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A LIOUVILLE-TYPE THEOREM ON HALF-SPACES

FOR SUB-LAPLACIANS
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(Communicated by Jeremy Tyson)

Abstract. Let L be a sub-Laplacian on LN and let G = (LN , ◦, δλ) be its
related homogeneous Lie group. Let E be a Euclidean subgroup of LN such
that the orthonormal projection π : G −→ E is a homomorphism of homoge-
neous groups, and let 〈 , 〉 be an inner product in E. Given α ∈ E, α �= 0,
define Ω(α) := {x ∈ G : 〈α, π(x)〉 > 0}. We prove the following Liouville-type
theorem.

If u is a nonnegative L-superharmonic function in Ω(α) such that u ∈
L1(Ω(α)), then u ≡ 0 in Ω(α).

1. Introduction

In [14] F. Uguzzoni proved the following Liouville-type theorem.

Theorem A. Let ΔHn
be a sub-Laplacian on the Heisenberg group Hn and let Ω

be a half-space of Hn whose boundary is parallel to the center of Hn. If u is a
nonnegative ΔHn

-superharmonic function such that u ∈ L1(Ω), then u ≡ 0.

The aim of this note is to show that an analogous result holds in the general
setting of the sub-Laplacians on RN .

Let L be a sub-Laplacian in RN whose related homogeneous Lie group is (G, ◦, δλ).
Let E be an Euclidean subgroup of RN such that the orthonormal projection

π : G −→ E

is a homomorphism of homogeneous Lie groups, i.e.,

π(x ◦ y−1) = π(x)− π(y), π(δλ(x)) = λπ(x),

for every x, y ∈ G and every λ > 0.
Let 〈 , 〉 be an inner product in E and, for every α ∈ E, α �= 0, define

Ω(α) := {x ∈ G : 〈α, π(x)〉 > 0}.
The main result of this paper is the following Liouville-type theorem.

Theorem 1.1. Let u : Ω(α) −→]−∞,∞] be a L-superharmonic function in Ω(α).
If u ≥ 0 and u ∈ L1(Ω(α)), then

u ≡ 0 in Ω(α).
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Liouville-type theorems in half-spaces for sub-Laplacian play a crucial role in
looking for solutions to semilinear boundary value problems; see, e.g., [2], [1], [3],
[7]. Liouville-type theorems in the whole space in a sub-Riemannian setting have
received increasing attention in recent years; see, e.g., [4] (Section 5.8), [10], [11],
[12], [13], the references therein, and the recent deep papers by D’Ambrosio and
Mitidieri both for Riemannian and sub-Riemannian results ([8], [9]).

We would like to stress that to prove Theorem 1.1 we exploit a technique which
is different with respect to the one used in the previous quoted papers. We follow
the approach of Uguzzoni in [14] based on suitable mean value operators on the
level set of the fundamental solution of L and, moreover, a kind of invariance of
Ω(α) with respect to suitable left translations of G. For this last reason our method
cannot work for half-spaces without this invariance property.

We would also like to stress that our result, in the case of the Heisenberg group
Hn, gives back the result of Uguzzoni. As already noticed in [14], the assumption
u ∈ L1(Ω(α)) cannot be improved in the following sense.

Proposition 1.2. Let p ∈]1,+∞[ be fixed, and let G be a Lie group whose homo-
geneous dimension Q satisfies

Q

2
>

p

p− 1
.

Then for every α ∈ E there exists a strictly positive ΔG-harmonic function u in
Ω(α) such that ∫

Ω(α)

up dx < +∞.

In particular this statement holds for the classical Laplacian Δ in RN if N
2 > p

p−1 .

In Remark 3.1 we will recognize also that the assumption u ≥ 0 cannot be
removed from Theorem 1.1.

We close this introduction by showing some explicit examples of applications of
our Theorem 1.1.

Example 1.3. In RN = Rm×Rn, whose point is denoted by (x, t), x ∈ Rm, t ∈ Rn,
consider the linear second order partial differential operator (PDO)

L = Δx +
1

4
|x|2Δt +

n∑
k=1

〈B(k)x,∇x〉∂tk ,(1.1)

where Δx =
∑m

j=1 ∂
2
xj

and Δt =
∑n

j=1 ∂
2
tj are the usual Laplace operator in Rm and

in Rn, respectively. ∇x = (∂x1
, . . . , ∂xm

) and B(1), . . . , B(m) are m × m matrices
having the following properties:

(i) B(k) is skew-symmetric and orthogonal, k = 1, . . . ,m;
(ii) B(i)B(j) = −B(j)B(i) for every i, j ∈ {j = 1, . . . ,m}, i �= j.

Then L in (3.1) is a sub-Laplacian on a group of Heisenberg type H, and the map
π : H −→ Rm, π(x, t) = x is a homomorphism of homogeneous groups (see [6,
Section 3.6]).

For every fixed α ∈ R
m, α �= 0,

Ω(α) := {x ∈ G : 〈α, π(x)〉 > 0},
is a half-space to which our Liouville-type Theorem 1.1 applies.
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Example 1.4. In RN = Rn×Rn×R, whose point is denoted by (x, y, t), x,y ∈ Rn,
t ∈ R, consider the linear second order PDO

L = Δx + (x · ∇y − ∂t)
2.(1.2)

This operator is a sub-Laplacian on a group K named in [6] of Kolmogorov-type.
Taking into account the composition law and the dilations on K defined in [6, Sec-
tion 4.3.4], one immediately recognizes that the half-spaces to which our Liouville-
type Theorem 1.1 applies are of the kind

{(x, y, t) ∈ R
N : 〈α, x〉+ βt > 0},

where |α|2 + β2 > 0.

Our paper is organized as follows.
The next section is devoted to the notation, definitions, and results needed in

the note.
In section 3 we will prove Theorem 1.1, Proposition 1.2, and Remark 3.1.

2. Sub-Laplacians and related sub-harmonic functions

We call a sub-Laplacian on RN any linear second order partial differential oper-
ator L of the kind

L =

m∑
j=1

X2
j

where the Xj ’s are smooth vector fields (i.e. linear partial differential operator of
order one and smooth coefficients) satisfying the following conditions:

(H1) the Lie algebra

a := Lie{X1, . . . , Xm}

is a vector space of dimension N ; moreover,

rank a(x) = N at any point x ∈ R
N ;

(H2) there exists a group of dilations (δλ)λ>0 in RN such that every Xj is δλ-
homogeneous of degree one.

A group of dilations in RN is a family of diagonal linear functions (δλ)λ>0 of the
kind

δλ(x1, . . . , xN ) = (λσ1x1, . . . , λ
σNxN ), x = (x1, . . . , xN ) ∈ R

N

where σ1 = 1 ≤ σ2 ≤ · · · ≤ σN , σj ∈ N.
Condition (H1) implies the hypoellipticity of L: in particular, the L-harmonic

functions, i.e., the solution to Lu = 0, are smooth. Moreover, conditions (H1) and
(H2) imply the existence of a group law ◦ in RN such that G = (RN , ◦, δλ) is a
homogeneous Lie group on which the vector fields X ′

js are left translation invariant
and δλ-homogeneous of degree one (see [4]). The natural number

Q = σ1 + . . .+ σN

is called the homogeneous dimension of G. Throughout the paper we always as-
sume Q ≥ 3 (if Q = 2, then G is the Euclidean group). Then there exists a
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continuous function d : G −→ R, smooth and strictly positive outside the origin,
δλ-homogeneous of degree one and such that

γ(x) :=

(
1

d(x)

)Q−2

is L-harmonic in RN\{0} (see [6, Section 5.4]). This function d is called an L-gauge
and for L plays a role analogous to the one played by the Euclidean norm with
respect to the classical Laplacian. In particular, the d-balls

Bd(x, r) := {y ∈ G : d(x−1 ◦ y) < r}
support averaging operators characterizing the L-harmonicity. To be precise, define

ψ := |∇Ld|2, ∇L = (X1, . . . , Xm),

Mru(x) :=
1

cdrQ

∫
Bd(x,r)

ψ(x−1 ◦ y)u(y) dy

and

Nr(Lu)(x) =
1

(Q− 2)cdrQ

∫ r

0

ρQ−1

(∫
Bd(x,ρ)

Lu(y)
(
d(x−1 ◦ y)2−Q − ρ2−Q

)
dy

)
dρ

where cd =
∫
Bd(0,1)

ψ dy.

Then, if Ω is an open subset of G, u ∈ C2(Ω) and Bd(x, r) ⊆ Ω,

u(x) = Mru(x)−Nr(Lu)(x)(2.1)

(see [6, Theorem 5.6.1]).
We stress that ψ is smooth outside the origin, δλ-homogeneous of degree zero, and

nonconstant unless G is the Euclidean group (see [5]; see also [6, Proposition 9.8.9]).
In some particular important cases, such as, e.g., the group of Heisenberg type,
explicit expressions of ψ are known (see [6, Example 5.5.3]). In any case it is
known that ψ > 0 in a dense open subset of RN (see [6, page 262]).

With these mean value operators, one can prove a version of the Gauss-Koebe
Theorem in our setting (see [6, Section 5.6]):

Theorem 2.1 (Gauss-Koebe-type Theorem). If Ω ⊆ R
N is open and u : Ω −→ R

is L-harmonic, then

u(x) = Mru(x)(2.2)

for every x ∈ Ω and r > 0 such that Bd(x, r) ⊆ Ω.
Vice versa, if u is merely continuous in Ω and satisfies ( 2.2), then u is C∞ and

L-harmonic in Ω.

The average operator Mr can also be used to fix the notion of L-superharmonic
function.

A lower semicontinuous function u : Ω −→] −∞,∞] is called L-superharmonic
if u is finite in a dense subset of Ω and

u(x) ≥ Mru(x)

for every x ∈ Ω and r > 0 such that Bd(x, r) ⊆ Ω.
A quite exhaustive theory of L-subharmonic functions is presented in the mono-

graph [6, Chapter 8]. In particular, there it is proved that every L-subharmonic
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function is L1
loc and that if u is of class C2, then u is L-subharmonic if and only if

Lu ≥ 0.

3. Proof of Theorem 1.1, Proposition 1.2 and Remark 3.1

The most important part of this section is the

Proof of Theorem 1.1. Let α ∈ E, α �= 0, be fixed and let

Ω(α) := {x ∈ G : 〈α, π(x)〉 > 0}.
For every x ∈ Ω(α) we define

r(x) := ε〈α, π(x)〉,
where ε > 0 is fixed in such a way that

B(x, r(x)) ⊆ Ω(α) ∀x ∈ Ω(α).(3.1)

We will show in a moment the existence of a suitable ε > 0 satisfying (3.1).
For a function u ∈ L1

loc(Ω(α)) we let

T (u) : Ω(α) −→ R, T (u)(x) := Mr(x)(u)(x).

Hence,

T (u)(x) =

∫
Ω(α)

K(x, y)u(y) dy, x ∈ Ω(α),

where

K(x, y) =
1

cd(r(x))Q
ψ(x−1 ◦ y)XBx

(y).(3.2)

In what follows we also use the following notation:

Ax := {y ∈ Ω(α) | d(y−1 ◦ x) < r(y)}.
With this notation, we have

XBx
(y) = XAy

(x).

Indeed

y ∈ Bx ⇐⇒ d(x−1 ◦ y) < r(x) ⇐⇒ x ∈ Ay.

Let us now show (3.1). We first remark that E � e �−→ d(e) ∈ R is homogeneous of
degree one with respect to the Euclidean dilation e �−→ λe. As a consequence, by
a suitable constant c > 0, we have

d(e) ≥ c|e| ∀e ∈ E, | · | = Euclidean norm.

Moreover, we can also assume that

d(x) ≥ c|π(x)| ∀x ∈ G.

Then, if x ∈ Ω(α), for every z ∈ Bd(x, r(x)), we have r(x) > d(z, x) ≥ c|π(z)−π(x)|.
Hence

〈α, π(z)〉 = 〈α, π(x)〉+ 〈α, π(z)− π(x)〉 ≥ 〈α, π(x)〉 − |α||π(z)− π(x)|

≥ 〈α, π(x)〉 − |α|
c
r(x) = 〈α, π(x)〉

(
1− |α|

c
ε

)
.

Thus, if 0 < ε < c
|α| , we get 〈α, π(z)〉 > 0; i.e., z ∈ Ω(α) and (3.1) is proved.

The proof of Theorem 1.1 will immediately follow from the next lemma.
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Main Lemma.

(i) K(x, y) ≥ 0 for every x, y ∈ Ω(α);
(ii)

∫
Ω(α)

K(x, y) dy = 1 for every x ∈ Ω(α);

(iii)
∫
Ω(α)

K(x, y) dx =
∫
Ω(α)

K(x, α) dx for every y ∈ Ω(α);

(iv) c∗ :=
∫
Ω(α)

K(x, α) dx > 1.

Proof of the Main Lemma.

(i) It straightforwardly follows from (3.2).
(ii) By the Gauss-Koebe-type Theorem 2.1 for L-harmonic functions, if u is

L-harmonic in Ω(α), then T (u) = u. In particular T (1) = 1, that is,

1 =

∫
Ω(α)

K(x, y) dy for every x ∈ Ω(α).

(iii) This is the crucial part of the Main Lemma. We start by proving the
following property of Ω(α): ∀y ∈ Ω(α) there exists λ = λ(y) > 0 such that

δλ(α) ◦ y−1 ◦ x ∈ Ω(α) and r(δλ(α) ◦ y−1 ◦ x) = r(x)

for every x ∈ Ω(α).
Indeed, let y, x ∈ Ω(α) and consider

〈α, π(δλ(α) ◦ y−1 ◦ x)〉 = 〈α, π(δλ(α))〉+ 〈α, π(y−1)〉+ 〈α, π(x)〉
= 〈α, π(x)〉+ λ〈α, α〉 − 〈α, π(y)〉.

Then, if we choose λ = 〈α,π(y)〉
|α|2 we have λ > 0 and

〈α, π(δλ(α)) ◦ y−1 ◦ x〉 > 0, r((δλ(α) ◦ y−1 ◦ x)) = r(x).

This completes the proof of the stated property of Ω(α).
In what follows we also use a homogeneity property of x �−→ r(x), pre-

cisely

r(δλ(x)) = λr(x) for every x ∈ Ω(α) and λ > 0.

Indeed

r(δλ(x)) = ε〈α, π(δλ(x))〉 = ε〈α, λπ(x)〉 = λr(x).
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Let us now fix y ∈ Ω(α) and compute∫
Ω(α)

K(x, α) dx =
1

cd

∫
Ω(α)

(
1

r(x)

)Q

ψ
(
x−1 ◦ α

)
XBx

(α) dx

(letting ψ̂(z) = ψ(z−1))

=
1

cd

∫
Aα

(
1

r(x)

)Q

ψ̂(α−1 ◦ x)XAα
(x) dx

(using the change of variables x = δ 1
λ
(ξ) and noticing

that r
(
δ 1

λ
(ξ)

)
=

1

λ
r(ξ) and that dx = λ−Qdξ)

=
1

cd

∫
δλ(Aα)

(
1

r(ξ)

)−Q

ψ̂
(
α−1 ◦ δ 1

λ
(ξ)

)
dξ

(keeping in mind that ψ̂ is δλ-homogeneous of degree zero)

=
1

cd

∫
δλ(Aα)

(
1

r(ξ)

)Q

ψ−1
(
δλ(α

−1) ◦ ξ
)
dξ.

We now choose λ = λ(y) > 0 such that r(δλ(α) ◦ y−1 ◦ x) = r(x) for every
x ∈ Ω(α) and use the change of variable

ξ = δλ(α) ◦ y−1 ◦ x.
We obtain∫
Ω(α)

K(x, α) dx =
1

cd

∫
y◦δλ(α−1)◦δλ(Aα)

(
1

r(x)

)Q

ψ̂−1(y−1 ◦ x) dx.

On the other hand, as we will recognize in a moment,

y ◦ δλ(α−1) ◦ δλ(Aα) = Ay.(3.3)

Then∫
Ω(α)

K(x, α) dx =
1

cd

∫
Ay

(
1

r(x)

)Q

ψ̂(y−1 ◦ x) dx =

∫
Ω(α)

K(x, y) dx,

and (iii) is proved.
We are left to prove (3.3). One has

x ∈ y ◦ δλ(α−1) ◦ δλ(Aα) ⇐⇒ z := α ◦ δ 1
λ
(y−1 ◦ x) ∈ Aα

⇐⇒ d(z, α) < r(z).

We know that r(z) = 1
λr(δλ(α) ◦ y−1 ◦ x) = 1

λr(x), while

d(z, α) = d(α−1 ◦ z) = d(δ 1
λ
(y−1 ◦ x)) = 1

λ
d(y−1, x).

We have thus proved that

x ∈ y ◦ δλ(α−1) ◦ δλ(Aα) ⇐⇒ d(y−1 ◦ x) < r(x) ⇐⇒ x ∈ Ay.

This completes the proof of (iii).

(iv) Let x0 ∈ G\Ω(α) and consider the function

v : Ω(α) −→ R, v(x) = (d(x−1
0 ◦ x))−1−Q.
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246 A. E. KOGOJ

Obviously the function v is smooth in Ω(α). Moreover, v > 0 and v ∈
L1(Ω(α)). By using the left invariance of L on G and the form of L for
radial functions1 we also have

(Lv)(x) = (Ld−Q−1)(x−1
0 ◦ x)

= ψ(x−1
0 ◦ x)((Q+ 1)(Q+ 2)− (Q+ 1)(Q− 1))d−Q−3(x−1

0 ◦ x)
= 3(Q+ 1)(ψd−Q−3)(x−1

0 ◦ x).
Then Lv > 0 in a dense open set of Ω(α). As a consequence, using the
representation formula (2.1), we get

T (v)(x)− v(x) > 0 ∀x ∈ Ω(α),

that is, T (v) > v in Ω(α). It follows that∫
Ω(α)

v dx <

∫
Ω(α)

T (v) dx =

∫
Ω(α)

(∫
Ω(α)

K(x, y)v(y) dy

)
dx

=

∫
Ω(α)

v(y)

(∫
Ω(α)

K(x, y) dx

)
dy = c∗

∫
Ω(α)

v(y) dy.

Then ∫
Ω(α)

v dx < c∗
∫
Ω(α)

v dy,

which implies c∗ > 1, since
∫
Ω(α)

v dx > 0. This completes the proof of the

Main Lemma. �

We can now conclude the proof of Theorem 1.1. Since u is L-superharmonic, we
have T (u) ≤ u in Ω(α). Therefore,∫

Ω(α)

u dx ≥
∫
Ω(α)

T (u) dx

(as in the proof of the Main Lemma (iv))

= c∗
∫
Ω(α)

u dx.

Then, since c∗ > 1, ∫
Ω(α)

u dx ≤ 0,

which implies u ≡ 0 since u ≥ 0 and lower semicontinuous. �

Proof of Proposition 1.2. Let d be a gauge function for L and define

u(x) = (d(x0
−1 ◦ x))−Q+2, x ∈ Ω(α),

where, as before, x0 /∈ Ω(α). The function u is smooth in Ω(α) and

L(u)(x) = (Ld2−Q)(x0
−1 ◦ x) = 0, x ∈ Ω(α).

Moreover, u > 0 and u ∈ Lp(Ω(α)) since, from the assumption Q
2 > p

p−1 , it follows

that

p(Q− 2) > Q. �

1If w = f(d), then L(w) = ψ(f
′′
(d) + Q−1

d
f
′
(d)) (see [6, Proposition 5.4.3]).
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Remark 3.1. The assumption u ≥ 0 in Theorem 1.1 cannot be removed.
Indeed, if x0 /∈ Ω(α), the function

uk(x) := ∂k
xN

(d(x−1
0 ◦ x))2−Q

is L-harmonic in Ω(α) for every k ∈ N, and δλ-homogeneous of degree 2−Q− kσN .
Then, if k > 2

σN
, uk ∈ L1(Ω(α)). Thus, with this choice of k, uk is a summable

L-harmonic function in Ω(α) and uk �≡ 0.

We would like to stress that in the previous argument we used the following
properties:

(i) the differential operator ∂xN
is δλ-homogeneous of degree σN and commutes

with L;
(ii) L is left translation invariant with respect to the composition law ◦;
(iii) d2−Q is L-harmonic out of the origin.
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