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One-Side Liouville Theorems
for a Class of Hypoelliptic Ultraparabolic Equations

Alessia Elisabetta Kogoj and Ermanno Lanconelli

1. Introduction

The aim of this paper is to show a one-side Liouville theorem for a class of
hypoelliptic ultraparabolic equations and for their “stationary” counterpart.
The operators we shall deal with are of the following type:

N N
(1.1) L= 8:(ai;(2)0,) + D _bi(2)0s, —8  in RV,

ij=1 i=1
where the coefficients a;; and b; are smooth functions defined in RY. The matrix
A = (ai), i,j=1,...,N, is supposed to be symmetric and nonnegative definite

at any point of RV.
Throughout the paper we shall denote by z = (z,t), x € RY, ¢t € R, the point
of R¥*! and by Y the vector field in RV+!

N
(1.2) Y= bi(z)0, — B0
i=1
Moreover, we shall denote by L the stationary part of L, i. e.
N N
(1.3) Lo=Y 8:,(ai(2)0,) + Y bi(2)0,
ij=1 i=1

We assume the following hypotheses.
(H1) £ is hypoelliptic in RM*+! and homogeneous of degree two with respect to
the group of dilations (dy)x>o given by

(1.4) di(z,t) = (Da(z), %)
Di(z) = Di(z,....zn)=(A"21,...,2AV2p),
where 0 = (0q,...,0n) is an N-tuple of natural numbers satisfying

=01 <o <...<on. Lis dy-homogeneous of degree two if
L(u(dr(z,1))) = A2 (Lu)(dr(z,t))  Yu e CORNTY),
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(H2) For every (z,t),(y,7) € RV*L ¢ > 1 there exists an £- admissible path
7 : [0, 7] — R¥*! such that n(0) = (z,t), n(T) = (y,7).
An L-admissible path is any continuous path 7 which is the sum of a finite number
of diffusion and drift trajectories.
A diffusion trajectory is a curve 7 satisfying, at any points of its domain, the
inequality

((7'(9), €))% < (A(n(s)€, &) VEERN.

Here {,) denotes the inner product in R¥N+! and A(z) = A(z,t) = A(z) stands for
the (N + 1) x (N + 1) matrix

p A0

-(12)

A drift trajectory is a positively oriented integral curve of Y.
Throughout the paper we shall denote by @ the homogeneous dimension of
RVN*1 with respect to the dilations (1.4), i.e.

Q=o01+...+on+2

and we assume
Q2>5.
Then, the D)-homogeneous dimension of RY is @ — 2 > 3.
We explicitly remark that the smoothness of the coefficients of £ and the homogene-
ity assumption in (H1) imply that the a;;’ s and the b;’ s are polynomial functions

(see [L], Lemma 2).
For any z = (z,t) € R¥*! we define the dy\-homogeneous norm | - | by

2] = |(z, t)] := (jz[* + ¢2)3

where

N
lz| = {(z1,...,zN)| = MA.@WVN ’ QH:Q&.
j=1

The class of the operators just introduced contains the one recently considered
in [KL]. In particular, it contains the heat operators on Carnot groups, the proto-
type of Kolmogorov operators and the operators obtained by lknking the previous
ones (see [KL], Example 9.3 and 9.7). An example of operators satisfying our hy-
potheses (H1) and (H2), and not contained in [KL] is given by £ = 82 +230,, — 6,
in RS,

The main result of this paper is the following Liouville-type theorem.

THEOREM 1.1. Let u: RVt — R be a (smooth) solution to Lu = 0 in RV *1,
Suppose u > 0 and

(1.5) u(0,¢) = O(t™) as t—— o0
for some m > 0. Then

(1.6) w=const. in RN
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Before proceeding we want to note that condition (1.5) cannot be removed in
order to get (1.6). Indeed. for example, the function

u(z,t) = exp(zy) + 22 + ... + TN + Nt), reRY, teR,

is nonnegative, non-constant and satisfies the heat equation
N
Au-8 =0 @WmRV*, A=3"8.
j=1
We stress that u does not satisfy condition (1.5) since u(0,t) = exp(INt).

From Theorem 1.1 a Liouville type theorem for £y follows.

COROLLARY 1.2, Letv: RN — R be a (smooth) solution® to Lov =0 in RV.
Then, if v > 0,
v = const. in RN,

ProOOF. The function
uw:RV¥L R, u(z,t) = v(z)
satisfies Lu = 0 in RV*!. Moreover, © > 0 and
u(0,t) = v(0) vVt € R.
Then, by Theorem 1.1, u = const. in R¥*! so that v = const. in RV. O

This Corollary extends to the present class of operators the Liouville Theorem 7.1
in [KL]. A Liouville type theorem for a very wide class of partial differential oper-
ators, homogeneous with respect to a group of dilations, was proved by Luo Xuebo
in [L]. Luo Xuebo’ s Theorem, which extends previous results by Geller [G] and
Rothschild [R], also applies to our operators and, in this context, reads as follows.

THEOREM. Let u be a tempered distribution satisfying, in the weak sense of
distributions, the equation
Lu=0 in RN+,

Then u is a polynomial function.
This result reduces the proof of Theorem 1.1 to the proof of the following

MAIN LEMMA. Let u : R¥Y*l — R be a nonnegative smooth solution to
Lu =0 in RN+ satisfying condition (1.5). Then,

wz) =0(2]")  as|z] — o0
for a suitable n > 0.

This Lemma, together with Luo Xuebo’ s Theorem, immediately gives the

1Obviously, £o is hypoelliptic in R¥ since £ is hypoelliptic in R¥+1. Then, every distribu-
tional solution to Lgv = 0 is smooth.
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PROOF OF THEOREM 1.1. Let u be a solution to Lu = 0 satisfying the hy-
potheses of Theorem 1.1. By the Main Lemma, w is a tempered distribution so that,
by Luo Xuebo’s Theorem, u is a polynomial function. Then, u = ug + ... + Um,
where ux (k= 0,1,...,m) is a polynomial function dy-homogeneous of degree k and
Um > 0, since u > 0. On the other hand, being Lu = 0 and Luj, dj-homogeneous
of degree k — 2, if k > 2, we have Luy = 0 for every k = 0,1,...,m. In particular
Lu,, = 0. Since u,, is nonnegative and dy-homogeneous of degree m > 0, there

exists zg = (zo,%0) € RV +! such that

Um(20) = wﬁ%_ Upp.

By the strong maximum principle (see next section, Proposition 2.2) we then have
U (Z,t) = Um(zo, o)V (z,t) € RY x] — o0, t].
Since u,, is a polynomial function, this obviously implies
Um(2,t) = um(z0, t0)  V (z,t) € RN¥L,

Then m = 0 and u = up i.e. u is a constant function. O

2. A Harnack Inequality

In this section we shall prove the following Harnack inequality for nonnegative
solutions to Lu = 0.

THEOREM 2.1. Let u : RV*! — R be a nonnegative solution to Lu = 0 in
RN+1. Then, there exist two positive constants C = C(L) and 6 = 8(L) such that
(2.1) supu < Cu(0,72) Yr>0,

Cor
where, for p >0, C, denotes the dy-symmetric ball

Cp = {z e RN*! || < p}.

In order to prove this result, our main tool is a Mean-Value Theorem for the
L-harmonic functions, i.e. for the solutions to Lu = 0.

From hypotheses (H1) and (H2), by easily adapting the procedure already used
in {LP1], [BLU] and [KL], we can prove the existence of a fundamental solution
I'(z,¢) of £ with the following properties.

(i) T is smooth in {(z,{) € RVt x RN+1 | » £ ¢},
(i) (-, ¢) € L, (R¥*+!) and LI(-,¢) = —d¢ for every ¢ € RN+,

(iii) I'(z,-) € LL (RN+!) and £L*T(z,-) = -4, for every z € RN+,

(iv) limsup,_,, T'(z,¢) = oo for every z € RV+!,

(v) T{0,{) — 0 as ¢ — o0, ['(0,dx(¢)) = A~9+20(0,¢),

(vi) T((z,t),(6,71))>0,>0iff t > 7,

A<=v H,Qﬂq nvu Amu .ﬁvv = H‘AAH, Ovu Amq T = nvv
In (iii) £* denotes the formal adjoint of £. We would like to stress that property
(vi) follows from the invariance of £ with respect to the translations parallel to the
t-axis. The second part of property (vi) can be proved as in {KL], Section 2, by
using the following strong maximum principle.

PROPOSITION 2.2. Let u be a nonnegative solution to the equation Lu = 0 in
the halfspace
S =RV x] — 00,0[, to €R.
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Suppose there exists a point z1 = (z1,¢1) € S such that
u(zy,t1) = 0.
Then u = 0 in RV x] — 0o, t1].
PrROOF. Let us denote by P,, (S) the propagation set of z; in S, i.e. the set
P, (85)={2€8 : thereexists an L-admissible path
n:[0,7] — Ss. t. n(0) = 21, p(T) = z}.

The hypothesis (H2) implies P, (S) = R x| — 00, t1[. On the other hand since 2,
is a minimum point of v and the minimum spreads all over P,, (see [A]), we get

u(z) = u(z) ¥ 2z € RN x| — o0,ty].
Then, the assertion follows since u(z;) = 0. 0

For every (0,T) € R¥+! and r > 0 we define the £-ball centered at (0,T) and
with radius r, as follows

T

Q-2
0.(0,T) = { ¢ RN & T((0,7),¢) > @

Then, if Lu = 0 in RV, the following Mean Value formula holds

onw
(2.2) %Su@ \: o KTOuO &,

r

where

Km0 = SAQVLTVL> (o,

and T stands for '((0, T), (£, 7)). Moreover, <, > denotes the inner product in RY
and V¢ is the gradient operator (J,,...,0y).

Formula (2.2) is one of the numerous extensions of the classical Gauss Mean
Value Theorem for harmonic functions. For a proof of it we directly refer to [LP2],

Theorem 1.5.
The following lemmas will be crucial for our purposes.

LEMMA 2.3. Let U be an open connected subset of R¥+!. Let u: U — R be
a smooth function such that

(2.3) A(z)V,u(z,t) =0, Yu(z,t)=0 vV (z,t) e U.
Then u 1s constant in U.

PROOF. Let us denote by X, the vector field

N
Nw = M ES,%@. .
=1

Since £ is hypoelliptic and its coefficients are polynomial functions, the following
rank condition holds (see [D])

(24)  rank Lie(Xi,..., Xy, Y)(z,t) =N+1 ¥V (z,t) e RN,
On the other hand, by hypothesis (2.3),
Zu=0 inU VZeLie(Xy,...,Xn Y)
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Then, by the rank condition (2.4), V,u(z) = 0 at any point z € U, and u is
constant. 0l

LEMMA 2.4. The closed set
U={(=(7): K(T\¢()=0, 7<T}
does not contain interior points.

ProoF. We argue by contradiction and assume K (T, {) = 0 for every ¢ in a non
empty connected open set U € RN x| — oo, T[. Then, letting h(¢) := I'((0,T), ),
we have

A()Veh(§,T)=0 V(g 1) e,
hence div(AVh) = 0 in U. The L£*-harmonicity of h now gives Yh = 0 in U.

Thus, by Lemma 2.3, h = const. in U. This is absurd because h(¢} = h({,7) =
I'((0,0), (&, 7 = T)) and z — I(0, 2) is dx-homogeneous of degree 2 —Q # 0. O
LEMMA 2.5. There ezists a positive constant 8 = 6(L) such that
Co C Q,,(0,1).
ProOF. By the property (vi) of ', it is ['((0, 1), (0,0)) > 0. Then, for a suitable
positive constant ro and 6y, we have

r((0,1),¢) > Awo

Q-2
v <A € Cy.

This means that
Co, C 2r,(0,1)
and the assertion is proved. 0O

We are now in the position to give the proof of Theorem 2.1.
Next Lemma easily follows from Theorem 7.1 in [B].

LEMMA 2.6. Let (u,) be a sequence of L-harmonic function in an open set
0 c ﬁz.z..
Lu, =0 inQ vn € N.

Suppose (u,) is monotone increasing and convergent in a dense subset of 2. Then
(un) converges at any point of  to a smooth function u such that Lu =0 in Q.

ProoF OF THEOREM 2.1. Since £ is dy-homogeneous of degree two, it is enough
to prove inequality (2.1) for r = 1. We argue by rontradiction and assume that
(2.1), with » = 1, is false. Then, there exists a sequence (un) of nonnegative
L-harmonic functions such that

(2.5) supu, > 4"u,(0,1).
Co
By the Mean Value formula (2.2),
1\972
o won=(%) [ KLOw@& new
o Qg (0,1)

so that, since 2,,(0,1) 2 Cp, see Lemma 2.5,

QIM
un(0,1) > 3 [ (L0 unl0)

To
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On the other hand, by inequality (2.5) and Lemma 2.4, u, and K(1,-) are strictly
positive in a non-empty open subset of Cy. It follows that u,(0,1) > 0 for every
n € N. Let us now put
[=5)
Up Un
Up = a and v = m on-
From the Mean Value formulas (2.6) we obtain
11977 X
== (1) [ keOwo

70 Qg (0,1)

so that,v < oo at any point of
T:={C €0 (0,1) : K(1,¢) >0}

By Proposition 2.2 the closure of T' contains €r,(0,1). Then, by Lemma 2.6, v is
finite and smooth in Q,,(0,1). In particular v is continuous in Cp. Then,

(2.7) sup v < 00.
Cy
On the other hand, by inequality (2.5),
Un 1 Un
sup§ > sup — = — sup > 2™
Qa_u Ccp 2% 2n un (0)
Hence supg, v > 2" for every n € N. This contradicts (2.7) and proves the Theorem.

O

With Theorem 2.1 at hand, the Main Lemma stated in the Introduction easily
follows.

PROOF OF MAIN LEMMA. Let u be a nonnegative L£-harmonic function in
RN+ satisfying the growth condition (2.2). Then, by Theorem 2.1,

sup u(2) < Cu(0,72) < Cy(1 +727).
|zl <6r

This obviously implies
u(z) < Co(1 +|2)*")  Vze RV,
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