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Abstract

We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general 
class of evolution hypoelliptic partial differential equations of second order. We construct Perron–Wiener 
solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends 
and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.
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1. Introduction

The aim of this paper is to prove the existence of a generalized solution in the sense of Perron–
Wiener to the Dirichlet problem and to provide a sufficient condition for the regularity of the 
boundary points for a wide class of evolution equations.

More precisely, we consider second order partial differential operators of the following type
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L =
N∑

i,j=1

aij (z)∂xixj
+

N∑
i=1

bi(z)∂xi
− ∂t , (1)

in a strip

S = {z = (x, t) ∈R
N+1 | x ∈ R

N, T1 < t < T2},

with −∞ ≤ T1 < T2 ≤ +∞.
The coefficients aij = aji and bi are smooth and the characteristic form of the operator is 

nonnegative definite and non-totally degenerate, i.e.,

N∑
i,j=1

aij (z)ξiξj ≥ 0, ∀z ∈ S, ∀ξ = (ξ1, . . . , ξN) ∈ R
N,

and

N∑
i=1

aii(z) > 0 ∀z ∈ S.

Finally, we assume the hypoellipticity of L − β and of L∗, for every constant β ≥ 0, and the 
existence of a well-behaved fundamental solution � for L,

(z, ζ ) �−→ �(z, ζ ),

satisfying the following properties:

(i) �(·, ζ ) belongs to L1
loc(S) and L(�(·, ζ )) = −δζ , where δζ denotes the Dirac measure 

at {ζ }, for every ζ ∈ S.
(ii) For every ϕ ∈ C∞

0 (RN) and for every (x0, τ) ∈ S,

∫
RN

�(x, t, ξ, τ )ϕ(ξ) dξ → ϕ(x0), as (x, t) → (x0, τ ), t > τ.

(iii) � ∈ C∞
(
{(z, ζ ) ∈ R

N+1 ×R
N+1 | z 
= ζ }

)
.

(iv) � ≥ 0 and �(x, t, ξ, τ) > 0 if and only if t > τ . Moreover, for every fixed z ∈ S, 
lim supζ→z �(z, ζ ) = ∞.

(v) �(z, ζ ) → 0 for ζ → ∞ uniformly for z ∈ K , compact set of S, and, analogously, 
�(z, ζ ) → 0 for z → ∞ uniformly for ζ ∈ K , compact set of S.

(vi) ∃ C > 0 such that for any z = (x, t) ∈ S we have

∫
RN

�(z; ξ, τ ) dξ ≤ C if t > τ.
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We observe that the Kolmogorov–Fokker–Planck-type operators studied in [1] and in [2], the 
ultraparabolic operators studied in [3] and in [4], and the diffusion operators studied in [5] and [6]
belong to the class of operators considered in this paper.

The paper is organized as follows. Section 2 is devoted to briefly recall the notions and results 
from Potential Theory that we need to study the Dirichlet problem for our class of operators. In 
Section 3, following the techniques used by Lanconelli and Uguzzoni in [6], we show that the set 
of the solutions u of Lu = 0 in 
 is a β-harmonic space satisfying the axioms of the Doob Poten-
tial Theory. In this way, in Section 4 we derive the existence of a generalized solution in the sense 
of Perron–Wiener in our setting. We also recall a classical balayage-criterion that we will use to 
prove our main theorem. In Section 5 we state and prove the main theorem: a criterion of bound-
ary regularity which bases only on the behavior of the integral of the fundamental solution on a 
particular subset of RN . As a consequence, in Section 6, we deduce cone-type criteria inspired 
to the parabolic-cone criterion for the heat equation due to Effros and Kazdan [7,8]. Our criteria 
extend and generalize also the cone-type condition proved in [6, Theorem 4.11] (see also [9]) 
for a class of hypoelliptic diffusion equations under the assumptions of doubling condition and 
segment property for an underlying distance and Gaussian bounds of the fundamental solution. 
To the best of our knowledge, the only cone-type criterion for Kolmogorov–Fokker–Planck-type 
operators present in literature is related to the prototype of the Kolmogorov operator in R

3 and 
it is in the paper [10] where, for the same operator, Scornazzani proved a Landis–Wiener-type 
criterion. We would like to emphasize that, in our general framework, i.e., for evolution equa-
tions with underline sub-Riemannian structures, the problem of characterizing the regularity of 
the boundary points in terms of Wiener-type series is still widely open. Nowadays, there are only 
few results in literature: the one related to the Kolmogorov equation in R3 due to Scornazzani 
[10] and the Wiener criterion related to the heat operator on the Heisenberg group due to Garofalo 
and Segala [11]. Very recently, for the operators studied in [6], Lanconelli, Tralli and Uguzzoni 
in [12] have given necessary and sufficient regularity conditions in terms of Wiener-type series; 
however, these criteria do not exactly characterize the boundary points.

2. Potential theory on harmonic spaces: some recalls

In this section, we recall some basic definitions and results from the Potential Theory that will 
allow us to apply the Perron–Wiener method to solve the Dirichlet problem related to L. We refer 
to [13, pp. 22–23] for a historical note on the Perron–Wiener solution and to [14, chapter 6], [13]
and [15] for a detailed description of the general theory of harmonic spaces.

Throughout this Section (X, T ) will denote a topological Hausdorff space, locally connected 
and locally compact. We also assume the topology T has a countable basis.

2.1. Sheafs of functions and harmonic sheafs in X

Let V be any open subset of X. We denote by R the set R ∪ {∞, −∞} and by R
V

the set 
of functions u : V −→ R. Moreover C(V, R) is the vector space of real continuous functions 
defined on V . A map

F : T −→
⋃

V ∈T
R

V

is a sheaf of functions in X if



A.E. Kogoj / J. Differential Equations 262 (2017) 1524–1539 1527
(i) F (V ) ⊆ R
V ∀ V ∈ T ;

(ii) V1, V2 ∈ T , V1 ⊆ V2, u ∈ F (V2) =⇒ u|V1 ∈ F (V1);
(iii) Vα ∈ T ∀α ∈A, u : ⋃α∈A Vα −→ R, u|Vα ∈ F (Vα) =⇒ u ∈ F (

⋃
α∈AVα).

When F (V ) is a linear subspace of C(V, R) for every V ⊆ X, we say that the sheaf of func-
tions F on V is harmonic and we denote it by H(X). The functions belonging to H(X) will be 
called harmonic functions.

2.2. Regular open sets and harmonic measures

Let H be a harmonic sheaf on X. We say that a bounded open set V ⊆ X is H-regular if:

(i) V ⊆ X is compact and ∂V 
= ∅;
(ii) for every continuous function ϕ : ∂V −→ R, there exists a unique function, hV

ϕ , in H(V )

and continuous in V , such that

hV
ϕ |∂V = ϕ.

(iii) if ϕ ≥ 0 then hV
ϕ ≥ 0.

From (ii) and (iii) it follows that, for every regular set V and for every x ∈ V , the map

C(∂V ) � ϕ �−→ hV
ϕ (x) ∈ R

is linear, continuous and non-negative. Thus, the Riesz representation theorem, implies that, for 
every regular set V and for every x ∈ V , there exists a regular Borel measure, that we denote 
by μV

x , supported in ∂V , such that

hV
ϕ (x) =

∫
∂V

ϕ(y) dμV
x (y) ∀ ϕ ∈ C(∂V ).

The measure μV
x is called the H-harmonic measure related to V and x.

2.3. Iperharmonic functions, superharmonic functions, potentials

A function u : X −→ ]−∞, ∞] is called H-iperharmonic in X if

(i) u is lower semi-continuous;
(ii) for every regular set V , V ⊆ X, and for every ϕ ∈ C(∂V, R), ϕ ≤ u|∂V , it follows u ≥ hV

ϕ

in V ;

If u is iperharmonic and the set {x ∈ X | u(x) < ∞} is dense in X, then u is called superharmonic.
We will denote by H∗(X) the family of the iperharmonic functions on X and by H(X) the 

family of the superharmonic functions.
A H-potential in X is a nonnegative superharmonic function such that any nonnegative har-

monic minorant is identically zero.
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2.4. Doob β-harmonic spaces

We say that a harmonic sheaf H(X) is a β-harmonic space satisfying the Doob convergence 
property if it verifies the following axioms.

(A1) Positivity axiom:
For every x ∈ X, there exists a open set V � z and a function u ∈H(V ) such that u(x) > 0.

(A2) Doob convergence axiom:
The limit of any increasing sequence of H-harmonic functions in a open set V ⊆ X is 
H-harmonic whenever it is finite in a dense subset of 
.

(A3) Regularity axiom:
There is a basis of the euclidean topology of X formed by H-regular sets.

(A4) Separation axiom:
For every y and z in X, y 
= z, there exist two H-potentials u and v in X such that 
u(y)v(z) 
= u(z)v(y).

2.5. Dirichlet problem in harmonic space

Let 
 be an open set of X, with compact closure and non-empty boundary, and ϕ : ∂
 −→R. 
We call generalized Dirichlet problem for the harmonic sheaf H in the open set 
 with boundary 
data ϕ, the problem of finding a function u ∈H(
) such that

lim
x→y

u(x) = ϕ(y) ∀ y ∈ ∂
.

In this case we say that u solves the problem{
u ∈H(
)

u|∂
 = ϕ.
(H-D)

If ϕ ∈ C(∂
) (and we are in a Doob β-harmonic space), the function

H

ϕ := inf{u ∈H∗(
) | lim inf

z→ζ
u(z) ≥ ϕ(ζ ) ∀ ζ ∈ ∂
}

belongs to the harmonic sheaf H(
) (see [13, Theorem 2.4.2]) and it is called the generalized 
solution in the sense of Perron–Wiener to the Dirichlet problem (H-D).

A point z0 ∈ ∂
 is called H-regular for 
 if

lim
z→z0

H

ϕ (z) = ϕ(z0) ∀ ϕ ∈ C(∂
).

Of course, if (and only if) every point of ∂
 is H-regular the function H

ϕ is the (unique) 

solution to {
u ∈ H(
) ∩ C(
)

u|∂
 = ϕ

for every ϕ(∂
).
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3. The harmonic space of the solution of Lu = 0

In this section, we show that the set of the solutions of the equation Lu = 0 is β-harmonic 
space in S satisfying the Doob convergence property.

For every open set 
 ⊆ S we set

H(
) := {u ∈ C∞(
) | Lu = 0},

where L is the operator (1). Then,


 �−→ H(
)

is a harmonic sheaf of functions in S.
The assumptions on L and on its fundamental solution allow us to prove the following theo-

rem.

Theorem 3.1. Let S′ =R
N × ]T ′

1, T
′

2[ be a strip of RN+1 where T1 < T ′
1 < T ′

2 < T2. Then H(S′)
is a Doob β-harmonic space.

Proof. We follow verbatim the lines of the proof of Theorem 3.9 in [6]. Here, for the convenience 
of the reader, we repeat the main points (referring to [6, Section 3] for their proofs). Let us start 
recalling a Minimum Principle for L (see [6, Proposition 3.1]).

Proposition 3.2. Let 
 be an open set, 
 ⊆ S. For any T ∈ ]T1, T2[ we set


T = 
 ∩ {(x, t) | t < T } and ∂T 
 = ∂
 ∩ {(x, t) | t ≤ T }.

Let u be a C2 function in 
 such that

(i) Lu ≤ 0 in 
;
(ii) lim inf
T �z→ζ u(z) ≥ 0 for every ζ ∈ ∂T 
;

(iii) lim inf
T �z→∞ u(z) ≥ 0 if 
T is not bounded.

Then, u ≥ 0 in 
T .

As a consequence, for every V ⊆ S L-regular, the (unique) function hV
ϕ in H(V ), continuous 

in V and such that hV
ϕ |∂V = ϕ, is non-negative if ϕ ≥ 0. Therefore, for every regular set V and 

for every x ∈ V , the map

C(∂V ) � ϕ �−→ hV
ϕ (x) ∈ R

is linear, continuous and non-negative functional, and we can write

hV
ϕ (x) =

∫
ϕ(y) dμV

x (y) ∀ ϕ ∈ C(∂V ),
∂V
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where μV
x is the harmonic measure related to V and x. Now, from the Minimum Principle, the 

hypoellipticity, the non-totally degeneracy of the operator L, making use of a standard argu-
ment (see [16, Corollarie 5.2], see also [14, Proposition 7.1.5]), it follows that the family of the 
L-regular sets

{V ⊆ S | V open and L-regular}
is a basis of the euclidean topology of S, thus the regularity axiom is satisfied.

The Doob convergence axiom is a consequence of a weak Harnack inequality due to Bony 
(see [16, Theoreme 7.1]; see also [3, Proposition 7.4]).

The positivity axiom (A1) is plainly verified. Indeed every constant function belongs to H(
).
We are left to prove that the separation axiom (A4) holds in our setting.
For every fixed ζ0 ∈ S the function

z �−→ �(z, ζ0) is a H-potential.

Indeed � is nonnegative and H-superharmonic in S. Moreover, if h ∈ H(S) and h ≤ �(·, ζ0), 
then h ≤ 0 in S (see [6, Proposition 3.4]). This result, together with property (iv) of �, allows us 
to verify the separation axiom:

For every z1 and z2 in S′, z1 
= z2, there exist two H-potentials u and v such that

u(z1)v(z2) 
= u(z2)v(z1).

Thanks to property (iv), we can find a sequence (ζj ) such that ζj −→ z1 such that

�(z1, ζj ) −→ ∞ for j −→ ∞,

where ζj = (ξj , τj ) with τj < t1. Now, we set

uj = �(·, τj ).

uj is a H-potential and, for every j ∈N,

lim
k→∞

(
uj (z1)uk(z2) − uj (z2)uk(z1)

)
= �(z1, ζj )�(z2, z1) − �(z2, zj ) lim

k→∞�(z1, ζk)

= −∞.

Hence, there exist j, k ∈ N such that

u(z1)v(z2) 
= u(z2)v(z1),

and the proof is complete. �
From Theorem 3.1 and the theory of harmonic space, we obtain an extension of Proposi-

tion 3.2 (see [6, Proposition 3.10]).
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Proposition 3.3. Let 
 be an open set, 
 ⊆ S,


T = 
 ∩ {(x, t) | t < T } and ∂T 
 = ∂
 ∩ {(x, t) | t ≤ T }, for any T ∈ ]T1, T2[.

Let u be a superharmonic function in H(
T ), T ∈ ]T1, T2[, such that

(i) lim inf
T �z→ζ u(z) ≥ 0 for every ζ ∈ ∂T 
;
(ii) lim inf
T �z→∞ u(z) ≥ 0 if 
T is not bounded.

Then, u ≥ 0 in 
T .

4. The Dirichlet problem for L

4.1. The Perron–Wiener solution

Let 
 be a bounded open set with 
 ⊆ S and ϕ ∈ C(∂
). We consider the Dirichlet problem

{
Lu = 0 in 


u|∂
 = ϕ
(DP)

Since the operator L endows the strip S with a structure of Doob β-harmonic space, by the 
Wiener resolutivity theorem we always have the existence of a generalized solution in the sense 
of Perron–Wiener to the Dirichlet problem (DP)

H

ϕ := inf{u ∈ H∗(
) | lim inf

z→ζ
u(z) ≥ ϕ(ζ ) ∀ ζ ∈ ∂
}.

H

ϕ is C∞(
) and satisfies Lu = 0 in 
. When the Dirichlet problem (DP) has a solution u

in the classical sense, it will turn out that u = H

ϕ .

Vice versa, if

lim
x→y

H

ϕ (x) = ϕ(y) ∀ y ∈ ∂
,

u ∈ H(
) ∩ C(
) and solves the problem (DP) in classic sense. However, in general, H

ϕ does 

not assume the datum ϕ on 
. In the next sections we are going to give some conditions of 
boundary regularity for L.

We will use a classical criterion from potential theory that characterizes the regularity of 
boundary points in term of the balayage on the complementary of 
.

4.2. Balayage and a regularity criterion

Given a compact set K ⊆ S, let WK and VK be, respectively, the reduced function and the 
balayage of 1 on K :

WK := inf{v |v ∈H∗(S), v ≥ 0 in S, v ≥ 1 in K}
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and

VK(z) = lim inf
ζ−→z

WK(ζ ), z ∈ S.

From general balayage theory we have that VK is equal to 1 on the interior of K , vanishes 
at infinity, is a superharmonic function on S and harmonic on S\∂K (see [6, Proposition 4.1]). 
Moreover we can characterize the regularity of the boundary point of an open set 
 by the 
following condition (see [6, Proposition 4.6]).

Proposition 4.1. Let 
 be a bounded open set with 
 ⊂ S and let z0 be a point of ∂
. Let 
(Bλ)0<λ<1 be a basis of closed neighborhood of x0 (in RN ) such that Bλ ⊆ Bμ if 0 < λ < μ ≤ 1. 
For every λ, we set


c
λ(z0) := (Bλ × [t0 − λ, t0])\
.

Then, z0 ∈ ∂
 is L-regular if and only if

lim
r→0

V
c
r (z0)(z0) > 0.

5. Main theorem

Let 
 be a bounded open set with 
 ⊂ S and let z0 be a point of ∂
. We define 
c
λ(z0) as in 

Proposition 4.1 and we denote

Tλ(z0) = {x ∈ R
N : (x, t0 − λ) ∈ 
c

λ(z0)}.

Finally, we define

γλ(z0) =
∫

Tλ(z0)

�(z0; ξ, t0 − λ) dξ

and we state our main theorem.



A.E. Kogoj / J. Differential Equations 262 (2017) 1524–1539 1533
Theorem 5.1. The point z0 ∈ ∂
 is L-regular if

lim sup
λ↘0

γλ(z0) > 0. (2)

Proof. We know that z0 is L-regular if and only if

lim
λ→0

V
c
λ(z0)(z0) > 0 (3)

(see Section 3, Proposition 4.1). Therefore we have to prove condition (3). To this end, using (2), 
we choose a sequence λn ↘ 0, λn > 0, and a constant a > 0 such that

γλn(z0) ≥ a ∀ n ∈N.

Let us now consider the strip

Sn =R
N × ]t0 − λn, t0[, n ∈ N,

and define

vn(z) =
∫

Tλn (z0)

�(z; ξ, t0 − λn) dξ.

We will prove the inequalities

V
c
λn

(z0) ≥ vn in Sn, ∀n ∈N. (4)

As a consequence, we will have

lim
n→∞V
c

λn
(z0)(z0) ≥ lim sup

n→∞
vn(z0) = lim sup

n→∞
γλn(z0) ≥ a > 0,

which implies (3).
To prove (4) we first remark that vn is H-harmonic in Sn and that

lim
z→∞
z∈Sn

vn(z) = 0.

Moreover

vn(z) ≤
∫
RN

�(z; ξ, t0 − λn) dξ = 1,

for every z ∈ Sn, and

lim
Sn�z→(y0,t0−λn)

vn(z) = 0 ∀y0 /∈ Tλn(z0).

Now, let w ∈ H(Sn), w ≥ 0 in Sn and w ≥ 1 in 
c (z0).
λn
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Then, w − vn ∈ H(Sn) and:

lim inf
Sn�z→(y,t0−λn)

(w(z) − vn(z)) ≥ w((y, t0 − λn) − 1 ≥ 0,

for every y ∈ Tλn(z0), and

lim inf
Sn�z→(y,t0−λn)

(w(z) − vn(z)) ≥ lim inf
Sn�z→(y,t0−λn)

w(z) ≥ 0,

for every y /∈ Tλn(z0).
Finally,

lim inf
Sn�z→(y,t0−λn)

(w(z) − vn(z)) ≥ 0, ∀ y ∈R
N.

Then, by the Minimum Principle for H-superharmonic functions (see Proposition (3.3)), we 
get

w − vn ≥ 0 in Sn.

Taking the infimum with respect to w in this inequality we obtain (4), completing the proof. �
6. Applications: cone-type criteria for evolution equations

In this section we prove cone-type criteria for two classes of evolution equations.

6.1. Invariant and homogeneous operators on a group in RN+1

We consider operators left translation invariant and homogeneous of degree two with respect 
to an homogeneous group

G = (RN+1,◦, δr ). (5)

Notions and results about homogeneous groups can be found in the first chapter of the mono-
graph [14]. For the reader convenience, we shortly recall the definition of homogeneous group 
in R

N+1 adapted to our setting. The triple G in (2) is called homogeneous Lie group if (RN+1, ◦)

is a Lie group and if (δr)r>0 is a group of homomorphisms on (RN+1, ◦) of the following type

δr : RN+1 −→R
N+1, δr (x1, . . . , xN , t) = (rσ1x1, . . . , r

σN xN, r2t),

where σ1, . . . , σp are positive integers such that 1 ≤ σ1 ≤ ... ≤ σN .
We set

Dr = δr |RN .

(Dr)r>0 is group of dilation in RN . The natural number

Q = σ1 + ... + σN
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is the homogeneous dimension of RN with respect to (Dr)r>0 while

Q + 2

is the homogeneous dimension of RN+1 with respect to (δr)r>0.
We suppose L to be left translation invariant on (RN+1, ◦) and homogeneous of degree two 

with respect to the dilations (δr)r>0. Denoting by k the fundamental solution of L with pole at 
the origin (0, 0), the last hypothesis we need is that the fundamental solution of L satisfies the 
following properties:

(a) �(z, ζ ) = k(ζ−1 ◦ z);
(b) k(δr (z)) = r−Qk(z).

Operators belonging to this class are, for example, the heat operators on stratified Lie groups, 
the ultraparabolic operators introduced and studied in [3,4] and the homogeneous prototypes of 
Kolmogorov–Fokker–Planck operators studied in [2].

We name δr -cone with vertex in (0, 0) every open set of the following kind:

Ĉ := {δr (ξ,−T ) | ξ ∈ B, 0 < r < 1},= {(Dr(ξ),−r2T ) | ξ ∈ B, 0 < r < 1},

where T > 0 and B is a bounded open set of RN , intB 
= ∅.
We name δr -cone with vertex in z0 the set

z0 ◦ Ĉ,

where Ĉ is a δr -cone with vertex in 0.

Thanks to our main theorem (Theorem 5.1), we derive now the following cone-type criterion 
that extends the parabolic cone (or tusk) condition by Effros and Kazdan.

Theorem 6.1. Let L be an invariant evolution operator on G = (RN+1, ◦, δr ). Let 
 be a 
bounded open set of RN+1 and let z0 ∈ ∂
. If there exists a δr -cone with vertex in z0 contained 
in RN+1\
, then z0 is L-regular for 
.
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Proof. As the operator L is left translation invariant on G, it is sufficient to prove the theorem in 
the case z0 = (0, 0). So, let Ĉ be a δr -cone with vertex in (0, 0) such that Ĉ ⊆R

N+1\
. Letting
λ be in ]0, T [, we set

Cλ(0) = {x ∈R
N | (x,−λ) ∈ Ĉ}.

For any W neighborhood of 0 (in RN ), there exists λ0 ∈ ]0, T [ such that Cλ(0) ⊆ W for every 
λ ∈ ]0, λ0[. We observe that

Cλ(0) = Dr(B) with r =
√

λ

T
.

In particular

|Cλ(0)| = |Dr(B)| = rQ|B|. (6)

Moreover, if z ∈ Cλ(0) × {−λ} and r =
√

λ

T
, then

�(0, z) = k(z−1) = k((δr (ξ,−T ))−1) = r−Qk((ξ,−T )−1)

≤ r−Q min
ξ∈B

k((ξ,−T )−1) = r−Qa0.

Using (6), we get,

�(0, z) ≥ a0

rQ
= a0|B|

|Cλ(0)| = a

|Cλ(0)| .

So,

∫
Cλ(0)

�(0; ξ,−λ) dξ ≥ a

|Cλ(0)| |Cλ(0)| = a ∀λ ∈ ]0, λ0[.

Now, an application of Theorem 5.1 proves that 0 is L-regular. �
6.2. Kolmogorov–Fokker–Planck-type operators

We formulate now a cone-type criterion for the class of operators introduced in [2] and sub-
sequently studied by many authors as a basic model for general Kolmogorov–Fokker–Planck 
operators. More precisely, we consider the operators in R

N+1

L = div (A∇) + 〈Bx,∇〉 − ∂t (7)

where A = (ai,j )i,j=1,...,N and B = (bi,j )i,j=1,...,N are constant N ×N matrices, A is symmetric 
and nonnegative definite. In [2], it is proved that if we define the matrix
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C(t) =
t∫

0

E(s)AET (s) ds, where E(s) = exp (−sB) , (8)

the operator L is hypoelliptic if and only if C(t) > 0 for every t > 0. Furthermore, under these 
conditions, for some basis of RN , the matrices A, B take the following form:

A =
[
A0 0
0 0

]

for some p0 × p0 symmetric and positive definite constant matrix A0 (p0 ≤ N ), and

B =

⎡
⎢⎢⎢⎢⎢⎣

∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
0 B2 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . Bn ∗

⎤
⎥⎥⎥⎥⎥⎦ ,

where Bj is a pj−1 × pj block with rank pj (j = 1, 2, ..., n), p0 ≥ p1 ≥ ... ≥ pn ≥ 1 and 
p0 + p1 + ... + pn = N .

The operator L is left-invariant with respect to the Lie group K whose underlying manifold 
is RN+1, endowed with the composition law

(x, t) ◦ (ξ, λ) = (ξ + E(λ)x, t + λ) .

Under the assumptions stated above, the operator L in (7) has a fundamental solution

� (z, ζ ) = k
(
ζ−1 ◦ z

)
for z, ζ ∈R

N+1,

with

k (x, t) =
{

0 for t ≤ 0
(4π)−N/2√

det C(t)
exp

(
− 1

4

〈
C−1 (t) x, x

〉)
for t > 0

where C (t) is as in (8). Recall that C (t) is positive definite for all t > 0; hence k ∈
C∞ (

R
N+1\ {0}). Furthermore, � satisfies condition (i)–(vi) in Section 1.

Let us now consider, for every r > 0, the dilations

δr :RN+1 −→R
N+1, δr (x, t) = δr (x

(p0), x(p1), . . . , x(pn), t)

= (rx(p0), r3x(p1), . . . , r2n+1x(pn), r2t)

x(pj ) ∈ R
pj , j = 0, . . . , n, r > 0.

We wish to explicitly recall that δr is an authomorphism of K if and only if all the blocks ∗ in B
are identically zero.
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As in the previous subsection we call δr -cone with vertex in (0, 0) any open set of the kind:

Ĉ := {δr(ξ,−T ) | ξ ∈ B, 0 < r < 1},

where T > 0 and B is a bounded open set of RN .
We name δr -cone with vertex in z0 every set

z0 ◦ Ĉ,

where Ĉ is a δr -cone with vertex in 0.
Although, in general, the operator L, is not δr -homogeneous, nevertheless the following 

Proposition holds.

Theorem 6.2. Let L be a Kolmogorov–Fokker–Planck-type operator as in (7).
Let 
 be a bounded open set of RN+1 and let be z0 ∈ ∂
. If there exists a δr -cone with vertex 

in z0 contained in RN+1\
, then z0 is L-regular for 
.

Proof. As the operator L is left translation invariant on G, as in the previous proposition, we 
prove the theorem in the case z0 = (0, 0). Let Ĉ be a δr -cone with vertex in (0, 0) such that 
Ĉ ⊆R

N\
. We denote by L0 the principal part of L, i.e. the operator

L0 = div (A∇) + 〈B0x,∇〉 − ∂t

where B0 is the matrix obtained replacing in B all the ∗ blocks by zero matrices. L0 is hypoel-
liptic as the matrix

C0(t) =
t∫

0

E0(s)AET
0 (s) ds, E0(s) = exp (−sB0) ,

is strictly positive for every t > 0. Furthermore, L is left-invariant and homogeneous of degree 
two with respect to the Lie group (K0, ̃◦, δr ) where the composition law is

(x, t) ◦ (ξ, λ) = (ξ + E0(λ)x, t + λ) .

Then, L0 belongs to the class of the operators considered in the previous subsection, and by 
Theorem 6.1

�0(0, z) ≥ a

|Cλ(0)| ∀z ∈ Cλ(0),∀λ ∈ ]0, T [,

where a is a suitable real positive constant and �0 denotes the fundamental solution of L0. By 
Theorem 3.1 in [2] there exists a constant α > 0 such that

�(0, z) ≥ α�0(0, z) ∀z ∈ Ĉ,

and then
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�(0, z) ≥ aα

|Cλ(0)| .

This, thanks to Theorem 5.1, proves that 0 is L-regular. �
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