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Abstract

We consider the linear second order PDO’s

L = L0 − ∂t :=
N∑

i,j=1

∂xi (aij ∂xj ) −
N∑

j=i

bj ∂xj − ∂t ,

and assume that L0 has nonnegative characteristic form and satisfies the Oleı̌nik–Radkevič rank hypoel-
lipticity condition. These hypotheses allow the construction of Perron-Wiener solutions of the Dirichlet 
problems for L and L0 on bounded open subsets of RN+1 and of RN , respectively.

Our main result is the following Tikhonov-type theorem:
Let O := �×]0, T [ be a bounded cylindrical domain of RN+1, � ⊂ RN , x0 ∈ ∂� and 0 < t0 < T . Then 
z0 = (x0, t0) ∈ ∂O is L -regular for O if and only if x0 is L0-regular for �.

As an application, we derive a boundary regularity criterion for degenerate Ornstein–Uhlenbeck opera-
tors.
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1. Introduction

We consider linear second order partial differential operators of the type

L0 :=
N∑

i,j=1

∂xi

(
aij ∂xj

) +
N∑

j=1

bj ∂xj
(1)

in an open set X of RN , N ≥ 2, and their “evolution” counterpart in X ×R

L = L0 − ∂t . (2)

We assume L0 in (1) to be of non totally degenerate Oleı̌nik and Radkevič type, i.e., we 
assume

(H1) aij = aji, bi ∈ C∞(X, R) and

A(x) := (aij (x))i,j=1,...,N ≥ 0 ∀x ∈ X.

Moreover

inf
X

a11 =: α > 0.

(H2) rank Lie{X1, . . . , XN, X0}(x) = N ∀x ∈ X, where,

Xi =
N∑

j=1

aij ∂xj
, i = 1, . . . ,N, and X0 =

N∑
j=1

bj ∂xj
.

Hypotheses (H1) and (H2) imply that L0 is hypoelliptic in X (see [20]), that is:

� open subset of X, u ∈ D′(�), L0u ∈ C∞(�,R) =⇒ u ∈ C∞(�,R).

The same assumptions (H1) and (H2) also imply that L0 − ∂t is hypoelliptic in X ×R.
We will show in Section 2 that L0 and L0 −∂t endow X and X×R, respectively, with a local 

structure of σ ∗-harmonic space, in the sense of [3], Chapter 6. As a consequence, in particular, 
the Dirichlet problems{

L0u = 0 in �,

u|∂� = ϕ,
and

{
(L0 − ∂t )v = 0 in O := �×]0, T [,
v|∂O = ψ,

have a generalized solution in the sense of Perron–Wiener, for every bounded open set � ⊂⊂ X, 
for every T > 0, and for every ϕ ∈ C(∂�, R) and ψ ∈ C(∂O,R). We will denote such general-
ized solutions by, respectively,

H� and KO.
ϕ ψ
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As usual, a point x0 ∈ ∂� ((x0, t0) ∈ ∂O) is called L0-regular for � (L -regular for O) if

lim
x→x0

H�
ϕ (x) = ϕ(x0) ∀ϕ ∈ C(∂�,R)(

lim
(x,t)→(x0,t0)

KO
ψ (x, t) = ψ(x0, t0) ∀ψ ∈ C(∂O,R)

)
.

The aim of this paper is to prove the following theorem:

Theorem 1.1. Let � be a bounded open set with � ⊆ X, and let x0 ∈ ∂� and t0 ∈]0, T [. Then, 
x0 is L0-regular for � if and only if (x0, t0) is L0 − ∂t -regular for O := �×]0, T [.

When L = Δ − ∂t is the classical heat operator, our result re-establishes a theorem proved by 
Tikhonov in 1938 [22]. Other proofs of the Tikhonov Theorem were given by Fulks in 1956 and 
in 1957 [8,9] and by Babuška and Výborný in 1962 [5]. Chan and Young extended the Tikhonov 
Theorem to parabolic operators with Hölder continuous coefficients in 1977 [7], and Arendt to 
parabolic operators with bounded measurable coefficients in 2000 [1]. The corresponding version 
for p-Laplacian-type evolution operators has been proved by Kilpeläinen and Lindqvist in 1996 
[10] and by Banerjee and Garofalo in 2015 [3].

To the best of our knowledge, the only Tikhonov-type theorem for second order “evolu-
tion” sub-Riemannian PDO’s appearing in the literature is the result by Negrini [19] in abstract 
β-harmonic spaces.1

The present paper is organized as follows. In Section 2, all the notions and results from Po-
tential Theory that we need are briefly recalled. In particular, we recall the notion of σ ∗-harmonic 
space and then we prove that L0 and L endow X and X × R, respectively, with a local struc-
ture of σ ∗-harmonic space. In this way, we derive the existence of a generalized solution in the 
sense of Perron–Wiener in both our settings. Section 3 is devoted to two key results for the proof 
of the main theorem (Theorem 1.1), which is the content of Section 4. Finally, combining our 
Tikhonov-type theorem with a corollary of a Wiener–Landis-type criterion for Kolmogorov-type 
operators [11], we establish a geometric boundary regularity criterion for degenerate Ornstein–
Uhlenbeck operators.

2. L0-harmonic and L -harmonic spaces

2.1. The σ ∗-harmonic space

For the readers’ convenience we recall the definition of σ ∗-harmonic space supported on an 
open set E ⊆Rp, p ≥ 2, and refer to Chapter 6 of the monograph [4] for details.

Let H be a sheaf of functions in E such that H(V ) is a linear subspace of C(V, R), for every 
open set V ⊆ E. The functions in H(V ) are called H-harmonic in V . The open set V is called 
H-regular if

(i) V ⊆ E is compact;
(ii) for every ϕ ∈ C(∂V, R) there exists a unique function such that

1 For a definition of β-harmonic spaces see [6].
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hV
ϕ (x) → ϕ(ξ) as x → ξ , for every ξ ∈ ∂V ;

(iii) hV
ϕ ≥ 0 if ϕ ≥ 0.

A lower semicontinuous function u : W −→] − ∞, ∞], W ⊆ E open, is called H-superhar-
monic if

(i) u ≥ hV
ϕ in V for every H-regular open set V with V ⊆ W and for every ϕ ∈ C(∂V, R) with 

ϕ ≤ u|∂V ;
(ii) {x ∈ W | u(x) < ∞} is dense in W .

A function v : W −→ [−∞, ∞[, is called H-subharmonic if −v is H-superharmonic. We denote 
by H(W) (H(W)) the cone of the H-superharmonic (H-subharmonic) functions in W .

The couple (E, H) is called a σ ∗-harmonic space if the following axioms hold:

(A1) There exists a function h ∈H(E) such that infh > 0.
(A2) If (un)n∈N is a monotone increasing sequence of H-harmonic functions in an open set 

V ⊆ E such that

{x ∈ V | sup
n∈N

un(x) < ∞}

is dense in �, then

u := sup
V

un is H-harmonic in V.

(A3) The family of the H-regular open sets is a basis of the Euclidean topology on E.
(A4) For every x, y ∈ E, x 
= y, there exist two nonnegative H-superharmonic and continuous 

functions u, v in E such that

u(x)v(y) 
= u(y)v(x).

(A5) For every x0 ∈ E there exists a nonnegative H-subharmonic and continuous function Sx0

in E, such that Sx0(x0) = 0 and

inf
E�V

Sx0 > 0

for every neighborhood V of x0.

We now recall some crucial results in σ ∗-harmonic space theory; first of all the definition of 
Perron–Wiener solution to the Dirichlet problem.

Let V be a bounded open set with V ⊆ E, and let ϕ : ∂V −→ R be a bounded lower semi-
continuous or upper semicontinuous function. Define

UV

ϕ := {u ∈ H(V ) | lim infu(x) ≥ ϕ(ξ) ∀ξ ∈ ∂V }

x−→ξ
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and

HV
ϕ := infUV

ϕ . (3)

Then HV
ϕ is H-harmonic in �. It is called the generalized Perron–Wiener solution to the Dirichlet 

problem

{
u ∈H(V ),

u|∂V = ϕ.

We also have

HV
ϕ := supUV

ϕ , (4)

where,

UV
ϕ := {v ∈ H(V ) | lim sup

x−→ξ

v(x) ≤ ϕ(ξ) ∀ξ ∈ ∂V }.

We say that a point y ∈ ∂V is H-regular for V if

lim
x→y

HV
ϕ (x) = ϕ(y) ∀ϕ ∈ C(∂V,R).

On the σ ∗-harmonic space the Bouligand Theorem holds. Indeed: a point y ∈ ∂V is H-regular 
for V if and only if there exists a H-barrier for V at y, i.e., if there exists a function b, defined 
in V ∩ W , where W is a suitable neighborhood of y, such that

(i) b is H-superharmonic;
(ii) b(x) > 0 ∀x ∈ V ∩ W and b(x) −→ 0 as x −→ y.

For our purposes it is important to recall that if y ∈ ∂V is H-regular for V there exists a barrier 
function for V at y which is defined and H-harmonic all over V .

Finally, we recall the minimum (maximum) principle for H-superharmonic (H-subharmonic) 
functions.

Let V be a bounded open set with V ⊆ E and let u ∈H(V ) (u ∈ H(V )). If

lim inf
x−→y

u(x) ≥ 0 (lim sup
x−→y

u(x) ≤ 0) ∀y ∈ ∂V,

then u ≥ 0 (u ≤ 0) in V .
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2.2. The L0-harmonic space

Let E be a bounded open subset of X such that E ⊆ X. For every open set V ⊆ E we let

H(V ) = {u ∈ C∞(V ,R) | L0u = 0 in V }.

Then, V �−→ H(V ) is a sheaf of functions such that H(V ) is a linear subspace of C(V, R).
If u ∈ H(V ) we will say that u is H-harmonic or L0-harmonic in V .
We have that

(E,H) is a σ ∗-harmonic space. (5)

Before showing this statement we remark that a C2-function u in a open set V is H-superhar-
monic if and only if L0u ≤ 0 in V . This is an easy consequence of Picone’s maximum principle 
(see e.g. [14], page 547). Now we are ready to prove (5).

(A1) is satisfied since the constant functions are L0-harmonic.
(A2) - (A4) are proved in [14]. We would like to stress that our operators L0 are contained in 

the class considered in [14] since the rank condition (H2) implies that both L0 and L0 − β , for 
every β ≥ 0, are hypoelliptic.

The axiom (A5) follows from the following Lemma which seems to have an interest per se.

Lemma 2.1. Let us consider a linear second order PDO of the kind

L :=
N∑

i,j=1

aij ∂xixj
+

N∑
j=1

bj ∂xj
,

where aij = aji, bj are continuous functions in Y , where Y is a bounded open subset of RN . 
Suppose2

inf
Y

a11 := α > 0 and
N∑

j=1

ajj > 0 in Y.

Then, for every x0 ∈ Y there exists a function h ∈ C∞(Y, R) such that

(i) h(x0) = 0 and h(x) > 0 for every x 
= x0;
(ii) Lh > 0 in X.

Proof. For the sake of simplicity we assume x0 = 0. We define

h(x) = E(λx1) + (x2
2 + · · · + x2

N), x = (x1, x2, . . . , xN) ∈RN,

where λ > 0 will be fixed in the sequel. Moreover,

2 We don’t require (aij )i,j=1,...,N to be nonnegative definite.
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E(s) = exp(φ(s)) − exp(φ(0))

and

φ(s) =
√

1 + s2, s ∈R.

We have:

φ(0) = 1, φ(s) > 1 ∀s 
= 0, E(s) > 0 ∀s 
= 0, E(0) = 0,

φ′(s) = s√
1 + s2

, φ′′(s) = 1

(1 + s2)
3
2

.

Hence (
φ′2 + φ′′) (s) = s2

1 + s2 + 1

(1 + s2)
3
2

≥ 1

2
√

2
∀s ∈ R.

On the other hand

E′ = exp(φ)φ′, E′′ = exp(φ)(φ′2 + φ′′).

Therefore, letting

β := sup
X

N∑
j=1

|bj | (< ∞) and λ = sup
x∈X

|x|,

we get

Lh(x) = λ2E′′(λx1)a11(x) + λE′(λx1)b1 + 2
N∑

j=2

(ajj (x) + bj (x)xj )

≥ exp(φ(λx1))

(
a11(x)

2
√

2
λ2 − λ|b1|

)
− 2

N∑
j=2

|bj ||xj |

≥ λ2
(

α

2
√

2
− |b1|

λ

)
− 2βλ

≥ λ2
(

α

2
√

2
− β

λ

)
− 2βλ.

If λ is big enough, this implies

Lh > 0 in X.

Moreover
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h(0) = E(0) = 0, h(x) > 0 if x > 0.

The proof is complete. �
2.3. The L -harmonic space

Let Ê be a bounded open subset of X × R such that Ê ⊆ X × R. For every open set V ⊆ Ê

we let

K(V ) = {u ∈ C∞(V ,R) | L u = 0 in V }.
Then, V �−→ K(V ) is a sheaf of functions making

(Ê,K) a σ ∗-harmonic space.

This can be proved just by proceeding as in subsection 2.2. We call K-harmonic or 
L -harmonic in a open set V the solutions to L u = 0 in V .

Here we prove some typical results of the present K-harmonic space, that we will need in 
the proof of the main theorem of this paper. We first show a “parabolic” minimum principle for 
L -subharmonic functions in cylindrical domains.

Proposition 2.2. Let � be a bounded open subset of X such that � ⊆ X and let T > 0. Consider 
the cylindrical domain O := �×]0, T [ and define the “parabolic boundary” of O as follows

∂pO := (� × {0}) × (∂�×]0, T ]).

Then, if u ∈K(O) is such that

lim inf
z−→ζ

u(z) ≥ 0 ∀ζ ∈ ∂pO,

we have u ≥ 0 in O.

Proof. For every arbitrarily fixed T̂ ∈]0, T [ we let Ô = �×]0, ̂T [. We will prove that u ≥ 0 in 
Ô. Since T̂ is arbitrarily fixed in ]0, T [, this will guarantee the proof of our lemma. To this end, 
given any ε > 0, we define

uε(z) = uε(x, t) := u(x, t) + ε

T̂ − t
, z ∈ Ô.

Since u is K-superharmonic in O and

L
ε

T̂ − t
= −ε∂t

1

T̂ − t
= − ε

(T̂ − t)2
< 0 in Ô,

then uε is K-superharmonic in O. Moreover

lim infuε(z) ≥ 0 ∀ζ ∈ ∂pÔ,

z−→ζ
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and, for every ξ ∈ �,

lim inf
z−→(ξ,T̂ )

uε(z) ≥ u(ε, T̂ ) + lim inf
t↗T̂

ε

T̂ − t
= ∞.

By the minimum principle recalled in subsection 2.1, we have uε ≥ 0 in Ô. Letting ε go to zero 
we have uε ≥ 0 in Ô, thus completing the proof. �
Proposition 2.3. Let � ⊆ X be open and let T0 and T ∈ R, such that 0 < T0 < T . Let 
O := �×]0, T [ and u : O −→ R be such that the restrictions u|�×]0,T0[ and u|�×]T0,T [ are 
K-superharmonic. Then, if

lim inf
z−→(ξ,T0)
(x,t)∈O

u(x, t) = lim inf
z−→(ξ,T0)

t<T0
(x,t)∈O

u(x, t) = u(ξ,T0) ∀ξ ∈ �, (6)

the function u is K-superharmonic in �×]0, T [.

Proof. Since u is lower semicontinuous in �×]0, T0[ and in �×]T0, T [, the assumption (6)
implies that u is lower semicontinuous in O = �×]0, T [.

To prove that u is K-harmonic in O we will show the following claim.

Claim. For every z ∈O there exists a basis Bz of K-regular neighborhoods V of z such that

u(z) ≥ KV
ϕ (z) ∀ϕ ∈ C(∂V,R), u|∂V ≥ ϕ.

Here KV
ϕ denotes the unique K-harmonic function in V , continuous up to ∂V and such that 

KV
ϕ |∂V = ϕ.

From this Claim our assertion follows thanks to Corollary 6.4.9 in [4].
If z ∈ �×]0, T0[ or if z ∈ �×]0, T [, the Claim is satisfied since u is K-superharmonic

both in �×]0, T0[ and in �×]0, T [. Then it remains to prove the Claim for every point 
ζ = (ξ, T0), ξ ∈ �. Let Bζ = (V ) be a basis of K-regular neighborhoods of ζ such that V ⊆ O. 
Let ϕ ∈ C(∂V, R), ϕ ≤ u|∂V . Then u − KV

ϕ is K-superharmonic in �×]0, T0[ and

lim inf
z−→z′ u(z) ≥ u(z′) − u(z′) ≥ 0 ∀z′ ∈ ∂p�×]0, T0[.

Therefore, by Proposition 2.2,

u − KV
ϕ ≥ 0 in V ∩ {t < T0}.

As a consequence, keeping in mind assumption (6), we have

u(ξ,T0) = lim inf
(x,t)→(ξ,τ )

t<T0

u(x, t) ≥ lim inf
(x,t)→(ξ,T0)

t<T0

KV
ϕ (x, t) = KV

ϕ (ξ, T0),

that is,
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u(ξ,T0) ≥ KV
ϕ (ξ, T0).

This completes the proof. �
3. Some preliminary results

The proof of our main theorem rests on the following two lemmata.

Lemma 3.1. Let � be a bounded open set such that � ⊆ X, and let O := �×]0, T [, T ∈ R, T >

0. Let ϕ : ∂O −→ R be upper semicontinuous and such that t �−→ ϕ(x, t) is monotone decreas-
ing, ∀x ∈ ∂� and

ϕ(x,0) = M = sup
∂O

ϕ (M ∈R).

Then, the Perron solution KO
ϕ is monotone decreasing w.r.t. the variable t: more precisely

t �−→ KO
ϕ (x, t) is monotone decreasing for every fixed x ∈ �.

Proof. For every fixed δ ∈]0, T [ let us define

h(x, t) = KO
ϕ (x, t) − KO

ϕ (x, t + δ), x ∈ �,0 < t < T − δ.

It is enough to prove that h ≥ 0 in Oδ := �×]0, T − δ[. To this end we show that, for every 

u ∈ UO
ϕ and v ∈ UO

ϕ , the function

w(x, t) = u(x, t) − v(x, t + δ)

is nonnegative in Oδ . Now, we have:

(a) w is K-superharmonic in Oδ , since u ∈ K(O) and (x, t) �−→ v(x, t + δ) is K-subharmonic 
in Oδ being v ∈K(O) and L translation invariant in the variable t .

(b) For every x ∈ �,

lim inf
(x,t)→(x,0)

w(x, t) ≥ lim inf
(x,t)→(x,0)

u(x, t) − lim inf
(x,t)→(x,0)

v(x, t + δ)

≥ ϕ(x,0) − v(x, δ)

= M − v(x, δ) ≥ 0.

We remark that v ≤ M in O since v is K-subharmonic and

lim sup
z−→ζ

v(z) ≤ ϕ(ζ ) ≤ M ∀ζ ∈ ∂O.

Here we use the maximum principle for subharmonic functions.
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(c) For every ζ = (ξ, τ), ξ ∈ ∂�, 0 < τ < T − δ,

lim inf
(x,t)→(ξ,τ )

w(x, t) ≥ ϕ(ξ, τ ) − ϕ(ξ, τ + δ) ≥ 0,

by hypothesis.

From (a), (b) and (c) and the minimum principle for superharmonic functions we get

w ≥ 0 in Oδ.

This completes the proof. �
With Lemma 3.1 at hand we can easily prove the following key result for our main theorem.

Lemma 3.2. Let � be a bounded open set such that � ⊆ X, and let O := �×]0, T [, T > 0. Let 
z0 = (x0, t0) ∈ ∂�×]0, T [ be a L -regular boundary point.

Then there exists a function b ∈K(O) such that

(i) b is an L -barrier for O at z0;
(ii) t �−→ b(x, t) is monotone decreasing for every fixed x ∈ �.

Proof. Let Y be a bounded open set such that � ⊆ Y ⊆ Y ⊆ X and let x0 ∈ �. By Lemma 2.1
there exists a function h ∈ C∞(Y, R) such that

(a) h(x0) = 0 and h(x) > 0 ∀x 
= x0.
(b) L0h > 0 in �.

For a fixed δ ∈]0, T0[ let us define

ĥ : � × [0, T ] −→R, ĥ(x, t) =
{

h(x) if δ < t ≤ T ,

M if 0 ≤ t ≤ δ,

where M = sup� h.
This function is L -subharmonic in O1 := �×]0, δ[ and in O2 := �×]δ, T [ since

L ĥ = 0 in O1 and L ĥ = L0h > 0 in O2.

On the other hand,

lim sup
(x,t)−→(ξ,δ)

t<δ

ĥ(x, t) = M = lim sup
(x,t)−→(ξ,δ)

ĥ(x, t).

Then, by Proposition 2.3,

ĥ ∈K(�×]0, T [).
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Moreover,

t �−→ ĥ(x, t) is monotone decreasing,

for every fixed x ∈ �.
Let us now put

b := KO
ĥ|∂O,

which is well defined and K-harmonic in O, since ̂h|∂O is bounded and upper semicontinuous.
Moreover, by Lemma 3.1, t �−→ b(x, t) is monotone decreasing for every fixed x ∈ �.
It remains to show that b is an L -barrier for O at z0. To this end we first remark that

ĥ ∈ UO
ĥ|∂O ,

so that

ĥ ≤ b in O.

This implies b > 0 in O since ̂h is strictly positive.
On the other hand, since ̂h|∂O is continuous in a neighborhood of z0, and z0 is L -regular for 

O,

lim
z−→z0

b(z) = lim
z−→z0

KO
ĥ|∂O (z) = ĥ(z0) = φ(x0) = 0.

This completes the proof. �
4. Proof of Theorem 1.1

Let us keep the notation of Theorem 1.1 and split the proof in two steps.

(1) If x0 ∈ ∂� is L0-regular for �, then z = (x0, t0) is L -regular for O.

Indeed, the L0-regularity of x0 implies the existence of a L0-harmonic barrier for � at x0, i.e. a 
function b0 ∈K(�) such that

b0 > 0 in � and b0 −→ 0 as x −→ x0.

It follows that

b̂(x, t) = b0(x), (x, t) ∈ O,

is L -harmonic in O (L b̂ = L0b0 = 0). Moreover,

b̂ > 0 in O and b̂(x, t) = b0(x) −→ 0 as (x, t) −→ (x0, t0).

Hence, ̂b is an L -barrier function for O at z0 and, as a consequence, z0 is L -regular for O.
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(2) If z = (x0, t0), x0 ∈ �, 0 < t0 < T , is L -regular for O, then x0 is L0-regular for �.

Indeed, by Lemma 3.2, there exists a function b ∈K(O) such that b > 0, b(z) −→ 0 as z −→
z0 and

t �−→ b(x, t) is monotone decreasing ∀x ∈ �.

It follows that, letting b0(x) = b(x, t0),

L0b0 = L b + ∂tb = ∂tb ≤ 0 in �.

Hence, b0 is L0-superharmonic in �. Moreover, b0 > 0 in � and

b0(x) = b(x, t0) −→ 0 as x −→ x0.

Therefore, b0 is an L -barrier for � at x0, and x0 is L0-regular.

5. An application to degenerate Ornstein–Uhlenbeck operators

In RN let us consider the partial differential operator

L0 = div (A∇) + 〈Bx,∇〉 , (7)

where A = (aij )i,j=1,...,N and B = (bij )i,j=1,...,N are N × N real constant matrices, x =
(x1, . . . , xN) is the point of RN , div, ∇ and 〈·, ·〉 denote the divergence, the Euclidean gradi-
ent and the inner product in RN , respectively.

We suppose that the matrix A is symmetric, positive semidefinite and that it assumes the 
following block form

A =
[

A0 0

0 0

]
,

A0 being a p0 × p0 strictly positive definite matrix with 1 ≤ p0 ≤ N . Moreover, we assume the 
matrix B to be of the following type

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0

B1 0 . . . 0 0

0 B2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Br 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (8)

where Bj is a pj−1 × pj block with rank pj (j = 1, 2, ..., r), p0 ≥ p1 ≥ ... ≥ pr ≥ 1 and p0 +
p1 + ... + pr = N .

Finally, letting

E(s) := exp(−sB), s ∈R,
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we assume that the following condition is satisfied:

C(t) =
t∫

0

E(s)AET (s) ds is strictly positive definite for every t > 0.

As it is quite well known this condition implies the hypoellipticity of L, see [15]. In that paper 
it is proved that the evolution counterpart of L0, i.e. the operator

L = L0 − ∂t in RN+1,

is left translation invariant and homogeneous of degree two on the homogeneous group

K = (RN+1,◦, δλ)

with composition law ◦ defined as follows

(x, t) ◦ (x′, t ′) = (x′ + E(t ′)x, t + t ′)

and dilation δλ, λ > 0, defined by

δλ : RN+1 −→ RN+1, δλ(x, t) = δλ(x
(p0), x(p1), . . . , x(pr ),t )

:= (λx(p0), λ3x(p1), . . . , λ2r+1x(pr ), λ2t),

where x(pi) ∈Rpi , i = 0, . . . , r .
The natural number q := Q + 2, with

Q := p0 + 3p1 + . . . + (2r + 1)pr , (9)

is the homogeneous dimension of K. In what follows we will write

δλ(z) = δλ(x, t) = (Dλ(x), λ2t),

where,

Dλ(x) = (λx(p0), λ3x(p1), . . . , λ2r+1x(pr ), λ2t).

Obviously, (Dλ)λ>0 is a group of dilations in RN . The natural number Q in (9) is the homo-
geneous dimension of RN w.r.t. the group (Dλ)λ>0.

The operator L has a fundamental solution � given by

�(z0, z) := γ (z−1 ◦ z0), z, z0 ∈RN+1,

where ◦ is the composition law in K, z−1 denotes the opposite of z in K and, for a suitable 
CQ > 0,
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γ (x, t) =

⎧⎪⎨⎪⎩
0 if t ≤ 0,

CQ

tQ
exp

(
− 1

4

∣∣∣∣D 1√
t

(x)

∣∣∣∣2

C

)
if t > 0,

where,

|y|2C = 〈C−1(1)y, y〉,
see again [15].

It is quite easy to recognize that our Tikhonov-type theorem applies to the operators L0 and 
L. Hence, if � is a bounded open subset of RN , x0 ∈ ∂� and t0 ∈] − T , T [, T > 0, we have:

x0 is L0-regular for �

if and only if

z0 = (x0,0) is L-regular for OT := �×] − T ,T [.
On the other hand, in [11, Corollary 1.3] it is proved that

z0 is L-regular for OT

if, for a μ ∈]0, 1[, the following condition holds:

∞∑
k=1

|Oc
T ,k(z0)|

μ
α(k)

Q+2
Q

= ∞, (10)

where α(k) = k logk, | · | denotes the Lebesque measure in RN+1 and

Oc
T ,k(z0) =

{
z 
=OT :

(
1

μ

)α(k)

≤ �(z0, z) ≤
(

1

μ

)α(k+1)
}

.

We express now this condition in a more explicit form. To this end we let

Ac
k(x0) =

{
(x, t) ∈RN+1 | x /∈ �,γ (z−1 ◦ (x,0)) ≥

(
1

μ

)α(k)
}

. (11)

Then,

Oc
T ,k((x0,0)) = (Ak(x0) � Ak+1(x0)) ∪

{
γ =

(
1

μ

)α(k+1)
}

⊇ Ak(x0) � Ak+1(z0).

Hence, denoting for the sake of brevity,

dk = |Ak(z0)| and ν = μ
(Q+2)

Q ,



A.E. Kogoj / J. Differential Equations 268 (2019) 186–203 201
condition (10) is satisfied if

∞∑
k=1

dk − dk+1

να(k)
= ∞. (12)

On the other hand, for every p ∈N ,

∞∑
k=1

dk − dk+1

να(k)

= d1

να(1)
+ d2

(
1

να(2)
− 2

να(1)

)
+ · · · + dp

(
1

να(p)
− 2

να(p−1)

)
− dp+1

να(p)

≤ (1 − νlog 2)

p∑
k=1

dk

να(k)
− dp+1

να(p)
.

Then, since 
dp+1

να(p)
−→ 0 as p → ∞ (as we will see later) condition (12) is satisfied if

∞∑
k=1

dk

μα(k)
= ∞. (13)

Keeping in mind the very definition of �, we have that Ak(x0) is equal to the following set

{
(x, t) ∈ RN+1 | x ∈ �c, t < 0,

∣∣∣∣D 1√|t |
(x0 − E(|t |x))

∣∣∣∣2

C

< 2Q log
(CQμα(k))

2
Q

t

}
,

whereby, with the change of variables y := x0 − E(|t |)x, τ = −t , we get

dk =
∣∣∣∣∣
{

(y, τ ) | τ > 0, y ∈ x0 − E(τ)(�c),

∣∣∣∣D 1√|τ |

∣∣∣∣2

C

< 2Q log
Rk

τ

}∣∣∣∣∣ . (14)

Here Rk = (CQμα(k))
2
Q and �c := RN+1

� �.
Therefore,

dk ≤
∣∣∣∣∣
{

(y, τ ) | τ > 0,

∣∣∣∣D 1√|τ |

∣∣∣∣2

C

< 2Q log
Rk

τ

}∣∣∣∣∣
(using the change of variables y = D√

Rk
(ξ), τ = Rks)

= R
Q+2
Q

k

∣∣∣∣{(ξ, s) | s > 0,

∣∣∣∣D√
1
s

(ξ)

∣∣∣∣ ≤ 2Q log
1

s

}∣∣∣∣ .
Hence, for a suitable dimensional constant C∗ > 0,
Q
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dk ≤ C∗
Qμ

α(k)
Q+2
Q = C∗

Qνα(k).

Then,

0 ≤ dp+1

να(p)
≤ C∗

Qμα(p+1)−α(p) −→ 0 as p −→ ∞,

since 0 < μ < 1 and α(p + 1) − α(p) = p log p+1
p

+ log (p + 1) −→ ∞.
We have completed the proof of the following criterion:

Let L be the Ornstein–Uhlenbeck-type operator in (7) and let � ⊆ RN be a bounded open set. 
Then, a point x0 ∈ ∂� is L-regular for � if

∞∑
k=1

dk(�,x0)

μα(k)
Q+2

2

= ∞, (15)

where dk(�, x0) := dk is defined in (14).
We note that condition (15) holds if � satisfies the exterior cone-type condition introduced in 

[13]. Geometric boundary regularity criteria for wide classes of hypoelliptic operators are also 
established in [2], [12], [16], [17], [18], [21], [23], [24] and [25]. Thanks to our Theorem 1.1, 
several regularity results for evolution operators contained in the previous papers can be used to 
obtain boundary regularity criteria for operators of the type (1).
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