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1 Introduction

In this paper we are interested in characterizing the subsolutions of certain hypoel-
liptic ultraparabolic operators with underlying homogeneous Lie group structures.
This class of operators has been introduced by the first author and Lanconelli in
[10] and it contains, as particular cases, the heat operators on Carnot groups and
the Kolmogorov type operators first studied in [14]. It also contains the operators
constructed with the link procedure introduced in [11]. A characterization of such
subsolutions in terms of suitable mean-value operators has been already singled out
by Cinti in [5], who extended to our setting several results obtained by Watson for
the classical heat operator [25, 26, 28, 29]. We would like to pursue this approach
further by using some asymptotic average operators.
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For the Laplace operator this kind of asymptotic characterization has a long
history, starting with the papers by Blaschke [2] and Privaloff [19]. Beckenbach and
Radó in [1] characterized the continuous subsolutions of the Laplacian by comparing
the solid and the surface average (see also the recent paper [7]). In [23], Saks
proved a relation between the operators of Blaschke and Privaloff and the symmetric
derivative of the mass distribution associated to a subharmonic function (see also [20]
and [18]): this result is a kind of second order differentiability almost everywhere
for subharmonic functions. Finally, in [21] Reade introduced his asymptotic version
of the Beckenbach-Radó condition. Recently, these classical results have been
extended to a wide class of sub-elliptic operators by Bonfiglioli and Lanconelli in [3].
In the parabolic setting, some of these conditions were first investigated by Pini, who
proved for the heat operator Blaschke and Privaloff type conditions in [16] and the
analogous of the Saks theorem in [17]. We would like to quote also the papers [26]
and [29] where some asymptotic behaviors of heat averages have been established.

The present paper is organized as follows. In Section 2 we recall the structure of
the operators and we state the main results. In Section 3 we show some properties of
the mean-value operators and a Nevanlinna-type theorem is proved. In Section 4 we
prove the asymptotic characterizations. We exploit a technique which finds its origins
in a paper by Kozakiewicz [12] and it has been recently used in [3]. In Section 5
we prove our Saks-type theorem. To do this, the homogeneity properties of our
setting play a key role. Finally, in the Appendix we give an explicit proof of some
characterizations of the subsolutions already present in the literature.

2 Definitions and Statement of the Main Results

We consider a linear second order operator of the following type

L =
m∑

j=1

X2
j + X0 − ∂t in R

N+1.

In our notations, a generic point of R
N+1 is denoted by z = (x, t) (x ∈ R

N , t ∈ R) and
the X j’s are smooth vector fields depending just on the x-variables, i.e.

X j =
N∑

k=1

α jk(x)∂xk , j = 0, . . . , m,

where α jk ∈ C∞(RN, R). We also define the drift Y as the vector field in R
N+1

Y := X0 − ∂t.

As in the paper [10], let us make the following two assumptions on L:

(A1) there exists a homogeneous Lie group in R
N+1,

L = (RN+1, ◦, dλ)

such that

X1, . . . , Xm, Y are left translation invariant on L;
X1, . . . , Xm are dλ-homogeneous of degree one, whereas the vector field
Y is dλ-homogeneous of degree two.
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(A2) For every (x, t), (y, τ ) ∈ R
N+1, t > τ , there exists an L-admissible path η :

[0, T] −→ R
N+1 such that η(0) = (x, t), η(T) = (y, τ ). The curve η is called

L-admissible if it is absolutely continuous and satisfies

η′(s) =
m∑

j=1

λ j(s)X j(η(s)) + μ(s)Y(η(s)) a.e. in [0, T]

for suitable piecewise constant real functions λ1, . . . , λm, and μ, μ ≥ 0.

We recall that the hypothesis (A2) implies the Hörmander condition

rank Lie{X1, . . . , Xm, Y}(z) = N + 1 for every z ∈ R
N+1

and therefore the hypoellipticity of L. The previous assumptions yield also that the
composition law ◦ is euclidean in the t-variable, i.e.

(x, t) ◦ (y, τ ) = (S(x, t, y, τ ), t + τ)

for a suitable smooth function S with values in R
N , and the dilation dλ takes the form

dλ(x, t) = (Dλ(x), λ2t) = (λσ1 x1, . . . , λ
σN xN, λ2t)

for some positive integers σ1, . . . , σN . The natural number

Q =
N∑

k=1

σk + 2

is the homogeneous dimension of L with respect to dλ.
If � is an open subset of R

N+1, we say that a smooth function u : � −→ R

satisfying Lu = 0 is L-harmonic in �. Moreover, we say that a bounded open set
V ⊂ R

N+1 is L-regular if, for any ϕ ∈ C(∂V), there exists a unique L-harmonic
function HV

ϕ such that

lim
z→z0

HV
ϕ (z) = ϕ(z0) for every z0 ∈ ∂V.

Finally, we say that an upper semi-continuous (u.s.c) function u : � −→ [−∞,+∞[
is L-subharmonic in � if u is finite in a dense subset of � and if, for every L-regular
set V ⊂ V ⊂ �, we have

u ≤ HV
ϕ in V

for every ϕ ∈ C(∂V) such that ϕ ≥ u on ∂V. We denote by S(�) the family (actually,
the cone) of the L-subharmonic functions in �. Concerning the functions u of class
C2 in �, we recall that u ∈ S(�) if and only if Lu ≥ 0 in � by the maximum principle.

For any fixed z0 ∈ R
N+1, there exists a global fundamental solution 
(·, z0) for L

with pole at z0, which is very well-behaved. We refer the reader to [10] for a complete
list of the properties of 
; for our purposes we would like to remark the following


(z, z0) = 
(z−1
0 ◦ z, 0) =: 
(z−1

0 ◦ z) for every z, z0 ∈ R
N+1, z 
= z0;


(dλ(z)) = λ−Q+2
(z), for every z ∈ R
N+1\{0}, λ > 0.
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Given z0 ∈ R
N+1 and r > 0, we define the L-ball of center z0 and radius r as

�r(z0) =
{

z ∈ R
N+1 : 
(z0, z) = 
(z−1 ◦ z0) >

1

rQ−2

}
.

We explicitly stress that 
(z0, z) is the fundamental solution of L∗ = ∑m
j=1 X2

j − Y.
By the recalled properties of 
, it turns out that

�r(z0) = z0 ◦ �r(0) = z0 ◦ δr(�1(0)) and |�r(z0)| = rQ|�1|.
Throughout this paper, we always denote with |E| the Lebesgue measure of a subset
E of R

N+1.
It has been pointed out in [5] that, on the L-balls, some representation formulas

for smooth functions hold true. To be precise, if � ⊆ R
N+1 is an open set containing

z0, for every u ∈ C2(�) we have

u(z0) =
∫

∂�r(0)

k(z)u(z0 ◦ z) dσ(z) −
∫

�r(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
Lu(z) dz

=: mr(u)(z0) − nr(Lu)(z0) for every �r(z0) ⊆ � (2.1)

where

k(z) = |∇X
(0, z)|2
|∇z
(0, z)| , ∇z = (∂x1 , . . . , ∂xn , ∂t) and ∇X = (X1, . . . , Xm).

Via Federer’s co-area formula, we also have

u(z0) = 1

rQ−2

∫

�r(z0)

K(z−1 ◦ z0)u(z) dz − Q − 2

rQ−2

∫ r

0
lQ−3nl(Lu)(z0) dl

=: Mr(u)(z0) − Nr(Lu)(z0) for every �r(z0) ⊆ � (2.2)

where

K(z−1 ◦ z0) = |∇X
(z0, z)|2

2(z0, z)

.

We explicitly note that the kernel K is left translation invariant, unlike k. If L =
� − ∂t is the classical heat operator, the kernel K becomes the one appearing in the
mean-value Theorem for caloric functions of Watson [25]. As in [27], we could also
obtain different solid representation formulas by integrating Eq. 2.1 against other
functions.

If u : � −→ [−∞,∞[ is just an u.s.c function, for any �r(z0) ⊆ � we can consis-
tently define

mr(u)(z0) =
∫

∂�r(0)

k(z)u(z0 ◦ z) dσ(z).

This number is allowed to be −∞, but it makes sense and it is bounded above since
the kernel is non negative and u is bounded above on compact sets. Hence, for any
�r(z0) ⊆ �, we can also define

Mr(u)(z0) = Q − 2

rQ−2

∫ r

0
lQ−3ml(u)(z0) dl, (2.3)
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which is coherent to our previous definition. By using these mean-value operators, it
is possible to characterize the solutions and the subsolutions of L.

In what follows, we denote by D(u) the set where a real-extended valued function
u takes finite values. Moreover, if z0 ∈ �, we define

Rz0 := sup{r > 0 : �r(z0) ⊂ �}.
In the literature, it is already known the following characterization for the L-
subharmonic functions (see [5, 6]).

Theorem A Let u : � −→ [−∞, ∞[ be an u.s.c. function. Let us suppose that D(u) is
dense in �. Then, the following statements are equivalent:

(i) u ∈ S(�).
(ii) u(z0) ≤ Mr(u)(z0) for every z0 ∈ � and 0 < r < Rz0 .

(iii) u(z0) ≤ mr(u)(z0) for every z0 ∈ � and 0 < r < Rz0 .
(iv) For every z0 ∈ �, the function r �−→ Mr(u)(z0) is monotone increasing on

(0, Rz0) and limr→0+ Mr(u)(z0) = u(z0).
(v) For every z0 ∈ �, the function r �−→ mr(u)(z0) is monotone increasing on

(0, Rz0) and limr→0+ mr(u)(z0) = u(z0).

(vi) u ∈ L1
loc(�), Lu ≥ 0 in the distribution sense and limr→0+ Mr(u)(z0) = u(z0) for

every z0 ∈ �.

The aim of this paper is to prove some characterizations and properties of the L-
subharmonic functions in terms of suitable asymptotic average operators. We also
take the opportunity to complete the proof of the equivalence of the conditions (v),
(vi) and the L-subharmonicity, since we did not find an explicit proof. We postpone
it to the Appendix, although it is assumed throughout the paper.

Let us give the statement of our result which extends to this setting the theorems
by Blaschke, Privaloff and Reade.

Theorem 2.1 Let u : � −→ [−∞, ∞[ be an u.s.c. function. Let us suppose that D(u)

is dense in �. Then, the following statements are equivalent:

(i) u ∈ S(�).
(vii) (Blaschke) For every z0 ∈ D(u),

lim sup
r→0+

mr(u)(z0) − u(z0)

r2
≥ 0.

(viii) (Privalof f) For every z0 ∈ D(u),

lim sup
r→0+

Mr(u)(z0) − u(z0)

r2
≥ 0.

(ix) (Beckenbach-Radó) For every z0 ∈ �, Mr(u)(z0) ≤ mr(u)(z0) for any r ∈
(0, Rz0) and limr→0+ mr(u)(z0) = u(z0).

(x) (Reade) For every z0 ∈ D(u),

lim inf
r→0+

mr(u)(z0) − Mr(u)(z0)

r2
≥ 0

and limr→0+ mr(u)(z0) = u(z0).
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By condition (vi) and Riesz-Schwartz’s Representation Theorem, if u is L-
subharmonic in � there exists a positive Radon measure μu in � such that Lu = μu

in D′(�). We shall call μu the L-Riesz measure related to u. Given z0 ∈ �, we define
the L-symmetric derivative of μu at z0 as the limit, when it exists,

Dsμu(z0) = lim
r→0+

μu(�r(z0))

|�r(z0)| .

The following Saks-type theorem gives sharper versions of Blaschke, Privaloff and
Reade conditions.

Theorem 2.2 Let u ∈ S(�) and let μu be the L-Riesz measure related to u. Then, for
almost every point z0 ∈ �, we have

lim
r→0+

mr(u)(z0) − u(z0)

r2
=

(
Q − 2

2
|�1|

)
Dsμu(z0).

lim
r→0+

Mr(u)(z0) − u(z0)

r2
=

(
(Q − 2)2

2Q
|�1|

)
Dsμu(z0).

lim
r→0+

mr(u)(z0) − Mr(u)(z0)

r2
=

(
Q − 2

Q
|�1|

)
Dsμu(z0).

In particular, this happens when the L-symmetric derivative exists and it is f inite at z0.

The proofs of Theorems 2.1 and 2.2 are given respectively in Sections 4 and 5. In
the following Section, we deal with the properties of the average operators mr(u)(z)

and Mr(u)(z) for u ∈ S(�): a study of their behavior is useful for a better under-
standing. Following the arguments present in [3] (Section 6), we discuss the finiteness
of these operators, the continuity as functions of r and the L-subharmonicity as
functions of z. Furthermore, we study more in detail how these operators shrink to u
as r goes to 0 and we finally prove a Nevanlinna-type theorem.

3 Properties of Average Operators

Let u be a subharmonic function in � and let μu be its L-Riesz measure. The key
point of our investigation is the Riesz Representation Theorem for S(�). In [5]
(Theorem 5.6), Cinti proved that, for any bounded open set V ⊆ V ⊆ �, there exists
a function h which is L-harmonic in V such that

u(z) = −
∫

V

(z, ζ )dμu(ζ ) + h(z) for every z ∈ V. (3.1)

The fact that − ∫
V 
(z, ζ )dμu(ζ ) is L-subharmonic can be found in [6] (Proposition

4.1). It is a consequence of the L-subharmonicity of the functions −
(·, ζ ) for any
ζ ∈ R

N+1 (we have to define −
(ζ, ζ ) = 0 if we want to make −
(·, ζ ) u.s.c.).
The formula 3.1 allows us to deduce the properties of mr(u) and Mr(u) from the

ones of mr(−
(·, ζ )) and Mr(−
(·, ζ )). That is why it is crucial to compute explicitly
the average of the fundamental solution. This is exactly the aim of the following
proposition. In the case of classical parabolic operators with variable coefficients, it
was proved by Garofalo and Lanconelli in [8] (Lemma 5.2).
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Proposition 3.1 Let r be a positive number and z0, ζ ∈ R
N+1. Then we have

mr(−
(·, ζ ))(z0) = max

{
−
(z0, ζ ),− 1

rQ−2

}
. (3.2)

Proof Consider first the case where z0 = ζ and r > 0. Since 
(z) = 0 for any z ∈
∂�r(0), we have mr(−
(·, ζ ))(ζ ) = 0 = −
(ζ, ζ ).

Fix now z0 
= ζ and r such that 
(z0, ζ ) < 1
rQ−2 . Then 
(·, ζ ) is harmonic in a

neighborhood of �r(z0) and by Eq. 2.1 we get mr(−
(·, ζ ))(z0) = −
(z0, ζ ).
Consider finally z0 
= ζ and r such that 
(z0, ζ ) > 1

rQ−2 . We want to exploit the
representation formula 2.1 by using some cut-off functions. Take an euclidean ball
Be(ζ, 2ρ) centered at ζ with radius 2ρ > 0 which is compactly contained in �r(z0).
For every 0 < ε <

ρ

2 , let us define a C∞-function ψε such that ψε ≡ 0 in Be(ζ, ε) and
ψε ≡ 1 out of Be(ζ, 2ε). Since ψε = 1 on ∂�r(z0) and ψε
(·, ζ ) is smooth, by Eq. 2.1
we get

mr(
(·, ζ ))(z0) = mr(ψε
(·, ζ ))(z0)

= 
(z0, ζ ) +
∫

Be(ζ,ρ)

(

(z−1 ◦ z0) − 1

rQ−2

)
L(ψε
(·, ζ ))(z) dz.

We shall prove that the second term in the r.h.s tends to 1
rQ−2 − 
(z0, ζ ), as ε → 0+.

In order to prove it, let us fix a function ϕ ∈ C∞
0 such that ϕ ≡ 1 in Be(ζ, ρ) and it

vanishes out of Be(ζ, 2ρ). Hence, the term in question is equal to

∫

RN+1

(

(z−1 ◦ z0) − 1

rQ−2

)
ϕ(z)L(ψε
(·, ζ ))(z) dz

=
∫

RN+1
L∗

((

(z0, ·) − 1

rQ−2

)
ϕ

)
(ψε(z) − 1)
(z, ζ ) dz

+
∫

RN+1
L∗

((

(z0, ·) − 1

rQ−2

)
ϕ

)

(z, ζ ) dz.

Since
(

(z0, ·) − 1

rQ−2

)
ϕ is a C∞

0 -function, the properties of the fundamental so-
lution imply that the last integral is equal to 1

rQ−2 − 
(z0, ζ ). On the other
hand, since 
(·, ζ ) ∈ L1

loc, the former integral tends to 0 as ε → 0+. Therefore,
mr(−
(·, ζ ))(z0) = − 1

rQ−2 .
Summing up, we have proved the proposition for every ζ, z0 ∈ R

N+1 and every
r > 0 such that 
(z0, ζ ) 
= 1

rQ−2 . Since mr(−
(·, ζ ))(z0) is increasing as a function of r
by condition (v) of Theorem A, the relation 3.2 holds true for every r > 0. ��

Let us study the properties of the surface averages of the fundamental solution.
We already know that, for every z0, ζ ∈ R

N+1, the function r �→ mr(−
(·, ζ ))(z0) is
increasing on the interval (0,+∞), but we can also note this is a continuous function
of r. Moreover, for every r > 0 and ζ ∈ R

N+1, the function z �→ mr(−
(·, ζ ))(z) is L-
subharmonic in R

N+1 since it is the maximum between two L-subharmonic functions.
Finally we stress that, for every r > 0, we have mr(−
(·, ζ ))(z0) ≥ − 1

rQ−2 for any
z0, ζ ∈ R

N+1.
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Let us now focus our attention on the solid averages. By using Eq. 2.3, a
straightforward consequence of the last proposition is the following.

Corollary 3.2 Let z0, ζ ∈ R
N+1 and r > 0. Then we have

Mr(−
(·, ζ ))(z0) =

⎧
⎪⎨

⎪⎩

− 1

rQ−2

(
1 + log(rQ−2
(z0, ζ ))

)
if ζ ∈ �r(z0)

−
(z0, ζ ) otherwise

In order to study also the properties of this function, we need a lemma which is
contained and proved in [3] (Lemma 6.2). Since we are going to use it again, we recall
the statement for the sake of convenience.

Lemma 3.3 Let (�, dλ) be a measure space and suppose that {ul}l∈� is a family of L-
subharmonic functions in an open set O ⊆ R

N+1. Suppose furthermore that, for any
z ∈ O, ul(z) is dλ-measurable in � and that one of the following conditions is satisf ied:

ul ≤ 0 in O for every l ∈ �;
{ul}l∈� is uniformly bounded from above and λ(�) < +∞.

Then, if the function

U : O −→ [−∞, +∞), U(z) =
∫

�

ul(z)dλ(l) for z ∈ O

is f inite in a dense subset of O, we have U ∈ S(O).

By recalling that Mr(−
(·, ζ ))(z) = Q−2
rQ−2

∫ r
0 lQ−3ml(−
(·, ζ ))(z) dl, we can use the

last lemma with � = (0, r), dλ(l) = Q−2
rQ−2 lQ−3dl. Then, we get that, for every r > 0 and

ζ ∈ R
N+1, the function z �→ Mr(−
(·, ζ ))(z) is L-subharmonic in R

N+1. Moreover,
for every z0, ζ ∈ R

N+1, Mr(−
(·, ζ ))(z0) is an increasing C1-function of r, since it is
the integral of a continuous function. Finally, we stress that, for a fixed positive r,
Mr(−
(·, ζ ))(z0) is not bounded by below because of the presence of the logarithm.

Let us transfer these properties from the function −
(·, ζ ) ∈ S(RN+1) to a general
L-subharmonic function u.

Proposition 3.4 Let u ∈ S(RN+1). Then, for any r > 0, the functions z �→
mr(u)(z), Mr(u)(z) are L-subharmonic in R

N+1.

Proof Fix r > 0. We want to take the surface average to both sides of the Riesz
representation formula 3.1. Since the L-subharmonicity is a local property, we
consider a bounded neighborhood U of some p ∈ R

N+1. Take V such that it contains
�r(U) := {z ∈ R

N+1 : z ∈ �r(z0) for some z0 ∈ U}. By Tonelli’s theorem, we have

mr

(∫

V

(·, ζ )dμu(ζ )

)
(z) =

∫

V
mr(
(·, ζ ))(z)dμu(ζ ).

Since the L-harmonic functions are equal to their averages, we get

mr(u)(z) = h(z) +
∫

V
mr(−
(·, ζ ))(z)dμu(ζ ) (3.3)
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for any z ∈ U . We recall that mr(u)(z) ≥ u(z) > −∞ at almost every z. Hence,
the right-hand side is L-subharmonic by Lemma 3.3. Therefore we have mr(u)(·) ∈
S(RN+1). We can use again Lemma 3.3 in order to get Mr(u)(·) ∈ S(RN+1). ��

If u ∈ S(�), the result of the last proposition is still true where everything is well
defined. As a matter of fact, if we put �ε := {z ∈ � : �ε(z) ⊆ �} for a fixed ε > 0
such that this is not an empty set, then mr(u)(·), Mr(u)(·) are L-subharmonic in �ε

for any 0 < r < ε.
Now we analyze the finiteness of the average operators and their behavior as

functions of r.

Proposition 3.5 Let u ∈ S(�). For every z0 ∈ � and 0 < r < Rz0 , mr(u)(z0) is f inite.
Moreover, for any f ixed z0 ∈ �, the function r �→ mr(u)(z0) is continuous on the
interval (0, Rz0).

Proof Fix z0 ∈ � and 0 < r0 < Rz0 . Let V be an open neighborhood of �r0(z0) such
that it is compactly contained in �. By Eqs. 3.3 and 3.2, for any 0 < r < r0 we get

mr(u)(z0) = h(z0) +
∫

V
max

{
−
(z0, ζ ),− 1

rQ−2

}
dμu(ζ ).

Of course we have max{−
(z0, ζ ), − 1
rQ−2 ) ≥ − 1

rQ−2 . Since μu is a Radon measure, we
have also μu(V) < +∞. Hence we deduce that mr(u)(z0) > −∞. Moreover, since
the function h depends on r0 but not on r, this shows also that ρ �→ mρ(u)(z0) is
continuous at ρ = r by the dominated convergence theorem. The arbitrariness of r0

concludes the argument. ��

Provided that Mr(u)(z0) is finite for some positive r (and then for every r < Rz0 ),
the last Proposition implies that r �→ Mr(u)(z0) is a C1-function by Eq. 2.3. For
example, this happens when z0 ∈ D(u), since Mr(u)(z0) ≥ u(z0). We would like to
stress that, unlike the surface average, Mr(u)(z0) is not forced to be finite. In [27] (p.
255), Watson gives an explicit example in the parabolic case where this infiniteness
appears.

We now study the behavior of the average operators as r goes to 0. By
condition (v) and (iv) of Theorem A, we know that limr→0+ mr(u)(z0) = u(z0)

and limr→0+ Mr(u)(z0) = u(z0) if u ∈ S(�) and z0 ∈ �. We would like to say
more. In the case of the Laplace operator, the second condition means that

1
|Be(z0,r)|

∫
Be(z0,r)

u(z)dz → u(z0) for every z0 if u is �-subharmonic (Be(z0, r) is the
Euclidean ball). In [9] (p. 144) there is an improvement of this result: every z0 such
that u(z0) > −∞ is actually a Lebesgue point if u is �-subharmonic. The following
proposition is the analogous result in our setting.

Proposition 3.6 Let be u ∈ S(�) and z0 ∈ D(u). Then, we have

lim
r→0+

∫

∂�r(0)

k(z) |u(z0 ◦ z) − u(z0)| dσ(z)

= lim
r→0+

1

rQ−2

∫

�r(0)

K(z−1) |u(z0 ◦ z) − u(z0)| dz = 0.
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Proof Fix ε > 0. Put c = u(z0) + ε
2 . Since the kernel is non-negative and its integral

is equal to 1, we have
∫

∂�r(0)

k(z) |u(z0 ◦ z) − u(z0)| dσ(z) ≤
∫

∂�r(0)

k(z) |u(z0 ◦ z) − c| dσ(z) + ε

2
.

The function u is u.s.c and therefore there exists 0 < r0 < Rz0 such that u(z0 ◦ z) ≤
u(z0) + ε

2 = c if z ∈ �r(0) for every r < r0. Hence, the r.h.s. of the last formula is
equal to

c −
∫

∂�r(0)

k(z)u(z0 ◦ z)dσ(z) + ε

2
= u(z0) − mr(u)(z0) + ε

for 0 < r < r0. Recalling that u(z0) ≤ mr(u)(z0) by the L-subharmonicity, we have
just proved that

∫

∂�r(0)

k(z) |u(z0 ◦ z) − u(z0)| dσ(z) ≤ ε

for every 0 < r < r0. This is the first half of the claim. The second half is completely
analogous. ��

Finally, we want to prove a Nevanlinna-type formula. This gives a quantitative
result about the monotonicity property of the surface averages. We follow an
argument used by Watson in [29] (Theorem 1) for the heat operator.

Proposition 3.7 Let u ∈ S(�) and let μu be theL-Riesz measure related to u. For every
z0 ∈ � and 0 < ρ < r < Rz0 , we have

mr(u)(z0) − mρ(u)(z0) = (Q − 2)

∫ r

ρ

μu(�t(z0))

tQ−1
dt

and

u(z0) = mr(u)(z0) − (Q − 2)

∫ r

0

μu(�t(z0))

tQ−1
dt

= mr(u)(z0) −
∫

�r(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
dμu(z). (3.4)

Proof Let V be an open bounded neighborhood of �r(z0) such that V ⊂ �. The
formula 3.3 holds true for mr(u)(z0) and mρ(u)(z0). Reminding that every term is
finite in such formulas, we get

mr(u)(z0) − mρ(u)(z0)

=
∫

V

(
min

{

(z0, ζ ),

1

ρQ−2

}
− min

{

(z0, ζ ),

1

rQ−2

})
dμu(ζ )

=
∫

�r(z0)

(
min

{

(z0, ζ ),

1

ρQ−2

}
− 1

rQ−2

)
dμu(ζ )

=
∫

�r(z0)��ρ(z0)

(

(z0, ζ ) − 1

rQ−2

)
dμu(ζ ) +

(
1

ρQ−2
− 1

rQ−2

)
μu(�ρ(z0)).
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By substituting 
(z0, ζ ) − 1
rQ−2 = ∫ 
(z0,ζ )

1
rQ−2

ds and 1
ρQ−2 − 1

rQ−2 = ∫ 1
ρQ−2

1
rQ−2

ds, we can

change the integrals and we get

mr(u)(z0) − mρ(u)(z0) =
∫ 1

ρQ−2

1
rQ−2

μu

(
�

( 1
s )

1
Q−2

(z0)

)
ds

= (Q − 2)

∫ r

ρ

μu(�t(z0))

tQ−1
dt.

This proves the first part of the Proposition. By letting ρ → 0+ and recalling that
limρ→0+ mρ(u)(z0) = u(z0), we deduce the formula 3.4. The equality

∫

�r(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
dμu(z) = (Q − 2)

∫ r

0

μu(�t(z0))

tQ−1
dt

is obtained in the same manner. ��

The formula 3.4 can be seen also as a Poisson-Jensen type formula involving
the surface averages. In [6] (Section 6), Cinti and Lanconelli proved necessary
and sufficient conditions in order to obtain some Poisson-Jensen type formulas on
general domains. In [5] (Theorem 5.7), it is proved a Poisson-Jensen type formula
involving the solid averages. Actually, if u ∈ S(�), Cinti proved that

u(z0) = Mr(u)(z0) − Q − 2

rQ−2

∫ r

0
lQ−3

∫

�l(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
dμu(z) dl

= Mr(u)(z0) − (Q − 2)2

rQ−2

∫ r

0
lQ−3

(∫ l

0

μu(�t(z0))

tQ−1
dt

)
dl (3.5)

for every z0 ∈ � and every 0 < r < Rz0 . At least for z0 ∈ D(u), we could deduce this
also by integrating Eq. 3.4.

Remark 3.8 Since mr(u)(z0) is always finite for u ∈ S(�), formula 3.4 implies that

u is finite at z0 ⇔
∫ r

0

μu(�t(z0))

tQ−1
dt is finite for some positive r.

In [5] (Theorem 6.2), Cinti studies also the integrability of μ(�t(z0))

tQ−1 at t = +∞. If
we put together her result and the last remark, we have the following theorem. In
the case of the sub-Laplacians, this is proved in [4] (Theorem 9.6.1). For the heat
operator, we refer the reader to [29] (Theorem 7).

Theorem 3.9 Let μ be a Radon measure in R
N+1 and let zo ∈ R

N+1. Then, μ is the
L-Riesz measure of a bounded-above L-subharmonic function in R

N+1 with u(z0) >

−∞ if and only if it is satisf ied the following condition:

∫ +∞

0

μu(�t(z0))

tQ−1
dt < +∞.
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4 Proof of Theorem 2.1

We have to prove several implications in order to get Theorem 2.1: we are going to
exploit the equivalences of Theorem A.

Remark 4.1 We start noting that the implications (iii) ⇒ (vii) and (ii) ⇒ (viii) are
trivial. We can easily get also (v) ⇒ (ix) and (ix) ⇒ (x). As a matter of fact, by the
definition of Mr(u)(z0) and the monotonicity of l �→ ml(u)(z0), we deduce

Mr(u)(z0) = Q − 2

rQ−2

∫ r

0
lQ−3ml(u)(z0) dl ≤ Q − 2

rQ−2

∫ r

0
lQ−3mr(u)(z0) dl = mr(u)(z0)

for any z0 ∈ � and r ∈ (0, Rz0). This proves (v) ⇒ (ix). About (ix) ⇒ (x), we first
note that the condition limr→0+ mr(u)(z0) = u(z0) implies limr→0+ Mr(u)(z0) = u(z0).
Hence, for z0 ∈ D(u), mr(u)(z0) and Mr(u)(z0) are both finite if r is small enough: in
this way (x) is an easy consequence of (ix).

We have just reduced the problem to proving that the Blaschke-type condition,
the Privaloff-type condition and the Reade-type condition imply the definition of
L-subharmonicity.

We first prove that this is true for smooth functions by using the representation
formulas 2.1 and 2.2. To this aim, for any r > 0 and z0 ∈ R

N+1, let us define the
positive numbers

qr(z0) =
∫

�r(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
dz,

Qr(z0) = Q − 2

rQ−2

∫ r

0
lQ−3ql(z0) dl,

wr(z0) = qr(z0) − Qr(z0).

Since the Lebesgue measure is left translation invariant, we have

qr(z0) =
∫

�r(0)

(

(z−1) − 1

rQ−2

)
dz = qr(0)

for every z0 ∈ R
N+1. Because of the independence of the point z0, in what follows we

are going to omit it and to use the notations qr, Qr and wr. By the recalled properties
of homogeneity of 
, an easy computations shows that

qr =
∫

�r(0)

∫ 
(z−1)

1
rQ−2

ds dz =
∫ +∞

1
rQ−2

∣∣∣∣�( 1
s )

1
Q−2

(0)

∣∣∣∣ ds

= (Q − 2)

∫ r

0

|�t(0)|
tQ−1

dt = (Q − 2) |�1|
∫ r

0
t dt = Q − 2

2
|�1| r2.
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Therefore, for every r > 0, we have

qr = Q − 2

2
|�1| r2,

Qr = (Q − 2)2

2Q
|�1| r2,

wr = Q − 2

Q
|�1| r2. (4.1)

Proposition 4.2 For every z0 ∈ R
N+1 and for every u ∈ C2(�R(z0), R), we have

Lu(z0) = lim
r→0+

mr(u)(z0) − u(z0)

qr

= lim
r→0+

Mr(u)(z0) − u(z0)

Qr

= lim
r→0+

mr(u)(z0) − Mr(u)(z0)

wr
.

Proof Given ε > 0, the continuity of Lu implies the existence of 0 < ρ < R such that
supz∈�ρ(z0)

|Lu(z) − Lu(z0)| < ε. Then, for 0 < r < ρ, we get

|mr(u)(z0) − u(z0) − Lu(z0)qr|

=
∣∣∣∣
∫

�r(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
(Lu(z) − Lu(z0))dz

∣∣∣∣

≤
∫

�r(z0)

(

(z−1 ◦ z0) − 1

rQ−2

)
sup

�ρ(z0)

|Lu(z) − Lu(z0)|dz ≤ εqr.

This means

mr(u)(z0) − u(z0) − Lu(z0)qr = o(qr), as r → 0

and so the first equality holds true. Analogously, we have

Mr(u)(z0) − u(z0) − Lu(z0)Qr = o(Qr), as r → 0.

By comparing the last two equalities, we get

mr(u)(z0) − Mr(u)(z0) − Lu(z0)wr = o(r2) = o(wr), as r → 0.

��

Since qr, Qr and wr are equal to r2 up to positive constants, the last proposition
proves our main theorem in the case of smooth functions. In order to prove it in all its
generality, we exploit a result that, for the Laplace operator, is due to Kozakiewicz
[12]. The idea of transferring it in a more general setting and of using it for the
asymptotic conditions is already in [3]. Let us fix some notations. We denote by U(�)

the set of functions v : U −→ [−∞, +∞[ for some open set U ⊂ � which are u.s.c
and finite on a dense subset of U . Moreover, we denote by F(�) the set of the real-
extended valued functions defined on some subset of �.
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Theorem 4.3 Let G : U(�) −→ F(�) be a map satisfying

[k1] for v ∈ U(�), G(v) is def ined on D(v);
[k2] G(h) = L(h) for every h ∈ U(�) of class C2.

Let u : � −→ [−∞, +∞[ be an u.s.c function, f inite in a dense subset of �, such
that G(u) ≥ 0 in D(u). Suppose f inally that, for every open set V ⊂ � and every
φ ∈ C2(V, R), the following conditions are satisf ied:

[k3] G(u + φ) = G(u) + G(φ);
[k4] for every local maximum point ζ of u − φ, we have G(u − φ)(ζ ) ≤ 0.

Then u is L-subharmonic in �.

Proof Let V be an L-regular set with V ⊂ �. We have to show that, for every ϕ ∈
C(∂V, R) with u ≤ ϕ on ∂V, we have u ≤ HV

ϕ in V. For any ε > 0, let us consider th
function vε = u − HV

ϕ − εet. This function is defined on V and finite on D(u) ∩ V.
By the compactness of V, there exists a point ζ ∈ V such that supU∩V vε = supV vε for
every open neighborhood U of ζ . Arguing as in [3] (Theorem 5.3), we can state that
ζ cannot belong to V. Therefore, we can deduce that supVvε ≤ 0. Letting ε → 0+, we
have u − HV

ϕ ≤ 0 in V. ��

Let us note that the condition [k4] is closely related with the usual notion of
viscosity subsolution.

We complete the proof of Theorem 2.1 by showing that the asymptotic operators
in conditions (vii), (viii) and (x) satisfy the assumptions of the last theorem.

Proposition 4.4 Under the notations and the hypotheses of Theorem A, if u satisf ies
the Blaschke-type condition (vii), the Privalof f-type condition (viii) or the Reade-type
condition (x), then u ∈ S(�).

Proof For any v ∈ U(�), let us set

G(v)(z) := lim sup
r→0+

mr(v)(z) − v(z)

qr
, for z ∈ D(v).

By our choice of G, [k1] is satisfied. The condition [k2] is ensured by Proposition
4.2. Actually, for C2-functions the lim sup in the definition of G is a limit: that’s why
also [k3] holds true. Finally, if ζ is a local maximum point for v ∈ U(�), we have
v(ζ ) > −∞ and mr(v)(ζ ) ≤ v(ζ ). Hence, [k4] is fulfilled too. Since condition (vii)
means exactly that G(u) ≥ 0 in D(u), by Theorem 4.3 we get u ∈ S(�).

The implication (viii) ⇒ (i) is completely analogous by putting

G(v)(z) := lim sup
r→0+

Mr(v)(z) − v(z)

Qr
for v ∈ U(�), z ∈ D(v).

The Reade-type condition is slightly more delicate. For any v ∈ U(�), we set

G(v)(z) := lim inf
r→0+

mr(v)(z) − Mr(v)(z)

wr
, for z ∈ D(v).

We agree to put mr(v)(z) − Mr(v)(z) = −∞ if mr(v)(z) = −∞. We can easily get
assumptions [k1], [k2] and [k3] as above. In order to get [k4], we need the Lemma
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5.10 in [3]. We can apply it since we know that limr→0+ mr(u)(z0) = u(z0). By this
Lemma, if ζ is a local maximum point for u − ϕ, there exists a sequence {rk}
decreasing to 0 such that mρ(u − ϕ)(ζ ) ≥ mrk(u − ϕ)(ζ ) − 1

kwrk for every ρ ∈ (0, rk]
and every k. This implies Mrk(u − ϕ)(ζ ) ≥ mrk(u − ϕ)(ζ ) − 1

kwrk for all k. Therefore,
we get

G(u − ϕ)(ζ ) ≤ lim
k→+∞

1

k
= 0,

which is condition [k4]. In this way, the proof of this proposition and of Theorem 2.1
are complete. ��

5 Proof of Theorem 2.2

Keeping in mind Eq. 4.1, we can restate Theorem 2.2 as follows.

Theorem 2.2 Let u ∈ S(�) and let μu be the L-Riesz measure related to u. Then, for
almost every point z0 ∈ �, we have

Dsμu(z0) = lim
r→0+

mr(u)(z0) − u(z0)

qr

= lim
r→0+

Mr(u)(z0) − u(z0)

Qr

= lim
r→0+

mr(u)(z0) − Mr(u)(z0)

wr
.

In particular, this happens when the L-symmetric derivative exists and it is f inite at z0.

We would like to stress that this is the analogous of Proposition 4.2 for non-smooth
subharmonic functions.

First, we are going to show that the L-symmetric derivative of a given positive
Radon measure μ in � exists almost everywhere. To this aim, let us define

n((x, t)) = max
{
|x1|

1
σ1 , . . . , |xN| 1

σN , |t| 1
2

}

for (x, t) ∈ R
N+1. The function n is dλ-homogeneous of degree one. Given z0 ∈ R

N+1

and r > 0, we can define the L-ball of radius r centered at z0 as

Br(z0) = {
z ∈ R

N+1 : n(z−1
0 ◦ z) < r

}
.

It is easy to see that Br(z0) = z0 ◦ Br(0) = z0 ◦ δr(B1(0)) and therefore we have
|Br(z0)| = rQ |B1|. By considering these balls and the Lebesgue measure, in [24] it
is showed that some classical arguments concerning the maximal function still work.
In particular, if ϕ is a locally integrable function, then

lim
r→0+

∫
Br(z0)

ϕ(z) dz

|Br(z0)| = ϕ(z0) for almost every z0.
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We would like to plug in the previous relation the L-balls instead of the L-balls. Let
us note that there exists a positive number C such that �1(0) ⊆ BC(0). Hence, for
every z0 ∈ R

N+1 and r > 0, by dilating and translating we get

�r(z0) ⊆ BCr(z0),

|�r(z0)| = α |BCr(z0)| with α = 1

CQ

|�1|
|B1| .

According to the definition in [22] (Chapter 7), we can say that the L-balls �r(z0)

shrink to z0 nicely with respect to the L-balls Br(z0). Let us now recall that the
Lebesgue decomposition of μ with respect to the Lebesgue measure is dμ(z) =
ϕ dz + ds(z), where ϕ is a locally integrable non-negative function and ds is singular
with respect to dz. By arguing as in [22] (Theorem 7.14) we have

lim
r→0+

∫
�r(z0)

ϕ(z) dz

|�r(z0)| = ϕ(z0) and lim
r→0+

s(�r(z0))

|�r(z0)| = 0

for almost every z0 ∈ �. Hence, this implies

lim
r→0+

μ(�r(z0))

|�r(z0)| = ϕ(z0)

for almost every z0 ∈ �. Therefore the L-symmetric derivative of μ exists almost
everywhere. Moreover, since a L1

loc(�)-function is finite almost everywhere in �, we
have that at almost every point z0 ∈ �, Dsμ(z0) exists and it is finite.

Remark 5.1 Let us consider the particular case of the L-Riesz measure μu related to
a L-subharmonic function u. Take a point z0 ∈ � such that Dsμu(z0) exists and it is
finite. By the definition, we get that μu(�t(z0))

tQ−1 behaves as tDsμu(z0) as t goes to 0+.
Then, the Remark 3.8 implies that u(z0) is finite.

We can now complete the proof of our Saks-type theorem by exploiting the
Poisson-Jensen representation formulas stated in Section 3.

Proof of Theorem 2.2 Fix a point z0 ∈ � such that Dsμu(z0) exists and it is finite.

Given ε > 0, there exists 0 < ρ < Rz0 such that
∣∣∣μu(�r(z0))

|�r(z0)| − Dsμu(z0)

∣∣∣ ≤ ε for 0 <

r < ρ. Hence, by Eq. 3.4, we get for 0 < r < ρ that

|mr(u)(z0) − u(z0) − qr Dsμu(z0)| =
∣∣∣∣(Q − 2)

∫ r

0

μu(�t(z0))

tQ−1
dt − qr Dsμu(z0)

∣∣∣∣

= (Q − 2) |�1|
∣∣∣∣
∫ r

0
t
(

μu(�t(z0))

|�r(z0)| − Dsμu(z0)

)
dt

∣∣∣∣

≤ εqr.

This means

mr(u)(z0) − u(z0) − qr Dsμu(z0) = o(qr), as r → 0
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and so the first equality holds true. Analogously, by exploiting Eq. 3.5, we have

Mr(u)(z0) − u(z0) − Qr Dsμu(z0) = o(Qr), as r → 0.

Since every term is finite, we can compare the last two equalities and we get

mr(u)(z0) − Mr(u)(z0) − wr Dsμu(z0) = o(r2) = o(wr), as r → 0.

Even if Dsμu(z0) = +∞, we can prove that Dsμu(z0) = limr→0+ mr(u)(z0)−u(z0)

qr
. As a

matter of fact, for any M > 0, there exists 0 < ρ < Rz0 such that

μu(�t(z0))

tQ−1
≥ |�1| Mt for 0 < r < ρ.

The formula 3.4 implies that mr(u)(z0) − u(z0) ≥ Mqr for 0 < r < ρ and therefore
limr→0+ mr(u)(z0)−u(z0)

qr
= +∞.

Analogously, we get limr→0+ Mr(u)(z0)−u(z0)

Qr
= +∞. ��

Appendix

For the sake of completeness, we start proving that the conditions (v) and (vi) in
Theorem A are equivalent to the L-subharmonicity. These facts are already stated
in [6], but we have not found an explicit proof. Since it does not seem so trivial to us,
we show it explicitly.

Remark A.1 Firstly, we would like to remark that, if we drop the condition
limr→0+ Mr(u)(z0) = u(z0), (vi) is not equivalent to (i). As a matter of fact, the
function u = χ{0} is clearly u.s.c, locally integrable and Lu = 0 in the sense of
distributions. But u is not L-subharmonic, since cannot be sub-mean at 0.

The implication (i) ⇒ (vi) is already proved. Indeed, by arguing as in [15]
(Theorem 1), it is proved in [5] (Proposition 2.1) that (i) implies that u ∈ L1

loc and
Lu ≥ 0 in the distribution sense. Moreover, the condition limr→0+ Mr(u)(z0) = u(z0)

is a part of the implication (i) ⇒ (iv).

Proposition A.2 Let u be as in the Theorem A. Let us suppose u ∈ L1
loc and Lu ≥ 0 in

the sense of distributions. Then, the function r �−→ Mr(u)(z0) is monotone increasing
on (0, Rz0) for every z0 ∈ �.

Proof Since u ∈ L1
loc and Lu ≥ 0 in the sense of distributions, there exists the L-

Riesz measure related to u. Hence (see [5], Theorem 5.1), for every bounded set
V ⊂ V ⊂ �, there is a function h which is L-harmonic in V, such that

u(z) = −
∫

V

(ζ−1 ◦ z) dμu(ζ ) + h(z) for almost every z ∈ V.

We can now argue as in [13] (Theorem 1.3) and state that, for every bounded set V ⊂
V ⊂ �, there exists a decreasing sequence un of smooth functions, which converge to
u for almost every z ∈ V, such that Lun ≥ 0 in the classical sense.
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Now we can fix a point z0 ∈ � and 0 < r1 < r2 < Rz0 . Take a bounded set
V such that �r2(z0) ⊂ V ⊂ V ⊂ �. Let us consider a sequence un as above. For
smooth subharmonic functions, by differentiating the representation formula 2.2
with respect to r, we know that r �→ Mr(un)(z0) is monotone increasing. Hence,
we have Mr1(un)(z0) ≤ Mr2(un)(z0) for every n. Letting n → +∞, by the monotone
convergence theorem, we get Mr1(u)(z0) ≤ Mr2(u)(z0). ��

By the last proposition, we easily get (vi) ⇒ (iv)(⇔ (i)). Let us now consider the
equivalence between (v) and the property of subharmonicity.

Proposition A.3 With the notations and the hypotheses of Theorem A, we have

(i) ⇔ (v).

Proof The implication (v) ⇒ (iv) is straightforward. As we have already noted in
Remark 4.1, the condition

u(z0) = lim
r→0+

mr(u)(z0) implies u(z0) = lim
r→0+

Mr(u)(z0).

Moreover, fixing z0 ∈ � and 0 < r1 < r2 < Rz0 , we would like Mr1(u)(z0) ≤
Mr2(u)(z0). We can assume Mr1(u)(z0) > −∞, so that ml(u)(z0) is finite for almost
every l ∈ (0, r1). By the monotonicity assumption, it has to be true for every l ∈ (0, r2]
and we get

Mr2(u)(z0)

Q − 2
− Mr1(u)(z0)

Q − 2

=
(

1

rQ−2
2

− 1

rQ−2
1

)∫ r1

0
lQ−3ml(u)(z0) dl + 1

rQ−2
2

∫ r2

r1

lQ−3ml(u)(z0) dl

≥ mr1(u)(z0)

((
1

rQ−2
2

− 1

rQ−2
1

)∫ r1

0
lQ−3 dl + 1

rQ−2
2

∫ r2

r1

lQ−3 dl

)
= 0.

Viceversa, suppose u ∈ S(�). In order to avoid any possible circular reasoning, we
are not going to exploit any result of Section 3. Fix a point z0 ∈ �. We want to
prove first that limr→0+ mr(u)(z0) = u(z0). If u(z0) > −∞, given ε > 0 there exists
a neighborhood of z0 where u(z) ≤ u(z0) + ε since u is u.s.c. in �. Then, for every r
sufficiently small, we get

u(z0) ≤ mr(u)(z0) ≤ u(z0) + ε,

where the first inequality comes from the implication (i) ⇒ (iii). If u(z0) = −∞,
the upper semi-continuity implies limz→z0 u(z) = u(z0) and therefore we have
limr→0+ mr(u)(z0) = −∞. It remains to prove the monotonicity of the surface aver-
ages. Fix 0 < r1 < r2 < Rz0 and consider a bounded set V such that �r2(z0) ⊂ V ⊂
V ⊂ �. Since u ∈ S(�), formula 3.1 holds true. Like in the last Proposition, we can
build up a decreasing sequence un of smooth subharmonic functions converging to
u everywhere in V (because Eq. 3.1 is everywhere satisfied and not just almost
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everywhere). For smooth functions, it follows directly from the representation
formula 2.1 that

mr1(un)(z0) − mr2(un)(z0) = −
∫

�r2 ��r1

(

(z−1 ◦ z0) − 1

rQ−2
2

)
Lun(z) dz

+
(

1

rQ−2
2

− 1

rQ−2
1

)∫

�r1 (z0)

Lun(z) dz ≤ 0.

Therefore, mr1(un)(z0) ≤ mr2(un)(z0) for every n. Letting n → +∞, by the monotone
convergence theorem, we get mr1(u)(z0) ≤ mr2(u)(z0). ��

By using these approximation methods, we can actually prove all the conditions
implicated by (i) in Theorem A.
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