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a b s t r a c t

We prove a Liouville-type theorem for a class of degenerate elliptic operators of the form

Lu :=
N∑
i,j=1

∂xi (aij∂xju)+
N∑
i=1

bi∂xiu.

L is supposed to be X-elliptic, with respect to a family X = (X1, . . . , Xm) of locally Lipschitz
continuous vector fields, in the sense introduced in [E. Lanconelli, A.E. Kogoj, X-elliptic
operators and X-control distances, Contributions in Honor of the Memory of Ennio De
Giorgi, Ricerche di Matematica 49 (Suppl.) (2000) 223–243].
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1. Introduction

In this paper, we prove a Liouville Theorem for a class of linear second order partial differential operators in RN of the
form

Lu :=
N∑
i,j=1

∂xi(aij∂xju)+
N∑
i=1

bi∂xiu, (1)

where aij = aji and bi are measurable functions in RN . We set A = (aij)i,j=1,...,N and b = (b1, . . . , bN).
Our general assumption is that L is uniformly X-elliptic, in the following sense. Let X := {X1, . . . , Xm} be a family of

vector fields in RN , Xj = (cj1, . . . , cjN), j = 1, . . . ,m, where the cjk’ s are locally Lipschitz continuous functions in RN . As
usual, we identify the vector valued function Xj with the linear first order partial differential operator

Xj =
N∑
k=1

cjk∂xk .

Then, we say that the operatorL in (1) is uniformly X-elliptic in RN if
(E1) there exists a constant λ > 0 such that

1
λ

m∑
j=1

〈Xj(x), ξ〉2 ≤ qL(x, ξ) ≤ λ
m∑
j=1

〈Xj(x), ξ〉2 ∀x, ξ ∈ RN , (2)

where qL(x, ξ) is the characteristic form ofL given by

qL(x, ξ) := 〈A(x)ξ , ξ〉 =
N∑
i,j=1

aij(x)ξiξj;
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(E2) there exists a function b ≥ 0 such that

〈b(x), ξ〉2 ≤ b2(x)
N∑
j=1

〈Xj(x), ξ〉2 ∀x, ξ ∈ RN . (3)

In (E1) and (E2) 〈, 〉 denotes the usual inner product in RN .
The notion of X-elliptic operatorwas explicitly introduced in 2000 in the paper [1]. However several families of operators

falling into the X-elliptic class were already present in literature, see e.g. [2–6]. More recently, X-elliptic operator have been
widely studied in [7], where a Maximum Principle, a non homogeneous Harnack inequality and a Liouville Theorem are
proved.

1.1. Basic assumptions

To introduce our basic assumptions on the geometric structure underlying the operatorLweneed to recall the definition
of Carnot-Carathéodory distance (or control distance) d = dX related to the family X . A piecewise regular path γ : [0, 1] −→
RN is an X-trajectory if

γ̇ (t) =
m∑
j=1

aj(t)Xj(γ (t)) a.e. in [0, 1].

We set

|γ | = sup
t∈[0,1]

(
m∑
j=1

a2j (t)

) 1
2

and denote by Γ (x, y) the set of the X-trajectories connecting the points x, y ∈ RN . One defines

d(x, y) = dX (x, y) := inf{|γ | : γ ∈ Γ (x, y)}.

If Γ (x, y) 6= ∅ for every x, y ∈ RN , then d is a metric called the control distance related to X .
Then, we assume the following hypotheses are satisfied:
(H1) The control distance d = dX is well defined, the metric space (RN , d) is complete and the d-topology is the Euclidean

one. Moreover there exists A > 1 such that the following doubling condition holds

0 < |B2r | ≤ A|Br |, (4)

for every d-ball Br of radius r , 0 < r <∞, hereafter |E|will denote the Lebsgue measure of the set E ⊆ RN .
(H2) There exist positive constants C, ν such that the following Poincaré inequality holds

−

∫
Br
|u− ur |dx ≤ C r−

∫
Bνr
|Xu|dx, ∀u ∈ C1(Bνr) (5)

for any d-ball Br , with ur = −
∫
Br
udx :=

1
|Br |

∫
Br
udx.

Xu denote the X-gradient of u, i.e.

Xu = (X1u, . . . , Xmu).

Finally, about the lower order terms ofLwe shall assume the following condition
(LT)

b(x) ≤
C

1+ d(x)
for every x ∈ RN , (6)

where C is a suitable positive constant, b is the function in Eq. (3) and d(x) = d(x, 0).
Then, our main result reads as follows. For the notion of weak solutionwe directly refer to the next subsection.

Theorem 1 (Main Theorem). Let L be an X-elliptic operator and let u a be a nonnegative weak solution to the equation

Lu = 0 in RN .

Assume, together with (H1) and (H2) , one of the following hypotheses is satisfied.
(1.1) The lower order terms bj’s are identically zero.
(1.2) Condition (LT) is verified and there exists a sequence rj ↗∞ such that ∂Brj(0) is connected.

Then, u is constant in RN .
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Remark 2. In (1.2) the assumption on the connectedness of ∂Br(0) cannot be removed, as the following example shows
(see [7], Remark 5.5).
The equation

u′′ +
2x
1+ x2

u′ = 0

has a nonnegative bounded solution which is non constant: u(x) = π/2 + arctan x. Condition (LT) is satisfied but
∂Br(0) = ∂] − r, r[= {−r, r} is not connected.

1.2. Weak solutions toLu = 0

To give the definition of weak solution it is convenient to first show some consequences of hypotheses (H1) and (H2).

Remark 3. The doubling condition (4) implies that (RN , d) is a homogeneous space, in the following sense: for every d-ball
of radius r one can find at most M disjoint balls of radius r/2, with M only depending on the doubling constant A (see [8],
page 67). It follows that every d-bounded set F ⊆ RN is d-totally bounded so that, since (RN , d) is complete, F

d
is d-compact,

hence Euclidean compact, hence Euclidean bounded. Vice-versa, if F ⊆ RN is Euclidean bounded, then its Euclidean closure
F is Euclidean compact, hence d-compact, hence d-bounded.

Remark 4. (RN , d) is a lenght space, i.e. the distance between any pair of points equals the infimum of the length of
rectifiable paths joining them. This easily follows from the fact that if γ : [0, T ] −→ RN is a X-subunit curve, i.e. |γ | ≤ 1,
and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tp = T , then d(γ (tk−1), γ (tk)) ≤ tk − tk−1 for k = 1. . . . , p and hence T ≥metric length of γ .

It is well known that conditions (4) and (5) and the topological properties of d imply the following

Remark 5. For every x, y ∈ RN there exists a d-segment connecting x and y, i.e. there exists a continuous curve γ : [0, 1] −→
RN such that γ (0) = x, γ (1) = y and

d(x, y) = d(x, γ (t))+ d(γ (t), y) ∀t ∈ [0, 1]

(see [9], Lemma 3; see also [2,10]).

Remark 6. For every ball B(x, r) and every λ ∈]0, 1[ the ring

B(x, r) \ B(x, λr)

is non empty. Indeed since RN is Euclidean unbounded, hence d-unbounded, there exists y ∈ RN such that d(x, y) > r . Let
γ : [0, 1] −→ RN be a d-segment connecting x and y. Then

g : [0, 1] −→ RN , g(t) = d(x, γ (t))

is a continuous function such that g(0) = 0 and g(1) = d(x, y) > r . Then there exists t ∈]0, 1[ such that g(t) ∈]λr, r[. Thus

λr < d(x, γ (t)) < r, i.e. γ (t) ∈ B(x, r) \ B(x, λr).

Remark 7 (Reverse Doubling). There exists θ ∈]0, 1[, only depending on the doubling constant A such that

|B(x0, r)| ≤ θ |B(x, 2r)| ∀x ∈ R,∀r > 0.

This follows from the previous remark, just proceeding exactly as in [10], Section 2.4.

Remark 8 (Poincaré-Sobolev Inequality). Let Q = log2 A, where A is the constant in the doubling condition (4), 1 < q < Q
and p = qQ/(Q − q). Then(

−

∫
Br
|u− ur |pdx

) 1
p

≤ S
(
r−
∫
Bθr
|Xu|qdx

) 1
q

, (7)

for any d-ball Br , for any u ∈ C1(Bθr).
The constant S and θ only depend on p, the doubling constant A and the constant C and ν in the Poincaré inequality (5).
(See [11], Theorem 5.1; see also [9,12].) Since it is not restrictive to assume the doubling constant A > 4, from now on we
suppose Q > 2.

Remark 9 (Sobolev Inequality). For every bounded open setΩ there exists a positive constant C such that

‖u‖Lp(Ω) ≤ C‖Xu‖L2(Ω) ∀u ∈ C
1
0 (Ω), p =

2Q
Q − 2

. (8)
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Obviously, it is enough to prove this statement whenΩ is a d-ball Br = B(x, r). Let u ∈ C10 (Br). Then

‖u‖Lp(Br ) = ‖u‖Lp(B2r ) ≤ ‖u− uB2r ‖Lp(B2r ) + |uB2r | |B2r |
1
p .

On the other hand

|uB2r | ≤
1
|B2r |

∫
Br
|u|dy ≤

|Br |
1− 1p

|B2r |
‖u‖Lp(Br ).

By using this inequality in the previous one, we get

‖u‖Lp(Br ) ≤ ‖u− uB2r ‖Lp(B2r ) +
(
|Br |
|B2r |

)1− 1p
‖u‖Lp(Br )

≤ (by the Reverse doubling of Remark 7)‖u− uB2r ‖Lp(B2r ) + θ
1− 1p ‖u‖Lp(Br ).

Hence

‖u‖Lp(Br ) ≤
1

1− θ1−
1
p
‖u− uB2r ‖Lp(B2r )

≤ (by the Poincar’e inequality (5), and keeping in mind that u is supported in Br )
C

1− θ1−
1
p
‖Xu‖L2(Br ).

Now, we are able to give our notion of weak solution toLu = 0.
LetΩ be a bounded open subset of RN . Due to the Sobolev inequality (8) the function u 7→ ‖Xu‖L2(Ω) is a norm in C10 (Ω)

and, as usual, we define the spaceW 10 (Ω, X) as the closure of C
1
0 (Ω)with respect to this norm.

If u ∈ W 10 (Ω, X) then Xju exists in the sense of distributions and Xju ∈ L
2(Ω) for j = 1, . . . ,m. Hence the X-gradient is

well defined for any u ∈ W 10 (Ω, X). We denote byW
1(Ω, X) the space

{u ∈ L2(Ω) : Xu ∈ L2(Ω)}.
We have the following inclusions

W 10 (Ω, X) ⊂ W
1(Ω, X) ⊂ W 1loc(Ω, X),

with an obvious meaning for v ∈ W 1loc(Ω, X).
To define the notion of weak solution to the equationLu = 0 inΩ , we introduce the bilinear form

L(u, v) =
∫
Ω

{〈ADu,Dv〉 + 〈b,Du〉v}dx,

for u ∈ C1(Ω) and v ∈ C10 (Ω). Since A ≥ 0, we have

|L(u, v)| ≤
∫
Ω

{〈ADu,Du〉
1
2 〈ADv,Dv〉

1
2 + |〈b,Du〉||v|}dx.

Therefore, sinceL is X-elliptic,

|L(u, v)| ≤ λ
∫
Ω

|Xu||Xv|dx+
∫
Ω

b|Xu||v|dx. (9)

SinceΩ is bounded (hence d-bounded) and b ∈ L∞(RN) the bilinear form (u, v) 7→ L(u, v) can be extended continuously
toW 1(Ω, X)×W 10 (Ω, X).
A function u ∈ W 1loc(R

N , X) is a weak solution toLu = 0, if

L(u, v) = 0 ∀v ∈ C10 (R
N).

1.3. Comparison with previous results

Liouville-type theorems for several classes of X-elliptic operators or, equivalently, for degenerate elliptic operators with
underlying Carnot-Carathéodory structures, are present in literature. Korany and Stanton proved a Liouville theorem for the
Heisenberg Laplacian in [13]. This theorem was extended by Varopoulos [5] to the Laplacians on general Lie groups with
polynomial growth. Liouville-type Theorems for sub-Laplacians on stratified Lie groups are also contained in [14]. Lancia
and Marchi [6] proved a Liouville Theorem for operators which are X-elliptic with respect to the vector fields generating
the Lie algebra of the Heisenberg group in R2n+1. General X-elliptic operators satisfying our Assumption (E1) and (E2), (H1)
and (H2) have been studied in [7]. In that paper, a Liouville Theorem is proved, assuming a weaker form of (6) and the extra
condition that the vector fields of the family X are homogeneous of degree one with respect to a family of dilations in RN .
Here we strongly relax this condition, just assuming the connectedness of ∂Br(0) for a divergent sequence of radius.
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2. Global cut-off function

Our proof of Theorem 1 is based on a result concerning ‘‘global’’cut-off function. Precisely:

Theorem 10. Let Br1 and Br2 be two concentric d-balls with 0 < r1 < r2 <∞. Then there exists η ∈ W
1
0 (Br2) such that η = 1

a.e. in Br1 and

|Xη| ≤
2

r2 − r1
a.e. in Br2 .

To prove this Theorem we need the following Lemma, a consequence of Proposition 2.9 and inequality (2.2) in [15].

Lemma 11. Let x0 ∈ RN be fixed and define

ρ : RN −→ R, ρ(x) = d(x0, x).

Then ρ ∈ W 1loc(R
N) and

|Xρ| ≤ 1 a.e. in RN . (10)

Proof. By Proposition 2.9 in [15] we know that ρ ∈ W 1loc(R
N)with |Xρ| ∈ L∞loc(R

N). We want to show that

|Xjρ| ≤ 1 a.e. in RN , j = 1, . . . ,m.

Obviously, from these inequalities, (10) follows. For every x ∈ RN and t ∈ R sufficiently small, define

exp(tXj)(x) := γ (x, t),

where γ (x, ·) is the solution to the Cauchy problem γ̇ = Xj(γ ), γ (0) = x. We explicitly remark that for every fixed
compact set K there exists T = T (K) > 0 such that exp(tXj)(x) is well defined for every x ∈ K and t ∈]0, T [. Then, for every
ϕ ∈ C∞0 (R

N) the function

φ(t) :=
∫

RN
∆ρ(x, t)ϕ(x)dx, (11)

with

∆ρ(x, t) :=
ρ
(
exp(tXj)(x)

)
− ρ(x)

t
is well defined for 0 < t < T = T (supp ϕ).
From the definition of control distance, and keeping in mind that t 7→ exp(tXj)(x) is a X-sub-unit curve, we get

ρ(exp(tXj)(x))− ρ(x) = d(x0, exp(tXj)(x))− d(x0, x)
≤ d(x0, x)+ d(x, exp(tXj)(x))− d(x0, x) ≤ t.

Then |∆ρ(x, t)| ≤ 1. As a consequence

|φ(t)| ≤
∫

RN
|ϕ(t)|dx.

On the other hand

φ(t) =
1
t

(∫
RN
ρ(exp(tXj)(x))ϕ(x)dx−

∫
RN
ρ(x)ϕ(x)dx

)
= ( by using the change of variable y = exp(tXj)(x) ⇐⇒ x = exp(−tXj)(y))

=
1
t

(∫
RN
ρ(y)ϕ(exp(−tXj)(y))J(y, t)dy−

∫
RN
ρ(x)ϕ(x)dx

)
, where J(y, t) =

∣∣∣∣det( ∂x∂y
)∣∣∣∣ .

Therefore, letting

∆∗ϕ(y, t) :=
ϕ(exp(−tXj)(y))J(y, t)− ϕ(y)

t
,

we have

φ(t) =
∫

RN
ρ(y)∆∗ϕ(y, t)dy.
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Now we claim that

lim
t→0

φ(t) =
∫

RN
Xρ(x)ϕ(x)dx. (12)

Taking this claim for granted, we obtain∣∣∣∣∫
RN
(Xρ)(x)ϕ(x)dx

∣∣∣∣ = ∣∣∣∣limt→0φ(t)
∣∣∣∣

≤ lim sup
t→0

∫
RN
|∆ρ(x, t)||ϕ(x)|dx

≤

∫
RN
|ϕ(x)dx.

Then ∣∣∣∣∫
RN
(Xρ)(x)ϕ(x)dx

∣∣∣∣ ≤ ∫
RN
|ϕ(x)|dx

for every ϕ ∈ C∞0 (R
N). This implies

sup ess |Xρ| ≤ 1.

Weare thus leftwith the proof of the claim.Wemay suppose there exists a compact set K containing the support of∆∗ϕ(·, t)
for every t ∈]0, T [. Choosing a function ψ ∈ C∞0 (R

N) such that ψ = 1 on K , we set ρ0 := ρψ . Then ρ0 ∈ W 10 (Ω, X) being
Ω a bounded open set containing K . Then, there exists a sequence (ρk)k≥1 in C10 (Ω) such that

ρk −→ ρ0 as k −→∞, inW 10 (Ω, X).

Therefore

φ(t)−
∫

RN
(Xρ)ϕdx =

∫
RN
ρ0∆

∗ϕ(·, t)dx−
∫

RN
(Xρ0)ϕdx

=

∫
RN
(ρ0 − ρk)∆

∗ϕ(·, t)dx+
∫

RN
ρk∆

∗ϕ(·, t)dx−
∫

RN
(Xρ0)ϕdx

=

∫
RN
(ρ0 − ρk)∆

∗ϕ(·, t)dx+
∫

RN
∆ρk(·, t)ϕdx−

∫
RN
(Xjρ0)ϕdx

=

∫
RN
(ρ0 − ρk)∆

∗ϕ(·, t)dx+
∫

RN
(∆ρk(·, t)− Xjρk)ϕdx+

∫
RN
(Xjρk − Xjρ0)ϕdx. (13)

From inequality (2.2) in [15] we get

|∆∗ϕ(x, t)| ≤
1
t
|ϕ(exp(tXj))(x)− ϕ(x)| +

1
t
|ϕ(exp(tXj)(x))||J(x, t)− 1|

≤
1
t
|ϕ(exp(tXj))(x)− ϕ(x)| + C1 sup

K
|ϕ|

for a suitable constant C1 > 0. Thus

lim sup
t−→0

|∆∗ϕ(·, t)| ≤ |Xjϕ| + C1 sup |ϕ|

≤ C2 on K .

Using this estimate in (13), we obtain

lim sup
t−→0

∣∣∣∣φ(t)− ∫
RN
(Xρ)ϕdx

∣∣∣∣ ≤ C2|Ω| 12 ‖ρ0 − ρk‖L2(Ω)
+ lim sup

t−→0

∫
RN
|∆ρk(·, t)− Xjρk||ϕ|dx+ ‖Xjρk − Xjρ0‖L2(Ω)‖ϕ‖L2(Ω).

On the other hand, since ρk is C1, ∆ρk(x, t) −→ Xjρk(x) as t −→ 0, for every x ∈ Ω . Moreover, the mean value theorem
gives∆ρk(x, t) = Xjϕ(exp(τXj)(u)) for a suitable τ ∈]0, t[. Therefore

sup
K
|∆ρk(·, t)− Xjρk| ≤ 2 sup

K
|Xjϕ|
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and the Lebesgue Dominated Convergence Theorem implies

lim
t−→0

∫
RN
|∆ρk(·, t)− Xjρk| |ϕ|dx = 0.

Hence

lim sup
t−→0

∣∣∣∣φ(t)− ∫
RN
(Xjρ)ϕdx

∣∣∣∣ ≤ C2|Ω| 12 ‖ρk − ρ‖L2(Ω) + ‖Xjρk − Xjρ0‖L2(Ω)‖ϕ‖L2(Ω) for every k ∈ N.

Letting k go to infinity at the right hand side we get

lim sup
t−→0

∣∣∣∣φ(t)− ∫
RN
(Xjρ)ϕdx

∣∣∣∣ ≤ 0.
This completes the proof. �

Proof of Theorem 10. Let f be a real smooth function defined on R such that

f = 1 on [−r1, r1], f = 0 on R \ [−r, r] for a suitable r ∈]r1, r2[, |f ′| ≤
2

r2 − r1
.

Define

η : R −→ R, η(x) = f (d(x0, x)).

Then

η ∈ W 10 B(x0, r2), η = 1 on B(x0, r1)

and, by the previous lemma

|Xη| = |η′(d(x0, ·))Xd(x0, 0)| ≤
2

r2 − r1
a.e.

In the first identity we have used the Leibnitz-type rule for the X-derivative of the composite functions (see e.g. Proposition
2.1 in [7]). The proof is complete. �

3. Proof of the main theorem

The proof of our main result requires some preliminary lemma.

Lemma 12 (Main Lemma). Let u ∈ W 1loc(R
N , X) be a nonnegative solution to

Lu = 0 in RN .

Then, for every d-ball Br(x0), x0 ∈ RN , r > 0, we have

sup
Br (x0)

u ≤ C inf
Br (x0)

u

where C depends on the constants λ, A, CP , ν and on

b∗r (x0) := sup
Bρ (z)⊆B4r (x0)

ρ

(
−

∫
Bρ (z)

b2p
) 1
2p

.

Proof. Let u be a nonnegative weak solution to the equationLu = 0. Then

L(u, v) = 0 (14)

for every compactly supported v ∈ W 1(RN). By replacing u with u+ ε, if necessary, we can assume u bounded away from
zero.
Let B4r be a d-ball of radius 4r centered at a point x0 ∈ RN . By plugging into (14) test functions v of the kind v = η2uβ

with β 6= −1 and η ∈ W 1(RN), supp η ⊂ B4r , we get (see [7], pagg. 1849-50):

‖ηw‖Lq∗(B4r ) ≤ C(1+ |β + 1|)
1+µ

(
‖ηw‖L2∗(B4r )‖wXη‖L2∗(B4r )

)
, (15)

wherew = uβ+1 and µ = Q
2p−Q . Here we use the notation

‖u‖Ls∗(Br ) =
(
−

∫
Br
|u|sdx

) 1
s

.
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The constant C in the previous inequality only depends on λ, the X-ellipticity constant ofL in (2), A in the doubling condition
(4), CP and ν in the Poincaré inequality (5) and b∗r (x0).
In particular we stress that C is independent on u, β and r .
At this point, we choose η as the cut off function in Theorem 10. Precisely, given r1 and r2 such that

1 <
r1
r
<
r2
r
< 2,

we choose η ∈ W 10 (B2r) satisfying

η ≡ 1 in Br1 and |Xη| ≤
2

r2 − r1

(Bri denotes the d-ball of radius ri centered at x0).
Using this η in (15) we obtain

|w|Lq∗(Br1 )
≤ 2C(1+ |β + 1|)1+µ

(
1+

r
r2 − r1

)
‖w‖L2∗(Br2 )

. (16)

By applying these estimates on the sequences (Bk) and (rk) given by

βk + 1 = θ ks with s > 1, θ =
q
2
, rk = r

(
1+

1
2k

)
and letting k tend to infinity, we obtain

sup
Br
u ≤ C

(
−

∫
B2r
usdx

) 1
s

.

(See the Moser-iteration procedure as presented in [16], pag. 197; see also [7], pag. 1850.) The constant C in the previous
inequality only depends on s and the structural constants λ, A, CP , θ ,µ. Analogously, iterating (16), on a sequence of negative
β ’s, we get

inf
Br
u ≥ C

(
−

∫
B3r
u−p0dx

)− 1p0
for every p0 small enough. Here C > 0 only depends on p0 and the structural constants.
On the other hand, inequality (16), with the choice of a suitable β ∈] − 1, 0[, gives(
−

∫
B2r
usdx

) 1
s

≤ C
(
−

∫
B3r
up0dx

) 1
p0
.

Summing up, we have

sup
Br
u ≤ C

(
−

∫
B3r
up0dx

) 1
p0

(17)

inf
Br
u ≥ C

(
−

∫
B3r
u−p0dx

)− 1p0
(18)

for every p0 sufficiently small, and C > 0 only depending on p0 and the structural constants.
We now use a John-Nirenberg-type Lemma to prove that(
−

∫
B3r
up0dx

) 1
p0
≤ C

(
−

∫
B3r
u−p0dx

)− 1p0
(19)

for every d-ball B3r centered at a point x0. This, together with (17) and (18), will complete the proof of the theorem.
Let Bρ be a d-ball centered at a point z ∈ B4r(x0), Bρ(z) ⊆ B4r(x0). Plugging into (14) the test function v = η log u, with

η ∈ W 1(RN , X), supp η ⊆ B2ρ, η ≡ 1 in Bρ , and lettingw = log uwe obtain∫
RN
|ηXw|2dx ≤ C

∫
RN

(
(bη)2 + |Xη|2

)
dx.
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Then, choosing the cut off function η in such a way that |Xη| ≤ 2ρ (see Theorem 10), also using the doubling condition (4),
we get

−

∫
Bρ
|Xw|2dx ≤ C

(
−

∫
B2ρ

b2dx+
1
ρ2

)
≤
C
ρ2

(
ρ2‖b‖2

L2p∗ (B2ρ )
+ 1

)
≤
C
ρ2
(b∗ + 1).

As a consequence, by using the Poincaré inequality (5), we obtain

−

∫
Bρ
|w − wρ |dx ≤ C,

where C is a positive structural constant. Then, the following John-Nirenberg estimate holds∫
B3r
exp(p0|w − w3r |)dx ≤ C

for every ball B3r centered at a point of Ar . Here p0 and C are suitable positive structural constants, see [17], Theorem 0.3
and Theorem 0.4. Finally, this inequality implies

−

∫
B3r
u−p0dx−

∫
B3r
up0dx = −

∫
B3r
exp(−p0w)dx−

∫
B3r
exp(p0w)dx

≤

(
−

∫
B3r
exp(p0|w − w3r |)dx

)2
which obviously implies (19). �

From the proof of the previous lemma we immediately obtain the following lemma

Lemma 13 (Invariant Harnack Inequality). Let u ∈ W 1loc(R
N , X) be a nonnegative weak solution to

Lu = 0 in RN .

Assume the lower order terms bj’s of L are identically zero. Then

sup
Br
u ≤ C inf

Br
u (20)

for every d-ball Br , with C > 0 independent of u and r.

Lemma 14. Let Br(x0) be a d-ball such that

∂Br(x0) is connected.

Let 0 < θ < 1. Then there exists x1, . . . , xp ∈ ∂Br(x0), with p independent of r, such that:
(i)

∂Br(x0) ⊆
p⋃
j=1

Bθr(xj);

(ii) letting Kj := Bθr(xj) ∩ ∂Br(x0),(
m⋃
j=1

Kj

)
∩ Km+1 6= ∅ for m = 1, . . . , p− 1.

Proof. (i) LetB = (B θ
4 r
(xj))j∈J be amaximal family of disjoint balls of radius θ4 r , centered at a point of ∂Br(x0). Since the d-

topology has a countable basis of open sets, the familyB is countable. Due to themaximality ofB, for every x ∈ ∂Br(x0)
there exists j ∈ J such that B θ

4 r
(x)∩B θ

4 r
(xj) 6= ∅. Hence Bθr(xj) ⊇ B θ

4 r
(x) 3 x. This shows that (Bθr(xj))j∈J covers Br(x0).

On the other hand, sinceB is disjoint, for every finite set {1, . . . , p} ⊆ J we have

p∑
j=1

|B θ
4 r
(xj)| =

∣∣∣∣∣ p⋃
j=1

B θ
4 r
(xj)

∣∣∣∣∣ ≤ |BR(x0)|, R =
(
1+

θ

4

)
r. (21)

Moreover, since B2R(xj) ⊇ BR(x0), for every j ∈ {1, . . . , p}we have

|BR(x0)| ≤ |B2R(xj)| ≤ (by the doubling condition)

A
(
2(4+ θ)

θ

)Q ∣∣∣B θ
4 r
(xj)

∣∣∣ = AQ ∣∣∣B θ
4 r
(xj)

∣∣∣ ,
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where AQ = A
(
2(4+θ)
θ

)Q
. Using this estimate in (21), we get

p
AQ
|BR(x0)| ≤ |BR(x0)|,

hence p ≤ AQ .
(ii) By removing from the family (B r

2
(xj))j=1,...,p the balls having empty intersection with ∂Br(x0) we may assume Kj 6= ∅

for every j ∈ {1, . . . , p}. Now, there exists at least one Kj such that Ki ∩ Kj 6= ∅. Indeed, otherwise,

Ω1 := B r2 (x1) and Ω2 :=

p⋃
j=2

B r
2
(xj)

would be open sets satisfying

Ω1 ∩Ω2 ∩ ∂Br(x0) = ∅, Ω1 ∩ ∂Br(x0) 6= ∅ 6= Ω2 ∩ ∂Br(x0) Ω1 ∪Ω2 ⊇ ∂Br(x0),

in contradiction with the connectedness of ∂Br(x0). Thus, we may suppose K1 ∩ K2 6= ∅. The same argument as above
proves that (K1∪K2)∩Kj 6= ∅ for a suitable j > 2. Then, wemay assume (K1∪K2)∩K3 6= ∅. The proof can be completed
by iterating this procedure. �

Lemma 15. Let K1, . . . , Kp be any family of non empty sets such that(
m⋃
j=1

Kj

)
∩ Km+1 6= ∅ for m = 1, . . . , p− 1.

Assume we are given a nonnegative function u : K −→ R, K =
⋃m
j=1 Kj, such that

sup
Kj
u ≤ C inf

Kj
u for j = 1, . . . ,m.

Then

sup
K
u ≤ Cp inf

K
u. (22)

Proof. Let x, y ∈ K1 ∪ K2 and choose a point z ∈ K1 ∩ K2. If x, y ∈ K1 or x, y ∈ K2 we have u(x) ≤ Cu(y). If x ∈ K1 and y ∈ K2,
or x ∈ K2 and y ∈ K1, we have u(x) ≤ Cu(z) and u(z) ≤ Cu(y), so that, since u ≥ 0, u(x) ≤ C2u(y). Thus, in any case, being
C ≥ 1,

u(x) ≤ C2u(y) for every x, y ∈ K1 ∪ K2.

Let us now take x, y ∈
⋃3
j=1 Kj and choose z ∈ (K1 ∪ K2) ∩ K3. If x, y ∈ K1 ∪ K2 or x, y ∈ K3 we have u(x) ≤ C

2u(y) or
u(x) ≤ Cu(y). If x ∈ K1 ∪ K2 and y ∈ K3 we have u(x) ≤ C2u(z) and u(z) ≤ Cu(y) hence u(x) ≤ C3u(y). The same inequality
obviously holds if x ∈ K3 and y ∈ K1 ∪ K2. Thus, in any case

u(x) ≤ C3u(y) for every x, y ∈
3⋃
j=1

Kj.

Iterating this procedure we obtain

u(x) ≤ Cpu(y) for every x, y ∈
p⋃
j=1

Kj.

This inequality obviously implies (22). �

Now we can give the proof of our main result.
Proof of Theorem 1. We first assume bj ≡ 0 for every j = 1, . . . ,N . Then, in this case, by Eq. (20), the following Harnack
inequality holds

sup
Br
v ≤ C inf

Br
v

for every nonnegative weak solution v ofLv = 0 in RN and for every d ball Br , the constant C being independent of r and v.
Then, if u ≥ 0 and solvesLu = 0 in RN , letting v = u− infRN uwe have v ≥ 0 andLv = 0. As a consequence

sup
Br (0)

v ≤ C inf
Br (0)

v

so that, letting r go to infinity, we get 0 ≤ supRN v ≤ C infRN v = 0. Hence v ≡ 0 and u ≡ infRN u.
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Let us now assume hypothesis (1.2) is satisfied. From the Main Lemma we have

sup
B rj
8

v ≤ C inf
B rj
8

v

for every nonnegative weak solution to Lu = 0 in RN and for every d-ball B r
2
centered at a point of ∂Brj(0), with C > 0

independent onu and on the ballB rj
8
. Indeed the constantC in the previousHarnack inequality only depends on the structural

constant and on

sup
y∈∂Brj (0)

b∗rj
8
(y) := sup

y∈∂Brj (0)
sup

Bρ (z)⊆B rj
2
(y)
ρ

(
−

∫
Bρ (z)

b2p
) 1
2p

.

By using the assumption (LT), with an easy computationwe recognize that the right hand side can be bounded by a structural
constant b∗ independent of j. Then, by applying Lemma 14 with θ = 1/8 and Lemma 15, we obtain

sup
∂Brj (0)

≤ C inf
∂Brj (0)

for every j ≥ 1, (23)

where C is independent of v and j. Let us now define v = u− infRN u, where u is any nonnegative solution toLu = 0 in RN .
Then, v ≥ 0 andLv = 0 in RN . By using (23) and the Maximum Principle in [7], Theorem 3.1, we obtain

sup
Brj (0)

v = sup
∂Brj (0)

v ≤ C inf
∂Brj (0)

v = C inf
Brj (0)

v.

Letting rj go to infinity, we get

0 ≤ sup
RN
v ≤ C inf

RN
v = 0.

Hence v ≡ 0 and u ≡ infRN u. �

4. Further comments and results

It is well known that Liouville Theorem follows from invariant Harnack inequality (see the proof of Theorem 1). From
our Harnack inequality of Lemma 13, with another standard argument we get the following result.
• Let hypotheses of Lemma 13 be satisfied. Then there exists α > 0 such that every weak solution toLu = 0 such that

lim
r−→∞

1
rα
sup
Br (0)
|u| = 0

must be constant.

Indeed, the invariant Harnack inequality (20) implies

|u(x)− u(y)| ≤ C
(
d(x, y)
r

)α
sup
Br (0)
|u|

for suitable C > 0 and 0 < α ≤ 1, independent of r . (See e.g. Theorem 5.3 [10], see also [16] pages 190–191.). Then, for
every fixed x, y ∈ RN , letting r go to infinity we get |u(x) − u(y)| = 0, that is u ≡ const. We would also like to remark
that the noteworthy Colding–Minicozzi’ s Theorem 0.7 in [18] can be extended to the X-elliptic operators in principal part.
Indeed, the existence of a global cut-off function given by our Theorem 10, and the Caccioppoli-type estimate (16) allow us
to, verbatim, repeat the proof in [18]. For reading convenience, we explicitly state here the result
• Let L as in (1) with bi ≡ 0 for i = 1, . . . ,N . Assume (E1) and (E2), (H1) and (H2) are satisfied. Then, for every fixed α > 0
the linear space of the weak solution toLu = 0 in RN satisfying

sup
r≥1

(
1
rα
sup
Br (0)
|u|
)
<∞

is finite dimensional.

Suitable versions of this result for a class of linear second order operators with nonnegative characteristic form, smooth
coefficients and which are homogeneous with respect to a group of dilations in RN , are contained in [19].
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