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On the Perron solution of the caloric Dirichlet problem:
an elementary approach
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Abstract. By an easy trick taken from caloric polynomial theory, we construct a familyB of almost regular
domains for the caloric Dirichlet problem.B is a basis of the Euclidean topology. This allows to build, with
a basically elementary procedure, the Perron solution to the caloric Dirichlet problem on every bounded
domain.

1. Introduction and key theorem

As it is verywell known today, the construction of the Perron solution to theDirichlet
problem for the heat equation on a general bounded domain only rests upon three basic
principles: the caloric maximum principle; the convergence principle, i.e., the closure
of the sheaf of the caloric functions with respect to the uniform convergence; the
solvability principle, i.e., the solvability of the caloric first boundary value problem
on the open sets of a basis of the Euclidean topology.
The first one of these principles is very elementary, and the second one is a simple

consequence of some good properties of the Gauss–Weierstrass kernel, the fundamen-
tal solution of the heat equation. On the contrary, the proof of the solvability principle
has been always considered in the literature a difficult task, requiring Volterra integral
equation theory, or double layer potential method, or an involved procedure based on
a reflection principle (see, e.g., respectively, Bauer [2, Chapter 1, Section 2], Watson
[6, Chapter 2, Section 2.2], Constantinescu and Cornea [4, Chapter 3, Section 3.3]).

The aim of this note is to draw attention to an easy trick—borrowed from caloric
polynomial theory—allowing to construct with a very elementary procedure, a basis of
open sets on which the first boundary value problem for the heat equation is solvable.
The crucial point of this procedure is Theorem 1.1 below, in which w denotes the
polynomial

w(z) = w(x, t) := t − |x |2.
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Here and in what follows

z = (x, t), x ∈ R
N , t ∈ R,

denotes the point of R
N+1; |x | is the Euclidean norm of x .

We will use the notation H to denote the heat operator

H := Δ − ∂t ,

where Δ := ∑N
j=1 ∂2x j is the Laplacian in R

N . We call caloric the smooth functions

solutions to Hu = 0. If Ω ⊆ R
N+1 is open, we will denote by C (Ω) the linear space

of the caloric functions in Ω .
To our aim, it is convenient to fix some more notations. If α = (α1, . . . , αN , αN+1)

is a multi-index with non-negative integer components, we let

|α|c = caloric height o f α := α1 + · · · + αN + 2αN+1.

A polynomial in R
N+1 is a function of the kind

p(z) =
∑

|α|c≤m

aαz
α, aα ∈ R for every α,

where m ∈ Z, m ≥ 0. In this case, we say that p has caloric degree ≤ m; we will say
that p has caloric degree equal to m if

∑
|α|c=m aαzα is not identically zero.

Here is the key theorem of our note.

Theorem 1.1. Let p be a polynomial inR
N+1. Then, there exists a unique polynomial

q in R
N+1 such that

H(wq) = −Hp (1.1)

Proof. Let us denote by m the caloric degree of −Hp and by Pm the linear space of
the polynomials in R

N+1 having caloric degree less than or equal to m. Since w has
caloric degree two, then H(wq) ∈ Pm if q ∈ Pm ; therefore,

q �−→ T (q) := H(wq)

mapsPm inPm . To prove that (1.1) has a unique solution q it is (more than) enough to
show that T is surjective and injective. To this end, since Pm is a linear space of finite
dimension and T linearly maps Pm in Pm , we only have to prove that T is injective.
Let q ∈ Pm be such that T (q) = 0. Then,

u := wq

is caloric in R
N+1; hence, in particular, in the open region

P := {(x, t) ∈ R
N+1 : t > |x |2}. (1.2)
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Moreover, since w = 0 on

∂P = {(x, t) ∈ R
N+1 : t = |x |2}, (1.3)

u|∂P = wq|∂P = 0. Then, by the caloric maximum principle (see, e.g., [3, Theorem
8.2]) u = 0 in P . Since w > 0 in P , this implies q = 0 in P , hence in R

N+1. We have
so proved that q = 0 if T (q) = 0, that is the injectivity of T , completing the proof.

�

From the previous theorem, one immediately obtains the following corollary, in
which ∂P is the closed set in (1.3), boundary of the region P in (1.2).

Corollary 1.2. Let p be a polynomial inR
N+1. Then, there exists a unique polynomial

u p in R
N+1 such that

{
Hup = 0 in R

N+1,

u p = p on ∂P.
(1.4)

Proof. Let q be a polynomial satisfying (1.1). Then, u p = wq + p solves (1.4).
Moreover, if v is any polynomial solving (1.4), then v −u p is caloric in R

N+1 - hence
in P - and v − u p = 0 on ∂P . The caloric maximum principle implies v − u p = 0 in
P , hence in R

N+1. Then, v = u p, that is the uniqueness part of the Corollary.

2. A proof of the solvability principle: a basis of H-almost regular domains

Let z0 = (x0, t0) ∈ R
N+1 and let r > 0. We call:

(i) caloric bowl of bottom z0 and opening r the open set

B(z0, r) := {(x, t) ∈ R
N+1 : |x − x0|2 < t − t0 < r2};

(ii) normal or caloric boundary of B(z0, r) the subset of ∂B(z0, r)

∂n B(z0, r) := {(x, t) ∈ R
N+1 : |x − x0|2 = t − t0, 0 ≤ t − t0 ≤ r2}.
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x0

t0

t0 + r2

R

B(z0, r)

∂nB(z0, r)

R
N

Obviously,

B := {B(z0, r) : z0 ∈ R
N+1, r > 0}

is a basis of the Euclidean topology.
The aim of this section is to prove the following Theorem 2.1. We summarize the

content of this theorem by saying that every caloric bowl is H-almost regular. Indeed,
actually, we prove that the first boundary value problem for the heat equation on every
caloric bowl B is uniquely solvable if the boundary data are only given on the normal
boundary ∂n B. We would like to explicitly stress that the novelty of Theorem 2.1 is
not in its content but in its elementary, direct and simple proof.

Theorem 2.1. Let z0 ∈ R
N+1 and r > 0 be arbitrarily fixed and let B = B(z0, r)

be the caloric bowl of bottom z0 and opening r. Then, for every ϕ ∈ C(∂n B, R) there
exists a unique solution to the boundary value problem

{
Hu = 0 in B,

u = ϕ on ∂n B.
(2.1)

Precisely: there exists a unique function uB
ϕ caloric in B and continuous up to

B ∪ ∂n B such that

uB
ϕ (z) = ϕ(z) for every z ∈ ∂n B.

Moreover, uB
ϕ ≥ 0 if ϕ ≥ 0.
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Proof. The uniqueness of uB
ϕ and its positivity when ϕ is positive is a direct con-

sequence of the caloric maximum principle (see, e.g., [3, Theorem 8.2]). To prove
the existence of uB

ϕ , we may, and do, assume z0 = (0, 0), since H is left translation
invariant and

B(z0, r) = z0 + B(0, r), 0 ∈ R
N+1.

Let ϕ ∈ C(∂n B, R) and let (pk)k∈N be a sequence of polynomials in R
N+1 uni-

formly convergent to ϕ on ∂n B. By using the notation of Corollary 1.2, we let

uk := u pk , k ∈ N.

Then, uk is caloric in B since it is caloric in R
N+1. Moreover, uk = pk on ∂P in

(1.3), hence, on ∂n B. Therefore, by the caloric maximum principle,

max
B

|uk − uh | = max
∂n B

|uk − uh | = max
∂n B

|pk − ph | −→ 0 as k, h −→ ∞.

From this, one gets the existence of a function u ∈ C(B, R) which is caloric in
B—thanks to the convergence principle (Theorem A.2 below)—and such that

u|∂n B = lim
k→∞ uk |∂B = lim

k→∞ pk |∂B = ϕ.

Thus, the function u is the requested function uB
ϕ . �

Remark 2.2. From the above proof, it follows that the solution uϕ of (2.1) actually is
continuous up to B.

For completeness reasons, and also to stress its elementary character, in Appendix
A we will give a simple proof of the convergence principle. In Appendix B, we sketch
how to construct the caloric Perron solutions starting from Theorem 2.1.
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Appendix A. The convergence principle

• The fundamental solution of H
The Gauss–Weierstrass kernel, i.e., the function

� : R
N+1 −→ R, �(x, t) =

{
0 if t ≤ 0,

(4π t)− N
2 exp

(
−|x |2

4t

)
if t > 0,

is the fundamental solution with pole at the origin of the heat operator in R
N+1. � is

smooth in R
N+1

� {(0, 0)} and locally summable in R
N+1. Its crucial property is the

following one:

ϕ(z) = −
∫

RN+1
�(z − ζ )Hϕ(ζ ) dζ (A.1)

for every z ∈ R
N+1 and for every ϕ ∈ C∞

0 (RN+1, R).

• Caloric norm and caloric disks
If z = (x, t) ∈ R

N+1, we let

‖z‖ = caloric norm of z := (|x |4 + t2)
1
4 .

We call caloric disk of center z0 ∈ R
N+1 and radius r > 0 the open set

D(z0, r) := {z ∈ R
N+1 : ‖z − z0‖ < r}.

• A representation formula for caloric functions
An easy consequence of property (A.1) is the following representation theorem

Theorem A.1. Let Ω ⊆ R
N+1 be open. For every caloric disk D = D(z0, r) such

that 2D := D(z0, 2r) ⊆ Ω , there exists a function

(z, ζ ) �−→ KD(z, ζ )

of class C∞ in an open set containing D × 2D such that

u(z) =
∫

2D
KD(z, ζ )u(ζ ) dζ for every z ∈ D

and for every u caloric in Ω.

Proof. Let ψ ∈ C∞
0 (2D, R) be such that ψ ≡ 1 in a neighborhood of D. Then,

ψu ∈ C∞
0 (2D, R) and u = ψu in D. As a consequence, by (A.1),

u(z) = −
∫

2D
�(z − ζ )H(ψu)(ζ ) dζ

= −
∫

D
�(z − ζ ) (u(ζ )Hψ(ζ ) + 2〈∇u(ζ ),∇ψ(ζ )〉) dζ for every z ∈ D,
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where ∇ and 〈 , 〉 denote, respectively, the gradient and the inner product in R
N .

Integrating by parts the second summand at the last right hand side, we find

u(z) =
∫

2D
KD(z, ζ )u(ζ ) dζ,

where, denoting by Δ the Laplacian with respect to the spatial variables,

KD(z, ζ ) = −�(z − ζ )Hψ(ζ ) − 2〈∇�(z − ζ ),∇ψ(ζ )〉 + �(z − ζ )�ψ(ζ ).

Then, KD is a smooth function in a neighborhood of D × 2D and we are done. �

• The convergence principle
As recalled in the Introduction, the convergence principle is the statement of the
following theorem.

Theorem A.2. Let (uk) be a sequence of caloric functions in an open setΩ ⊆ R
N+1.

Suppose (uk) uniformly convergent to a function u : Ω −→ R on every compact
subset of Ω. Then,

u ∈ C∞(Ω, R) and Hu = 0 in Ω.

Proof. It is enough to show that u is smooth and caloric in every caloric disk D such
that 2D ⊆ Ω. So, let D be such a disk. Then, by Theorem A.1,

uk(z) =
∫

2D
KD(z, ζ )uk(ζ ) dζ for every z ∈ D (A.2)

and for every k ∈ N. Since (uk) is uniformly convergent on 2D, letting k go to infinity
in (A.2), we get

u(z) =
∫

2D
KD(z, ζ )u(ζ ) dζ for every z ∈ D.

The smoothness of the kernel KD implies u ∈ C∞(D, R). To show that u is caloric
in D we argue as follows. Denoting

H∗ := Δ + ∂t

the formal adjoint of H , for every ϕ ∈ C∞
0 (D, R) we have

∫

D
(Hu)ϕ dz =

∫

D
u H∗ϕ dz = lim

k→∞

∫

D
uk H∗ϕ dz = lim

k→∞

∫

D
(Huk) ϕ dz = 0,

since uk is caloric for every k ∈ N. Hence,
∫

D
(Hu) ϕ dz = 0 for every ϕ ∈ C∞

0 (Ω, R).

This implies Hu = 0 in D, completing the proof. �
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• A consequence of the convergence principle
A familyF of real functions in an open set Ω ⊆ R

N+1 is said directed-upward. if
for every u, v ∈ F there exists w ∈ F such that

u ≤ w, v ≤ w.

Then, Theorem A.2 and a Real Analysis lemma imply the following result.

Theorem A.3. LetF be a directed-upward family of caloric functions in an open set
Ω ⊆ R

N+1. Let u : Ω −→] − ∞,∞],
u := supF .

If u is bounded above on every compact subset of Ω , then

u ∈ C∞(Ω, R) and Hu = 0 in Ω.

Proof. A Real Analysis Lemma (see, e.g., [1, Lemma 3.7.1]) implies the existence of
a monotone increasing sequence (uk) of functions in F such that

lim
k−→∞ uk = u pointwise in Ω.

Now, we can argue as in the proof of Theorem A.2. Let D be a caloric disk such that
2D ⊆ Ω. Then, identity (A.2) holds for every function uk , k ∈ N. Since

u1 ≤ uk and sup
2D

uk ≤ sup
2D

u < ∞,

by Lebesgue Dominated Convergence Theorem, letting k go to infinity in (A.2), one
obtains

u(z) =
∫

2D
KD(z, ζ ) u(ζ ) dζ ∀z ∈ D.

The smoothness of the kernel K implies the smoothness of u in D so that, since (uk)
is increasing, by Dini Theorem (uk) converges uniformly on every compact subset of
D. As a consequence, by Theorem A.2, u is caloric in D. This completes the proof of
Theorem A.3 since D is any caloric disk such that 2D ⊆ Ω. �

• The operator f �−→ hB
f

Let B be a caloric bowl. As an application of Theorem A.3, we show how to extend
the operator

C(∂n B, R) � ϕ �−→ uB
ϕ ∈ C (B),

defined in Theorem 2.1, to the bounded above lower semicontinuous functions.
Let B be a caloric bowl and let

f : ∂n B −→] − ∞,∞[
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be a bounded above lower semicontinuous function. Define

F (B, f ) := {uB
ϕ : ϕ ∈ C(∂n B, R), ϕ ≤ f }

and

hB
f := supF (B, f ).

Obviously, if the function f is continuous, then hB
f = uB

f , so that f �−→ hB
f is an

extension of f �−→ uB
f . By using the caloric maximum principle, it is easy to show

that F (B, f ) is directed-upward and that

hB
f ≤ m if m = sup

∂n B
f.

Then, by Theorem A.3,

hB
f ∈ C (B).

Appendix B. The caloric Perron solution

• Mean Value Theorem for caloric functions
For every z0 ∈ R

N+1 and every r > 0, we let

Ωr (z0) = Pini–Watson ball with pole at z0 and radius r

:=
{
z ∈ R

N+1 : �(z0 − z) > (4πr)−
N
2

}

and

W (z) = W (x, t) = Watson kernel

:= 1

4

( |x |
t

)2

.

We also denote by Mr (u)(z0) the average operator

Mr (u)(z0) =
(

1

4πr

) N
2

∫

Ωr (z0)
u(ζ ) W (z − ζ ) dζ.

Then, the following theorem holds.

Theorem B.1. Let Ω ⊆ R
N+1 be open and let u ∈ C(Ω, R). The following state-

ments are equivalent:

(i) For every Pini–Watson ball, Ωr (z) with closure contained in Ω

u(z) = Mr (u)(z).
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(ii) For every z ∈ Ω , there exists r(z) > 0 such that

u(z) = Mr (u)(z) for 0 < r < r(z).

(iii) u ∈ C∞(Ω, R) and

Hu = 0 in Ω.

Proof. See Watson [6, Chapter 1 and Chapter 2] and see also Evans [5, Section 2.3].
�

• Supercaloric and subcaloric functions
Let Ω ⊆ R

N+1 be open and let

u : Ω −→ R

be a lower semicontinuous function. We say that u is supercaloric in Ω if for every
z ∈ Ω there exists r(z) > 0 such that

u(z) ≥ Mr (u)(z) for 0 < r < r(z).

We say that u is subcaloric inΩ if−u is supercaloric. WithC (Ω) (C (Ω)), we denote
the family of the supercaloric (subcaloric) functions in Ω. It can be elementarily
proved that a sufficiently smooth function u is supercaloric (subcaloric) in an open set
Ω if and only if

Hu ≤ 0 in Ω (Hu ≥ 0 in Ω).

• A caloric Perron-type regularization
To begin with, we fix some notation. If B is a caloric bowl, we denote

B̂ := B � ∂n B.

Equivalently

B̂ = B ∪ top(B),

where

top(B) := ∂B � ∂n B.

Let us consider a bounded above supercaloric function u in an open set Ω ⊆ R
N+1.

If B = B(z0, r) is a caloric bowl such that 2B := B(z0, 2r) ⊆ Ω , we define

uB : Ω −→ R

as follows:

uB(z) = u(z) if z /∈ B̂,
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and

uB(z) = h2Bf (z) if z ∈ B̂,

where f = u|∂n2B .

We want to explicitly remark that uB is caloric in B and continuous up to B̂. The
function uB is what we call caloric Perron-type regularization of u in B. It satisfies all
the crucial properties of the classical harmonic Perron regularization. Precisely, the
following theorem holds.

Theorem B.2. Let u be a bounded above supercaloric function in an open set Ω ⊆
R

N+1 and let B be a bowl such that 2B ⊆ Ω. Then,

(i) uB ∈ C (Ω);
(ii) uB ≤ u;
(iii) uB is caloric in B and continuous in B̂;
(iv) if v ∈ C (Ω) and v ≤ u then vB ≤ uB .

Proof. The proof of this theorem follows basic standard lines in harmonic and caloric
Potential Theory. It uses in a crucial way the properties of the operator f �−→ u2Bf
and the minimum principle for supercaloric functions (for this principle we directly
refer to Watson’s monograph [6, Theorem 3.11]. �

We close this appendix with the following point.
• The caloric Perron solution
Let Ω ⊆ R

N+1 be open and bounded and let ϕ ∈ C(∂Ω, R). We let

UΩ

ϕ := {u ∈ C (Ω) : u bounded above, lim inf
x→y

u(x) ≥ ϕ(y) ∀y ∈ ∂Ω},

and

H
Ω

ϕ := inf UΩ

ϕ .

We also let

HΩ
ϕ := −H

Ω

−ϕ.

From the quoted above minimum principle for supercaloric functions, one easily gets

m ≤ HΩ
ϕ ≤ H

Ω

ϕ ≤ M,

where

m = min
∂Ω

ϕ and M = max
∂Ω

ϕ.

Actually, a stronger result holds

Theorem B.3. For every ϕ ∈ C(∂Ω, R), one has
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(i) H
Ω

ϕ is caloric in Ω;

(ii) H
Ω

ϕ = HΩ
ϕ .

This is the caloric version of the celebrated Perron–Wiener Theorem for harmonic
functions. It can be proved with a standard procedure in which the caloric Perron-type
regularization plays the crucial rôle.
Due to this theorem,

HΩ
ϕ := H

Ω

ϕ = HΩ
ϕ

is called the Perron solution of the caloric Dirichlet problem on the open set Ω with
boundary data ϕ. It coincides with the classical solution if a classical solution exists.
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