Instantaneous blowup and singular potentials on Heisenberg groups

Gisele R. Goldstein, Jerome A. Goldstein, Alessia E. Kogoj
Abdelaziz Rhandi and Cristian Tacelli

Abstract

In this paper we generalize the instantaneous blowup result from the 1984 paper by Baras and Goldstein and the 2001 paper by Goldstein and Zhang to the heat equation perturbed by singular potentials on the Heisenberg group.

Mathematics Subject Classification (2020): 35K10 (primary); 35R03, 35R05, 34G10, 47B34, 47D06 (secondary).

1. Introduction

The problem of existence and nonexistence of non-negative solutions to the heat equation with singular potentials $V_{c}^{*}(x)=\frac{c}{|x|^{2}}, x \in \Omega_{N}$,

$$
\begin{cases}\frac{\partial u}{\partial t}(x, t)=\Delta u(x, t)+V_{c}^{*}(x) u(x, t) & (x, t) \in \Omega_{N} \times(0, \infty) \tag{1.1}\\ u(x, 0)=u_{0}(x), & x \in \Omega_{N}\end{cases}
$$

where $\Omega_{N}=\left\{\begin{array}{ll}\mathbb{R}^{N} & \text { if } N \geq 2 \\ (0, \infty) & \text { if } N=1,\end{array}\right.$ was settled and solved by Baras and Goldstein [3]. For $\Omega_{1}=(0, \infty)$ one has to add a Dirichlet boundary condition at 0 . For simplicity we assume in the sequel that $N \geq 3$ and set $C_{*}(N):=\left(\frac{N-2}{2}\right)^{2}$.

Obviously, the phenomenon of existence and nonexistence is caused by the singular potential V_{c}^{*}, which is controlled by Hardy's inequality

$$
C_{*}(N) \int_{\mathbb{R}^{N}} \frac{|\varphi(x)|^{2}}{|x|^{2}} d x \leq \int_{\mathbb{R}^{N}}|\nabla \varphi(x)|^{2} d x, \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right),
$$

A. E. Kogoj, A. Rhandi and C. Tacelli have been partially supported by the Gruppo Nazionale per
1'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM).

Received January 22, 2020; accepted in revised form July 23, 2021.
Published online December 2022.
together with its optimal constant $C_{*}(N)$. Moreover V_{c}^{*} belongs to a borderline case where the strong maximum principle and Gaussian bounds fail, $c f$. [2].

Let $W_{n}(x)=\inf \left\{V_{c}^{*}(x), n\right\}$ be the cutoff potential, with $c>C_{*}(N)$. Let u_{n} be the unique solution of

$$
\begin{cases}\frac{\partial_{t} u_{n}}{\partial t}-\Delta u_{n}-W_{n} u_{n}=0 & \text { in } \mathbb{R}^{N} \times(0, \infty) \\ u_{n}(x, 0)=u(x, 0)=u_{0}(x) \geq 0 .\end{cases}
$$

Here $0 \not \equiv u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$ or, more generally, u_{0} grows no faster than $e^{|x|^{2-\varepsilon}}$ at infinity. Since W_{n} is bounded, u_{n} exists. If a positive solution u to (1.1) were to exist, then $0<u_{n} \leq u$ which is a contradiction, since $u_{n}(x, t)$ tends to infinity at all spatial points and at all positive times (see [3, Theorem 2.2.(ii)]). This is called instantaneous blowup.

Given non-negative functions $u_{0} \in L^{1}\left(\mathbb{R}^{N}\right), 0 \leq V \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ and $0 \leq$ $f \in L^{1}\left(\mathbb{R}^{N} \times(0, T)\right)$, Baras and Goldstein [3] considered the problem of finding a function u such that

$$
(P) \begin{cases}0 \leq u \text { on } \mathbb{R}^{N} \times(0, T) & \\ V(\cdot) u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N} \times(0, T)\right) & \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{N} \times(0, T)\right) \\ \frac{\partial u}{\partial t}=\Delta u+V u+f & \text { for all } \psi \in \mathcal{D}\left(\mathbb{R}^{N}\right)\end{cases}
$$

Here $\mathcal{D}\left(\mathbb{R}^{N}\right):=C_{c}^{\infty}\left(\mathbb{R}^{N}\right), \mathcal{D}\left(\mathbb{R}^{N} \times(0, T)\right):=C_{c}^{\infty}\left(\mathbb{R}^{N} \times(0, T)\right)$ with the usual topology and $\mathcal{D}^{\prime}\left(\mathbb{R}^{N} \times(0, T)\right)$, the dual of $\mathcal{D}\left(\mathbb{R}^{N} \times(0, T)\right)$, is the space of all distributions on $\mathbb{R}^{N} \times(0, T)$.

Consider the potential

$$
W_{0}(x)= \begin{cases}\frac{c}{|x|^{2}} & \text { if } x \in B_{1} \\ 0 & \text { if } x \in \mathbb{R}^{N} \backslash B_{1}\end{cases}
$$

Here B_{1} can be replaced by B_{δ} for every fixed $\delta>0$, where B_{r} denotes the ball in \mathbb{R}^{N} of center 0 and radius $r>0$. Baras and Goldstein [3] proved the following result:

Theorem 1.1.

(i) Let $0 \leq c \leq C_{*}(N)$ and let $V \geq 0$ be a measurable potential satisfying $V \in \bar{L}^{\infty}\left(\mathbb{R}^{\bar{N}} \backslash B_{1}\right)$, where B_{1} denotes the unit ball in \mathbb{R}^{N}. Let $0 \leq f \in$ $L^{1}\left(\mathbb{R}^{N} \times(0, T)\right)$. If $V \leq W_{0}$ in B_{1}, then (P) has a positive solution if

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|x|^{-\alpha} u_{0}(x) d x<\infty, \quad \int_{0}^{T} \int_{\mathbb{R}^{N}} f(x, s)|x|^{-\alpha} d x d s<\infty \tag{1.2}
\end{equation*}
$$

where α is the smallest root of $\alpha(N-2-\alpha)=c$. If $V \geq W_{0}$ in B_{1}, and if (P) has a solution u, then

$$
\int_{\Omega^{\prime}}|x|^{-\alpha} u_{0}(x) d x<\infty, \quad \int_{0}^{T-\varepsilon} \int_{\Omega^{\prime}} f(x, s)|x|^{-\alpha} d x d s<\infty
$$

for each $\varepsilon \in(0, T)$ and each $\Omega^{\prime} \subset \subset \mathbb{R}^{N}$ with α as above. If either $u_{0} \neq 0$ or $f \neq 0$ in $\mathbb{R}^{N} \times(0, \varepsilon)$ for each $\varepsilon \in(0, T)$, then given $\Omega^{\prime} \subset \subset \mathbb{R}^{N}$, there is $a C=C\left(\varepsilon, \Omega^{\prime}\right)>0$ such that

$$
\begin{equation*}
u(x, t) \geq \frac{C}{|x|^{\alpha}} \text { if }(x, t) \in \Omega^{\prime} \times[\varepsilon, T) \tag{1.3}
\end{equation*}
$$

(ii) If $c>C_{*}(N), V \geq W_{0}$ and either $u_{0} \not \equiv 0$ or $f \not \equiv 0$, then (P) does not have a positive solution.

Many extensions of the above result have been done by several authors, cf. [6, 7, $9,10,12-17]$. In this article we present a new result of this type replacing the Laplacian on \mathbb{R}^{N} by the sub-Laplacian $\Delta_{\mathbb{H}}$ (also known as the Kohn Laplacian) on the Heisenberg group \mathbb{H}^{N}. For the definitions see Section 2 .

For this purpose let us consider, for $w=(z, l) \in \mathbb{H}^{N}$, the problem

$$
\begin{cases}\frac{\partial u}{\partial t}(w, t)=\Delta_{\mathbb{H}} u(w, t)+V_{*}(w) u(w, t)+f(w, t) & t>0, w \in \mathbb{H}^{N} \tag{1.4}\\ u(w, 0)=u_{0}(w), & w \in \mathbb{H}^{N}\end{cases}
$$

Assume $u_{0} \geq 0, f \geq 0$ and as V_{*} choose the corresponding critical potential in the case of the Heisenberg group \mathbb{H}^{N}

$$
V_{*}(w)=c \frac{|z|^{2}}{|z|^{4}+l^{2}}, \quad w=(z, l) \in \mathbb{H}^{N}
$$

We thus look at the problem

$$
(P)_{\mathbb{H}^{N}} \quad \begin{cases}\frac{\partial u}{\partial t}=\Delta_{\mathbb{H}} u+V_{*} u+f & \text { in } \mathbb{H}^{N} \times(0, T) \\ u(w, 0)=u_{0}(w) & w \in \mathbb{H}^{N},\end{cases}
$$

with $u_{0} \geq 0$ and $u_{0} \neq 0$ a.e. Set $V_{n}(w)=\min \left\{V_{*}(w), n\right\}, f_{n}(w, t)=\min \{f(w, t), n\}$. Let u_{n} be the unique non-negative solution of

$$
\left(P_{n}\right)_{\mathbb{H}^{N}} \quad \begin{cases}\frac{\partial u_{n}}{\partial t}=\Delta_{\mathbb{H}} u_{n}+V_{n} u_{n}+f_{n} & \text { in } \mathbb{H}^{N} \times(0, T) \\ u_{n}(w, 0)=u_{0}(w) & w \in \mathbb{H}^{N},\end{cases}
$$

and assume that u_{n} exists. We only need to assume that the heat equation with no potential has a global positive solution when u_{0} is the initial value, see (2.6) and

Theorem 2.2 below. It is sufficient that $u_{0} \in L_{\text {loc }}^{2}\left(\mathbb{H}^{N}\right)$ and u_{0} grows no faster than $e^{d^{2}(w)-\varepsilon}$ at infinity, where $d(\cdot)$ is the function given by (2.4).

Let

$$
C^{*}(N)=N^{2}
$$

We will prove, for u_{n} the solution of $\left(P_{n}\right)_{\mathbb{H}^{N}}$, that:
(I) If $0<c \leq C^{*}(N)$, then

$$
\lim _{n \rightarrow \infty} u_{n}(w, t)=u(w, t), \quad(w, t) \in \mathbb{H}^{N} \times(0, T)
$$

exists and is a solution of $(P)_{\mathbb{H}^{N}}$;
(II) If $c>C^{*}(N)$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}(w, t)=+\infty \tag{1.5}
\end{equation*}
$$

for all $(w, t) \in \mathbb{H}^{N} \times(0, T)$.
The conclusion in (II), namely (1.5), is known as instantaneous blowup, or (IBU) for short.

In the existence case $(\tilde{\tilde{V}})$, by the maximum principle for $\Delta_{\mathbb{H}}$, it is clear that we can replace V_{n}, V_{*} by $\tilde{V}_{n}, \tilde{V}_{*}$ where $\tilde{V}_{n} \leq V_{n}, V_{*} \leq V_{*}$ a.e. for each n. Similarly, for the nonexistence result (II), we can replace V_{n}, V_{*} by $\tilde{V}_{n}, \tilde{V}_{*}$ where $\tilde{V}_{n} \geq V_{n}$, $\tilde{V}_{*} \geq V_{*}$ a.e. (at least in a neighborhood of the origin).

The paper is organized as follows. In the next section we recall the definitions of the Heisenberg group \mathbb{H}^{N} and the sub-Laplacian $\Delta_{\mathbb{H}}$ on \mathbb{H}^{N}. We also give some known properties of $\Delta_{\mathbb{H}}$ that we need in this paper. In Section 3 we state and prove the main results of this paper. In the Appendix we prove some technical lemmas that we use in the proof of the main results.

This paper treats the same basic problem as did [15]. There, the existence part of Theorem 3.4 was proved, using a different method. But part (ii) of Theorem 3.4 is much stronger than the corresponding result of [15].

In 1999, X. Cabré and Y. Martel [5] gave a different approach to a more general problem. The paper [3] treated a potential $V \geq 0$ with only one singularity, at the origin, while [5] allowed for a much more general potential which one takes to be $0 \leq W \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$. In [5] the authors defined the "generalized first eigenvalue" of the Schrödinger operator $-\Delta-W$ as

$$
\begin{aligned}
& \sigma_{W}=\inf _{u \in C_{c}^{1}\left(\mathbb{R}^{N}\right),\|u\|_{L^{2}}=1}\left\{\int_{\mathbb{R}^{N}}\left(|\nabla u(x)|^{2}-W(x)|u(x)|^{2}\right) d x\right\} \\
& \left(\text { or } \sigma_{W}=\inf _{u \in C_{c}^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right),\|u\|_{L^{2}}=1}\left\{\int_{\mathbb{R}^{N}}\left(|\nabla u(x)|^{2}-W(x)|u(x)|^{2}\right) d x\right\} \text { if } N \leq 2\right) .
\end{aligned}
$$

Note that for $W(x)=\frac{c}{|x|^{2}}, x \in \mathbb{R}^{N}$, one has $\sigma_{W}=-\infty$ if $c>C_{*}(N)$ and $\sigma_{W}>-\infty$ if $c \leq C_{*}(N)$. Roughly speaking, in [5] the existence of positive
solutions, when $\sigma_{W}>-\infty$ and for $\sigma_{W}=-\infty$, was obtained; further the authors proved that there is no globally defined pointwise solution that is exponentially bounded in time. This is a much weaker conclusion than the instantaneous blowup (IBU).

In the \mathbb{H}^{N} setting, the authors in [15] used the method of [5] and proved nonexistence of globally defined (in (x, t)) positive solutions that grow at most exponentially for $c>C^{*}(N)$. But the question of (IBU) remained open until now.

2. Notation and preliminaries

The Heisenberg group and its sub-Laplacian play a crucial role in several branches of harmonic analysis, complex geometry and partial differential equations (see, e.g., $[8,11,19,20]$; see also the survey papers $[18,21])$.

The Heisenberg group $\mathbb{H}^{N}, N \in \mathbb{N}$, is the stratified Lie group of step two

$$
\begin{equation*}
\left(\mathbb{R}^{2 N+1}, \circ, D_{\lambda}\right) \tag{2.1}
\end{equation*}
$$

If we denote the generic point of $\mathbb{R}^{2 N+1}$ by $w=(z, l)=(x, y, l)$, with $x, y \in \mathbb{R}^{N}$ and $l \in \mathbb{R}$, the composition law \circ is defined by

$$
(x, y, l) \circ\left(x^{\prime}, y^{\prime}, l^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, l+l^{\prime}+2\left(x^{\prime} \cdot y-y^{\prime} \cdot x\right)\right),
$$

where $x \cdot y$ denotes the inner product in \mathbb{R}^{N}.
In (2.1), $D_{\lambda}, \lambda>0$ denotes the anisotropic dilation

$$
D_{\lambda}: \mathbb{R}^{2 N+1} \longrightarrow \mathbb{R}^{2 N+1}, D_{\lambda}(z, l)=\left(\lambda z, \lambda^{2} l\right)
$$

The family $\left(D_{\lambda}\right)_{\lambda>0}$ is a group of automorphisms of \mathbb{H}^{N}, that is,

$$
D_{\lambda}\left((z, l) \circ\left(z^{\prime}, l^{\prime}\right)\right)=\left(D_{\lambda}(z, l) \circ D_{\lambda}\left(z^{\prime}, l^{\prime}\right)\right)
$$

The real number

$$
Q:=2 N+2
$$

is called the homogeneous dimension of \mathbb{H}^{N} since it appears in the formula

$$
\left|D_{\lambda}(A)\right|=\lambda^{Q}|A|
$$

where $A \subseteq \mathbb{R}^{2 N+1}$ is a Lebesgue measurable set and $|A|$ stands for the Lebesgue measure of A.

A basis for the Lie algebra of left invariant vector fields on \mathbb{H}^{N} is given by

$$
X_{j}=\partial_{x_{j}}+2 y_{j} \partial_{l}, \quad Y_{j}=\partial_{y_{j}}-2 x_{j} \partial_{l}, \quad j=1, \ldots, N
$$

One easily calculates that

$$
\begin{equation*}
\left[X_{j}, X_{k}\right]=\left[Y_{j}, Y_{k}\right]=0 \text { for every } j, k=1, \ldots, N, \text { and }\left[X_{j}, Y_{k}\right]=-4 \delta_{j k} \partial_{l} \tag{2.2}
\end{equation*}
$$

These are the canonical commutation relations of Quantum Mechanics for position and momentum, whence \mathbb{H}^{N} is called the Heisenberg group.

The subelliptic gradient is the gradient taken with respect to the horizontal directions $\nabla_{\mathbb{H}}:=\left(X_{1}, \ldots, X_{N}, Y_{1}, \ldots, Y_{N}\right)$ and the sub-Laplacian on \mathbb{H}^{N} is

$$
\Delta_{\mathbb{H}}:=\sum_{j=1}^{N}\left(X_{j}^{2}+Y_{j}^{2}\right)=\nabla_{\mathbb{H}} \cdot \nabla_{\mathbb{H}},
$$

and it can be explicitly also written as

$$
\Delta_{\mathbb{H}}=\Delta_{z}+4|z|^{2} \partial_{l}^{2}+4 \partial_{l} T,
$$

where

$$
\Delta_{z}=\sum_{j=1}^{N}\left(\partial_{x_{j}}^{2}+\partial_{y_{j}}^{2}\right)
$$

and

$$
T=\sum_{j=1}^{N}\left(y_{j} \partial_{x_{j}}-x_{j} \partial_{y_{j}}\right)
$$

From (2.2) it immediately follows that

$$
\operatorname{rank} \operatorname{Lie}\left(X_{1}, \ldots, X_{N}, Y_{1}, \ldots, Y_{N}\right)(z, l)=2 N+1
$$

at any point $(z, l) \in \mathbb{R}^{2 N+1}$. Then, by a celebrated theorem of Hörmander, $\Delta_{\mathbb{H}}$ is hypoelliptic, that is, every distributional solution of $\Delta_{\mathbb{H}} u=f$ is smooth whenever f is smooth.

The operator $\Delta_{\mathbb{H}}$ is left translation invariant on \mathbb{H}^{N} and D_{λ}-homogeneous of degree two. Moreover $\Delta_{\mathbb{H}}$ has a fundamental solution (with a pole at the origin) given by

$$
\begin{equation*}
\gamma(w)=c_{N}\left(\frac{1}{d(w)}\right)^{Q-2}=c_{N}\left(\frac{1}{d(w)}\right)^{2 N}, \quad w \neq(0,0) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
d(w)=\left(|z|^{4}+l^{2}\right)^{\frac{1}{4}} \text { for } w=(z, l) \in \mathbb{H}^{N} \tag{2.4}
\end{equation*}
$$

defines the metric $\rho(w, \tilde{w}):=d\left(\tilde{w}^{-1} \circ w\right)$ on \mathbb{H}^{N}, and \tilde{w}^{-1} denotes the inverse of \tilde{w} in the group \mathbb{H}^{N}.

In the following lemma we summarize some properties of d and its gradient $\nabla_{\mathbb{H}}$ which one can obtain by simple computations, see [4, Proposition 5.4.3].

Lemma 2.1. For $d(w)=\left(|z|^{4}+l^{2}\right)^{\frac{1}{4}}, w=(z, l) \in \mathbb{H}^{N}$, the following hold:

$$
\begin{align*}
\left|\nabla_{\mathbb{H}} d(w)\right|^{2} & =|z|^{2}\left(|z|^{4}+l^{2}\right)^{-\frac{1}{2}}, \\
\Delta_{\mathbb{H}} d(w) & =\frac{Q-1}{d(w)}\left|\nabla_{\mathbb{H}} d(w)\right|^{2}, \\
-\Delta_{\mathbb{H}} d^{-\alpha}(w) & =C d^{-\alpha}(w) \frac{|z|^{2}}{|z|^{4}+l^{2}} \tag{2.5}
\end{align*}
$$

for $w \in \mathbb{H}^{N} \backslash\{(0,0)\}$, where $C:=\alpha(Q-2-\alpha)=\alpha(2 N-\alpha)$. So, $\Delta_{\mathbb{H}} d^{-\alpha} \in$ $L_{\mathrm{loc}}^{1}\left(\mathbb{H}^{N}\right)$ if and only if $2 N-\alpha>0$.
It is known that the left translation invariance of $\Delta_{\mathbb{H}}$ implies that the semigroup $e^{t \Delta_{\mathbb{H}}}$ is given by a right convolution

$$
\begin{equation*}
e^{t \Delta_{\mathbb{H}}} f(w)=\int_{\mathbb{H}^{N}} f(\tilde{w}) p_{t}\left(\tilde{w}^{-1} \circ w\right) d \tilde{w}, \quad t>0, w \in \mathbb{H}^{N}, \tag{2.6}
\end{equation*}
$$

where $(w, t) \mapsto p_{t}(w)$ is the fundamental solution of $\left(\frac{\partial}{\partial t}+\Delta_{\mathbb{H}}\right) u=0$. Hence, by hypoellipticity, $p_{t}(w)$ is a C^{∞} function on $\mathbb{H}^{N} \times(0, \infty)$ and $\left\|p_{t}\right\|_{1}=1$. Moreover, p_{t} satisfies the following Gaussian estimates, $c f$. [22, Theorem IV.4.2 and Theorem IV.4.3].

Theorem 2.2. The heat kernel p_{t} satisfies

$$
C t^{-\frac{Q}{2}} \exp \left(-c \frac{d^{2}(w)}{t}\right) \leq p_{t}(w) \leq C_{\varepsilon} t^{-\frac{Q}{2}} \exp \left(\frac{-d^{2}(w)}{4(1+\varepsilon) t}\right)
$$

for some positive constants C, c, C_{ε}, any $\varepsilon>0, w \in \mathbb{H}^{N}$ and $t>0$.

3. The main results

In this section we make the following hypotheses.

Hypotheses 3.1.

- $0 \leq V \in L_{\mathrm{loc}}^{1}\left(\mathbb{H}^{N}\right)$;
- $0 \leq f \in L^{1}\left(\mathbb{H}^{N} \times(0, T)\right)$;
- $0 \leq u_{0} \in L^{1}\left(\mathbb{H}^{N}\right)$ (or more generally u_{0} can be a positive finite Radon measure).
We consider the problem

$$
\begin{cases}\frac{\partial u}{\partial t}=\Delta_{\mathbb{H}} u+V u+f & \text { in } \mathcal{D}^{\prime}\left(\mathbb{H}^{N} \times(0, T)\right) \tag{3.1}\\ \underset{t \rightarrow 0^{+}}{\operatorname{esslim}} \int_{\mathbb{H}^{N}} u(w, t) \psi(w) d w=\int_{\mathbb{H}^{N}} u_{0}(w) \psi(w) d w & \text { for all } \psi \in \mathcal{D}\left(\mathbb{H}^{N}\right) \\ u \geq 0 & \text { on } \mathbb{H}^{N} \times(0, T) \\ V u \in L_{\operatorname{loc}}^{1}\left(\mathbb{H}^{N} \times(0, T)\right) . & \end{cases}
$$

Here $\mathcal{D}\left(\mathbb{H}^{N}\right)=C_{c}^{\infty}\left(\mathbb{H}^{N}\right)\left(\right.$ respectively $\left.\mathcal{D}\left(\mathbb{H}^{N} \times(0, T)\right)=C_{c}^{\infty}\left(\mathbb{H}^{N} \times(0, T)\right)\right)$ with the usual topologies and $\mathcal{D}^{\prime}:=\mathcal{D}^{\prime}\left(\mathbb{H}^{N}\right)$ (respectively $\mathcal{D}_{T}^{\prime}:=\mathcal{D}^{\prime}\left(\mathbb{H}^{N} \times\right.$ $(0, T))$) is its dual space. We also consider the approximating problem

$$
\left\{\begin{array}{lc}
\frac{\partial u_{n}}{\partial t}=\Delta_{\mathbb{H}} u_{n}+V_{n} u_{n}+f_{n} & \text { in } \mathcal{D}_{T}^{\prime} \tag{3.2}\\
\lim _{t \rightarrow 0^{+}} \int_{\mathbb{H}^{N}} u_{n}(w, t) \psi(w) d w=\int_{\mathbb{H}^{N}} u_{0}(w) \psi(w) d w & \text { for all } \psi \in \mathcal{D}\left(\mathbb{H}^{N}\right)
\end{array}\right.
$$

Here

$$
\begin{aligned}
& f_{n}=\min \{f, n\}, \\
& V_{n} \in L^{\infty}, 0 \leq V_{n} \leq V, V_{n} \uparrow V \text { a.e. }
\end{aligned}
$$

By the variation of parameters formula, (3.2) has a unique bounded non-negative solution obtained by solving the integral equation

$$
\begin{equation*}
u_{n}(t)=e^{t \Delta_{\mathbb{H}}} u_{0}+\int_{0}^{t} e^{(t-s) \Delta_{\mathbb{H}}} V_{n}(\cdot) u_{n}(s) d s+\int_{0}^{t} e^{(t-s) \Delta_{\mathbb{H}}} f_{n}(s) d s, \tag{3.3}
\end{equation*}
$$

where $\left(e^{t \Delta_{\mathbb{H}}}\right)_{t \geq 0}$ is the semigroup generated by $\Delta_{\mathbb{H}}$ on \mathbb{H}^{N}. We note that V_{n} is a bounded multiplication operator on $L^{p}\left(\mathbb{H}^{N}\right)$ for all $p \in[1,+\infty)$. Since $\left\{V_{n}\right\}$ is an increasing sequence, clearly $\left\{u_{n}\right\}$ is an increasing sequence, as well.

Proposition 3.2. Suppose there is a $\left(w_{0}, t_{0}\right) \in \mathbb{H}^{N} \times(0, T)$ with $\lim _{n \rightarrow \infty} u_{n}\left(w_{0}, t_{0}\right)<$ ∞. Then (3.1) has a non-negative solution on $\mathbb{H}^{N} \times\left(0, T_{0}\right)$ for all $0<T_{0}<t_{0}$ given by

$$
\begin{equation*}
u(w, t)=\lim _{n \rightarrow \infty} u_{n}(w, t) \quad \text { a.e. in } \mathbb{H}^{N} \times\left(0, T_{0}\right) \tag{3.4}
\end{equation*}
$$

Moreover, if (3.1) has a non-negative solution in $\mathbb{H}^{N} \times(0, T)$, then $\lim _{n \rightarrow \infty} u_{n}(w, t)<$ ∞ a.e. in $\mathbb{H}^{N} \times(0, T)$.

Proof. Clearly, if $u \geq 0$ is a solution of (3.1), then $u_{n} \leq u$ for all n, so $\lim _{n \rightarrow \infty} u_{n}(w, t) \leq$ $u(w, t)$ a.e. in $\mathbb{H}^{N} \times(0, T)$. This establishes the last part of the proposition.

For the main part, we start by considering

$$
U_{n}=e^{t} u_{n}, \quad t>0
$$

Then

$$
\frac{\partial U_{n}}{\partial t}=\Delta_{\mathbb{H}} U_{n}+\left(V_{n}+1\right) U_{n}+e^{t} f_{n}
$$

and, using the variation of parameters formula, we obtain

$$
\begin{equation*}
e^{t_{0}} u_{n}\left(w_{0}, t_{0}\right) \geq \int_{0}^{t_{0}} e^{s}\left(e^{\left(t_{0}-s\right) \Delta_{\mathbb{H}}}\left(V_{n}+1\right) u_{n}(s)\right)\left(w_{0}\right) d s, \quad\left(w_{0}, t_{0}\right) \in \mathbb{H}^{N} \times(0, T), \tag{3.5}
\end{equation*}
$$

since $e^{\Delta_{\mathbb{H}}} u_{0} \geq 0$ and $f_{n} \geq 0$. On the other hand, it follows from the Gaussian estimates in Theorem 2.2 that

$$
\begin{aligned}
& \int_{0}^{t_{0}} e^{s}\left(e^{\left(t_{0}-s\right) \Delta_{\mathbb{H}}}\left(V_{n}+1\right) u_{n}(s)\right)\left(w_{0}\right) d s \\
\geq & C \int_{0}^{t_{0}} \int_{\mathbb{H}^{N}} e^{s}\left(V_{n}(\tilde{w})+1\right) u_{n}(\tilde{w}, s)\left(t_{0}-s\right)^{-\frac{Q}{2}} \exp \left(-c \frac{d^{2}\left(\tilde{w}^{-1} \circ w_{0}\right)}{t_{0}-s}\right) d \tilde{w} d s .
\end{aligned}
$$

So if $\Omega^{\prime} \subset \subset \mathbb{H}^{N}$ and $\varepsilon \in(0, T)$, it follows that, for $\left(w_{0}, t_{0}\right) \in \mathbb{H}^{N} \times(0, T)$, there is $c_{0}>0$ such that

$$
\begin{equation*}
c_{0} \int_{0}^{t_{0}-\varepsilon} \int_{\Omega^{\prime}} V_{n}(\tilde{w}) u_{n}(\tilde{w}, s) d \tilde{w} d s+c_{0} \int_{0}^{t_{0}-\varepsilon} \int_{\Omega^{\prime}} u_{n}(\tilde{w}, s) d \tilde{w} d s \leq e^{t_{0}} u_{n}\left(w_{0}, t_{0}\right) \tag{3.6}
\end{equation*}
$$

By our hypothesis u_{n} increases, moreover the right-hand side of (3.6) is clearly bounded, so by the monotone convergence theorem, $u_{n} \uparrow u$ and $V_{n} u_{n} \uparrow V u$ in $L^{1}\left(\Omega^{\prime} \times\left(0, t_{0}-\varepsilon\right)\right)$ and u is a solution of (3.1) in the sense of distributions.

Remark 3.3. Notice that the solution of (3.1) satisfies the integral equation

$$
\begin{aligned}
u(w, t)= & e^{t \Delta_{\mathbb{H}}} u_{0}(w)+\int_{0}^{t} e^{(t-s) \Delta_{\mathbb{H}}} V(w) u(w, s) d s \\
& +\int_{0}^{t} e^{(t-s) \Delta_{\mathbb{H}}} f(w, s) d s, \quad(w, t) \in \mathbb{H}^{N} \times\left(0, t_{0}\right) .
\end{aligned}
$$

Also, since $u_{n}(w, t) \rightarrow u(w, t)<\infty$ a.e. on $\mathbb{H}^{N} \times\left(0, t_{0}\right)$, we get, using (3.5), $s \longmapsto\left(e^{\left(t_{0}-s\right) \Delta_{\mathbb{H}}} V(\cdot) u(\cdot, s)\right)(w) \in L^{1}\left(0, t_{0}\right)$ for a.e. $w \in \mathbb{H}^{N}$.

The inverse square potential in the Euclidean case of $x \in \mathbb{R}^{N}$ is $V_{c}^{*}(x)=\frac{c}{|x|^{2}}$ and the critical constant is the best constant

$$
C_{*}(N)=\left(\frac{N-2}{2}\right)^{2}
$$

in Hardy's inequality

$$
\int_{\mathbb{R}^{N}}|\nabla u(x)|^{2} d x \geq C_{*}(N) \int_{\mathbb{R}^{N}} \frac{|u(x)|^{2}}{|x|^{2}} d x
$$

for $u \in C_{c}^{1}\left(\mathbb{R}^{N}\right)$ if $N \geq 3$ and for $u \in C_{c}^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ if $N=1,2$.
The multiplication operator V_{c}^{*} and the Laplacian both have the same scaling property, namely

$$
U(\lambda)^{-1} \mathcal{L} U(\lambda)=\lambda^{2} \mathcal{L}
$$

for $\mathcal{L}=V_{c}^{*}$ or $\mathcal{L}=\Delta$, where $U(\lambda) f(x)=\lambda^{\frac{N}{2}} f(\lambda x)$, for $\lambda>0$, defines a unitary operator on $L^{2}\left(\mathbb{R}^{N}\right)$.

In the case of the Heisenberg group \mathbb{H}^{N}, the corresponding critical potential is

$$
\tilde{V}_{c}^{*}(w)=\frac{c|z|^{2}}{|z|^{2}+l^{2}}
$$

for $w=(x, y, l)=(z, l) \in \mathbb{H}^{N}$ and $c>0$. The corresponding Hardy's inequality, due to Garofalo and Lanconelli ([11], see also [4, 15]), is

$$
\int_{\mathbb{H}^{N}}\left|\nabla_{\mathbb{H}^{N}} u(w)\right|^{2} d w \geq C^{*}(N) \int_{\mathbb{H}^{N}} \tilde{V}_{1}^{*}(w)|u(w)|^{2} d w,
$$

with the best constant being $C^{*}(N)=N^{2}$, for all $N \geq 1$. Both $\Delta_{\mathbb{H}^{N}}$ and multiplication by \tilde{V}_{c}^{*} scale in the same way. Let

$$
\tilde{U}(\lambda) f(z, l)=\lambda^{N+1} f\left(\lambda z, \lambda^{2} l\right)
$$

$\tilde{U}(\lambda)$ is unitary on $L^{2}\left(\mathbb{H}^{N}\right)$ for all $\lambda>0$ and

$$
\tilde{U}(\lambda)^{-1} \mathcal{L} \tilde{U}(\lambda)=\lambda^{2} \mathcal{L}
$$

for $\mathcal{L}=\Delta_{\mathbb{H}^{N}}$ or $\mathcal{L}=\tilde{V}_{c}^{*}$, and all $\lambda>0$.
As in the Euclidean case, the critical potential is $C^{*}(N) \tilde{V}_{1}^{*}=\tilde{V}_{C^{*}(N)}^{*}$ near the origin. That is, by localizing to the unit ball B_{1} in \mathbb{H}^{N} (or to B_{ρ} for any $\rho>0$), let

$$
V_{0}^{*}(w)= \begin{cases}\frac{c|z|^{2}}{|z|^{4}+l^{2}} & w \in B_{1} \tag{3.7}\\ 0 & w \in \mathbb{H}^{N} \backslash B_{1}\end{cases}
$$

where B_{1} is the unit ball centered at the origin in \mathbb{H}^{N} with respect to the metric $\rho\left(w, w^{\prime}\right)=d\left(w^{\prime-1} \circ w\right), w, w^{\prime} \in \mathbb{H}^{N}$.

Finally, notice that the smallest root of

$$
\alpha(Q-2-\alpha)=c
$$

is given by

$$
\alpha=\frac{Q-2}{2}-\sqrt{\left(\frac{Q-2}{2}\right)^{2}-c}=N-\sqrt{N^{2}-c}
$$

when $c \leq C^{*}(N)$.
The following theorem is the main result of this paper. It is an extension of [15, Theorem 1.1] and a generalization of [3].

Theorem 3.4.

(i) Let $0 \leq c \leq C^{*}(N)$ and let $V \geq 0$ be a measurable potential satisfying $V \in L^{\infty}\left(\mathbb{H}^{\bar{N}} \backslash B_{1}\right)$. Let $0 \leq f \in L^{1}\left(\mathbb{H}^{N} \times(0, T)\right)$. If $V \leq V_{0}^{*}$ in B_{1}, then (3.1) has a solution if

$$
\begin{equation*}
\int_{\mathbb{H}^{N}} d(w)^{-\alpha} u_{0}(w) d w<\infty, \quad \int_{0}^{T} \int_{\mathbb{H}^{N}} f(w, s) d(w)^{-\alpha} d w d s<\infty \tag{3.8}
\end{equation*}
$$

where α is the smallest root of $\alpha(2 N-\alpha)=c$. If $V \geq V_{0}^{*}$ in B_{1}, and if (3.1) has a solution u, then

$$
\int_{\mathbb{H}^{N}} d(w)^{-\alpha} u_{0}(w) d w<\infty, \quad \int_{0}^{T-\varepsilon} \int_{\Omega^{\prime}} f(w, s) d(w)^{-\alpha} d w d s<\infty
$$

for each $\varepsilon \in(0, T)$ and each $\Omega^{\prime} \subset \subset \mathbb{H}^{N}$ with α as above. If either $u_{0} \not \equiv 0$ or $f \not \equiv 0$ in $\mathbb{H}^{N} \times(0, \varepsilon)$ for each $\varepsilon \in(0, T)$, then given $\Omega^{\prime} \subset \subset \mathbb{H}^{N}$ with $0 \in \Omega^{\prime}$, there is a constant $C=C\left(\varepsilon, \Omega^{\prime}\right)>0$ such that

$$
\begin{equation*}
u(w, t) \geq \frac{C}{d^{\alpha}(\omega)}, \quad(w, t) \in \Omega^{\prime} \times[\varepsilon, T] \tag{3.9}
\end{equation*}
$$

(ii) If $c>C^{*}(N), V \geq V_{0}^{*}$ and either $u_{0} \not \equiv 0$ or $f \not \equiv 0$, then (3.1) does not have a positive solution. Moreover, we have instantaneous blowup.

Proof.

(i) We can assume that $V \leq V_{0}^{*}$ in \mathbb{H}^{N}. Otherwise consider $V=\tilde{V}+B=$: $V \chi_{B_{1}}+V \chi_{B_{1}^{c}}$ with $\tilde{V} \leq V_{0}^{*}$ in $\mathbb{H}^{N}, B \in L^{\infty}\left(\mathbb{H}^{N}\right)$ and use Proposition A. 5 in the Appendix.

Let $\phi(w):=d(w)^{-\alpha}$, and choose a convex function $\rho \in C^{2}(\mathbb{R})$ with $\rho(0)=$ $\rho^{\prime}(0)=0$. Next, multiply (3.2) by $\rho^{\prime}\left(u_{n}\right) \phi$ and integrate over $\mathbb{H}^{N} \times[\delta, t)$ for $0<\delta<t<T$. Then, letting \int denote $\int_{\mathbb{H}^{N}}$,

$$
\int_{\delta}^{t} \int \frac{\partial u_{n}}{\partial s} \rho^{\prime}\left(u_{n}\right) \phi=\int_{\delta}^{t} \int \Delta_{\mathbb{H}} u_{n} \rho^{\prime}\left(u_{n}\right) \phi+\int_{\delta}^{t} \int\left(V_{n} u_{n}+f_{n}\right) \rho^{\prime}\left(u_{n}\right) \phi
$$

and so

$$
\iint_{\delta}^{t} \frac{\partial}{\partial s}\left(\rho\left(u_{n}\right)\right) \phi=-\int_{\delta}^{t} \int \nabla_{\mathbb{H}} u_{n} \cdot \nabla_{\mathbb{H}}\left(\rho^{\prime}\left(u_{n}\right) \phi\right)+\int_{\delta}^{t} \int\left(V_{n} u_{n}+f_{n}\right) \rho^{\prime}\left(u_{n}\right) \phi
$$

1734 G. R. Goldstein, J. A. Goldstein, A. E. Kogoj, A. Rhandi and C. Tacelli

Then,

$$
\begin{aligned}
\int \rho\left(u_{n}(t)\right) \phi=- & \int_{\delta}^{t} \int \rho^{\prime \prime}\left(u_{n}\right)\left|\nabla_{\mathbb{H}} u_{n}\right|^{2} \phi+\left(\nabla_{\mathbb{H}} u_{n} \cdot \nabla_{\mathbb{H}} \phi\right) \rho^{\prime}\left(u_{n}\right) \\
& +\int_{\delta}^{t} \int\left(V_{n} u_{n}+f_{n}\right) \rho^{\prime}\left(u_{n}\right) \phi+\int \rho\left(u_{n}(\delta)\right) \phi \\
= & \int_{\delta}^{t} \int-\rho^{\prime \prime}\left(u_{n}\right)\left|\nabla_{\mathbb{H}} u_{n}\right|^{2} \phi+\int_{\delta}^{t} \int \rho\left(u_{n}\right) \Delta_{\mathbb{H}} \phi \\
& +\int_{\delta}^{t} \int\left(V_{n} u_{n}+f_{n}\right) \rho^{\prime}\left(u_{n}\right) \phi+\int \rho\left(u_{n}(\delta)\right) \phi,
\end{aligned}
$$

since $\rho^{\prime}\left(u_{n}\right) \nabla_{\mathbb{H}} u_{n}=\nabla_{\mathbb{H}}\left(\rho\left(u_{n}\right)\right)$. Hence

$$
\begin{align*}
\int \rho\left(u_{n}(t)\right) \phi \leq & \int_{\delta}^{t} \int \rho\left(u_{n}\right) \Delta_{\mathbb{H}} \phi \tag{3.10}\\
& +\int_{\delta}^{t} \int\left(V_{n} u_{n}+f_{n}\right) \rho^{\prime}\left(u_{n}\right) \phi+\int \rho\left(u_{n}(\delta)\right) \phi
\end{align*}
$$

Replace ρ in (3.10) with the convex function $\rho_{\varepsilon}(r)=\sqrt{r^{2}+\varepsilon^{2}}-\varepsilon^{2}, r \geq 0$, and let $\varepsilon \rightarrow 0$ to obtain, by the monotone convergence theorem,

$$
\begin{equation*}
\int u_{n}(t) \phi \leq \int_{\delta}^{t} \int u_{n} \Delta_{\mathbb{H}} \phi+\int_{\delta}^{t} \int\left(V_{n} u_{n}+f_{n}\right) \phi+\int u_{n}(\delta) \phi \tag{3.11}
\end{equation*}
$$

Next we want to let $\delta \rightarrow 0$. Notice that

$$
\begin{equation*}
e^{\delta \Delta_{\mathbb{H}}} u_{0} \leq u_{n}(\delta)=e^{\delta\left(\Delta_{\mathbb{H}}+V_{n}\right)} u_{0}+\int_{0}^{\delta} e^{(\delta-s)\left(\Delta_{\mathbb{H}}+V_{n}\right)} f_{n}(s) d s \tag{3.12}
\end{equation*}
$$

Since $\left\|V_{n}\right\|_{\infty}=: c_{n}<\infty$, it follows from the Daletskii-Trotter product formula that

$$
\begin{aligned}
& e^{\delta\left(\Delta_{\mathbb{H}}+V_{n}\right)} u_{0}=\lim _{m \rightarrow \infty}\left(e^{\delta \Delta_{\mathbb{H}} / m} e^{\frac{\delta}{m} V_{n}}\right)^{m} u_{0} \\
& \quad \leq e^{\delta c_{n}} e^{\delta \Delta_{\mathbb{H}}} u_{0},
\end{aligned}
$$

by the positivity of the semigroup $\left\{e^{\delta \Delta_{\mathbb{H}}}\right\}$. So (3.12) becomes

$$
e^{\delta \Delta_{\mathbb{H}}} u_{0} \leq u_{n}(\delta) \leq e^{\delta c_{n}} e^{\delta \Delta_{\mathbb{H}}} u_{0}+\int_{0}^{\delta} e^{c_{n}(\delta-s)} e^{(\delta-s) \Delta_{\mathbb{H}}} f_{n}(s) d s,
$$

and by the contractivity of $e^{t \Delta_{\mathbb{H}}}$ we have

$$
\int\left(e^{\delta \Delta_{\mathbb{H}}} u_{0}\right) \phi \leq \int u_{n}(\delta) \phi \leq e^{\delta c_{n}} \int\left(e^{\delta \Delta_{\mathbb{H}}} u_{0}\right) \phi+e^{\delta c_{n}}\left\|f_{n}\right\|_{\infty} \delta \int \phi .
$$

The strong continuity of the semigroup implies

$$
\lim _{\delta \rightarrow 0} \int\left(e^{\delta \Delta_{\mathbb{H}}} u_{0}\right) \phi=\int \phi u_{0} .
$$

Thus we have shown that

$$
\lim _{\delta \rightarrow 0} \int u_{n}(\delta) \phi=\int \phi u_{0}
$$

Now let $\delta \rightarrow 0$ in (3.11), using (2.5), to deduce

$$
\begin{aligned}
\int u_{n}(t) \phi & \leq \int_{0}^{t} \int u_{n} \Delta_{\mathbb{H}} \phi+\int_{0}^{t} \int V_{n} u_{n} \phi+\int_{0}^{t} \int f_{n} \phi+\int u_{0} \phi \\
& =\int_{0}^{t} \int\left(-c \frac{|z|^{2}}{|z|^{4}+l^{2}}+V_{n}\right) u_{n} \phi+\int_{0}^{t} \int f_{n} \phi+\int u_{0} \phi \\
& \leq \int_{0}^{t} \int f_{n} \phi+\int u_{0} \phi
\end{aligned}
$$

since $V_{n} \leq V_{0}^{*}$. It follows that if $\int_{0}^{t} \int f \phi+\int \phi u_{0}<\infty$, then, by Proposition 3.2, $u_{n}(w, t) \uparrow u(w, t)(<+\infty)$ as $n \rightarrow \infty$ for all $t \in(0, T]$ and a.e. $w \in \mathbb{H}^{N}$, which gives the first part of (i) of the theorem.

Let us now prove the second part of (i). The inequality (3.9) is proved in Lemma 3.5 below. On the other hand, by the first part of (i) we have that, for each $w \in \mathbb{H}^{N} \backslash\{0\}$, (3.1) has a solution with $u_{0}=\phi^{-1}(w) \delta_{w}, f \equiv 0$ and $V=V_{0}^{*}$, where δ_{w} denotes the Dirac measure at w. We denote this solution by u_{w}. We define

$$
h_{w}(\tilde{w}, t)=u_{w}(\tilde{w}, t) \phi(\tilde{w})^{-1}, \quad(\tilde{w}, t) \in \mathbb{H}^{N} \times(0, T]
$$

and set $h=u \phi^{-1}$ and $h_{n}=u_{n} \phi^{-1}$ with u (respectively u_{n}) the solution of (3.1) (respectively (3.2)) obtained by Proposition 3.2.

We now prove

$$
\begin{align*}
h(w, t) \geq & \int_{\mathbb{H}^{N}} h_{w}(\tilde{w}, t) \phi(\tilde{w}) u_{0}(\tilde{w}) d \tilde{w} \\
& +\int_{0}^{t} \int_{\mathbb{H}^{N}} h_{w}(\tilde{w}, t-s) f(\tilde{w}, s) \phi(\tilde{w}) d \tilde{w} d s \tag{3.13}
\end{align*}
$$

holds for $w \in \mathbb{H}^{N} \backslash\{0\}$ and $t \in(0, T]$.
To this end let u_{n} be the solution of (3.2), and let v_{n} be the solution of

$$
\left\{\begin{array}{l}
\frac{\partial v_{n}}{\partial t}=\Delta_{\mathbb{H}} v_{n}+V_{0, n} v_{n} \\
v_{n}(0)=\phi(w)^{-1} \delta_{w}
\end{array}\right.
$$

where $V_{0, n}=\min \left\{V_{0}^{*}, n\right\}$. Note that by the above construction, $v_{n}(\tilde{w}, t) \uparrow$ $u_{w}(\tilde{w}, t)$ as $n \rightarrow \infty$ for all $t \in(0, T]$ and a.e. $\tilde{w} \in \mathbb{H}^{N}$.

On the other hand, we have

$$
\begin{aligned}
& \frac{\partial}{\partial s} \int_{\mathbb{H}^{N}} u_{n}(\tilde{w}, s) v_{n}(\tilde{w}, t-s) d \tilde{w} \\
= & \int_{\mathbb{H}^{N}}\left[\frac{\partial u_{n}}{\partial s}(\tilde{w}, s) v_{n}(\tilde{w}, t-s)-u_{n}(\tilde{w}, s) \frac{\partial v_{n}}{\partial s}(\tilde{w}, t-s)\right] d \tilde{w} \\
= & \int_{\mathbb{H}^{N}}\left[v_{n}(\tilde{w}, t-s) \Delta_{\mathbb{H}} u_{n}(\tilde{w}, s)-\Delta_{\mathbb{H}} v_{n}(\tilde{w}, t-s) u_{n}(\tilde{w}, s)+f_{n}(\tilde{w}, s) v_{n}(\tilde{w}, t-s)\right] d \tilde{w} \\
& +\int_{\mathbb{H}^{N}}\left(V_{n}-V_{0, n}\right) u_{n}(\tilde{w}, s) v_{n}(\tilde{w}, t-s) d \tilde{w} \\
\geq & \int_{\mathbb{H}^{N}} f_{n}(\tilde{w}, s) v_{n}(\tilde{w}, t-s) d \tilde{w} .
\end{aligned}
$$

Hence, integration from δ to $t-\delta$ yields

$$
\begin{align*}
& \int_{\mathbb{H}^{N}} u_{n}(\tilde{w}, t-\delta) v_{n}(\tilde{w}, \delta) d \tilde{w} \\
\geq & \int_{\delta}^{t-\delta} \int_{\mathbb{H}^{N}} f_{n}(\tilde{w}, s) v_{n}(\tilde{w}, t-s) d \tilde{w} d s+\int_{\mathbb{H}^{N}} u_{n}(\tilde{w}, \delta) v_{n}(\tilde{w}, t-\delta) d \tilde{w} . \tag{3.14}
\end{align*}
$$

Letting $\delta \rightarrow 0$ in (3.14) and noting that, as $\delta \rightarrow 0, u_{n}(t-\delta) \rightarrow u_{n}(t)$ weakly, $v_{n}(t-\delta) \rightarrow v_{n}(t)$ weakly, $u_{n}(\delta) \rightarrow u_{0}$ weakly and $v_{n}(\delta) \rightarrow \phi(w)^{-1} \delta_{w}$ weakly, we get

$$
\begin{align*}
u_{n}(w, t) \phi^{-1}(w) \geq & \int_{0}^{t} \int_{\mathbb{H}^{N}} f_{n}(\tilde{w}, s) v_{n}(\tilde{w}, t-s) d \tilde{w} d s \tag{3.15}\\
& +\int_{\mathbb{H}^{N}} v_{n}(\tilde{w}, t) u_{0}(\tilde{w}) d \tilde{w}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (3.15) and noting that $u_{n}(w, t) \uparrow u(w, t)=h(w, t) \phi(w)$ and $v_{n}(\tilde{w}, t) \uparrow u_{w}(\tilde{w}, t)=h_{w}(\tilde{w}, t) \phi(\tilde{w})$, we obtain (3.13).

Applying (3.9) to u_{w} for a fixed $w \in \mathbb{H}^{N} \backslash\{0\}$, we obtain that there exists a constant $C>0$ such that

$$
h_{w}(\tilde{w}, t) \geq C \text { for }(\tilde{w}, t) \in \Omega^{\prime} \times[\varepsilon, T] .
$$

It follows from (3.13) that

$$
h(w, t) \geq C \int_{\Omega^{\prime}} \phi(\tilde{w}) u_{0}(\tilde{w}) d \tilde{w}+C \int_{0}^{T-\varepsilon} \int_{\Omega^{\prime}} f(\tilde{w}, s) \phi(\tilde{w}) d \tilde{w} d s
$$

If a solution u exists, we must have $h(w, t)<\infty$ for a.e. $w \in \mathbb{H}^{N}$ and all $t \in$ $(0, T]$. Thus, necessary conditions for the existence of a solution u are

$$
\int_{\Omega^{\prime}} \phi(w) u_{0}(w) d w<\infty, \text { and } \int_{0}^{T-\varepsilon} \int_{\Omega^{\prime}} f(w, s) \phi(w) d w d s<\infty
$$

This completes the proof of (i).
(ii) Let $c>C^{*}(N)$ and let $u \not \equiv 0$ be a solution of (3.1). Then,

$$
\frac{\partial u}{\partial t}-\Delta_{\mathbb{H}} u=C^{*}(N) \frac{|z|^{2}}{|z|^{4}+l^{2}} u+\left(c-C^{*}(N)\right) \frac{|z|^{2}}{|z|^{4}+l^{2}} u
$$

From part (i), a solution exists only if

$$
\left(c-C^{*}(N)\right) \frac{|z|^{2}}{|z|^{4}+l^{2}} u \phi \in L^{1}\left(\Omega^{\prime} \times(0, T-\varepsilon)\right),
$$

for Ω^{\prime} any compact set in \mathbb{H}^{N} and $\varepsilon>0$. (Here we have assumed $0 \in \Omega^{\prime}$.) But by the preceding proof (see (3.9) with $\alpha=N$), we have

$$
u \geq C_{\varepsilon} d^{-N}(w)
$$

in $\Omega^{\prime} \times[\varepsilon, T)$, and so we would need $\frac{|z|^{2}}{|z|^{4}+l^{2}} d^{-N} \in L^{1}\left(\Omega^{\prime}\right)$, which is false.
Lemma 3.5. Assume $0 \leq c \leq C^{*}(N)$, α the smallest root of $\alpha(2 N-\alpha)=c$, and $0 \leq V \in L^{\infty}\left(\mathbb{H}^{N} \backslash B_{1}\right)$ with $V \geq V_{0}^{*}$ in B_{1}. If u is a solution of (3.1) with $u_{0} \not \equiv 0$ in \mathbb{H}^{N}, then given $\Omega^{\prime} \subset \subset \mathbb{H}^{N}, \varepsilon \in(0, T)$, there is $C=C\left(\varepsilon, \Omega^{\prime}\right)>0$ such that (3.9) holds.

Proof. Assume that $\Omega^{\prime} \subset \subset \mathbb{H}^{N}$ with $0 \in \Omega^{\prime}$. Since $u_{0} \not \equiv 0$, it follows from Theorem 2.2 that there is a constant $C_{0}>0$ with

$$
\begin{equation*}
e^{t \Delta_{\mathbb{H}}} u_{0}(\tilde{w}) \geq C_{0}, \tag{3.16}
\end{equation*}
$$

for $\tilde{w} \in \Omega^{\prime}$ and $\frac{\varepsilon}{2} \leq t<T$. Since $u \geq e^{t \Delta_{H}} u_{0}$, by the Maximum Principle, (3.9) follows from (3.16) for the case $\alpha=0$. So from now on we assume that α is strictly positive.

Let as before $V_{0, n}:=\inf \left\{V_{0}^{*}, n\right\}$, and consider the problems

$$
\begin{align*}
& \begin{cases}\frac{\partial z}{\partial t}=\Delta_{\mathbb{H}} z+V_{0}^{*} z & \text { in } \mathcal{D}^{\prime}\left(\mathbb{H}^{N} \times\left[\frac{\varepsilon}{2}, T\right]\right) \\
z\left(\tilde{w}, \frac{\varepsilon}{2}\right)=C_{0} \chi_{\Omega^{\prime}}(\tilde{w}) & \tilde{w} \in \mathbb{H}^{N},\end{cases} \tag{3.17}\\
& \begin{cases}\frac{\partial z_{n}}{\partial t}=\Delta_{\mathbb{H}} z_{n}+V_{0, n} z_{n} & \text { in } \mathcal{D}^{\prime}\left(\mathbb{H}^{N} \times\left[\frac{\varepsilon}{2}, T\right]\right) \\
z_{n}\left(\tilde{w}, \frac{\varepsilon}{2}\right)=C_{0} \chi_{\Omega^{\prime}}(\tilde{w}) & \tilde{w} \in \mathbb{H}^{N},\end{cases} \tag{3.18}
\end{align*}
$$

and for $B_{r_{0}} \subset \Omega^{\prime}$ a ball centered at the origin with radius $r_{0} \in(0,1)$,

$$
\begin{cases}\frac{\partial v_{n}}{\partial t}=\Delta_{\mathbb{H}} v_{n}+V_{0, n} v_{n} & \text { in } \mathcal{D}^{\prime}\left(B_{r_{0}} \times\left[\frac{\varepsilon}{2}, T\right]\right) \tag{3.19}\\ v_{n}=0 & \text { on } \partial B_{r_{0}} \\ v_{n}\left(\tilde{w}, \frac{\varepsilon}{2}\right)=C_{0} & \tilde{w} \in B_{r_{0}}\end{cases}
$$

Notice that (3.18) has a unique solution $z_{n} \geq 0$, also that $z_{n}(\tilde{w}, t) \uparrow z(\tilde{w}, t)$, for almost every $(\tilde{w}, t) \in \mathbb{H}^{N} \times\left[\frac{\varepsilon}{2}, T\right)$, where \bar{z} is the unique solution of (3.17). It is also clear that $z_{n} \geq v_{n}$, the solution of (3.19), and that v_{n} is a radial function. ${ }^{1}$ Finally, we note that u is bounded below by the solution of (3.17) since $V \geq V_{0}^{*}$.

Multiply the equation in (3.19) by $v_{n}^{p-1} \phi^{2-p}, p \geq 2$, where we recall that $\phi(w)=d(w)^{-\alpha}$ only depends on w, and integrate to get

$$
\int_{B_{r_{0}}} \frac{\partial v_{n}}{\partial t} v_{n}^{p-1} \phi^{2-p}=\int_{B_{r_{0}}}\left(\Delta_{\mathbb{H}} v_{n}\right) v_{n}^{p-1} \phi^{2-p}+\int_{B_{r_{0}}} V_{0, n} v_{n}^{p} \phi^{2-p}
$$

so

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{B_{r_{0}}} \frac{1}{p}\left(\frac{v_{n}}{\phi}\right)^{p} \phi^{2}= & -\int_{B_{r_{0}}} \nabla_{\mathbb{H}} v_{n} \cdot \nabla_{\mathbb{H}}\left(v_{n}^{p-1} \phi^{2-p}\right) \tag{3.20}\\
& +\int_{B_{r_{0}}} V_{0, n}\left(\frac{v_{n}}{\phi}\right)^{p} \phi^{2}
\end{align*}
$$

Set $g_{n}=\frac{v_{n}}{\phi}$. Then equation (3.20) becomes

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{B_{r_{0}}} \frac{1}{p} g_{n}^{p} \phi^{2}= & -\frac{4(p-1)}{p^{2}} \int_{B_{r_{0}}}\left|\nabla_{\mathbb{H}} g_{n}^{p / 2}\right|^{2} \phi^{2} \\
& +\int_{B_{r_{0}}} g_{n}^{p}\left(\Delta_{\mathbb{H}} \phi\right) \phi+\int_{B_{r_{0}}} V_{0, n} g_{n}^{p} \phi^{2}
\end{aligned}
$$

Using (2.5) and the fact that $\alpha(2 N-\alpha)=c$, we obtain $V_{0, n} \leq V_{0}^{*} \leq-\frac{\Delta_{\mathbb{H}} \phi}{\phi}$, so that $V_{0, n} \phi^{2} \leq\left(-\Delta_{\mathbb{H}} \phi\right) \phi$. Hence we have shown

$$
\frac{\partial}{\partial t} \int_{B_{r_{0}}} g_{n}^{p} \phi^{2} \leq 0
$$

and we thus have, for $\frac{\varepsilon}{2} \leq t \leq T$, that

$$
\begin{equation*}
\left(\int_{B_{r_{0}}} v_{n}^{p} \phi^{2-p}\right)^{1 / p} \leq C_{0}\left(\int_{B_{r_{0}}} \phi^{2-p}\right)^{1 / p} \tag{3.21}
\end{equation*}
$$

Letting $p \rightarrow \infty$ in (3.21) we get

$$
\begin{equation*}
g_{n} \leq C_{0} \text { a.e. in } B_{r_{0}} \tag{3.22}
\end{equation*}
$$

which is equivalent to $v_{n} \leq C_{0} \phi$ a.e. in $B_{r_{0}}$. So we can make sense of

$$
v=\lim _{n \rightarrow \infty} v_{n} \text { and } g=\lim _{n \rightarrow \infty} g_{n}
$$

${ }^{1}$ Recall that a function $g(w)$ is radial on \mathbb{H}^{n} if $w=(z, l)$ and $g(z, l)=g(|z|, l)$. In fact, our function v_{n} is even more special, since $v_{n}=v_{n}(d(w))$. Notice that this gives $\nabla_{\mathbb{H}} v_{n}=$ $v_{n}^{\prime}(d(w)) \nabla_{\mathbb{H}} d(w)$.

Now we claim that

$$
\begin{equation*}
0<C_{1} \leq g(w, t) \leq C_{0} \tag{3.23}
\end{equation*}
$$

for $t \in[\varepsilon, T]$ and a.e. $w \in B \frac{r_{0}}{2}$. Once (3.23) is proved, and since

$$
u \geq z \geq z_{n} \geq v_{n}=g_{n} \phi
$$

(3.9) follows directly in the case $\Omega^{\prime}=B_{\frac{r_{0}}{2}}$. Otherwise, we observe that for almost every $\tilde{w} \in \Omega^{\prime} \backslash B \frac{r_{0}}{2}$ we have

$$
h(\tilde{w}, t)=\phi(\tilde{w})^{-1} u(\tilde{w}) \geq \phi(\tilde{w})^{-1}\left(e^{t \Delta_{\mathbb{H}}} u_{0}\right)(\tilde{w}) \geq C_{2}>0
$$

from Theorem 2.2 since

$$
\phi(\tilde{w})^{-1} \geq C_{3}>0
$$

for all $t \in[\varepsilon, T]$ and some constants $C_{2}, C_{3}>0$. This concludes the proof of (3.9).
Now we must prove (3.23). By (3.22), the right inequality is proved. For the remaining part of (3.23), let $\mathcal{I} \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$be convex. Multiply equation (3.19) by $\mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}$ and integrate over $Q=B_{r_{0}} \times\left(\frac{\varepsilon}{2}, t\right), t \in\left[\frac{\varepsilon}{2}, T\right]$, where $\psi \in \mathcal{D}\left(B_{r_{0}} \times\left(\frac{\varepsilon}{2}, T\right]\right)$, to get

$$
\begin{aligned}
& \int_{Q} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \frac{\partial v_{n}}{\partial t} \phi \psi^{2}=\int_{Q}\left\{\Delta_{\mathbb{H}} v_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}+V_{0, n} v_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}\right\}, \\
& \frac{1}{2} \int_{Q} \frac{\partial}{\partial t}\left(\mathcal{I}\left(g_{n}\right)\right)^{2} \phi^{2} \psi^{2}=-\int_{Q} \nabla_{\mathbb{H}}\left(g_{n} \phi\right) \cdot \nabla_{\mathbb{H}}\left(\mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}\right) \\
&+\int_{Q} V_{0, n} g_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi^{2} \psi^{2}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \int_{B_{r_{0}}} \nabla_{\mathbb{H}}\left(g_{n} \phi\right) \cdot \nabla_{\mathbb{H}}\left(\mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}\right) \\
= & \int_{B_{r_{0}}}\left\{\left(\nabla_{\mathbb{H}} g_{n} \cdot \nabla_{\mathbb{H}}\left(\mathcal{I}^{\prime}\left(g_{n}\right)\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}\right) \phi+g_{n}\left(\nabla_{\mathbb{H}} \phi \cdot \nabla_{\mathbb{H}}\left(\mathcal{I}^{\prime}\left(g_{n}\right)\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}\right)\right\} \\
= & \int_{B_{r_{0}}}\left\{\mathcal{I}^{\prime \prime}\left(g_{n}\right)\left|\nabla_{\mathbb{H}} g_{n}\right|^{2} \mathcal{I}\left(g_{n}\right) \phi^{2} \psi^{2}+\left|\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right)\right|^{2} \phi^{2} \psi^{2}\right\} \\
& +\int_{B_{r_{0}}}\left\{\left(\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right) \cdot \nabla_{\mathbb{H}} \phi\right) \psi^{2} \phi \mathcal{I}\left(g_{n}\right)+\left(\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right) \cdot \nabla_{\mathbb{H}} \psi^{2}\right) \mathcal{I}\left(g_{n}\right) \phi^{2}\right\} \\
& +\int_{B_{r_{0}}}\left(-\Delta_{\mathbb{H}} \phi\right) g_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2}+\int_{B_{r_{0}}}-\left(\nabla_{\mathbb{H}} \phi \cdot \nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right)\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2} \\
= & \int_{B_{r_{0}}}\left\{\mathcal{I}^{\prime \prime}\left(g_{n}\right)\left|\nabla_{\mathbb{H}} g_{n}\right|^{2} \mathcal{I}\left(g_{n}\right) \phi^{2} \psi^{2}+\left|\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right)\right|^{2} \phi^{2} \psi^{2}\right\} \\
& +\int_{B_{r_{0}}}\left(\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right) \cdot \nabla_{\mathbb{H}} \psi^{2}\right) \mathcal{I}\left(g_{n}\right) \phi^{2}+\int_{B_{r_{0}}}\left(-\Delta_{\mathbb{H}} \phi\right) g_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2},
\end{aligned}
$$

and so

$$
\begin{align*}
& \frac{1}{2} \int_{Q} \frac{\partial}{\partial t}\left(\mathcal{I}\left(g_{n}\right)^{2}\right) \phi^{2} \psi^{2}+\int_{Q} \nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right) \cdot \nabla_{\mathbb{H}} \psi^{2} \mathcal{I}\left(g_{n}\right) \phi^{2} \\
= & -\int_{Q} \mathcal{I}^{\prime \prime}\left(g_{n}\right)\left|\nabla_{\mathbb{H}} g_{n}\right|^{2}\left(\mathcal{I}\left(g_{n}\right) \phi^{2} \psi^{2}\right) \\
& -\int_{Q}\left|\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right)\right|^{2} \phi^{2} \psi^{2}+\int \Delta_{\mathbb{H}} \phi g_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2} \tag{3.24}\\
& +\int_{Q} V_{0, n} g_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi^{2} \psi^{2} .
\end{align*}
$$

Using Hölder's inequality,

$$
\begin{aligned}
& \left|2 \int_{B_{r_{0}}}\left(\nabla \mathcal{I}\left(g_{n}\right) \cdot \nabla_{\mathbb{H}} \psi\right) \mathcal{I}\left(g_{n}\right) \phi^{2} \psi\right| \\
\leq & \frac{1}{2} \int_{B_{r_{0}}}\left|\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right)\right|^{2} \phi^{2} \psi^{2}+2 \int_{B_{r_{0}}}\left|\nabla_{\mathbb{H}} \psi\right|^{2}\left|\mathcal{I}\left(g_{n}\right)\right|^{2} \phi^{2},
\end{aligned}
$$

on the second term of the left-hand side of (3.24), using the convexity assumption on \mathcal{I}, and integrating by parts on the first term in (3.24), we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{B_{r_{0}}}\left(\mathcal{I}\left(g_{n}\right)^{2} \psi^{2} \phi^{2}\right)(t)+\frac{1}{2} \int_{Q}\left|\nabla_{\mathbb{H}} \mathcal{I}\left(g_{n}\right)\right|^{2} \phi^{2} \psi^{2} \\
\leq & \int_{Q}\left(V_{0, n} \phi+\Delta_{\mathbb{H}} \phi\right) g_{n} \mathcal{I}^{\prime}\left(g_{n}\right) \mathcal{I}\left(g_{n}\right) \phi \psi^{2} \tag{3.25}\\
& +\int_{Q} \mathcal{I}\left(g_{n}\right)^{2}\left(2\left|\nabla_{\mathbb{H}} \psi\right|^{2}+\psi \frac{\partial \psi}{\partial t}\right) \phi^{2} .
\end{align*}
$$

Now, we make a key observation. Since $\alpha<N$, we have $\phi \Delta_{\mathbb{H}} \phi \in L^{1}\left(B_{r_{0}}\right)$. Assume r_{0} to be sufficiently small. Since $V_{0}^{*}=\frac{-\Delta_{\mathbb{H}} \phi}{\phi}$, the first term on the right-hand side of (3.25) converges to 0 as $n \rightarrow \infty$ by Lebesgue's dominated convergence theorem, since $\left\|g_{n}\right\| \leq C_{0}$ in $B_{r_{0}}$ and \mathcal{I} is convex, C^{2} and non-negative. Letting $n \rightarrow \infty$, (3.25) gives

$$
\begin{align*}
& \int_{B_{r_{0}}} \mathcal{I}(g)^{2} \psi^{2} \phi^{2}+\int_{Q}\left|\nabla_{\mathbb{H}} \mathcal{I}(g)\right|^{2} \psi^{2} \phi^{2} \\
\leq & 2 \int_{Q} \mathcal{I}(g)^{2}\left(2\left|\nabla_{\mathbb{H}} \psi\right|^{2}+\psi \frac{\partial \psi}{\partial t}\right) \phi^{2} . \tag{3.26}
\end{align*}
$$

Choose ψ so that $0 \leq \psi \leq 1$ for $s \geq \frac{\varepsilon}{2}, r<r_{0}$ and $0<\delta<r$, and

$$
\psi(w, t)= \begin{cases}1 & B_{r-\delta} \times[s+\delta, T] \\ 0 & \left(B_{r_{0}} \times[0, s]\right) \cup\left(B_{r_{0}} \backslash B_{r-\frac{\delta}{2}} \times[0, T]\right)\end{cases}
$$

so that

$$
\left|\frac{\partial \psi}{\partial t}\right| \leq \frac{\tilde{C}}{\delta}, \quad\left|\nabla_{\mathbb{H}} \psi\right|^{2} \leq \frac{\tilde{C}}{\delta^{2}}
$$

for some constant \tilde{C} independent of s, δ. Then for all $s+\delta \leq t \leq T$ (3.26) becomes

$$
\begin{align*}
& \int_{B_{r-\delta}} \mathcal{I}(g(t))^{2} \phi^{2}+\int_{s+\delta}^{T} \int_{B_{r-\delta}}\left|\nabla_{\mathbb{H}} \mathcal{I}(g)\right|^{2} \phi^{2} \\
\leq & 6 \tilde{C} \delta^{-2} \int_{S}^{T} \int_{B_{r_{0}}} \mathcal{I}(g)^{2} \phi^{2} \tag{3.27}
\end{align*}
$$

Note that for fixed $t, w \mapsto \mathcal{I}(g(w, t))$ is a radial function; in fact as we noted earlier, $\mathcal{I}(g(w, t))$ is a function of $d(w)$. Applying (A.4), with β as in Lemma A.4, and (3.27), one obtains

$$
\begin{aligned}
& \int_{s+\delta}^{T} \int_{B_{r-\delta}} \mathcal{I}(g)^{2+2 \beta} \phi^{2} \\
\leq & \hat{\hat{C}} \int_{s+\delta}^{T}\left[\left(\int_{B_{r-\delta}}\left|\nabla_{\mathbb{H}} \mathcal{I}(g(t))\right|^{2} \phi^{2}+\mathcal{I}(g(t))^{2} \phi^{2}\right)\left(\int_{B_{r-\delta}} \mathcal{I}(g(t))^{2} \phi^{2}\right)^{\beta}\right] d t \\
\leq & \hat{\hat{C}}\left[\int_{s+\delta}^{T} \int_{B_{r-\delta}}\left|\nabla_{\mathbb{H}} \mathcal{I}(g)\right|^{2} \phi^{2}+\int_{s+\delta}^{T} \int_{B_{r-\delta}} I(g)^{2} \phi^{2}\right]\left(6 \tilde{C} \delta^{-2} \int_{s}^{T} \int_{B_{r_{0}}} I(g)^{2} \phi^{2}\right)^{\beta} \\
\leq & \hat{\hat{C}}\left(6 \tilde{C} \delta^{-2}+1\right)\left(\int_{s}^{T} \int_{B_{r_{0}}} \mathcal{I}(g)^{2} \phi^{2}\right)\left(6 \tilde{C} \delta^{-2} \int_{S}^{T} \int_{B_{r_{0}}} \mathcal{I}(g)^{2} \phi^{2}\right)^{\beta} .
\end{aligned}
$$

Since $0<\delta<r<1$, it follows that

$$
\begin{align*}
& \left(\int_{s+\delta}^{T} \int_{B_{r-\delta}} \mathcal{I}(g)^{2+2 \beta} \phi^{2}\right)^{\frac{1}{2+2 \beta}} \\
\leq & \hat{\hat{C}}^{\frac{1}{2+2 \beta}}(6 \tilde{C}+1)^{1 / 2} \delta^{-1}\left(\int_{s}^{T} \int_{B_{r_{0}}} \mathcal{I}(g)^{2} \phi^{2}\right)^{1 / 2} \tag{3.28}\\
\leq & \bar{C} \delta^{-1}\left(\int_{s}^{T} \int_{B_{r_{0}}} \mathcal{I}(g)^{2} \phi^{2}\right)^{1 / 2}
\end{align*}
$$

Let $b>0$ be sufficiently small, and set

$$
\begin{aligned}
& \delta=\frac{b}{2^{n}}, \quad r_{n+1}=r_{n}-\frac{b}{2^{n}}, \quad \mathcal{I}_{n+1}=\mathcal{I}_{n}^{1+\beta}, \quad s_{n+1}=s_{n}+\frac{b}{2^{n}} \\
& \text { and } k_{n}=\left(\int_{s_{n}}^{T} \int_{B_{r_{n}}} \mathcal{I}_{n}(g)^{2} \phi^{2}\right)^{1 / 2} .
\end{aligned}
$$

1742 G. R. Goldstein, J. A. Goldstein, A. E. Kogoj, A. Rhandi and C. Tacelli

Here $\mathcal{I}_{1}=\mathcal{I}$ and $r_{1}, s_{1}>0$ with $s_{1} \geq \frac{\varepsilon}{2}$ and $r_{1}<1$ are given. Applying (3.28) yields

$$
\begin{equation*}
k_{n+1}^{\frac{1}{1+\beta}} \leq \bar{C} 2^{n} b^{-1} k_{n} \tag{3.29}
\end{equation*}
$$

Applying Lemma A. 1 in the Appendix, we have

$$
k_{n}^{\frac{1}{(1+\beta)^{n-1}}} \leq\left(\frac{\bar{C}}{b}\right)^{\frac{a_{n}}{(1+\beta)^{n-2}}} 2^{\frac{d_{n}}{(1+\beta)^{n-2}}} k_{1}
$$

where $a_{n}=\sum_{j=0}^{n-2}(1+\beta)^{j}$ and $d_{n}=\sum_{j=0}^{n-2}(j+1)(1+\beta)^{n-2-j}$ for $n \geq 2$. Letting $n \rightarrow \infty$ we have
$s_{n} \rightarrow s_{1}+b, r_{n} \rightarrow r_{1}-b, \frac{a_{n}}{(1+\beta)^{n-2}} \rightarrow\left(\frac{1+\beta}{\beta}\right), \frac{d_{n}}{(1+\beta)^{n-2}} \rightarrow\left(\frac{1+\beta}{\beta}\right)^{2}$
and taking into account that $\mathcal{I}_{n}=\mathcal{I}^{(1+\beta)^{n-1}}$ we obtain

$$
k_{n}^{\frac{1}{(1+\beta)^{n-1}}}=\left(\int_{s_{n}}^{T} \int_{B_{r_{n}}} \mathcal{I}(g)^{2(1+\beta)^{n-1}} \phi^{2}\right)^{\frac{1}{2(1+\beta)^{n-1}}} \rightarrow \sup _{B_{r_{1}-b} \times\left[s_{1}+b, T\right]} \mathcal{I}(g) .
$$

Finally, we have

$$
\begin{equation*}
\sup _{B_{r_{1}-b} \times\left[s_{1}+b, T\right]} \mathcal{I}(g) \leq\left(\frac{\bar{C}}{b} 2^{\frac{1+\beta}{\beta}}\right)^{\frac{1+\beta}{\beta}}\left(\int_{s_{1}}^{T} \int_{B_{r_{1}}} \mathcal{I}(g)^{2} \phi^{2}\right)^{1 / 2} \tag{3.30}
\end{equation*}
$$

Now, consider a sequence $\mathcal{I}_{n}(r) \in C^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$of convex functions converging to $\frac{1}{r^{\gamma}}$ as $n \rightarrow \infty$, where $\gamma>0$ is a parameter to be chosen later. Replacing \mathcal{I} by a \mathcal{I}_{n} in (3.30), we obtain

$$
\sup _{B_{r_{1}-b} \times\left[s_{1}+b, T\right]} g^{-\gamma} \leq\left(\frac{\bar{C}}{b} 2^{\frac{1+\beta}{\beta}}\right)^{\frac{1+\beta}{\beta}}\left(\int_{s_{1}}^{T} \int_{B_{r_{1}}} g^{-2 \gamma} \phi^{2}\right)^{1 / 2} .
$$

Set $s_{1}=\frac{3}{4} \varepsilon, b=\frac{\varepsilon}{4}$ and $r_{1}<r_{0}$, where r_{0} is the one chosen in the beginning of the proof. We have

$$
g(\omega, t)=\frac{v}{\phi} \geq \phi^{-1}(w)\left(e^{t \Delta_{\mathbb{H}}} C_{0}\right)(w)=C_{0} \phi^{-1}(w)
$$

for almost every $w \in B_{r_{0}}$ where C_{0} is the constant given in (3.16). So

$$
\sup _{B_{r_{1}-\varepsilon / 4 \times[\varepsilon, T]}} g^{-\gamma} \leq C_{2} C_{0}^{-\gamma} \varepsilon^{-\frac{1+\beta}{\beta}}\left(\int_{\frac{3}{4} \varepsilon}^{T} \int_{B_{r_{1}}} \phi^{2+2 \gamma}\right)^{1 / 2}
$$

and it follows that

$$
\begin{equation*}
g(w, t) \geq C_{2}^{-\frac{1}{\gamma}} C_{0} \varepsilon^{\left(1+\frac{1}{\beta}\right) \frac{1}{\nu}}\left(\int_{B_{r_{1}}} \phi^{2+2 \gamma}\right)^{-\frac{1}{2 \gamma}} \tag{3.31}
\end{equation*}
$$

for almost every $w \in B_{r_{1}-\frac{\varepsilon}{4}}$ and for all $t \in[\varepsilon, T]$, where C_{2} is a positive constant independent of ε and r_{1}. A simple computation shows that $\int_{B_{r_{1}}} \phi^{2+2 \gamma}<\infty$ by choosing $0<\gamma<\frac{N+1}{\alpha}-1$, which is possible since $\alpha \in(0, N]$.

Thus (3.23) follows by taking $\gamma \in\left(0, \frac{N+1}{\alpha}-1\right)$ and $\varepsilon=2\left(2 r_{1}-r_{0}\right)$ with $\frac{r_{0}}{2}<r_{1}<r_{0}$.

This concludes the proof.
We end this section by the following remark.
Remark 3.6. The arguments used are based on the explicit form of the fundamental solution and on the existence of an underlying group of dilations; thus, the results would likely extend to the setting of H-type groups.

A. Appendix

In this appendix we collect all technical lemmas that we needed for proving the main result.

Lemma A.1. For $\beta>0$ and $n \geq 2$, define $a_{n}=\sum_{j=0}^{n-2}(1+\beta)^{j}$ and $d_{n}=$ $\sum_{j=0}^{n-2}(j+1)(1+\beta)^{n-2-j}$ and $k_{n} \geq 0$ for $n \geq 1$ such that

$$
k_{n}^{\frac{1}{1+\beta}} \leq \bar{C} 2^{n-1} b^{-1} k_{n-1}
$$

Then

$$
\begin{equation*}
k_{n}^{\frac{1}{1+\beta}} \leq\left(\frac{\bar{C}}{b}\right)^{a_{n}} 2^{d_{n}} k_{1}^{(1+\beta)^{n-2}} \tag{A.1}
\end{equation*}
$$

Proof. We use an induction argument. Assume (A.1) is true for $1 \leq k \leq n$. We will show

$$
k_{n+1}^{\frac{1}{1+\beta}} \leq\left(\frac{\bar{C}}{b}\right)^{a_{n+1}} 2^{d_{n+1}} k_{1}^{(1+\beta)^{n-1}}
$$

Clearly (3.29) gives (A.1) if $n=1$. By (3.29),

$$
k_{n+1}^{\frac{1}{1+\beta}} \leq \bar{C} 2^{n} b^{-1} k_{n} \leq\left(\frac{\bar{C}}{b}\right) 2^{n}\left(\frac{\bar{C}}{b}\right)^{a_{n}(1+\beta)} 2^{d_{n}(1+\beta)} k_{1}^{(1+\beta)^{n-1}}
$$

1744 G. R. Goldstein, J. A. Goldstein, A. E. Kogoj, A. Rhandi and C. Tacelli
by the induction hypothesis. Now it is easy to check that

$$
a_{n}(1+\beta)+1=\sum_{j=0}^{n-2}(1+\beta)^{j+1}+1=\sum_{j=0}^{n-1}(1+\beta)^{j}=a_{n+1}
$$

and

$$
\begin{aligned}
d_{n}(1+\beta)+n=\sum_{j=0}^{n-2}(j+1)(1+\beta)^{n-1-j}+n & =\sum_{j=0}^{n-1}(j+1)(1+\beta)^{n-1-j} \\
& =d_{n+1}
\end{aligned}
$$

The following two lemmas can be found in [3, Appendix].
Lemma A.2. If $0 \leq h \in C^{1}[0,2 r]$ and $h(2 r)=0$, then

$$
\begin{equation*}
\left(\int_{0}^{2 r} h^{p}(s) s^{\gamma-1} d s\right)^{1 / p} \leq M_{0}\left(\int_{0}^{2 r}\left|\frac{d h}{d s}\right|^{2} s^{\gamma-1} d s\right)^{1 / 2} \tag{A.2}
\end{equation*}
$$

where $\gamma=2 N+2-2 \alpha>2, \frac{1}{p}=\frac{1}{2}-\frac{1}{\gamma}$ and M_{0} is a constant depending only on γ.

Lemma A.3. If $0<r^{\prime} \leq r \leq 1,0 \leq h \in C^{1}[0, r]$ then
$\left(\int_{0}^{r}|h(s)|^{p} s^{2 N-2 \alpha+1} d s\right)^{2 / p} \leq \hat{C}\left(\int_{0}^{r}\left[\left|h^{\prime}(s)\right|^{2}+|h(s)|^{2}\right] s^{2 N-2 \alpha+1} d s\right)$,
where $\frac{1}{p} \geq \frac{1}{2}-\frac{1}{2 N+2-2 \alpha}$ and $p=\infty$ if $N=\alpha-1, \hat{C}$ depends on r^{\prime} but not r.
The following lemma is needed for the proof of Lemma 3.5.
Lemma A.4. If $k \in C^{1}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), \tilde{k}(w):=k(d(w)), \phi(w)=d(w)^{-\alpha}, w=$ $(z, l) \in \mathbb{H}^{N}$, and $0<\beta$ is such that $\beta+\frac{2}{p}=1$, where $\frac{1}{p}=\frac{1}{2}-\frac{1}{2 N-2 \alpha+2}$, then

$$
\begin{align*}
& \int_{B_{r}} \tilde{k}^{2+2 \beta}(w) \phi^{2}(w) d w \\
\leq & \hat{\hat{C}}\left(\int_{B_{r}}\left(\left|\nabla_{\mathbb{H}} \tilde{k}(w)\right|^{2}+\tilde{k}^{2}(w)\right) \phi^{2}(w) d w\right)\left(\int_{B_{r}} \tilde{k}^{2}(w) \phi^{2}(w) d w\right)^{\beta} . \tag{A.4}
\end{align*}
$$

Proof. We first prove that

$$
\begin{equation*}
\left.\int_{B_{r}}\left|\nabla_{\mathbb{H}} k(d(\omega))\right|^{2} \phi^{2}(d(w)) d w=C_{N} \int_{0}^{r} \mid k^{\prime}(s)\right)\left.\right|^{2} s^{2 N-2 \alpha+1} d s, \tag{A.5}
\end{equation*}
$$

where $C_{N}:=S_{2 N-1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{N} \varphi d \varphi$ and $S_{2 N-1}$ the surface area of the unit ball in $\mathbb{R}^{2 N}$.

Consider the change of variables $\rho=|z|$ in polar coordinates, and take

$$
\left\{\begin{array}{l}
\rho^{2}=r^{2} \cos \varphi \\
l=r^{2} \sin \varphi
\end{array}\right.
$$

with $\varphi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Recalling from Lemma 2.1 that $\left|\nabla_{\mathbb{H}} d(w)\right|^{2}=|z|^{2} d(w)^{-2}$, $w=(z, l) \in \mathbb{H}^{N}$ and since $\nabla_{\mathbb{H}} k(d(w))=k^{\prime}(d(w)) \nabla_{\mathbb{H}} d(w)$ we obtain

$$
\begin{aligned}
& \int_{B_{r}}\left|\nabla_{\mathbb{H}} k(d(w))\right|^{2} \phi^{2}(d(w)) d w \\
= & S_{2 N-1} \int\left|\nabla_{\mathbb{H}} k\left(\sqrt[4]{\rho^{4}+l^{2}}\right)\right|^{2} \phi^{2}\left(\sqrt[4]{\rho^{4}+l^{2}}\right) \rho^{2 N-1} d \rho d l \\
= & S_{2 N-1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{r}\left|k^{\prime}(s)\right|^{2}\left(s^{2} \cos \varphi\right) s^{-2} s^{-2 \alpha}(s \sqrt{\cos \varphi})^{2 N-1}\left(\frac{s^{2}}{\sqrt{\cos \varphi}}\right) d s d \varphi \\
= & C_{N} \int_{0}^{r}\left|k^{\prime}(s)\right|^{2} s^{2 N-2 \alpha+1} d s
\end{aligned}
$$

for $C_{N}:=S_{2 N-1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{N} \varphi d \varphi$.
It follows from Hölder's inequality, (A.5) and Lemma A. 3 that

$$
\begin{aligned}
& \int_{B_{r}} k^{2+2 \beta}(w) \phi^{2}(w) d w \\
= & C_{N} \int_{0}^{r} k^{2+2 \beta}(s) \phi^{2}(s) s^{2 N+1} d s \\
\leq & \left(C_{N} \int_{0}^{r} k^{p}(s) \phi^{2}(s) s^{2 N+1} d s\right)^{2 / p}\left(C_{N} \int_{0}^{r} k^{2}(s) \phi^{2}(s) s^{2 N+1} d s\right)^{\beta} \\
= & \left(C_{N} \int_{0}^{r} k^{p}(s) s^{2 N-2 \alpha+1} d s\right)^{2 / p}\left(\int_{B_{r}} k^{2} \phi^{2}\right)^{\beta} \\
\leq & \hat{C} C_{N}^{\frac{2}{p}-1} C_{N} \int_{0}^{r}\left(\left|k^{\prime}(s)\right|^{2}+k^{2}(s)\right) s^{2 N-2 \alpha+1} d s\left(\int_{B_{r}} k^{2} \phi^{2}\right)^{\beta} \\
= & \hat{\hat{C}}\left(\int_{B_{r}}\left|\nabla_{\mathbb{H}} k\right|^{2} \phi^{2}+\int_{B_{r}} k^{2} \phi^{2}\right)\left(\int_{B_{r}} k^{2} \phi^{2}\right)^{\beta} .
\end{aligned}
$$

This completes the proof.
We conclude this Appendix by proving the following perturbation result:

Proposition A.5. Assume that the problem (3.1) has a solution for some $u_{0} \geq 0$, $f \geq 0$ and let $B \in L^{\infty}\left(\mathbb{H}^{N}\right)$. Then the problem

$$
\left\{\begin{array}{lr}
\frac{\partial u}{\partial t}=\Delta_{\mathbb{H}} u+V(\cdot) u+B(\cdot) u+f & \text { in } \mathcal{D}^{\prime}\left(\mathbb{H}^{N} \times(0, T)\right) \tag{A.6}\\
\underset{t \rightarrow 0^{+}}{\operatorname{esslim}} \int_{\mathbb{H}^{N}} u(w, t) \psi(w) d w=\int_{\mathbb{H}^{N}} u_{0}(w) \psi(w) d w & \forall \psi \in \mathcal{D}\left(\mathbb{H}^{N}\right) \\
u \geq 0 & \text { on } \mathbb{H}^{N} \times(0, T) \\
V u \in L_{\mathrm{loc}}^{1}\left(\mathbb{H}^{N} \times(0, T)\right), &
\end{array}\right.
$$

has a solution.
Proof. Let u_{n} be the solution of (3.2). We know that $u_{n} \uparrow u, u$ being a solution of (3.1). Suppose that v_{n} solves

$$
\begin{cases}\frac{\partial v_{n}}{\partial t}=\Delta_{\mathbb{H}} v_{n}+\left(V_{n}(\cdot)+B(\cdot)\right) v_{n}+f_{n} & \text { in } \mathcal{D}_{T}^{\prime} \tag{A.7}\\ \lim _{t \rightarrow 0^{+}} \int_{\mathbb{H}^{N}} v_{n}(w, t) \psi(w) d w=\int_{\mathbb{H}^{N}} u_{0}(w) \psi(w) d w & \forall \psi \in \mathcal{D}\left(\mathbb{H}^{N}\right),\end{cases}
$$

where $f_{n}=\min \{f, n\}$ and $V_{n}=\min \{V, n\}$. Fix $\lambda \geq\|B\|_{\infty}$, and consider

$$
U_{n}=e^{\lambda t} u_{n}
$$

So U_{n} satisfies

$$
\frac{\partial U_{n}}{\partial t}=\Delta_{\mathbb{H}} U_{n}+\left(V_{n}+\lambda\right) U_{n}+e^{t} f_{n}
$$

By the Maximum Principle we have

$$
v_{n}(w, t) \leq U_{n}(w, t) \leq e^{\lambda t} u(w, t) \text { for a.e. }(w, t) \in \mathbb{H}^{N} \times(0, T)
$$

Clearly $\left\{v_{n}\right\}$ is an increasing sequence and since $u, V u \in L_{\text {loc }}^{1}\left(\mathbb{H}^{N} \times(0, T)\right)$, it follows by the Monotone Convergence theorem that $v_{n} \uparrow v$ and $\left(V_{n}+B\right) v_{n} \uparrow$ $(V+B) v$ in $L_{\mathrm{loc}}^{1}\left(\mathbb{H}^{N} \times(0, T)\right)$, and v gives a solution of (A.6).

References

[1] W. Arendt, G. R. Goldstein and J. A. Goldstein, Outgrowths of Hardy's inequality, In: "Recent Advances in Differential Equations and Mathematical Physics", Contemporary Mathematics, Vol. 412, N. Chernov, Y. Karpeshina, I.W. Knowles, R.T. Lewis, R. Weikard (eds.), American Mathematical Society, Providence, RI, 2006, 51-68.
[2] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968), 607-694.
[3] P. Baras and J. A. Goldstein, The heat equation with singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139.
[4] A. Bonfiglioli, F. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory for their Sub-Laplacians", Springer Monographs in Mathematics, Springer, Berlin, 2007.
[5] X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Math. Acad. Sci. Paris, 329 (1999), 973-978.
[6] A. Canale, F. Gregorio, A. Rhandi and C. Tacelli, Weighted Hardy's inequalities and Kolmogorov-type operators, J. Appl. Anal. 98 (2019), 1236-1254.
[7] T. Durante and A. Rhandi, On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 649-655.
[8] G. B. Folland and E. M. Stein, Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522.
[9] S. Fornaro and A. Rhandi, On the Ornstein Uhlenbeck operator perturbed by singular potentials in L^{p}-spaces, Discrete Contin. Dyn. Syst. 33 (2013), 5049-5058.
[10] S. Fornaro, F. Gregorio and A. Rhandi, Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in Lp-spaces, Commun. Pure Appl. Anal. 15 (2016), 2357-2372.
[11] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), 313-356.
[12] G. R. Goldstein, J. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential, Appl. Anal. 91 (2012), 2057-2071.
[13] J. A. Goldstein, D. HaUER and A. Rhandi, Existence and nonexistence of positive solutions of p-Kolmogorov equations perturbed by a Hardy potential, Nonlinear Anal. 131 (2016), 121-154.
[14] J.A. Goldstein and I. Kombe, Instantaneous blow up, In: "Advances in Differential Equations and Mathematical Physics", Y. Karpeshina, R. Weikard and Y. Zeng (eds.), Contemporary Mathematics, Vol. 327, American Mathematical Society, Providence, RI, 2003, 141-150.
[15] J. A. Goldstein and Q. S. Zhang, On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342-359.
[16] J. A. Goldstein and Q. S. Zhang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc. 355 (2003), 197-211.
[17] D. HaUER and A. RHANDI, A weighted Hardy inequality and nonexistence of positive solutions, Arch. Math. 100 (2013), 273-287.
[18] R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.) 3 (1980), 821-843.
[19] D. JERISON and J. M. LEE, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), 1-13.
[20] D. JERISON and J. M. LEE, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), 303-343.
[21] S. SEMMES, An introduction to Heisenberg groups in analysis and geometry, Notices Amer. Math. Soc. 50 (2003), 640-646.
[22] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, "Analysis and Geometry on Groups", Cambridge Tracts in Mathematics, Vol. 100, Cambridge University Press, Cambridge, 1992.

Department of Mathematical Sciences University of Memphis 38152 Memphis, TN, USA ggoldste@memphis.edu jgoldste@memphis.edu

Dipartimento di Scienze Pure e Applicate Università degli Studi di Urbino Carlo Bo Piazza della Repubblica, 13 61029 Urbino (PU), Italia alessia.kogoj@uniurb.it

Dipartimento di Ingegneria dell'Informazione Ingegneria Elettrica e Matematica Applicata Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA), Italia arhandi@unisa.it

Dipartimento di Matematica Università degli studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA), Italia ctacelli@unisa.it

