if N 52) .
RN

ueC RN \{0}), [|ull, 2=1

Note that for W(x) = # x € RN, one has oy = —oo if ¢ > C4(N) and
ow > —oo if ¢ < C«(N). Roughly speaking, in [5] the existence of positive
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solutions, when o > —o0 and for oy = —o0, was obtained; further the authors
proved that there is no globally defined pointwise solution that is exponentially
bounded in time. This is a much weaker conclusion than the instantaneous blowup
(IBU).

In the HY setting, the authors in [15] used the method of [5] and proved
nonexistence of globally defined (in (x,)) positive solutions that grow at most
exponentially for ¢ > C*(N). But the question of (IBU) remained open until now.

2. Notation and preliminaries

The Heisenberg group and its sub-Laplacian play a crucial role in several branches
of harmonic analysis, complex geometry and partial differential equations (see,
e.g.,[8,11,19,20]; see also the survey papers [18,21]).

The Heisenberg group HY , N € N, is the stratified Lie group of step two

(R2N*1 0, D;). 2.1)

If we denote the generic point of R2V +1 by w = (z,1) = (x, y,l), withx, y € RV
and / € R, the composition law o is defined by

Ly Do (X Y )=+ Xy +y I+ +2(x"-y -y - x)),

where x - y denotes the inner product in RV .
In (2.1), D), A > 0 denotes the anisotropic dilation

Dy RPVFL L R2NFL Doz, 1) = (Az, A2%D).
The family (D});~ is a group of automorphisms of HY , that is,
Dy((z.1) o (z',1") = (Da(z,1) 0 D, (2", 1)).

The real number
Q:=2N+2

is called the homogeneous dimension of HY since it appears in the formula
|DA(A)] = 22]4],

where A € R?V+1 is a Lebesgue measurable set and |A| stands for the Lebesgue
measure of A.
A basis for the Lie algebra of left invariant vector fields on HY is given by

X,-=8x_,.+2yj81, Yj=8y_/.—2xj81, j=1,...,N.
One easily calculates that

[Xj,Xk]:[Yj,Yk]zoforevery j,kI],...,N, and [Xj,Yk]:—48jk81. 2.2)
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These are the canonical commutation relations of Quantum Mechanics for position
and momentum, whence H” is called the Heisenberg group.
The subelliptic gradient is the gradient taken with respect to the horizontal

directions Vi := (X1,..., Xn, Y1,..., Yn) and the sub-Laplacian on HY is
N
Aw:=) (X} +Y})=Va-Va,
j=1

and it can be explicitly also written as
Ay = A; + 4|z|07 + 49T,
where
N
Az = Z(aij + Bij.)
j=1
and

N
T = Z(yjaxj' _xjayj')'
j=1

From (2.2) it immediately follows that
rank Lie (Xq,..., Xy, Y1,...,YN)(2,]) = 2N + 1

at any point (z,/) € R?¥*+1 Then, by a celebrated theorem of Hérmander, Ag is
hypoelliptic, that is, every distributional solution of Agu = f is smooth whenever
f is smooth.

The operator Ay is left translation invariant on HV and D »-homogeneous of
degree two. Moreover Ay has a fundamental solution (with a pole at the origin)
given by

1 0-2 1 2N
y(w) =cn (m) = CcN (m) , w # (0,0), (2.3)

where .
dw) = (|z|* +1?)% forw = (z,1) e HY 2.4)

defines the metric p(w, W) 1= d(W ! o w) on HY, and ™! denotes the inverse of
W in the group HV .

In the following lemma we summarize some properties of d and its gradient
Vu which one can obtain by simple computations, see [4, Proposition 5.4.3].
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Lemma 2.1. For d(w) = (z]* +12)%, w = (z,1) € HY, the following hold:
IVadw)? = |22(|z]* + 1%)72,

_0-1 2
Apd(w) = I |Vird (w)|?,
o —a |z|?
—Apd *(w) = Cd (w)m (2.5)

for w € HN \ {(0,0)}, where C := a(Q —2 —a) = a(2N —a). So, Ayd ™ €
Ll (HN) ifand only if2N —a > 0.

It is known that the left translation invariance of Ay implies that the semigroup
¢4 is given by a right convolution

e f(w) = /HN F@) ps(w ow)dw, >0, weHY, (2.6)

where (w,?) — p;(w) is the fundamental solution of (E% + AH) u = 0. Hence,

by hypoellipticity, p;(w) is a C* function on HY x (0, 00) and || p;||; = 1. More-
over, p; satisfies the following Gaussian estimates, cf. [22, Theorem 1V.4.2 and
Theorem 1V.4.3].

Theorem 2.2. The heat kernel p; satisfies
d*(w)
t

—d*(w) )

(%}
< <C.t™ 2 - 7
) < pr(w) = Gt =2 exp (4(1 T o

Ct_% exp (—c

for some positive constants C, ¢, Cs, any e > 0, w € HY and t > 0.

3. The main results

In this section we make the following hypotheses.

Hypotheses 3.1.
e 0<VelLl (HV),

loc
e 0< feL'(HN x(0,7));
e 0 <ug e L'(HY) (or more generally ¢ can be a positive finite Radon mea-

sure).
We consider the problem
u

i Agu+Vu+ f in D’'(HY x (0, 7))
esslim [ u(w, 1)y (w) dw =/ uo(w)y (w)dw for all y e D(HYN) 3.1)
t—0+JuN HN :
u>0 on HY x (0,7)

Vue LL (HN x (0,T)).
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Here D(HY) = C°(HY) (respectively D(HY x (0,T)) = CXMHN x (0,T)))
with the usual topologies and D’ := D'(HY) (respectively D := D'(HN x
(0, T))) is its dual space. We also consider the approximating problem

ou,

ot

lim/ un(w,t)W(w)dwzf uo(w)y (w) dw for all y e D(HN).
N HN

t—0t+ Ju

= Agu, + Vaun, + fo in D7,
3.2)

Here

Jn = min{ f,n},
Va€L®, 0<Vy <V, Vy 1V ae

By the variation of parameters formula, (3.2) has a unique bounded non-negative
solution obtained by solving the integral equation

t t
Un (1) = 'Y ug + f eUTIAEY, (Yun(s) ds + f eI (s)ds,  (3.3)
0

0

where (e’ AH) />0 18 the semigroup generated by Ay on HY. We note that V}, is a

bounded multiplication operator on L? (HN ) for all p € [1,400). Since {V},} is
an increasing sequence, clearly {u,} is an increasing sequence, as well.

Proposition 3.2. Suppose there is a (wg.to) € HY x (0,T) with lim u,(wq, to) <
n—>oo
oo. Then (3.1) has a non-negative solution on HY x (0, Tp) for all 0 < Ty < to
given by
u(w,t) = lim u,(w,1) a.e.inHY x (0, Tp). (3.4)
n—>oo
Moreover, if (3.1) has a non-negative solution in H™ x (0, T), then lim u,(w,t) <
n—>oo
oo a.e. inHN x (0, 7).
Proof. Clearly, if u>01is a solution of (3.1), then u,, <u for all n, so lim u,(w, )<
n—->oo

u(w,t) a.e. in HY x (0, T'). This establishes the last part of the proposition.
For the main part, we start by considering
Uy = e'uy, t>0.
Then
U,
ot

and, using the variation of parameters formula, we obtain

= AU, + (Vy + DU, + €' f,

to
e (e85 (Y, 4 )uy(5)) (wo) ds, (wo, to) €HY x (0, T),

(3.5)

e"uy, (wo, fo) Z/

0
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since e4¥uy > 0 and f, > 0. On the other hand, it follows from the Gaussian
estimates in Theorem 2.2 that

/’0 e* (0TI (V,, + Dy (5)) (wo) ds
0

A2 o wp)

>C /tO/ e’ (Vu (D) + Du, (W, 5)(to — s)_% exp (—c ) dwds.
o JuN

to— S

Soif Q' cc HY and ¢ € (0, T), it follows that, for (wq, t9) € HY x (0,T), there
is ¢g > 0 such that

to—¢& to—¢
cO/ / Vn(tb)un(li),s)dli)ds+00/ / U, (W, s) diwds <e™u,(wo, ty).
0 Q7 0 ’

(3.6)
By our hypothesis u, increases, moreover the right-hand side of (3.6) is clearly
bounded, so by the monotone convergence theorem, u, 1 u and V,u, 1t Vu in
L' (' x (0,19 —¢)) and u is a solution of (3.1) in the sense of distributions.  [J

Remark 3.3. Notice that the solution of (3.1) satisfies the integral equation
t
u(w, 1) = e uy(w) +/ 25y (wyu(w, s) ds
0
t
+ / =924 £y, 5) ds, (w,1) € HY x (0, 1).
0
Also, since u,(w,1) — u(w,t) < oo a.e. on HY x (0, 1), we get, using (3.5),

s > (eW™)AaY (y(-, 5))(w) € L1(0,1) fora.e. w € HV.

Cc

The inverse square potential in the Euclidean case of x € RY is V¥x) = W
X

and the critical constant is the best constant
N —2\?
Cx(N) = (T)

in Hardy’s inequality

Ju(x)|?

/ |Vu(x)|* dx > C*(N)[ o dx
RN RV |X]

foru e CX®RN)if N > 3 and foru € C}(@RN \ {0})if N = 1,2.
The multiplication operator V* and the Laplacian both have the same scaling
property, namely

UM ILU) = 2L
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for L = V}or L = A, where U(A) f(x) = /\%f(/\x), for A > 0, defines a
unitary operator on L2(RY).
In the case of the Heisenberg group HY , the corresponding critical potential is

clz|?

VC*(w) = |Z|2 +12

forw = (x,y,l) = (z,1) € HY and ¢ > 0. The corresponding Hardy’s inequality,
due to Garofalo and Lanconelli ([11], see also [4, 15]), is

[ |VHNu<w>|2dwzC*<N)/ 7)) dw.
HN HN

with the best constant being C*(N) = N2, forall N > 1. Both Ay~ and multi-
plication by V* scale in the same way. Let

UM f(z.D) = 2" f(Az.22D);
U (X) is unitary on L2(HY) for all A > 0 and
UMN'LON) = A%L

for L = Agn or L=V}, and all A > 0.
As in the Euclidean case, the critical potential is C*(N)V* = V3 « () hear

the origin. That is, by localizing to the unit ball B in H" (or to B, for any p > 0),
let
Vi) = P+ 3.7)
0 w € HN \ B,

where B is the unit ball centered at the origin in HY with respect to the metric
p(w,w) =dw " ow), w, w e HV.
Finally, notice that the smallest root of
a(Q-2—-—a)=c

is given by

2
o= Q2—2_ (QZ—Z) —c=N—-+N2—¢,

when ¢ < C*(N).
The following theorem is the main result of this paper. It is an extension
of [15, Theorem 1.1] and a generalization of [3].
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Theorem 3.4.

(1) Let 0 < ¢ < C*(N) and let V > 0 be a measurable potential satisfying
Ve LN\ By). Let 0 < f € L'HY x (0, T)). IfV < Vg in By, then
(3.1) has a solution if

T
/ d(w) *“ug(w) dw < oo, / / f(w,s)d(w) *dwds < oo,
HY 0 JHN

(3.8)
where o is the smallest root of (2N —a) = c. If V > V{f in By, and if (3.1)
has a solution u, then

T—¢
/ d(w) “ug(w) dw < oo, / / f(w,s)d(w) *dwds < oo
HN 0 Q’

for each & € (0,T) and each Q' CcC HN with a as above. If either ug # 0
or f # 0inHN x (0,¢) for each ¢ € (0,T), then given Q' cC HN with
0 € Q/, there is a constant C = C(s, Q') > 0 such that

u(w,t) > d“ (w,1) € Q' x[e,T); (3.9

(@)

(i) Ifc > C*(N), V = V§ and either ug # 0 or f # 0, then (3.1) does not
have a positive solution. Moreover, we have instantaneous blowup.

Proof. ~
(i) We can assume that V' < V in HY. Otherwise consider V = V + B =
Vs, + Vype with V < Vg in HV, B € L (HV) and use Proposition A.5 in the
Appendix.

Let ¢(w) := d(w)™®, and choose a convex function p € C2(R) with p(0) =
©'(0) = 0. Next, multiply (3.2) by p’(u,)¢ and integrate over HY x [§,¢) for
0 <8 <t < T.Then, letting [ denote [y,

/ /8un (un)gp = / /AHunP(un)¢+/ /(V Un + f)0 ().

and so

/ /8 T euns=— [ t | Ve Vol ) + ’ [ Whae+ gurp' o
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Then,
t
/ Plin(D) = [ / 0 () Vestin 2 + (Visttn - Vi)l (1)
)

+/8t/(vnun + fn)p/(un)¢>+/ﬂ(un(5))¢

_ [St/_p“(un)|vHu,,|2¢+/8t/p(un)AH¢
+/8t/(vnu,, + fu)P (un)g +/p(un(5))¢,

since o' (uy,)Vuun = Vu(p(uy,)). Hence

[ stentons < | t [ ptenass

t (3.10)
i /8 [ e+ st + [ ptentos.

Replace p in (3.10) with the convex function pg(r) = +/r2 + 2 — &2, r > 0, and
let ¢ — O to obtain, by the monotone convergence theorem,

/unm«ps/;[unAHm/;/(Vnun+fn>¢+/un(8)¢. (3.11)

Next we want to let § — 0. Notice that

8
Py < 1, (8) = S AHHVy o 4 f eBO=9IAutVi) £ (5)ds. (3.12)
0

Since ||V lloo =: ¢n < o0, it follows from the Daletskii—Trotter product formula
that

. s m
S@HHY)y — lim (eSAH/memVn> o
m—00

E e8cn eSAHM(),

by the positivity of the semigroup {¢*4#}. So (3.12) becomes

8
By < 1, (8) < €3on Bhiy, +/ ¢ (=9 6=45 £ ()
0

and by the contractivity of e’4¥ we have

[ (5 u0) 6 = [un@r6 < [ (#u0) g+ el fllct [ 9.
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The strong continuity of the semigroup implies

lim MHuO / Puo.
§—0

tin [ 10,06 = [ puo.

Now let § — 0in (3.11), using (2.5), to deduce

/un(l)¢E/Ot/unA]H@+/I/Vnun¢+/t/fn¢+/u0¢
Z/Ot/( Iz |LE12+V)“'1¢+/ /fn¢+/uo¢
S/OZ/fm+/u0¢,

since V, < V. It follows that if [; [ f¢ + [ ¢uo < oo, then, by Proposition 3.2,
un(w, 1) P u(w,t)(< +00)asn — oo forall t € (0,7] and a.e. w € HY, which
gives the first part of (i) of the theorem.

Let us now prove the second part of (i). The inequality (3.9) is proved in
Lemma 3.5 below. On the other hand, by the first part of (i) we have that, for each
w € HY \ {0}, (3.1) has a solution with ug = ¢~ (w)8y, f = 0and V = V,
where §,, denotes the Dirac measure at w. We denote this solution by u,,. We
define

Thus we have shown that

how (0,1) = uy (W, @)Y, (W,1) € HY x (0, 7],

and set h = u¢p~" and h, = u, ¢! with u (respectively u,) the solution of (3.1)
(respectively (3.2)) obtained by Proposition 3.2.
We now prove

hw. 1) > / I (1.1 ()2t (1) d
BN (3.13)

" fot fHN hy (W, —5) f(W,5)p () dw ds

holds for w € H¥ \ {0} and ¢ € (0, T.
To this end let 1, be the solution of (3.2), and let v, be the solution of

vy,
{ avt = Agv, + VO,nvn
v, (0) = d’(w)_lgw,
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where Vp, = min{V*,n}. Note that by the above construction, v, (W,t) 1

Uy (W0,1) asn — oo forallt € (0, T] and a.e. 0 € HV.
On the other hand, we have

i/ Up (W, $)vy (W, ¢t —s)dw
os HN
M 8 . Ov, g
=/ L(w,s)vn(w,t—s)—un(w,s)i(w,t—s) dw
"N | 0s as

:/N[Un(ﬁ),Z—S)AHun(II),S)—AHU,,(II),l—S)un(II),s)—kfn(ﬁ),s)vn(ﬁ)’ l—s)]du”)
H
+/ (Vn - VO,n) un(ih S)Un(ﬁ),t —S)dlI)
N

> / Jn (D, $)v,(W,t —s)dw.
HN

Hence, integration from § to ¢ — § yields

/ U (1D, £ — 8)0n (1D, 8) d D

BN (3.14)

z/ / f,,(tb,s)vn(ti),t—s)dﬁ)ds—i—/ U (B, 8) vy (B, — 8) d .
) HN HN

Letting § — 0 in (3.14) and noting that, as § — 0, u,(t — §) — u,(t) weakly,
U (t — 8) — vp(t) weakly, u, (8) — uo weakly and v, (§) — ¢ (w) ™18, weakly,
we get

u,,(w,t)d;_l(w) > /: /]HIN fu(W,$)v, (W, t —s5)dwds
(3.15)

+ /HN v (W, o (D) d .

Letting n — oo in (3.15) and noting that u,(w,?) 1 u(w,t) = h(w, )¢ (w) and
Vp (W, 1) 1 Uy (W, 1) = hy (W, )P (W), we obtain (3.13).

Applying (3.9) to u,, for a fixed w € HY \ {0}, we obtain that there exists a
constant C > 0 such that

hyw(@b,1) > C for (w,1) € Q' x [e,T].
It follows from (3.13) that

T—¢
h(w,t) > C/Q/qb(lb)uo(ti))dlb +C/O /Q F(b, 5)p (W) divds.

If a solution u exists, we must have i(w,t) < oo forae. w € HY and all ¢ €
(0, T']. Thus, necessary conditions for the existence of a solution u are

T—¢
/ ¢ (w)ug(w) dw < oo, and / / f(w,s)¢p(w)dwds < oco.
Q 0 Q
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This completes the proof of (i).
(ii) Let ¢ > C*(N) and let u # 0 be a solution of (3.1). Then,

Ju * |22 " |z?
Y A= L - —CHN)— .
% gu = C (N)|Z|4+lzu+(c C*( ))|Z|4+12u

From part (i), a solution exists only if

|z

(c—-C* (N))||4—

" U € LYQ x (0, T —¢)),

for ' any compact set in HY and & > 0. (Here we have assumed 0 € ©'.) But by
the preceding proof (see (3.9) with = N), we have

u > ng_N(w)

in Q' x [g, T), and so we would need ||f|+12d N e LY(Q'), which is false. [
Lemma 3.5. Assume 0 < ¢ < C*(N), « the smallest root of (2N —«a) = ¢, and
0<V e L®MN\B))withV > Vi in By. If u is a solution of (3.1) withug # 0
in HY, then given Q' cC HN, & € (0, T), there is C = C(g, ') > 0 such that
(3.9) holds.

Proof. Assume that Q' ccC HY with 0 € Q'. Since ug # 0, it follows from
Theorem 2.2 that there is a constant Cy > 0 with

"%y (1) > Co, (3.16)

for v € Q' and % <t < T. Since u > e'4uy,, by the Maximum Principle,
(3.9) follows from (3.16) for the case o« = 0. So from now on we assume that « is
strictly positive.

Let as before Vp,;, := inf {V*, n}, and consider the problems

0z * . / N £
T = Apz + V§z 1{11) (IIPVH x [£,T]) (3.17)
z (0, %) = Co xor(w) w e HY,
3Zn A : / N £
e = Anzp + Vonzn inD (H x[3, T]) (3.18)
Zn (w, 2) Co yo/() W e HV,
and for B,, C Q' a ball centered at the origin with radius r¢ € (0, 1),
8vn
- = = Agvp + Voavn in D' (B, x [£,T])
t (3.19)
vy, =0 on 0B,

Un (II), %) = (o w € By,
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Notice that (3.18) has a unique solution z,, > 0, also that z, (i, ) 1 z(w, 1), for
almost every (0,¢) € HY x [5.T), where z is the unique solution of (3.17). It

is also clear that z,, > vy, the solution of (3.19), and that v, is a radial function.!
Finally, we note that u is bounded below by the solution of (3.17) since V' > V.

Multiply the equation in (3.19) by v¥ 19277 p > 2, where we recall that
¢(w) = d(w)™® only depends on w, and integrate to get

v
/ on p=1g2-p — /B (Agva)o? 192 P + / Vonv? 627,
o

B ot Br,

d 1 (va\' =1 ,2—p
g/B » (Z) ¢° = —/B Vv, - Vi (v27'¢*77)
0 0 (3.20)

v\’ .,
+], VM(?) .

r0o

Set g, = %” Then equation (3.20) becomes

ad 1 4(p—1)
—/ —gr¢* = _—Zf Vagh?P¢?
at Jp,, P p By,

SO

+/r gl (AH¢)¢+/ Vongrd®.

0 BrO

Using (2.5) and the fact that (2N — «) = ¢, we obtain Vy, <V < —%, SO
that Vp ,¢? < (—An¢) ¢. Hence we have shown

]
R D2 <0
ot /B En¢” =0,

ro

and we thus have, for % <t <T,that

1/p 1/p
( / v,fq&z_p) < Cy ( ¢2—P) . (3.21)
Bro Bro

Letting p — oo in (3.21) we get
gn < Copae. in By, (3.22)
which is equivalent to v, < Co¢ a.e. in B;,. So we can make sense of
v= lim v, and g = lim g,.
n—>oo n—o0
I Recall that a function g(w) is radial on H" if w = (z,/) and g(z,!) = g(|z|,1). In fact,

our function v, is even more special, since v, = v,(d(w)). Notice that this gives Vv, =
v (d(w)) Vid (w).
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Now we claim that
0<C <g(w.1) < Co (3.23)

fort € [e,T]and a.e. w € B%o. Once (3.23) is proved, and since
UZZZ2Zp=Vp=gno,

(3.9) follows directly in the case Q' = B 0. Otherwise, we observe that for almost
every € Q' \ B%o we have

h(i. 1) = p(0) " u() = p(0) ™" (e uo) () = C2 > 0
from Theorem 2.2 since
p(w)'>C3>0

forall ¢ € [e, T] and some constants C,, C3 > 0. This concludes the proof of (3.9).

Now we must prove (3.23). By (3.22), the right inequality is proved. For
the remaining part of (3.23), let Z € C?(R4,R;) be convex. Multiply equation
(3.19)by 7' (gn)Z(gn )¢ ¥* and integrate over Q = By x(%,1), t € [5, T], where
V¥ € D(By, x (5. T]), to get

a n / !
/QI/(gn)I(gn)%¢w2:/;{AHUnI (8n)Z(gn) PV >+ VonvnT (gn)L(gn) Y2},

1 ad
3 ) 5 @9y = - [Q Vir(gn®) - Va(T (6n)Z(gn)$ V)

+ [ VomgnT (g0) T (g2) V7.
0

Notice that

/ Vir(gnd) - Vie(T (g () V)

0

= fB {(Vagn - V(@ ()L (gn)pV?)$ + gn(Vug - Vi(Z' (gn)LZ(gn)dV>)}

ro

- / (T"(¢0) | Visgn PT ()22 + |VeiZ (gn) 26202}

0

+ /B (VT (gn) - Ved)Y>$T(gn) + (VaT(ga) - Viry )T (gn)d?)

o

+ /B (—Aud)gn L (gn)I(gn)p V> + / — (Vuo - VuZ(gn)) Z(gn)py>

o

N / {T"(gn) | Vign PZ(8n)* V2 + Vi (gn) Pp*v?}

Bry

4 / (VeZ(gn) - V)T (gn)d® + / (—Ad)gnT (n) (g V>,
By, By,
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and so

1 0
3 @) v + [ Vatten v T
- /Q 7" (gn)|Vizgnl* (Z(gn)$*¥?)

_ /Q ViZ(gn)|26292 + [ 2T (g0 I(g)py>  (324)

+ / VomgnT (gn) T (g2) V.
0

Using Holder’s inequality,

> / (VT(ga) - va)I(gn)qszw‘

Bro

1
<! / VeZ(gn)?$2y> +2 / Vi 2T (g) 262,

2 Bry Br,

on the second term of the left-hand side of (3.24), using the convexity assumption
on Z, and integrating by parts on the first term in (3.24), we obtain

2,
2 /5,

< /Q Voud + Aud)gnT (g) L (gn) b (3.25)

1
Eev?9?) ) + 5 [ VTG Pev?
Q

2 2 AP
+ [ 2 (2avev? + v 5 ) o2

Now, we make a key observation. Since ¢ < N, we have ¢ Ag¢ € Ll(BrO). As-
sume 7o to be sufficiently small. Since V" = _A¢H¢ , the first term on the right-hand
side of (3.25) converges to 0 as n — oo by Lebesgue’s dominated convergence
theorem, since ||g,|| < Co in By, and Z is convex, C? and non-negative. Letting

n — 00, (3.25) gives
J..

0
<2 /Q (g)? (2|VHw|2 T wa—f) 0. (3.26)

T(5)y7¢ + /Q VZ(g)Py2¢?

Choose ¢ sothat 0 < ¢ < 1 fors > %, r<roand0 <§ < r,and

1 B,_sx[s+6,T]
y(w,1) = {0 (Bro X [O,s]) U (Bro \ B,_% x [0, T]) )
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so that N
81# 2 _ C
En 8

for some constant C independent of s, 8. Then forall s+8 < ¢ < T (3.26) becomes

[ T(2(1))%9* + / / VaZ(g) P42
<6C57? / / Z(g)*¢>. (3.27)

Note that for fixed ¢, w +— Z (g(w, t)) is a radial function; in fact as we noted
earlier, Z(g(w, t)) is a function of d (w). Applying (A.4), with B as in Lemma A .4,
and (3.27), one obtains

T 2428

/+5 fB IECasls

2 B

é / [( [ |VHI(g(r>)|2¢2+I(g(r>)2¢2) ( / I(g(z))2¢2) ]dr
+8 r—5 Br—8

[[H[r 1VaT)Ps +/+s/, sl(gw](ws [ /B 1(g)¢)
< 5(665—2+ 1) ( /s /B ,. I(g)2¢2) (663—2 /S /B r I(g)2¢2)ﬂ.

Since 0 < § < r < 1, it follows that

( /; /B T ¢2)2+123

T 1/2
735 (6C + 1)1/257! ( / / I(g)2¢2) (3.28)
K} Bfo

. (/ST/Br I(g)2¢2)1/2

Let b > 0 be sufficiently small, and set
b b

b
_ _ 71+ _
= on Intl =Tn = o It =1, B Snt1 = sn+ o

and ky, = ( f ' /B In(g)2¢2)1/2

A

IA
(@)%Y

¢

IA

IA
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Here Z; = 7 and r{,s7 > 0 with 51 > % and r; < 1 are given. Applying (3.28)
yields
k,;if < C2"b7 k. (3.29)

Applying Lemma A.1 in the Appendix, we have

an
1 C\ a+prn—2 d
— C __dn___
k(1+ﬁ)n < . 2(1+ﬁ)n—2k
n f— b 1,

where @, = Y"Z5(1+ B) and d, = Y"Z5( + D(1 + B)" > forn > 2.
Letting n — oo we have

ay 148 d, 1+ B)?
S = S1+b, 1w > 11=b, (1+ﬁ)"—2_>( p )’(1+ﬂ)"‘2_>( p )

and taking into account that Z, = Z™A)" ™" we obtain

1nil T i 2(1+;19)n—1
= ([ T ~  sp I(g).
S rn B

r1—bX[s1+b6,T]

Finally, we have

— 2
sup I(g>s<9 *é‘g) (/ / I(g)¢) . (3.30)
Brl_bx[sl-i-b,T]

Now, consider a sequence Z,(r) € C?(R4,R,) of convex functions converging
to rly as n — 0o, where y > 0 is a parameter to be chosen later. Replacing Z by a
7, in (3.30), we obtain

_ 148 1/2
_ C 148\’ T a2
sup gV=<|-27 g7 .
By, pxls1+b,T] b s1 /B,

Set 51 = %8, b = % and r; < ro, where r¢ is the one chosen in the beginning of

the proof. We have
go.0) = 5 2 97! w) (1 4Co) (w) = Cog™' ()

for almost every w € B,, where Cy is the constant given in (3.16). So

1/2
sup gV < CCyTem ( f ¢2+2Y) :
By —e/ax[e,T] 7€ Y Bry

b)
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and it follows that

-1 141)1 _%
w0y > C; 7 Coel T ([ g} (3:31)

By,
for almost every w € B, —£ and for all ¢ € [, T], where C, is a positive constant
independent of ¢ and ry. A simple computation shows that | B, $>T27 < oo by
choosing 0 < y < % — 1, which is possible since @ € (0, N].

Thus (3.23) follows by taking y € (0, % — 1) and ¢ = 2(2r; — rp) with
2D <y <ro.

This concludes the proof. O

We end this section by the following remark.

Remark 3.6. The arguments used are based on the explicit form of the fundamental
solution and on the existence of an underlying group of dilations; thus, the results
would likely extend to the setting of H-type groups.

A. Appendix

In this appendix we collect all technical lemmas that we needed for proving the
main result.

Lemma A.l. For B > 0 and n > 2, define a, = Z'J’;%(l + B) and d, =
Z'};%(j + 1)1 + B)" 2/ and k,, > 0 for n > 1 such that
N
P < Tk,

Then
1 c\" e

SiNe!

Proof. We use an induction argument. Assume (A.1) is true for 1 < k < n. We
will show

1 E an+1 )

Clearly (3.29) gives (A.1) if n = 1. By (3.29),

1 _C E an(l“l‘ﬁ) .
B < Conp dn (1+p)"~
kaif <C2"07 'k, < (3) on (3) 20 (B) (4R
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by the induction hypothesis. Now it is easy to check that

n—2 n—1
an(1+B)+1=) 1+ +1=3 (1+p) =ann
j=0 j=0

and
n—2 n—1
dy(1+B)+n=> (G+DA+B" "7 +n=> (G +DUA+p" "
Jj=0 j=0
= dp+1. O

The following two lemmas can be found in [3, Appendix].

Lemma A.2. If0 < h € C'[0,2r] and h(2r) = 0, then

2r 1/p or
(/ hp(s)sy_lds) < M, (/
0 0

wherey=2N+2—2(x>2,%=%_
ony.

dh|?

ds

1/2
sy_lds) , (A.2)

% and My is a constant depending only

LemmaAJ3. IfO<r <r <1,0<he CY0,r] then

r 2/
(/0 |h<s>|Ps2N-2““ds) < (/ W )P + [h(s) s>~ 2°‘+1ds) (A3)

— oL and p=c0if N =a—1, C depends on r’ but not r.

1.1
151
where » =2 2Nt2-2a

The following lemma is needed for the proof of Lemma 3.5.

Lemma A4. Ifk € C'(R,Ry), k(w) = k(d(w)), p(w) = d(w) “w =
(z,]) e HV, and0<,31ssuchthatﬁ—|———l wherel—i m then

/B k228 (w) g2 (w) dw

6 i r ~ B
< C (/1; (|VHk(w)|2 + kz(w)> ¢2(w) dw) (/B kz(w)(f)z(w) dw) .

Proof. We first prove that

(A.4)

/ IVik (d(@)2¢(d(w)) dw = Cy / KN 2+ a5 (A5
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where Cny := Son_1 f_jl cosV @ dg and S;n—_1 the surface area of the unit ball
2
in R?V,
Consider the change of variables p = |z| in polar coordinates, and take

0% =r2cosg
2

| =r*sing

with ¢ € [-Z,Z]. Recalling from Lemma 2.1 that |Vgd(w)|* = |z|*d(w)~2,

w = (z,1) € HY and since Vigk(d(w)) = k'(d(w))Vud(w) we obtain
/B Visk (d () P> (d (w)) dw
= Sivo / Visk (o7 + )PV + 12>V dpd

= SzN_1/2 / |k’ ()] (s> COS¢)S_2S_2a(S4/COS§0)2N_1( ) dsde
_% 0

s
J/Cos @

r
CN/ |k/(s)|2s2N—20!+1 ds
0

for Cy := San—1 f_%l cos™ g do.
2
It follows from Holder’s inequality, (A.5) and Lemma A.3 that

/ k228 (w) g2 (w) dw

B

— CN [r k2+23(s)¢2(s)s21\’+1ds
0
r 2/p r B
< (CN/ kp(s)¢2(s)S2N+lds) (CN/ kz(S)¢2(S)S2N+1dS)
0 0

r 2/p B
_ p 2N—20+1 2,2
(CN/O kP (s)s ds) (/Brkqﬁ)

2 B
c;‘lcN/ (IK' () + k>(s5)) >N 2 ds (/ k2¢2)
By

0
N B
=é(/ |VHk|2¢2+/ k2¢2) (/ k2¢2)
B, B, B,

This completes the proof. O

(o}

=

We conclude this Appendix by proving the following perturbation result:
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Proposition A.5. Assume that the problem (3.1) has a solution for some uy > 0,
f > 0andlet B € L®°MN). Then the problem

W A VO BOU S in D' (HN % (0, T))
eStsl_i)I(I)lJr HNu(w, O (w)dw =/HNu0(w)1ﬂ(w) dw VY ¢ e DHYN) (A.6)
u>0 onHYN % (0,7)

Vue LL (HN x(0,7)),

has a solution.

Proof. Let u, be the solution of (3.2). We know that u, 1 u, u being a solution of
(3.1). Suppose that v, solves

o, .
S = Auvn + (Va() + BO) va + fo in Dy

lim / vy (w, )Y (w) dw =/ uo(w)y (w)dw Yy € DHN),
N HN

t—01 Jm

(A7)

where f, = min{ f,n} and V;, = min{V, n}. Fix 1 > || B||00, and consider
U, = e*u,.

So U, satisfies
oU,

dt

By the Maximum Principle we have

= AuUp + (Vu + 1)Uy + €' fo.

Up(w, 1) < Uy(w, 1) < eMu(w,t) forae. (w,1) € HY x (0, T).

Clearly {v,} is an increasing sequence and since u, Vu € Llloc(HN x (0,T)), it

follows by the Monotone Convergence theorem that v, 1 v and (V;, + B)v, 1
(V + B)vin LL (HN x (0, 7)), and v gives a solution of (A.6). O

loc
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