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X-elliptic operators and X-control distances

ERMANNO LANCONELLI (*) ~ ALESSIA ELISABETTA KOGOJ (*)

ABSTRACT. — Let L be a linear second order divergence form operator with
non negative characteristic form. Let X = (Xi,...,X,,) be a family of Jocally
Lipschitz continuous vector fields on IR". Assuming that L is X-elliptic accordingly
to definition (2) of the subsequent Introduction, we provide a condition on X for
the weak solution, to Lu = 0 satisfies a “scale invariant” Harnack inequality.

1. Introduction

In this note we are concerned with a class of degenerate elliptic equa-
tions in divergence form:

AHV Lu = W mwhu. AQ«..N.QRL .

i3=1

We assume a;; = a;; € LS (IR") and the existence of a family X =
(X1...., X) of locally Lipschitz continuous vector fields on R” such that,

for a suitable constant ¢ > 0,

m

N m
(2) WMUCQ&Y@V” < M!U ai;(z)&:; < nMCﬁay@vm

for every z,£ € R". We call X-elliptic any operator whose characteristic
form satisfies the inequality (2).
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The principal aim of this paper is to show a general condition on X
assuring a scale invariant Harnack inequality for the positive weak solutions
to Lu = 0.

A first basic hypothesis, that we shall assume without further comment
throughout the paper, is the X-connectivity of R" , i.e. the existence of a X~
subunit path connecting any pair of points. This hypothesis enables to de-
fine on IR™ the X-control distance d x, also called the Carnot-Carathéodory
distance.

Our main result, Theorem 4.1, provides a condition on X for which the
following property holds: every dx-ball, with radius small enough, satis-
fies the doubling condition with respect to the Lebesgue measure and sup-
ports a Poincaré-type inequality with respect to the X-gradient (we refer
to Section 3 for formal statements and definitions). As we will point out
in Section 3, this property allows to extend to the X-elliptic operators the
iteration technique introduced by Moser for proving the Harnack inequality
for classical uniformly elliptic equations.

The idea to adapt the Moser procedure to a non-euclidean control dis-
tance first appeared in [17] in 1982, and was inspired by a 1968 paper by
Kuptsov [33]. In [18] a particular control metric was studied, and was sub-
sequently used in [19] in order to prove Hélder continuity — and Harnack
inequality — for the weak — positive — solutions to a class of degenerate
non-uniformly elliptic equations.

Since then, a lot of papers have been devoted to the study of Poincaré-
type inequalities for vector fields, and to their deep connection with Sobolev-
type inequalities. In Section 3 a brief survey of such developments is given.
In this same section we also sketch how Moser’s technique can be extended
to the X-elliptic operators.

Section 2 is devoted to a short historical introduction to some real
analysis methods in the euclidean setting and to their extension to the
metric space of homogeneous type. This methods play a crucial role in
Moser’s procedure.

In Section 4, by using the notion of X-controllable almost exponential
map recently introduced in [34], we prove our main resuls.

2. Some classical results

Many functional spaces arising in the theory of partial differential equa-
tions have been modeled on different metrics in IR” and inherit some of
their most important properties. A distinctive feature of Sobolev spaces,
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the natural functional setting for studying elliptic equations, deeply reflects
the geometry of the euclidean metric: the embedding inequality

2N
llull Loemmy < CliVull p2mwy. P=5—3

is a consequence of the isoperimetric property of the euclidean balls (see
Fleming and Rishel [16) and Talenti {47)).

Other functional spaces modeled on the euclidean metric are those in-
troduced by Morrey for studying regularity problems in the calculus of vari-
ations.

If 1 < p < oo, A > 0and Qis an open bounded subset of RY, a function
u € LP(2) belongs to the Morrey space L7*(f) if

1
w m: I\ ciaAw
: m_.w_y 95__ 8

where the supremum is taken over the family of euclidean balls (| B| denotes
the Lebesgue measure of B). A remarkable variant of Morrey spaces was
proposed and used by Campanato, for proving Hélder regularity results for
solutions to elliptic equations and systems. A function u € L?(2) belongs
to the Campanato space £7*(Q) if

1
A mz.. \ :I.:iHAoo,
A v mwb _.m_\/ mjn_ ~w_ .

where ug denotes the integral average of v on BN S.

If0 < A < 1, then £»* = LP*. Moreover, if A > 1 and Q satisfies a weak
regularity condition, then up to a modification on a set of zero measure, a
function u € £7* is Hélder continuous of exponent a = N ylww.

The former of these results is due to Campanato [5), while the latter is
due to Campanato [6] and G.N. Meyers [40]. When A = 1, the Campanato
space becomes the BM O space of functions with bounded mean oscillation.
The space BMO was first introduced and studied by John and Nirenberg
and it subsequently played an important role in the regularity theory of
weak solutions to linear and non-linear elliptic equation, and in harmonic
analysis.

John and Nirenberg proved the following result, since then called John
and Nirenberg’s Lemma [31].

LEMMA 2.1. — Let By be a fized euclidean ball. If u € BMO(B,) then
{z € Bo / |u(z) — usl 2 t}| < ce™™|B|
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for every ball B C By. As a consequence,
.\ elvsldy < ¢|B|
B
for every B C By. The positive constant a, b and ¢ are independent of B.

This lemma was promptly used by Moser [37] for a crucial step of his
proof of the Harnack inequality for positive weak solutions to elliptic equa-
tions in divergence form with bounded measurable coefficients:

5) Lu:=Y"0,(a;0:,u) = 0.

We briefly recall Moser’s result: if u is a positive weak solution to equa-
tion (5), and B is an euclidean ball such that 4B C €, then

(6) supu < cinfu
B B

where ¢ is independent of u and B. We call (6) scale invariant Harnack
inequality for w.

Moser devised a new iterative method that allows to prove that every
positive weak solution u > 0 to (5) is bounded and satisfies the following

inequalities
) supu < AF\ :uv infu > A ! \ :nuvx»
m@ =% |12B] J28 BT G |2B| J25

for every p > 0. Consequently, if there exists a positive exponent p such
that

\ :&H\ u”Pdx < ¢ |2B?

28 2B

the inequality (6) follows from (7). Now this last inequality holds if w =
logu € BMO. Indeed, if this is the case, John-Nirenberg’s Lemma yields

\. :v&a\ :xia”\ nve&ﬁ\ e ™dx
2B 2B 28 2B

A\ mislsucv&&..\ e Pw=128) 4
2B

- 2B

2
< A\ mu_s|§m_&ev <cl|2B?.
28

o liad
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In order to prove that w = log u is a bounded mean oscillation function,
Moser first showed that

Vwl>< < |B|,  r=radius of B,
B r?

for any euclidean ball B such that 28 C 2. From this result, and applying
the classical Poincaré inequality

\._SISw_mMnﬂn\. [Vw|?,
I B

Moser immediately deduced

\m_SI.Em_ MﬂA.\m,_Q.E_NVW _m_m <c¢|Bj

from which w € BMO.

From inequality (6), by a simple real analysis argument, it easy to
obtain the Holder continuity of the weak solution to the equation (5), then
providing a new proof of the celebrated De Giorgi’s Theorem [12].

The euclidean distance properties also play an important role in the
Calderon-Zygmund theory of singular integrals. If we wish to solve the
equation —Au = f, we are naturally led to the study of the newtonian
potential

Pxfz)= [ D(z-y)f(y)dy
uﬂz

where I’ denotes the fundamental solution of the laplacian. When the func-
tion f is Holder continuous (and compactly supported) the potential I" x f
has Hélder continuous second derivatives and satisfies the Laplace equation
—Au = f in a classical sense. On the other hand, if the function f is merely
continuous then, in general, T' * f ¢ C?, and the equation —Au = f is
not solvable in a classical sense, i.e. there do not exist functions u € C?
such that —Au = f. However, if f € LP(R") and 1 < p < oo, then
Tx f e W2P(R") and

Al f)(z) = —f(z), ae

This result easily follows from the Calderon-Zygmund Theorem:
fori,j=1,...,N let us denote w; ;(z) = 62 _, I'(z). Then, for every

\mhungvLAﬁAoo,

T

(8) lim wi (& — y)f(y)dy

€0 Jiz—y|e
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ezists in LP(R™) (see Stein [45), 11, Theorem 3).

This result is a consequence of a deep decomposition lemma of R” into
a family of almost disjoint euclidean balls on each of which either f or its
mean oscillation is small.

It is important to mention that the John-Nirenberg Lemma is based on
the previous Calderon-Zygmund decomposition.

We also stress that the existence of the limit in (8) depends on the
symmetry properties of the recision domain {|z — y| > €}, the same of the
kernels w; ;. These functions, indeed, are homogeneous with respect to the
dilations

(0 R ——RY, 50 =z

and
\ wi;(y)do(y) =0, Ve > 0.
1yl=¢

All results cited above have been naturally generalized for studying
parabolic equations, whose most important prototype is the heat equation
in RV*L:

m. = D - @s .

The fundamental solution I" of H,

N —)aol?
D(z,t) = (4nt) Fe B for >0, T(z,t)=0, for t<0
is homogeneous of degree —N with respect to the dilations
9) (A )z, t) = (Az, M%) .

Therefore, if we wish to study the operator H in L” spaces, we are led
to consider singular integrals having kernels homogeneous with respect to
the dilations ¢(A) in (9) and use, instead of the euclidean metric, a distance
with the same kind of homogeneity.

This generalization was accomplished by B.F. Jones in 1963 [32]. This
author extended the theory of Calderon-Zygmund to the integral kernels
with the following homogeneity:

KAz, A\™t) = A" K (xz,¢t) .

Some years later, in 1966, Fabes and Riviére [14] studied a more general
class of kernels, homogeneous in the following sense:

(10) KXz, ... A*Ngy) = A~ L K (z),
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where ay, ...,y are arbitrary real numbers greater than 1.

In [14], singular integrals related to the kernels (10) were studied in
perfect analogy with the “isotropic” Calderon-Zygmund case, replacing the
cuclidean metric with a distance of the following type:

N 1
(11) dz,y) = ) _lz; — |
i=1

which is homogeneous of degree 1 with respect to the dilations
%AVVAHV B AVQ—H: ey YQZ.N.ZV .

An analogous metric had been already introduced by Barozzi for study-
ing Holder regularity properties of solutions to semi-elliptic equations [2].
Barozzi proposed a generalization of Morrey spaces modeled on the dis-
tance (11), and afterwards, Da Prato [13] introduced a similar generaliza-
tion for Campanato spaces. To obtain Barozzi and Da Prato spaces, it is
enough to replace in definitions (3) and (4) the euclidean balls with the balls
of the distance (11).

Twenty years later, in 1979, Macias e Segovia [41] studied a wide gen-
erslization of Campanato spaces, which is modeled on metrics with weak
homogeneity properties. Following a definition introduced by Coifman and
Weiss [11], a triple (M, d, u) is called a homogeneous metric space if d and
1+ are, respectively, a distance and a regular Borel measure on X, such that

A:= sup E < 0o
zeM,r>0 ((Ba(z,T))
where By(z,r) denotes the d-balls with center z and radius r. Obviously
A > 1. The real number
Q=1log, A.

is called the homogeneous dimension of (M,d,p). It can be easily shown
that
1(Ba(z, tr)) < Atu(Ba(z, 7))

foreveryz e M, r>0et>1.
Let m denote the Lebesgue measure, d. the euclidean distance and d,

the distance (11). Then
(R",d.,m),  (R",da,m)

are homogeneous spaces of dimension, respectively, N and 3. ;.
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Coifman and Weiss proved that in every homogeneous space a Calderon-
Zygmund-type decomposition lemma holds. As a natural consequence, they
developed a general theory of singular integrals which generalizes the clas-
sical elliptic and parabolic ones.

With the notion of homogeneous metric space, we are now in posi-
tion to state the Macias and Segovia Theorems which generalize those of
Campanato-Meyers and Da Prato. Let (M,d, 1) be a homogeneous space.
If1 < p <ooand 0 < f < oo, Macias and Segovia define the space Lip(8, p)
as the class of the functions u € L}, (M, 1) such that

lu = up,[Pds < c(u(Ba))? .
By
They proved that every function u € Lip(8,p) is almost everywhere equal
to a function v which is Holder continuous in the following sense:

fo(z) — v(v)l < c(u(Ba))?

for every ball By such that z,y € By.

We end this section by quoting a paper of Lu [36], where the author
studied a class of spaces containing that of Morrey-Sobolev and their gen-
eralization proposed by Barozzi.

A more particular extension of Morrey spaces was introduced by Citti
and Di Fazio [7] in studying a class of Schrédinger equations related to
second order sub-elliptic operators.

3. X-elliptic equations and X-control distance

The results of the previous section suggest the following general prob-
lem: given a second order partial differential operator in divergence form

(12) Lu:= vm” 0z;(a,,;0x,)

ij=1

with nonnegative characteristic form

N
(13) 3 aij(z)6g; > 0, v, £ e RY

1,j=1

does there exist a distance d that plays for L the same role played by the
euclidean distance with respect to the Laplace operator? In particular:
is it possible to deduce the regularity properties of the “weak” solutions of
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Lu = 0 from the “geometric” properties of the d balls? A first rough answer
to this problem is contained in a 1968 paper by Kuptsov [33]. If, roughly
speaking, there exists an m family X, ... , X,, of C* vector fields such that

(1) Tl ais(@)66; = TiLi(X;(2), 65)?
(it) the Lie algebra generated by X,,..., X, is free, stratified and with
maximum rank at every point of IR,

then Kuptsov defined a metric modeled on the X;'s. Without providing
a complete proof, Kuptsov stated that the Holder continuity of the weak
solutions to Lu = 0 can be proved by using the Moser iteration technique.

Unfortunately, one year earlier and under the only hypothesis of ¥ max-
imnm rank”:

(14) rank Lie(X),... ,Xn)=N VzeR",

Hormander [29] had proved that the weak solution to the equation

M:WNW:H f

=1

is C® if f is C. Probably for this reason Kuptsov’s work was almost
completely ignored. Nevertheless, it contains a good idea which has been
used later, independently and in different settings, by many authors.

To introduce the subject we first recall the definition of control distance
related to a m family X = (X,,...,X,,) of locally Lipschitz continuous
vector fields on IRY. We will say that a piecewice regular curve «y : [0,1} —
RY is an X-trajectory if there exist m functions a,,... ,am : 0,1 - R
such that

10 = Y aOX0(0), ae on [0,

We set

1

m 3
[l = lvllx == sup { > ad(t)] .
tefo,1) \ ;o

Denoting by ['(X) the set of the X-trajectories, for every pair of points
z,y € RN we define

(15)  dx(z,y) = d(z,y) := if{||]7]| /v € T(X),7(0) = z,7(1) = ¢} .
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If RY is X-connected, i.e. if the set to the right-hand side of (15) is
non-empty for every z,y € R", then d is a metric called the control distance
(or the Carnot-Carathéodory distance) related to Xi,... . Xm-

When the vector fields are smooth enough, a sufficient condition for the
X-connectivity of RY is that the linear space spanned by the commuta-
tors of the vector fields has dimension N at every point of IRY (Carathéo-
dory [10], Razevskii [44], Chow (9], Hermann [27}). The Kuptsov metric pre-
viously recalled is (equivalent to) a control distance. Metrics which reflect
commutation properties of C> vector fields have been studied by Folland
e Hung [15], Folland e Stein [22], Fefferman e Phong [21], Nagel, Stein e
Wainger {42]. It should be noticed that the techniques employed in these
papers always require the smoothness of the vector flelds Xy, ... , X

In {18], for the first time, a control metric dx related to a family of
non-smooth vector fields X;,... , Xy was studied. Tt was obtained a full
characterization of the geometry of the dx-balls and a sharp estimate of
their Lebesgue mcasure. The purpose of the paper was to prove the Holder
continuity for the weak solutions of an equation as in (12) where the operator
is “clliptic” with respect to the vector fields X,,... ,Xn. The proof uses the
Moser iteration technigue by substituting the euclidean metric with the
new distance dy. In order to make this statement more precise, we need
to introduce some additional notation and clarify the crucial steps of the
Moser technique.

If X,,...,Xm is a family of vectors fields on IRY, we say that the
operator (12) is X-elliptic if there exists a constant ¢ > 0 such that

1 m N m
2 mﬁv&.?v,@vw < MU i (2)&é; < nMnMANu.AaV,@vw.

We remark that every second order operator with non-negative charac-
teristic form and sufficiently smooth coefficients is X -elliptic with respect to
a suitable family X. Indeed, if the matrix (ai;) is non-negative defined and
a;; € C?, then there exists a non-negative defined matrix (o;;) with locally
Lipschitz entries such that

N

2
N N
M ;5 ()5 = MU MQE@. , V¢ € By,

ij=1 h=1

(Phillips and Sarason [43]). This remark tells us that X-elliptic operators
fail to have good properties if the family X has no “coercitivity” properties.
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The following condition seems to be a natural requirement:
RY is X-connected and sz ,dx,m) is a homogeneous metric space.
Tn [18] it was proved that such condition is satisfied if
X =M%y, An0ey)

and the );’s are non-negative functions possibly degenerating on the coor-
dinate axis with a polynomial behavior. A particular case contained in (18]
is the following:

\Au.” Tj) b.”_—f..qwf M\w”_H_QQ@»L W”Hq...ch
where RY = R? x R} and o is any real positive number. The operator
(16) L=A+|z[**0,

is (X1, Xp Y1, - ,Y,) elliptic. When o is a positive integer the opera-
tor L is contained in the class studied in (29} by Hérmander.(V

Our definition of weak solution for a X _elliptic equation is the following.
Given an open subset M C R”", we define

(u,v) = .\.E uv + \RMV@.:vﬁc = \.i uv + \EAXFNS

and denote by Wx (M) and W% (M), respectively, the closure of G*(M) and
C}(M) with respect to the norm associated to the previous inner product.
Xu stands for the X-gradient of u, i.e. Xu = (X1u, ... ; X;nu) where Xu=
(X;, Du). We also denote by We(M) the space of functions u € L (M)
such that ¢u € WY (M), for every ¢ € C5(M). The bilinear form

alu,v) = \zc?xs, we CY(I), veCh(M)

can be continued to WX x W3.

(MIn a probably improper way, such operators are now commonly called of
Grushin or Baouendi-Grushin type. In fact, 1 1967 Baouendi (1] studied a bound-
ary value problem for (16) on an open set contained in the half plane z > 0. He used
a technique based on classical weighted Sobolev spaces. In 1970, Grushin studied a
problem which is closest in spirit to our setting. He proved that when o is a posi-
tive integer, the hypoellipticity of the operators (16) can fail by adding lower order
terms with complex coefficients. Grushin also provided a complete characterization

of the hypoellipticity for such operators.
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We say that a function u € WY(M) is a weak solution of Lu = 0 if
a(u,v) =0, for every v € W3(M).

The Moser iteration technique can be straightforwardly adapted to X-
elliptic operators if the following conditions are satisfied.

I (RY ,dx,m) is a homogeneous metric space and the dx-topology is
equivalent to the euclidean one.

(IT) For every r > t there exists an X. -Lipschitz continuous function ¢
supported in the ball By(z,r), and equal to 1 on By(z,t) such that

c
X¢ < ——
X4l < r—t’
¢ independent of r,t and z.

(III) There exists p > 2 such that the following Sobolev-type inequality
holds:

(i ) <= i )

for every v € C}(B)and for any dx-ball B = By(z,ry ¢ M. cis
independent of B and u.

(IV) For any dx-ball B = By(z,7) such that \B C M the following
Poincaré-type inequality holds

flu-uslser [ |xul,
B AB

where ¢ and A are independent of u and B, and up denotes the integral
average of u on B; AB stands for the ball with the same center of B
and radius r(AB) = Ar(B).

We first show a consequence of properties (I)-(111).
PROPOSITION 3.1. -  Let us suppose that (I)-(XII) are satisfied and

let u € We°(M) be a positwe weak solution to Lu = 0 in M. Then, there
exists A > 1 independent of u such that, ifABC M,

1
< e (pg [, 1)
up u C, —_— u
= =0 \[rB] Js

and

1
H

infu2 e~ (o [ i)
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foranyp>0and i <t<r <\ Moreover, by setting w = logu,
c
(17) \ | Xw| < ~|Bj, T = radius of B,
B T
The constants c,,c and v are independent of B, u,r, and t.

Proof. - It is enough to follow the Moser procedure, as presented e.g.
in [25], Section 8, by replacing in it the euclidean distance with d x and the
classical gradient with the X-gradient. 0

Properties (I) and (IV), together with inequality (17) imply the follow-
Ing result.

PROPOSITION 3.2. ~  Let us suppose that (I) and (IX) are satisfied
and let u € WR<(M) be a positive weak solution to Lu = 0 in M. Then,
there ezist ¢ > 0 and A > 1 such that, if w = logu

1
T‘. € B/lw—wg| > mw

<8l
s
for any dx-ball B such that A\B C M. ¢ and ) are independent of u and B.

Proof. — We have

ﬁamm\_élém_ > HW

s

MW\NW_e-em_m (by (IV))

<% \ [Xw] < (by (17))ZIAB| < (for the doubling condition)
AB

[+
-|Bl. g

S B

Propositions 3.1 and 3.2 enable to use a Bombieri-Moser’s Lemma
(see [39], Lemma 2) in order to get the following proposition.

PROPOSITION 3.3. — Let us suppose that (D-(IV) are satisfied. Then,
there exists ¢ > 0 and A > 1 such that

supu < infu
B B

for every u € W°(M) positive weak solution to Lu = 0 in M , and for any
dx-ball B such that AB € M.
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Properties (I)-(IV) are not independent. The existence of cut-off func-
tions was proved in some particular cases in [19], [8], [35]. Franchi, Serapi-
oni and Serra Cassano [23], and Garofalo and Nhieu [24] have very recently
proved that property (II) is always a consequence of (I). Moreover, proper-
ties (I), together with the following 1-1 Poincaré inequality

(18) \ u—ugl<er [ |Xul VueC'AB)
B AB

imply properties (III).

A first result in this direction was proved by Saloff-Coste [46) for vec-
tor fields satisfying sub-elliptic estimates. In a general framework it has
been proved by Biroli and Mosco [3]. Very interesting papers on this sub-
ject are [20] and [24]. In [20] Franchi, Lu and Wheeden proved that (I)
implies the existence of representation formulas for functions as fractional
integral transform of their X-gradient. From this representation formula the
Poincaré-Sobolev inequality easily follows. In a very general setting, Garo-
falo and Nhieu {24] showed that Poincaré-Sobolev inequalities are merely a
consequence of (I) and of the following weak Poincaré inequality

{z € B/fu(z) —us| >t} < 5 \ I Xu(y)|dy .
AB

We also wish to mention the relevant works by Hayslasz and Hayslasz
and Koskela who proved some deep connections between “distances”, “Sobo-
lev” and “Poincaré”, in a general abstract setting: the metric spaces “with-
out derivatives” ([26], [28}).

By using all thesc results, from Proposition 3.3 we obtain the following
theorem.

THEOREM 3.4. — Let us suppose that (I) and (IV) are satisfied. Then,
there exists ¢ > 0 and A > 1 such that

supu < infu
B B

Jor every u € W¥<(M) positive weak solution to Lu = 0 in M, and for any
dx-ball B such that A\B C M.

In the next section, by using the notion of almost exponentiol map
introduced in (34], we show a general condition on the family X which
assures that conditions (I} and (IV) are satisfied.
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4. X-controllable almost exponential map. Harnack inequality.
Hbélder continuity

Let X = (X,,... ,Xm) be afamily of locally Lipschitz continuous vector
fields on IRY. As always, we assume the X-connectivity of R" and simply
denote by d the X-control distance dx. B(z,r) will denote the d-ball of
center £ and radius r. We call almost exponential map on M, an open
subset of RY, any C*-function

E:MxQr — R"Y,

where Qg is a neighborhood of the origin, such that E(z,0) = = for ev-
ery x € M. We call Qg the mazimal boz of E and assume the existence
of a family of neighborhoods of the origin (Qe(2,7))zem >0 satisfying the
following conditions:

Amw“_.v Cﬂm?\.v.Vo @MA.‘Nqﬁu - Qm and QMA.‘NM.\.V c @WAH:‘.J if r < Ll
(E2) There exists a > O such that Qg(z,7) C Qe(y,ar) if d(z,y) <r.

The almost exponential map E will be said X-controllable if there exists
a measurable function

v: M x @x]0, +-00[- - RrY

with the following properties:

(C1) For any z € M and h € Qg(z,7), t — 7(z,h,t) is a X-subunit
path connecting z and E(z, k) with a hitting time proportional to
r, i.e. v(z,h,0) = z and v(x,h,T(x, h)) = E(z,h) for a suitable
T(z,h) < ar. (the constant a is independent of z, k and 7)

(C2) For any (h,t) € Qg x [0, +00[, z — v(z, h, 1) is a one-to-one map hav-
ing continuous first derivatives and jacobian determinant uniformly
bounded away from zero, i.e.

&
oz
We call any function «y satisfying (C1) and (C2) a control function of E. A
family € of X-controllable almost exponential maps will be said complete if
for any r sufficiently small and for any z € M we can find a map E € £
such that: ’

(£1) B(z,r) € E(z,Qp{(z,7));

b= inf > 0.

T axQxlo.T)
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(£2) E(z,-) is one-to-one on Qg(z,ar) and
Wbﬁyov < Dg(z,h) < cD(z,0) VheQgp(z,ar).

Here a is the positive constant in (E2), ¢ > 0 is independent of z and r
and

D(z,h) := |det %M@?ﬁ \i .

From (£1) and (C1) we easily obtain the following proposition.

PROPOSITION 4.1. — Let £ be a finite complete family of X -controllable
almost exponential maps on M. Then there exists ro > 0 such that

1
(19) [B(z,7)] < > |E(z, Qe(z,7)| < ~|B(z,ar)|
E€E q
foranyz € M and 0 < r < ry. Here g = #& and a is a positive constant

independent of x and r.

Proof. - The first inequality in (19) straightforwardly follows from
{£1). In order to show the second one it is enough to prove the inclusion
E(z,Qgp(z,7)) C B(x,ar) . Indeed, if + is a control function for E, for any
h € Q(z,r) we have y(z,h,0) = z, v(z,h, T(z, h)) = E(z,h), T(z,h) <
agr, where ag > 0 only depends on E (see (C1)). Then, since y(z,k,-) is
X-subunit,

d(z,E(z,h)) < T(z,h) < apr.
Therefore, defining a = max{ag| E € £}, we have
Q(z, E(x,7)) C B(z,ar),
and the proposition is proved. |

If £ is a finite family of X-controllable almost exponential maps, we set

Az, ) == MU |E(z,Qe(x, 7).

Eeg

Finally, we can state our main results.
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THEOREM 4.2 (Harnack inequality). — Let L be an X -elliptic operator
and M an open subset of R™. Assume

(H1) There exists a finite complete family £ of X -controllable almost expo-
nential maps on M.
(H2) There ezist A > 1 and ry > 0 such that

Ag(z,2r) < A Ag(z,7)

foranyz e M and 0 < r < ry.

Then, any positive weak solution to
Lu=0 in M
satisfies the Harnack inequality

supu < cinfu
B B

for any d-ball B such that A\B C M. The constants c and A are independent
of u and B.

THEOREM 4.3 (Holder continuity). — Suppose the hypotheses of The-
orem 4.2 are satisfied. Let u € WL2(M, X) be a weak solution to

loc
Lu=0 in M.

Then, for any x,y € M such that d(z,y) < 3 and B(z,Ar) C O, we have

Evg

r

sup u
B(z,Ar)

ju(@) — u)l < o
¢, A and a are independent of u and r.

Proof. - Theorem 4.3 follows from Theorem 4.2 by a quite standard
real analysis argument (see, e.g. [25] Theorem 8.22). By Theorem 3.4, in
order to obtain Theorem 4.2 we have just to verify conditions (I) and (Iv).

The doubling condition (I) follows from Proposition 4.1 and the hypoth-
esis (H2). The Poincaré inequality (IV) holds thanks to Theorem 2.1 in {34].
Indeed our hypotheses together with the doubling condition for the d-balls,
ensure that all the hypotheses of Theorem 2.1 in {34] are satisfied. 0
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We close the section by giving some applications of our main results.

EXAMPLE 4.4. - Let us consider in R" a N-tuple of real functions
A1,..., Ay satisfying the conditions of (18]. If we set X; = AiOr,y 4 =
1,...,N, the family X = (X,,..., Xy) verifies the hypotheses of our The-
orems 4.2 and 4.3 (see [34], Section 3). Then every weak solution to any
X-elliptic equation is locally Holder continuous with respect to dx and, if
1t is positive, satisfies a scale invariant Harnack inequality on the dx-balls.
(We stress that the d-Hélder continuity implies the usual one since

dx(z,y) < clz — y|*

for any z and y in a fixed compact K C R”™; ¢ and & only depending on K).
These results were first proved in [19].

We explicitly remark that, in the particular case in which )\; = ... =
An =1, we obtain the classical De Giorgi’s and Moser’s Theorems for the
classical uniformly elliptic equations.

EXAMPLE 4.5. — Let X = (X),..., X.,) be a family of smooth vector
fields satisfying the Hérmander condition

rank L(X,,... . X z)=N VzeRY.

By slightly improving a well known rapresentation theorem of the dy-
balls due to Nagel-Stein-Weinger, we can check that the hypotheses of our
Theorem 4.2 are satisfied on every bounded open set M C IR"Y. We directly
refer to [34] for more details. Then, for the weak solutions to any X-elliptic
equation, Holder continuity and Harnack inequality hold.

These results are contained in a paper by Lu [35].

EXAMPLE 4.6. — In IR® we consider the pair of vector fields X =
(X1, X2) where X, = 8,, +a;0,,, j = 1,2. We assume ¢; € C*(IR",R) and

p:Xiay — Xz, >0
at any point of R® (note: [X), X, = p0z,). Due to the results of Sec-
tion 5 in [34] the pair X = (X, X,) satisfies hypotheses (H1) and (H2) of

Theorem 4.2 on every bounded open set M C IR?.
Let us consider the operator

L = div (AD)
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where A = m.x.uu.x.nzkf.xn‘_ﬂ,q ie
1 0 a
A=}]0 1 b
a b a?+ ¥
Since
<ALE>=< X1,E>% 4 < Xy, £ >2

L is an X-elliptic operator. Then, by Theorems 4.2 and 4.3 every weak
solution to Lu = 0 is d-Holder continuous and, if it is positive, it also
satisfies the Harnack inequality. Moreover, since d(z,y) is locally bounded
from above by c|z — y|? (see [34], Section 5), d-Holder continuity implies
the classical one.

We would like to stress that, L takes the following form

L = 8zyz) + Oryry + (% + b%)8sgsy + Oz, (adz, )+
+ %Hn A@Qﬂuv 4 %Hw AQ%HM + gu..wv + @Hm AQN + @nv

This kind of operators arises in studying the Levi-curvature equation in

C(see [4]).
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