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Abstract We prove some one-side Liouville-type theorems in halfspaces for a
class of evolution hypoelliptic equations. The operators we deal with are left trans-
lation invariant, and homogeneous of degree two, on homogeneous Lie groups on
R
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1 Introduction and main results

This paper deals with one-side Liouville theorems in halfspaces for the class of
linear second order hypoelliptic operators first studied in [7].

Our main results apply, in particular, to the classical heat operator H := ∆ −∂t
in RN+1. In this case they read as follows.

Theorem A Let u be a classical solution to the heat equation

Hu := ∆u−∂tu in R
N×]−∞,0[.

(1) If u≥ 0, then

lim
t−→−∞

u(x, t)
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exists for every x ∈ RN and is independent of x. Precisely

lim
t−→−∞

u(x, t) = infu

for every x ∈ RN.
(2) If u is continuous up to t = 0, u≥ 0 and

u(x,0) =O(|x|n) as x −→ ∞

for a suitable n ∈ R, then

u≡ constant.

It is well known that one side Liouville Theorems on all RN+1 does not hold
for the heat operator.

Indeed, if u≥ 0 solves the heat equation inRN+1, then we cannot conclude that
u ≡ constant. For example, the function u(x, t) = ex1+...+xN+Nt is a non-negative
and non constant solution to Hu= 0 in RN+1.

Liouville properties in halfspaces for solutions to classical parabolic equations
have been investigated by many authors. We only quote the papers by Hirschman
[6], Glagoleva [3], [4], Tavkhelidze [9], Bear [1], which contain results closer to
the ones of Theorem A. We directly refer to the references in these papers for
related theorems on these subjects.

The aim of the present paper is to extend Theorem A to the class of operators
of the following type.

L =
m

∑
j=1

X2
j +X0−∂t in RN+1, (1)

where the Xj’ s are first order differential operators inRN with smooth coefficients,
i.e.

Xj =
N

∑
j=1

a(k)j ∂xk , j = 0, . . .,m,

and a(k)j ∈C∞(RN ,R) for every j and k.

We shall denote by z = (x, t), x ∈ RN, t ∈ R, the point of RN+1, and by Y the
first order operator

Y := X0−∂t in RN+1.

We shall also denote by

L0 :=
m

∑
j=1

X2
j +X0

the stationary part of L . Then, with these notations

L =L0−∂t.

As in the paper [7] we assume the following hypotheses on L .
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(H1) There exists a homogeneous Lie group in RN+1,

L= (RN+1,◦,dλ)

such that
(i) X1, . . .,Xm,Y are left translation invariant on L.
(ii) X1, . . .,Xm are dλ -homogeneous of degree one and Y is dλ -homogeneous

of degree two.
(H2) For every (x, t), (y,τ)∈ RN+1, t > τ , there exists an L -admissible path η :
[0,T ] −→ R

N+1 such that η(0) = (x, t), η(T ) = (y,τ). The curve η is called
L -admissible if it is absolutely continuous and satisfies

η ′(s) =
m

∑
j=1

λ j(s)Xj(η(s))+µ(s)Y (η(s)) a.e. in [0,T ]

for suitable piecewise constant real functions λ1, . . .,λm, and µ , µ ≥ 0.

We have already remarked in [7] that the hypothesis (H2) implies the hypoel-
lipticity of L and L0. Moreover, from (H1) one obtain the following form of ◦
and dλ :

(x, t)◦ (y,τ) = (S(x, t,y,τ), t+ τ),

dλ (x, t) = (D(λ)x,λ 2t),

where S is a smooth function with values inRN and D(λ) = diag(λ σ1 , . . .,λ σN ) is
a dilation in RN, 1≤ σ1 ≤ . . .≤ σN.

We shall denote by Q = σ1+ . . .+σN+ 2 the homogeneous dimension of L
and assume, as in [7], Q≥ 5.

Throughout the paper we shall denote

|z| = |(x, t)| := (|x|4+ t2) 1
4 ,

where, if x= (x1, . . .,xN),

|x| :=
(

N

∑
j=1
(x2

j)
σ
σ j

) 1
2σ

, σ =
N

∏
j=1

σ j.

We also put

d(z,ζ ) = |ζ−1 ◦ z|.

Then, (z,ζ ) �−→ d(z,ζ ) is a pseudo-metric inRN+1. Precisely, for a suitable C> 0,

(i) d(z,ζ ) ≤Cd(ζ , z);
(ii) d(z,ζ ) ≤C(d(z, z1)+d(z1,ζ )) for every z, z1,ζ ∈ RN+1.
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Throughout the paper we shall write d(z) instead of d(0, z) = |z−1|. Obviously,
from (i), we have

1
C
|z| ≤ d(z) ≤C|z|.

In order to state our main theorem we need some more notation.
Let γ̂ : [0,∞[−→ R

N be a continuous curve such that

limsup
s→∞

|γ̂(s)|2
s
< ∞.

Then, the path

s �−→ γ(s) = (γ̂(s),T − s), T ∈ R,
will be called aL -parabolic trajectory.

Obviously the curve

s �−→ γ(s) = (α ,T − s), α ∈ RN, T ∈R,
is a L -parabolic trajectory. We shall prove in Section 5 that every integral curve
of the vector field Y also is a L -parabolic trajectory (see Lemma 3). We would
like to explicitly remark that theL -parabolic trajectory s �−→ (α ,T− s) need not
be an integral curve of Y , see Example 2 in Section 5.

With the notion of L -parabolic trajectory at hand we can state our first main
result.

Theorem 1 Let u be a bounded below solution to the equation

L u= 0

in the halfspace

ST =R
N×]−∞,T[, T ∈R.

Then

lim
s→−∞

u(γ(s)) = inf
ST

u

for every L -parabolic trajectory γ .

From the proof of this theorem we will see that it can be sharpened as follows

Corollary 1 Let u be a nonnegative solution to

L u= 0

in the halfspace ST =RN×]−∞,T[, T ∈R. Let K ⊆ S be compact and γ : [0,∞[→
S be aL -parabolic curve such that

γ(0) ∈ K.

Then

lim
s→∞

u(γ(s)) = inf
ST

u

uniformly w.r. to γ(0) ∈ K.
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For classical parabolic equations Theorem 1 and Corollary 1 were first proved
by Glagoleva [3]. A somehow stronger version for the heat equation have been
proved by Bear [1].

To clarify the meaning of our Theorem 1 let us give an example

Example 1 The Kolmogorov operator

L = ∂ 2
x1
+ x1∂x2 −∂t in R3

satisfies hypotheses (H1) and (H2). The relevant homogeneous group of L is

L= (R3,◦,dλ)

with composition law ◦ and dilation dλ given by, respectively,

(x1,x2, t1)◦ (y1,y2, t2) = (x1+ y1,x2+ y2+ t2x1, t1+ t2)

and

dλ (x1,x2, t1) = (λx1,λ 3x2,λ 2t)

(see [7], Remark 9.5).
In the present case we have

Y = x1∂x2 −∂t

whose integral curves are

s �−→ (α ,β +αs,T− s), s≥ 0.

Then, if u is a non negative solution toL u= 0 in the halfspace R2×]−∞,0[, we
have

inf
R2×]−∞,0[

u= lim
s→∞

u(a,b+as,T − s)

for every a,b,T ∈ R,T ≤ 0.

From Theorem 1 one easily obtain the following Liouville property for L0, first
proved in [7] Corollary 8.3 (see also [8] Corollary 1.2).

Corollary 2 [Liouville Theorem for L0.] Let u be a nonnegative entire solution
to

L0u= 0 in RN.

Then u is constant.

We now state our second main theorem.
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Theorem 2 Let u ∈C∞(RN×]−∞,0[)∩C(RN×]−∞,0]) be a nonnegative solu-
tion to

L u= 0 in RN×]−∞,0[.

If there exists n ∈R such that

u(x,0) = O(|x|n) as |x| → ∞,

then u is constant.

In the case of the classical heat operator a stronger version of this corollary
was proved by Hirschman and Bear, respectively in [6] and [1].

The paper is organized as follows.
In Section 2 we show a new version of the Harnack inequality for positive

solution to L u= 0 proved in [7] (Theorem 3).
In Section 3 we provide some gaussian estimates of Γ , the fundamental solu-

tion ofL , and of their derivatives (Theorem 4). These estimates are new and have
some independent interest.

In Section 4 we prove that every solution toL u= 0 in the halfspace RN×]−
∞,0[ can be extended to a solution of the same equation in all RN provided that u
is continuous up to t = 0 and u(x,0) = O(|x|n) as x−→ ∞ (Theorem 5).

Finally, in Section 5, we prove Theorem 1, Corollary 2 and Theorem 2.

2 Harnack inequality

In this Section we prove a Harnack inequality which is a restatement of the one
proved in [7], Theorem 7.1.

For every M > 0 and z0 ∈RN+1 let us denote

P(M) := {(x, t) ∈ RN×]−∞,0[ : |x|2 ≤−Mt}
and

Pz0(M) := z0 ◦P.

Then, we have the following theorem

Theorem 3 Let u be a non-negative solution to

L u= 0 in RN×]−∞,0[.

Then, for every z0 ∈ RN×]−∞,0[ and M > 0 there exists a constant C = C(M),
independent of z0 and u, such that

sup
Pz0

u≤Cu(z0).

Proof We split the proof into three steps.
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(I) Let u be a nonnegative solution to L u= 0 in a open set Ω ⊇ RN×]−∞,0].
Then, for every M > 0 there exists a positive constant C =C(M). independent
of u, such that

sup
|x|≤M

u(x,−1)≤Cu(0,0).

This can be proved by proceeding exactly as in [7], pag.67.
(II) Let u be a nonnegative solution toL u= 0 in an open set Ω ⊇RN×]−∞,0].

Then, for every M> 0 there exists a constant C=C(M) independent of u, such
that

sup
P(M)

u≤Cu(0,0).

Proof Let (x, t) ∈ P(M) and put λ :=
√|t|, wλ (z) = u(δλ (z)), z ∈ δ 1

λ
(Ω ).

Since δ 1
λ
(Ω ) is an open set containing RN×]−∞,o], by step (I) we have

sup
|x|≤M

wλ (x,−1)≤Cwλ (0,0) =Cu(0,0).

On the other hand

sup
|x|≤M

wλ (x,−1) = sup{u(y, t) : |y| ≤M
√
|t|} ≥ u(x, t).

Then

u(x, t)≤Cu(0,0) ∀(x, t) ∈ P(M).

(III) Let us now assume that u satisfies the hypotheses of the Theorem and define

v(z) = u(z0 ◦ z), z ∈ Ω ,

where Ω := z−1
0 ◦ (RN×]−∞,0[) is an open set containing RN×]−∞,0].We

can then apply the conclusion of Step (II) to the function v obtaining

sup
P(M)

v≤Cv(0)⇐⇒ sup
z0◦P(M)

u≤Cu(z0).

The Theorem is proved. ��

3 Estimates for the derivatives of Γ

The aim of this Section is to prove gaussian estimates for the derivatives of Γ , the
fundamental solution of L with pole at the origin.

If β = (β1, . . .,βm,βm+1) is a multi-index, we shall denote by Xβ the following
differential operator

Xβ := Xβ1
1 ◦ . . .◦Xβm

m ◦Y βm+1

and put

|β |= β1+ . . .+βm+2βm+1.

Then Xβ is a left translation invariant partial differential operator on L which
is δλ -homogeneous of degree |β |.
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Theorem 4 For every multi-index β we have

|Xβ Γ (z)| ≤Cβ t−
Q−2

2 −|β |2 exp

(
−d2(z)

Ct

)
, (2)

for every z = (x, t) ∈ RN+1, t > 0, where C and Cβ are positive constant, Cβ de-
pending on β .

For the proof of this Theorem we need the following lemma.

Lemma 1 Let u be a nonnegative solution to

L u= 0 in Ω ,

where Ω is an open set containing the strip RN×]− r2,0]. Then

∣
∣∣Xβ u(0,− r2

2
)
∣
∣∣ ≤Cβ r−|β |u(0,0), (3)

where Cβ > 0 is independent of u and r.

Proof Due to the homogeneity of L and Xβ , it is enough to prove (3) for r = 1.
By Theorem 7.1 in [2], there exists z1, . . ., zp ∈ RN×]−1,0[ such that

|Xβ u(0,−1
2
)| ≤Cβ

p

∑
j=1

u(z j). (4)

Let M > 0 be such that

{z1, . . ., zp} ⊆ P(M).

By the Theorem 3.1, we have

u(z j)≤Cu(0,0) ∀ j = 1, . . ., p,

where C only depends on M.
Using this inequality in (4), we get (3) for r= 1 and the Lemma is proved. ��

Corollary 3 Let u be a nonnegative solution to

L u= 0 in RN×]0,∞[.
Then,

|Xβ u(z)| ≤Cβ |t|
−β
2 u

(
z◦
(

0,
t
2

)−1
)
, (5)

for every z= (x, t) ∈ RN×]0,∞[ for every multi-index β = (β1, . . .,βm,βm+1).
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Proof Let z ∈ RN×]0,∞[ be fixed and define

v(ζ ) = u

(
z◦
(

0,− t
2

)−1
◦ζ
)
.

Since the time component of the composition law is the euclidean one, the function
v is defined for every ζ = (ξ ,τ) with τ > − 3

2 t. Then we can apply the previous
lemma to the function v by choosing r2 = t . We obtain

|Xβ v
(

0,− t
2

)
| ≤Cβ t−

β
2 v(0,0). (6)

On the other hand, since Xβ is left translation invariant,

Xβ v
(

0,− t
2

)
= (Xβ u)

(
z◦
(

0,− t
2

)−1
◦
(

0,− t
2

))
= Xβ u(z).

Moreover v(0,0) = u
(

z◦ (0,− t
2

)−1
)
. By replacing these identities in (6), we

obtain (5). ��
We are now ready to give the

Proof (of Theorem 4) By the previous Corollary applied to the function u := Γ ,
we have

|XβΓ (z)| ≤Cβ t−
β
2 Γ
(

z◦
(

0,− t
2

)−1
)

(7)

On the other hand, from the gaussian estimates of Γ proved in [7], Section 5,

Γ
(

z◦
(

0,
t
2

)−1
)
≤C

( t
2

)−Q−2
2

exp



−
2d2

(
z◦ (0, t

2

)−1
)

Ct



 . (8)

We now use the pseudo triangular inequality and the pseudo-symmetry of d to
estimate

d

(
z◦
(

0,
t
2

)−1
)
≥ Cd(z)− 1

C
d
(

0,
t
2

)

= Cd(z)− 1
C

d(δ√ t
2
(0,1))

= Cd(z)− 1
C

√
t
2

d(0,1)

= Cd(z)−C1
√

t

for suitable positive constants C and C1. ��
By using this estimates together with (8) and (7), we get (2).
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4 An extension result

The aim of this section is to prove the following theorem.

Theorem 5 Let us denote by S the halfspace

S=RN×]−∞,0[.

Let u ∈C∞(S)∩C0(S) be a nonnegative solution to

L u= 0 in S.

Assume that

u(x,0) = O(|x|n) as |x| −→ ∞,

for a suitable n ∈ R.
Then, if we define

v : RN+1 −→ R, v(x, t) =






u(x, t) if t ≤ 0,

∫
RN Γ (x, t;ξ ,0)u(ξ ,0) dξ if t > 0

we have

(i) v ∈C∞(RN+1) and L v= 0 in RN+1;
(ii) v ≥ 0 and v(0, t) =O(t

n
2 ) as t −→ ∞;

(iii) v|S = u.

To prove this theorem we shall use, together with the estimates of Γ and of its
derivatives, a Gauss-Koebe type characterization of the solution to L u = 0. Let
us start by recalling the average operators already used in [7], Section 7. For r> 0
and z0 ∈ RN+1, we define theL -ball of radius r and “center” z as follows

Ωr(z) =

{

ζ ∈RN+1 : Γ (ζ−1 ◦ z)>

(
1
r

)Q−2
}

. (9)

We explicitly remark that, if we denote z= (x, t)

Ωr(z) ⊆RN×]−∞, t[. (10)

Indeed, the “time” component of ζ−1 ◦ z is t− τ , where τ is the time component
of ζ . Then, the assertion follows, keeping in mind that Γ = 0 in the halfspace
R

N×]−∞,0].
Let us now define theL -average operator:

Mru(z) :=

(
1
r

)Q−2∫

Ωr(z)
u(ζ )K(ζ−1 ◦ z) dζ ,

where

K(z) =
∇LΓ (z)

Γ (z)2
, ∇L = (X1, . . .,Xm),
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see (7.5) in [7]. In that paper is proved that

u(z) =Mru(z)

for every smooth solution to L u= 0 in O and for every L -ball Ωr(z) such that
Ωr(z)⊆ O.

We also have the reverse part of this Mean-Value Theorem. More precisely,
directly from Corollary 3.4 and Example 2 in [5] we obtain

Proposition 1 Let u : O −→ R, O ⊆ RN+1 open, be a continuous function with
the following Mean Value property: for every z ∈O there exists rz > 0 such that

u(z) =Mru(z) for every r ∈]0, rz[.

Then u ∈C∞(O) and L u= 0.

Corollary 4 Let u : O−→R, O⊆RN+1 open, be a continuous function satisfying
the following condition: there exists t0 ∈ R such that

u ∈C∞(Ot0), L u= 0 in Ot0,

where Ot0 denotes the open set

Ot0 = {(x, t) ∈ O | t �= t0}.
Then u ∈C∞(O) and L u= 0 in O.

Proof First of all, keeping in mind the inclusion (10), for every z∈Ot0 there exists
r = rz > 0 such that

Ωr(z)⊆ Ot0 for every r ∈]0, rz[.

Then, since u is a smooth solution to L u= 0 in Ot0,

u(z) =Mr(u)(z) for every z ∈ Ot0 and 0< r < rz.

Let us now consider a point z0=(x0, t0)∈O and a real number rz0 > 0 such that
Ωr(z0)⊆O for every r ∈]0, rz0 [. For every fixed r ∈]0, rz0 [, we choose a sequence
(z j) in Ot0 such that Ωr(z j)⊆Ot0. Then, by the continuity of u and the mean value
property in Ot0, we have

u(z0) = lim
j→∞

u(z j) = lim
j→∞

Mru(z j)

= lim
j→∞

∫

Ωr(0,0)
u j(z j ◦ζ−1)K(ζ ) dζ

=

∫

Ωr(0,0)
u(z0 ◦ζ−1)K(ζ ) dζ =Mru(z0).

This proves that u satisfies the hypotheses of Proposition 1. Thus u ∈C∞(O) and
L u= 0 in O. The Corollary is proved. ��

Let us now show a result having an independent interest.
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Proposition 2 Let ϕ : RN −→ R be a continuous function such that ϕ(ξ ) =
O(|ξ |n) as |ξ | −→∞. Define

U(z) =U(x, t) :=
∫

RN
Γ ((ξ ,0)−1 ◦ z)ϕ(ξ ) dξ , x ∈RN , t > 0.

Then U is a solution to the Cauchy problem

LU = 0 in RN×]0,∞[,
lim

z→(x0 ,0)
U(z) = ϕ(x0) ∀x0 ∈ RN.

Moreover

U(0, t) =O(t
n
2 ) as t→ ∞. (11)

Proof From the estimates of Γ and of their derivatives (Theorem 3.1) we imme-
diately obtain that U is a well defined and smooth function in RN×]0,∞[.

Moreover, by deriving under the integral

LU(z) =
∫

RN
(L Γ )((ξ ,0)−1 ◦ z)ϕ(ξ ) dξ = 0

for every z ∈RN×]0,∞[.
Since

∫

RN
Γ ((ξ ,o)−1 ◦ z) dξ = 1,

(see [7], Section 1), we can write

U(z)−ϕ(x0) =

∫

RN
Γ ((ξ ,0)−1 ◦ z)(ϕ(ξ )−ϕ(x0)) dξ .

From this identity, by using very standard devices we get

lim
(x,t)→(x0 ,0),t>0

U(x, t) = ϕ(x0), ∀x0 ∈ RN.

Finally we prove the asymptotic behavior (11).
From the estimates of Γ and the assumption on ϕ , for a suitable constant C> 0

we have

|U(0, t)| ≤ Ct−
Q−2

2

∫

RN
exp

(
− 1

Ct
d2 ((ξ ,0)−1 ◦ (0, t))

)
(1+ |ξ |n) dξ

= ( using the change of variable ξ =D√t η )

C
∫

RN
exp

(
− 1

C
d2((η ,0)−1 ◦ (0,1))

)
(1+ t

n
2 |η |n) dη

≤ ( if t > 1 ) Ct
n
2

∫

RN
exp
(
− 1

C
d2((η ,0)−1 ◦ (0,1))

)
(1+ |η |n) dη

= C∗t
n
2 .

This completes the proof. ��
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We close this section by giving the

Proof (of Theorem 5) From Proposition 2 it follows that v ∈ C∞(RN+1\(RN ×
{0}))∩C(RN+1).Moreover

L v= 0 in RN+1\(RN ×{0}).
Now Corollary 4 shows that v is a smooth solution to L v = 0 in RN+1. Finally,
again from Proposition 2,

v(0, t) =O(t
n
2 ) as t→ ∞.

��

5 Proof of the main theorems

We start with the proof of the following lemma

Lemma 2 Let γ : [0,∞[−→ R
N+1, γ(s) = (γ̂(s),T − s) be a L -parabolic trajec-

tory. Then, there exists M = M(γ) ∈ R with the following property: for every
z ∈RN+1 there exists t∗ = t∗(z,M) such that

γ(s) ∈ Pz(M) ∀s≥ t∗.

Proof Since γ is a L -parabolic trajectory, there exists M0 > 0 such that

|(γ̂(s))|2 ≤M0s ∀s≥ 1.

As a consequence, for every z ∈RN+1 and s≥ t∗ =max{1,d2(z)}, we have

d2(z◦ γ(s)) ≤ C(d(z)+d(γ(s)))2

≤ C1(
√

s+
√

M0s)2 =C1(1+
√

M0)
2s :=Ms.

��
We now prove the following lemma

Lemma 3 Every integral curve of Y is a L -parabolic trajectory.

Proof To begin with we remark that the statement is equivalent to the following
one:

limsup
s→∞

|γ j(s)|
1

σ j

√
s
<∞ ∀ j = 1, . . .,N, (12)

where γ j is the j-th component of γ :

γ(s) = (γ1(s), . . . ,γN(s), γN+1(0)− s), s≥ 0.

Since Y is dλ -homogeneous of degree two, we have

Y =
N

∑
j=1;σ j≥2

= a j(x1, . . .,x j−1)∂x j −∂t
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where a j is a polynomial function dλ -homogeneous of degree σ j−2. Then,

j0 :=max{ j ∈ {1, . . .,N} : a j ≡ 0}> 1.

It follows that

γ ′j = 0 for 1≤ j ≤ j0;

γ ′j = a j(γ1, . . .,γ j−1) for j0 < j ≤ N.

Then

γ j(s) = γ j(0) ∀ s≥ 0, 1≤ j ≤ j0,

so that (12) holds for 1≤ j ≤ j0. Arguing by induction we assume (12) holds for
every i≤ j and prove that it holds for i= j+1. Then

γi(s) = ωi(s)s
σi
2 , ωi bounded ,1≤ i≤ j,

and

γ ′i+1 = ai+1(γ1, . . .,γi)

= ai+1(ω1s
σ1
2 , . . .,ωis

σi
2 )

= (since ai+1 is dλ -homogeneous of degree σi+1−2)

= s
(σ j+1−2)

2 ai+1(ω1, . . .,ωi)

= ω∗i+1(s)s
(σ j+1−2)

2 , ω∗i+1 bounded.

This completes the proof. ��
Remark 1 We would explicitly remark that there are L -parabolic trajectory that
are not integral curve of Y . It is enough to observe that

γ(s) = (0, . . .,0,T − s), s≥ 0, T ∈ R,
is aL -parabolic trajectory. Obviously this γ will be a Y integral curve if and only
if Y(0) = −∂t . This condition is not satisfied, in general, by the operator in our
class, as the following example shows.

Example 2 Let

L = ∂ 2
x1
+(x1∂x2−∂x3)

2+∂x2−∂t .

This operator satisfies our hypoteses with respect to the homogeneous Lie group

L= (R4,◦,δλ)

with composition law and dilations given by

(x1,x2,x3, t)◦ (y1,y2,y3,τ) = (x1+ y1,x2+ y2+ y3x1,x3+ y3, t+ τ),

δλ (x1,x2,x3, t) = (λx1,λ 2x2,λx3,λ 2t).

We explicitly remark that Y = ∂x2 −∂t , hence

Y(0) �=−∂t .
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To prove thatL satisfies hypotheses (H1) and (H2) we let

X1 = ∂x1 and X2 = x1∂x2 −∂x3

and we remark that

L = X2
1 +X2

2 +[X1,X2]−∂t .

The operator

K = X2
1 +X2

is the Kolmogorov-type operator in R2×R related to the matrices

A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
,

(see [7], Example 9.3). Then, X1 and X2 are left translation invariant with respect
to the composition law

(x1,x2,x3)◦ (y1,y2,y3) = (x1+ y1,x2+ y2+ y3x1,x3+ y3).

It follows that ∂x2 = [X1,X2] is invariant too with respect the same law. Therefore
the operator L is left translation invariant on L. A direct computation shows that
δλ is an automorphism of (R4,◦). Then L satisfies (H1).
Let us now show thatL also satisfies (H2). Suppose we are given (x, t), (y,τ)∈R4

with x = (x1,x2,x3),y = (y1,y2,y3) ∈ R3 and τ < t. Since rank Lie{X1,X2} = 3
at any point, by Caratheodory-Chows Theorem there exists a L -admissible path
connecting (x, t) and (y1,y2− τ+ t,y3, t) =: (y, t). At this point, we can connect
(y, t) with (y,τ) with a positively oriented integral curve of Y . This complete the
proof thatL satisfies (H1) and (H2).

Proof (of Theorem 1) We may suppose infu= 0. Let ε > 0 be fixed and choose a
point zε ∈ S such that

u(zε )< ε .

By the Harnack inequality of Theorem 2.1, there exists C =C(M) > 0, indepen-
dent of zε , such that

sup
zε ◦P(M)

u≤Cu(zε ).

Since γ is a parabolic trajectory, we have

γ(s) ∈ zε ◦P(M) ∀s> T

where T = T (zε ,M). Then

u(γ(s)) ≤Cε ∀s> T.

This proves the assertion because C is independent of ε . ��
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Proof (of Theorem 2) Let v be the function of Theorem 5 extending u to all RN+1

. Then

v≥ 0, L v = 0 in RN+1, v(0, t) =O(t
n
2 ) as t −→∞.

By Corollary 8.3 in [7], v ≡ 0 in RN+1. Hence u≡ 0 in its domain. ��
Proof (of Corollary 2) If we let U(x, t) = u(x), then U is a nonnegative solution
to LU = 0 in RN+1. For every fixed x ∈ RN, let us put

γx(s) = (x,−s), s≥ 0.

Obviously, γx is a L -parabolic trajectory. Then

inf
RN

u = inf
RN+1

U

= (by Theorem 1) lim
s→∞

U(γx(s))

= lim
s→∞

U(x,−s) = u(x)

for every x ∈ RN, so that u is constant. ��
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